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Abstract: 

We investigate a microscope design that offers high signal sensitivity and hyperspectral 

imaging capabilities and allows for implementation of various optical imaging 

approaches while its operational complexity is minimized. This system utilizes long 

working distance microscope objectives that enable for off-axis illumination of the tissue 

thereby allowing for excitation at any optical wavelength and nearly eliminating spectral 

noise from the optical elements. Preliminary studies using human and animal tissues 

demonstrate the feasibility of this approach for real-time imaging of intact tissue 

microstructures using autofluorescence and light scattering imaging methods.  
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Introduction

The diagnostic gold-standard of histological evaluation of living tissues typically 

entails fixation, sectioning, and staining to obtain thin samples which exhibit high 

contrast under the microscope. While this process has led to a much deeper 

understanding of cellular structure, tissue sectioning is time consuming, requires 

removal of tissue from the patient, and has inherent sampling error. However, the most 

important limitation is the delay, due to processing, in providing the surgeon with 

clinically relevant information at the time of surgery. While frozen section analysis is an 

accepted practice, this technique can be used only for readily identifiable lesions. Thus, 

there is clearly a need to develop new methods to complement existing modalities by 

providing the surgeon real time information that could be used intraoperatively to 

identify suspect lesions.

In recent years, technological developments in laser and detection instrumentation 

have facilitated the exploration of optical spectroscopic techniques for the detection and 

monitoring of disease at the tissue level. A number of spectroscopic approaches 

utilizing tissue autofluorescence and/or light scattering have led the way in the 

development of photonic methods for in-vivo characterization of tissue structures [1-6]. 

Although these techniques have been explored extensively at the macroscopic level for 

more than a decade, their recent adaptation to the microscopic level has demonstrated 

their capability to image tissue micro-structures directly correlated to the histopathology 

of the tissue. Using confocal microscopy, tissue imaging at the microscopic level has 

been demonstrated using autofluorescence and light scattering [7-11]. The use of 

confocal microscopy in combination with fluorescence probes has enabled quantitative 
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measurements of dynamic events in living cells and tissues. The incorporation of time 

gated imaging has also presented very promising results toward the development of 

instrumentation that can provide histopathologic information in real time [12]. With 

further development, optical coherence tomography [14] and optical projection 

tomography [15] may be able to provide multi-spectral imaging of tissue and cell 

microstructures in vivo.

The development of ultrafast lasers stimulated the utilization of nonlinear interactions 

of ultrashort pulses with cell components. Second harmonic generation imaging arises 

only by molecules which are noncentrosymmetric, and hence contrast is a function of 

the molecular structure of the specimen and its orientation with respect to the laser 

beam [15]. Two-photon laser scanning microscopy offers higher resolution than 

confocal microscopy using infrared pulses for excitation [16].  Coherent anti-Stokes 

Raman scattering microscopy offers the possibility for imaging by targeting specific 

molecular species [17].

Although these nonlinear imaging techniques offer unique diagnostic capabilities, 

their implementation in a clinical environment requires the accommodation of complex 

instrumentation and specialized technical expertise. On the other hand, confocal 

microscopy is less complex but the light collection efficiency is only a small fraction of 

that of conventional fluorescence microscopy [18,19]. In addition, the focused beam 

used in confocal microscopy leads to even less efficient autofluorescence signal 

collection due to photo-bleaching of native tissue fluorophores and sets a limitation on 

the excitation energy permissible thus increasing the necessary integration times.  

Furthermore, it is very difficult to incorporate hyperspectral imaging techniques in a 
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confocal microscope without major compromises in the instrument's size and cost. 

Although these issues may be easily resolvable for some applications, the in-vivo 

application of these advanced microscopies in a clinical setting may be proven 

challenging. 

One may then consider the possibility of developing a microscope system that takes 

advantage of the benefits of multi-dimensional spectroscopic imaging at the micro scale 

but does not incorporate the complexity of nonlinear microscopy or the signal loss of 

confocal microscopy. This concept has been the motivation for this work. More 

specifically, we have developed a conventional microscope design that incorporates 

hyperspectral imaging techniques and a plurality of imaging methods while offering high 

spatial resolution and optimized signal sensitivity for fast image acquisition.  

