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Abstract. In an effort to build seismic models that are most consistent with multiple data 
sets, we have applied a new probabilistic inverse technique. This method uses a Markov 
Chain Monte Carlo (MCMC) algorithm to sample models from a prior distribution and 
test them against multiple data types to generate a posterior distribution. While 
computationally expensive, this approach has several advantages over a single 
deterministic model, notably the reconciliation of different data types that constrain the 
model, the proper handling of uncertainties, and the ability to include prior information. 
We also benefit from the advantage of forward modeling rather than inverting the data.  
Here, we use this method to determine the crust and upper mantle structure of the Yellow 
Sea and Korean Peninsula (YSKP) region. We discuss the data sets, parameterization and 
starting model, outline the technique and its implementation, observe the behavior of the 
inversion, and demonstrate some of the advantages of this approach.

Introduction

In the earth sciences, we often find that earth models derived using one set of geophysical 
data can often be inconsistent with models derived using another set of observations. 
Since we are interested in understanding the nature of the true earth, what we are really 
seeking are models that are most consistent with the full set of observations. Probabilistic 
inverse techniques, like the Markov Chain Monte Carlo (MCMC) algorithm, have had 
recent success in combining disparate data types into a consistent model. The stochastic 
methods that we consider here invert data by probabilistically sampling the model space, 
comparing the observations predicted by the proposed model to the observed data, and 
preferentially accepting models that produce a good fit, generating a posterior distribution 
of models. The model space is mapped through a series of stages comparing proposed 
models to data, with Bayes’ Theorem relating the prior and posterior distributions. This 
stochastic geophysical model is able to reliably predict geophysical observations for a 
wide variety of data types, and provide accurate estimates of their uncertainties.

Monte Carlo integration works by drawing samples from a distribution, then forms 
sample averages to approximate expectations. MCMC draws these samples by running a 
cleverly constructed Markov chain for a long time (Gilks et al., 1996). A Markov chain is 
a sequence of points in the model space whose probability at a given time depends upon 
the value at previous points. A good example would be a random walk. The Markov 
chain that we construct here follows a set of rules that preferentially moves to more likely 
states in the model space, but sometimes moves to less likely states. The result is a chain 
that can sample the complete model space, efficiently inspect high-likelihood regions, but 
that does not get trapped in local extrema.



Both Bayes theorem and sampling methods like Monte Carlo have been extensively 
employed in the earth sciences. Tarantola (1987) employed a Bayesian framework for 
tomography, which incorporates a prior background model into the tomographic 
inversion. While these methods succeed at including prior information, they assume the 
model follows Gaussian statistics, and seek to find a single solution to the problem with 
uncertainties derived from this assumption. In our formulation of the problem, no 
assumptions have been made about the distribution of models and we find, in fact, that in 
many instances Gaussian distributions are not applicable. Instead of a single model, what 
we seek are the distributions of models that are most consistent with both our prior 
information and our observations.

MCMC originated in statistical physics and more has found recent application in many 
different fields. Application in the earth sciences has been more limited. In at least one 
recent study, Shapiro and Ritzwoller (2002) employed MCMC, along with a linearized 
inversion and simulated annealing, to invert for shear velocity structure using surface 
waves. The methodology proposed here differs from previous earth science applications 
by using multiple stages, each constraining the model with different data sets, to generate 
a new distribution of models. This method has recently been applied to map electrical 
resistivity changes (Ramirez et al., 2004).  Our goal is to employ the technique to 
estimate regional earth structure using multiple geophysical data sets.

By ordering our stages properly, we can quickly reject models that cannot fit the 
observations that are easiest to calculate. The data sets that are more computationally 
intensive to forward model are relegated to later stages, increasing the efficiency of the 
inversion. Another important distinction of this methodology is that we do not seek a 
single best model or to simplify a distribution of models into a model with uncertainties. 
Rather, the final product is a posterior distribution of models that is best able to fit all of 
the data. As we will elaborate more in the paper, this approach has several important 
advantages, including less-restrictive distributions on the models, as well as the ability to 
reliably estimate uncertainties on new observables.

Data and Parameterization

We have selected as our study area the region of Eastern Asia in the vicinity of the 
Yellow Sea and Korean Peninsula (YSKP). We use seismic data from a number of 
sources in the region, including stations from the GSN, IMS, and CDSN networks, and 
data from regional broadband networks like those of KMA and KIGAM in South Korea.
We also made use of two PASSCAL deployments in China and North Korea. 