Additionally, by using off-axis illumination, spectral noise from the system’s optical 

elements was reduced or eliminated, thereby increasing signal-to-noise and spectral 

purity.  Using this system, we have carried out a number of experiments to demonstrate 

high-resolution imaging of microstructures in tissues using linear spectral imaging 

methods. The microscope system described in this work is intended to be a prototype 

platform, such that various imaging modalities can be quickly compared for their ability 

to provide contrast and image tissue microstructures.  Those modalities most relevant 

for the particular tissue system can then be incorporated into a portable (endoscopic, 

fiber-optic, etc.) system for clinical use.
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2. Experimental methods

Figure 1 shows a schematic diagram of the microscopic imaging system 

consisting of a portable unit and an external optical parametric oscillator (OPO) tunable 

laser. The imaging system located in the portable unit is equipped with long working 

distance microscope objectives followed by a zoom lens which is used to relay the 

image into a back-illuminated, liquid nitrogen cooled CCD detector. A filter assembly is 

located in front of the CCD in order to position the desirable optical filters for the 

selection of the spectral window used in each imaging experiment. In addition, a 

polarizer can also be inserted for polarization sensitive experiments. The large 

numerical apertures of the microscope objectives offer high light collection efficiency. 

This microscope design has been used previously in a different imaging arrangement to 

study fluorescing defects located in the bulk of optical materials [20]. The optimal spatial 

resolution is 1-µm using a X20 or higher magnification microscope objective.

The portable unit also contains a set of low-power CW lasers consisted of a 

Helium-Cadmium laser (325-nm), a Helium-Neon laser (632.8-nm) and four compact 

diode-pumped solid state lasers operating at 266-nm, 355-nm, 408-nm and 532-nm. 

The laser beams are delivered to the sample using optical fibers and appropriate optics 

to enlarge their diameter so that the imaged area is exposed to the nearly uniform light 

intensity of the center portion of each beam. The illumination light used in the light 

scattering experiments is delivered to the sample using a fiber bundle coupled to a 

white light source. The external (to the portable unit) laser source is an OPO pumped by 

an Nd:YAG laser operating at 355-nm and equipped with a second harmonic generation 
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crystal. This system is tunable from 250 to 340-nm and 410 to 1000-nm and is used in 

this work as the excitation source in autofluorescence experiments.

Autofluorescence images of fresh human tissue specimens obtained following 

surgical treatment as well as animal tissues were acquired using various excitation 

wavelengths and emission spectral bands. Kidney is a tissue system that has a well-

defined structure in the microscopic level where cells on the order of 10-µm in diameter 

are forming tubules with diameters of 50 to 80-µm.  For this reason, we used kidney 

tissue in this work as the primary model to demonstrate with our system spectroscopic 

imaging at the microscopic level.

3. Experimental results

Figure 2a shows the autofluorescence image of a cross section of a human 

kidney specimen using the X10 objective with 260-nm excitation and 400-1000-nm 

(using a long pass filter) collection. The specimen is 4-mm thick and was obtained fresh 

from surgery without additional sample preparation. The normal tubules are visible even 

to the untrained eye in the center of this image. Due to the limited depth of focus of the 

objective and the uneven surface of the sample, some of the features in this image are 

slightly out of focus. The inset in Figure 2a illustrates the histological structure of the 

tubules of the kidney from the image of an H&E stained section. Each tubule is 

composed of a single layer of cells. The nuclei of the cells appear as darker features in 

the H&E stained section. 

The features on the left side of the autofluorescence image shown in Figure 2a 

are cross sections of tubules cut by a surgical knife. Figure 2b shows a close up image 
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of these tubules near the location indicated by the arrow. This image shows with high 

resolution the sectioned tubules while the thickness of the tubules is about 10-µm, 

equivalent to a single cell layer. The average pixel intensity of the digitized image of the 

≈ 10 µm thick body of the tubule is 40-60% higher than the intensity in the middle of the 

tubule, providing contrast to visualize the tubular parenchyma microstructures. A careful 

examination of the cross section of the tubules reveals the presence of darker features 

that have the size and relative distance of the nuclei seen in the H&E stain. These 

darker features are also visible in the autofluorescence image of the intact tubules 

(shown by an arrow in Figure 2a) under 260-nm excitation as demonstrated in Figure 

2c. This higher resolution image of a single tubule clearly shows the darker features 

located 10 to 15-µm from each other. These features exhibit average intensities 

approximately 20% lower than the surrounding area of the tubule’s surface and are 

presumed to be the nuclei of the tubular cells.