Two observational data types that we are currently using to construct the model are 
surface wave group velocities and body wave travel times. Rayleigh wave dispersion 
measurements have been made for thousands of paths across the region using a multiple 
filter analysis technique and, as shown in Figure 1a, provide excellent coverage 
(Pasyanos et al., 2003). The data is assembled by taking dispersion measurements at 5 s 
intervals of period between 10 and 100 s. The short period data is sensitive to the 



shallowest earth structure (i.e. sediments), intermediate period data to deeper crustal 
structure (i.e. crustal velocity, crustal thickness), and long period data primarily to upper 
mantle structure. Combined, they do an excellent job of predicting average S-wave 
velocity structure. Surface wave data, however, has the downside of large tradeoffs 
between velocities and the depth of discontinuities, allowing multiple models consistent 
with the same data.  The uncertainties of the group velocities are derived from the 
broadness of the energy arrival and generally range from 0.05 km/s to 0.10 km/s for 
typical paths.

The second data type that we use is body wave travel times, most notably Pn (P-velocity 
upper mantle head wave), Pg (crustal P-wave), Sn (S-velocity upper mantle head wave), 
and Lg (crustal guided S-wave), all shown in Figure 1b. Coverage is generally not as 
good as the coverage of surface waves. These data, however, are complementary to the 
surface wave data both because some phases are more sensitive to P-wave velocities, but 
also because they sample the earth in a much different manner. For example, Pn is 
sensitive specifically to the P-wave velocity in the uppermost mantle, just below the 
Moho. By combining these with the surface wave data, we can reduce the non-
uniqueness caused by the tradeoffs discussed above. The uncertainties of the travel times 
are derived from the phase, and estimated qualities of the event location and pick, and 
reflect the ambiguity of the timing of the arrival. First arriving P-phases generally have 
smaller uncertainties than phases picked in the coda of earlier-arriving phases.

The first implementation step is to develop a mechanism (the base sampler) for 
generating model realizations from the prior distribution.  We parameterize the model as 
a set of layers in a regular latitude-longitude grid of 2°x 2° cells.  The layers represent 
geologic structure (water, upper sediments, lower sediments, upper crust, middle crust, 
lower crust, upper mantle) which are specified by their seismic parameters and thickness. 
This has the advantages of reducing the size of the problem, imposing realistic 
constraints, and making the resulting models more interpretable. The model ranges 
between 23° and 57° latitude and 109° and 147° longitude, for a total of 323 cells. 
Combined with 6 variable layers (all but water) and 4 parameters for each layer 
(thickness, Vp, Vs, density), this results in a total of 7752 free parameters.

The starting model selected for the region was CRUST2.0 (Gabi Laske, pers. comm.) 
which is similarly parameterized. From the starting model and parameter constraints, the 
base sampler can initially select models consistent with the a priori distribution. The 
seismic parameters are all selected independently which produces variations in Vp:Vs 
and Vp:density ratios. The ratios are checked, however, and unrealistic values of these 
ratios for the layer type are discarded.

Finally, in order to reduce dependence on the starting model and introduce some 
randomness to initial models for each chain, we have randomized the starting model for 
each of the two chains in our search. Chains allow us to make several forays into the 
model space at separate starting points, allowing a quicker sampling the model space, 
particularly in complex problems. This ensures coverage of the target distribution, and 



can also be used to monitor convergence. Prior to convergence, the run has not had 
enough time to properly sample the model space. The initial period, referred to as “burn-
in”, is still unduly influenced by the starting model. When convergence is finally reached, 
each Markov chain will have had a sufficient number of steps to independently sample 
the model space. The chains should have similar posterior distributions, which should be 
stationary in the long run. Convergence can be monitored by detecting when the Markov 
chains are independent of their starting points, by comparing sequences drawn from 
different starting points and checking that they are indistinguishable (Gelman, 1996).

Methodology

The MCMC approach that we use is a derivative of the Metropolis algorithm (Metropolis 
et al., 1953) as described by Mosegaard and Tarantola (1995). A brief description of the 
methodology follows. A more detailed description of the methodology (applied to an 
electrical resistivity problem) can be found in Ramirez et al. (2004).

The base sampler selects proposed models from the prior distribution. By comparing the 
degree of fit between the data predicted assuming the model m (by forward modeling the 
predicted data) and the observed data, we can determine the likelihood L(m|d) of the 
proposed model. Bayes’ rule relates the prior p and posterior distributions P as follows:

Ρ(m | d) = p(m)L(m | d) (1)

We assumed a likelihood function of the form:

L(m) = k exp − dpred ,i − d0,i( )n σ i
n

i

∑

 (2)

where dpred ,i  is the predicted data for a given model m, d0,i  is the vector containing the 

observed measurements, σ i is the estimated data uncertainty, k is a normalization 
constant, andn ≥1.  We assumed that n = 2.

If these transitions were always accepted, then the simulation would be sampling from 
the prior distribution. Instead, suppose that the proposal transition is only accepted by 
computing the respective likelihoods L(mi) and L(m j) for both the current and proposal 

states mi  and mj . If L(m j)≥ L(mi), then accept the proposed transition and move to 

state mj . If L(m j) < L(mi), then use a randomized decision rule and accept the proposed 

transition with probability L(m j ) L (mi ) <1 and move to state mj . Otherwise, transition 

back to state mi . By allowing the walk to transition to a less likely state, the process can 
move out of local extrema.

The samples generated through this process will have a limiting distribution that is 
proportional to the desired posterior distribution Ρ m d0( ). That is, the search tends to 



hover in regions of space M  containing states with greater prior propensities and higher 
likelihoods.

Stochastic models have several advantages over conventional models. First, while the 
model is data driven, as we have seen it is very easy to incorporate prior information. 
This information can range from non-specific priors like our starting model to very 
specific prior information (such as specifying the thickness of the crust in a location 
determined from a refraction profile) that should be incorporated. Importantly, the staged 
approach presents a way of reconciling data from many sources. For example, many data 
types (travel times, dispersion measurements, receiver functions, waveforms, etc.) with 
widely different sensitivity functions can be used. The posterior distribution represents 
models that are most consistent with all of the observed data. The relation between the 
different data types is not explicitly defined since each data type is simply forward 
calculated from the proposed models. Predicting the data from a model, of course, is 
simpler than inverting the data to produce a model.

Using this technique, we obtain the full posterior model distribution, and can reliably 
estimate the uncertainties of model parameters, both of which will be consistent with the 
uncertainties of the observables. Models and the parameters that describe models (i.e. 
sediment thickness) are not constrained to be normally distributed but could have non-
Gaussian or even multi-modal distributions. The posterior distribution of models can be 
used to estimate uncertainties on observable parameters, such as would be necessary for 
providing travel time corrections. These uncertainties reflect the uncertainties of the 
model parameters along with their correlations.

Results

We have made a run consisting of two chains each running 8000 iterations. Separately, 
we also have a two-chain run in which the models proposed by the base sampler are 
automatically accepted. This provides us with a prior distribution, with which we can 
compare and contrast the posterior distribution. In both cases, we have thrown out models 
from the first 3/4 of the iterations in order to ensure that we are past burn-in.

To see how the method is performing, we look at a profile in the Yellow Sea at the center 
of our model. Figure 2 shows the prior and posterior distributions.  In both cases, we find 
that the two chains are well-mixed, but that the distribution of profiles is different. The 
range of models in the posterior distribution has decreased significantly, accepting only 
models which fit the data well. In the presence of data, then, the model moves away from 
the prior distribution. Histograms of Moho depth, sediment thickness, and Pn velocity 
demonstrate the same (Figure 3). Not only have the peaks changed, but the distributions 
have gotten tighter, indicating lower uncertainties on these parameters. We find variance 
reductions of the parameters of 21%, 56% and 42% for crustal thickness, sediment 
thickness and Pn velocity. Notice as well that the distribution of sediment thickness is 
decidedly non-Gaussian, appearing to be more of a Poisson distribution. In contrast, in 
portions of our model at the edges where we have little data, we find only minor 



differences between the prior and posterior distributions of model, and the uncertainties 
remain high.  This indicates that the prior is reflected where there is no data to drive the 
model, as we would have anticipated.

We can assemble the results from each point to create parameter maps. Figure 4 shows a 
map of crustal thickness, along with the associated uncertainties. The values were 
determined by the mean and standard deviation for the posterior model. The maps are 
generally consistent with our understanding. We find thin crust in oceanic areas like the 
Sea of Japan and the Pacific Ocean, but not in the continental crust of the Yellow Sea.  
The thickest crust in our region is found to the west. We find differences from the prior 
model on the order of 5 km or so. Compared to the prior model, we are finding thicker 
crust in the Korean Peninsula and thinner crust in the Yellow Sea. Uncertainties are 
generally higher in the southwestern portion of our study area, where there is no body 
wave data. Inconsistency between data types is also reflected in higher uncertainties.

Conclusions

Stochastic methods are an innovative technique for producing data-driven models. They 
have a number of advantages compared to traditional models, such as the ability to 
reconcile different types of geophysical data. An important component is the ability to 
predict new observables with proper uncertainties. We have started to apply this 
technique with success to the YSKP region, using Rayleigh wave group velocities and 
regional travel time measurements. We can now start to include other suitable data sets in 
the inversion, including Love wave group velocities (which could simply be added to the 
other group velocities), and receiver function or waveform data (both which would 
require new stages). Waveform modeling would probably have the strongest constraints 
on the model along paths, but would also be the most computationally expensive to 
implement.  We aim to improve the model by incorporating more data sets and increasing 
the resolution.
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Figure 1. a) Path map of surface wave measurements. b) Path map of body wave travel 
times.  Colors indicate Pg (cyan), Pn (red), Lg (blue), and Sn (green) phases.

Figure 2. Prior (left) and posterior (right) model distributions for a point in the Yellow 
Sea.  P-wave velocity (in km/s) is plotted as a function of depth (in km).

Figure 3.  Histograms of model parameters for prior and posterior model for parameters 
of crustal thickness, sediment thickness, and P-velocity of the uppermost mantle.

Figure 4. Map of crustal thickness and uncertainties (in km) of the posterior model.