The autofluorescence image under 260-nm excitation arises predominantly from 

tryptophan emission. An image of the tubules from the same specimen under 330-nm 

excitation is shown in Figure 3. The origin of the emission under this excitation is 

expected to be NADH [21]. Figure 3 demonstrates that the tubules are clearly visible 

under 330-nm excitation but the appearance of the tubules in this image is different 

compared to that under 260-nm excitation. More specifically, the darker features under 

260-nm excitation (which were assumed to be the cells' nuclei) are not visible under 

330-nm excitation. Instead, the emission intensity within the tubules is uneven and 

features that exhibit higher intensity having diameter on the order of a few microns are 

visible. We also recorded images using excitation wavelengths from 250-nm to 340-nm. 
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In general, images under 250-nm to 280-nm excitation appear to be similar to those 

shown in Figure 2. Images obtained under 300-nm to 340-nm excitation were similar to 

that shown in Figure 3. Similar experiments were performed using two more human 

kidneys, kidneys obtained from experimental rats, as well as bovine and porcine 

kidneys obtained from the market. All results were qualitatively the same as those 

discussed above.

We have recently discussed elsewhere that NIR auto-fluorescence under long-

wavelength excitation (green or red) offers contrast between normal and cancer tissue 

components depending on the type of tissue or organ [22].  In the case of kidney 

cancer, the tumor appears as a darker feature compared to normal tissue. We 

investigated this imaging approach, which has been explored only in the macroscopic 

field, using the high resolution imaging instrumentation discussed in this work.  Figure 

4a shows the auto-fluorescence image of human kidney using a 670-nm long pass filter 

and 532-nm excitation. The specimen is 5-mm thick and was obtained fresh from 

surgery. The exposure time was 1 second under 7-mW laser illumination. The tubules 

are clearly visible again but the origin of the autofluorescence is not clear. The bright 

features that contribute to the visualization of the tubules have intensities 20-50% higher 

than the rest of the image. It was not possible from pathology to identify the nature of 

these features.  Figure 4b shows the NIR auto-fluorescence image of human kidney in 

an area where tumor (papillary renal cell carcinoma)  interfaces  with  the  normal 

tissue.  Figure 4c shows a contrast enhanced H&E stained section of the same region, 

in which the tumor is on the upper side, the lower side is normal kidney parenchyma, 

and in the middle is normal tissue compressed by the expanding tumor. In the 
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autofluorescence image shown in Figure 4b, the tumor appears as a darker feature 

while the tubules are brighter. A higher magnification image (110 X 140 µm) of a section 

from the tumor is shown in Figure 4e. This image shows that the tumor has irregular 

texture with no organization. For comparison, an image (190 X 220 µm) from normal 

kidney is shown in Figure 4d. The average intensity of the normal tissue in this image is 

≈18% higher than that of the tumor tissue. The compression of the tubules by the tumor 

at the interface is also clearly visible in the auto-fluorescence image shown in Figure 4b 

and appears as an area of enhanced emission having about twice the intensity of the 

tumor area due to the compaction of the tissue and the tubules that are collapsing and 

respective enhancement of concentration of fluorophores. 

Figure 5 shows the autofluorescence image of a 650 X 500 µm section from the 

inner surface of porcine small intestine. The excitation wavelength was 280-nm and the 

image was recorded using the X20 microscope objective. The epithelial cells are visible 

in this image as round features with diameter of about 10-µm. Best contrast using 

autofluorescence imaging of small intestine cells was achieved using 280-nm excitation 

but the cells were also visible under all UV excitations as well as the compact 408-nm 

laser. We have performed similar experiments in other tissues and organs such as liver, 

pancreas, colon and breast. In all cases we can see features that can be directly related 

to the microstructure of the tissue. 

Attempts to utilize light scattering techniques to visualize the microstructures 

shown in Figure 2 through 5 were unsuccessful. The corresponding light scattering 

images of these Figures contained no recognizable features, just a white background. 

We found, however, that some relatively large structures (such as fat cells) can be 
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imaged using light scattering. As an example, we show in Figure 6 light scattering 

microscopic images from a 850 X 1000 µm section of a human breast specimen at the 

intersection between normal adipose (lower left) and tumor tissue (infiltrating ductal 

carcinoma). This specimen was obtained fresh following lumpectomy.

Figure 6a shows the unpolarized light scattering image of this specimen using 

white light illumination and a 450±20-nm narrow band filter in front of the CCD camera. 

The exposure time was 0.2 seconds. As can be seen in the Figure, the tissue 

components are distinctly different, permitting detection of the tumor edge (margin) with 

high spatial resolution. The average image intensity of the normal tissue is ≈0.36 to that 

of the cancer tissue. Figure 6b shows an image of the same site  under same conditions 

but using an 800±40-nm filter for image formation. This image provides a lower contrast 

between normal adipose and cancer tissue. The average intensity in the image of the 

adipose tissue was measured to be ≈0.88 to that of the cancer tissue. Figure 6c was 

obtained by dividing, pixel by pixel, the light scattering image obtained under white light 

using a narrow band filter at 450±20-nm by the image obtained using an 800±40-nm 

filter. In this image, the contrast is further enhanced taking advantage of the spectral 

differences of the light scattering intensity from these tissue components.

The high spatial resolution in delineating the tumor's margins is best depicted in 

Figure 6d where a 360 X 300 µm section is shown at the intersection of the tumor with 

the normal tissue The outline of individual adipocytes is easily appreciated. Additionally, 

the first row of normal adipose cells that are in contact with the tumor are clearly visible. 

The bright features in the normal tissue are consistent with the size and location of the 

nuclei of the adipose cells. In these images the tumor is clearly separated from the 
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normal adipose tissue but the challenge would be to separate cancer form normal 

connective tissue. In such a case, light scattering imaging may not be sufficient and 

may require the utilization of autofluorescence imaging. Work to address this issue is in 

progress.

4. Discussion 

The multimodal optical imaging experimental system described in this work has 

been designed with future portable application in mind. All tissue samples imaged with 

this system and shown in the figures were intact and unprocessed specimens 

simulating the conditions that would be encountered in a clinical setting. The methods 

found using this platform system to provide optimum contrast between pathologically 

relevant microstructures of a particular tissue system can be readily incorporated in 

endoscopic, fiber optic, or micro optic-based handheld systems for clinical use. 

The main strength of this microscope design is that it can incorporate a large 

variety of spectral imaging techniques including the ability to use any available 

excitation wavelength, utilize fluorescence or light scattering spectral imaging, and 

incorporate polarization techniques without having to make any modifications to the 

instrument. This feature allows the instrument to be quickly adapted to various imaging 

tasks, and can easily be operated by an unskilled user.

Autofluorescence microscopy and spectral and polarization-sensitive light 

scattering microscopy are the main imaging methods that can be implemented with our 

microscope system. Autofluorescence microscopy can take advantage of the variation 

of tissue chromophores in the microscopic level to image subcellular components and 
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tissue microstructures as demonstrated in Figures 2 through 5. Light scattering 

techniques can take advantage of the variation of the scattering intensity of tissue 

microstructures as a function of the illumination wavelength, which depends on their 

index of refraction and size. Polarization can be used to further enhance these 

differences and can also be used to remove signal arising from out of focus features 

located below the image plane (just below the surface of the tissue) that will be 

depolarized or less polarized due to scattering [23]. Time gated imaging can be added 

to further enhance contrast between different tissue components [12]. 

The experimental system described in this work is composed of a portable unit 

and an OPO laser system. The OPO laser provides continuously variable excitation 

from the UV to the NIR spectral region to reveal the optimal excitation conditions for 

best image contrast and visualization of microstructures of interest in various tissue 

types. However, upon determination of the most successful approaches to image a 

particular tissue system, the excitation source can be replaced with a set of portable 

compact lasers such as those already incorporated into the portable unit. The portable 

unit was built so that it can be transferred to an animal facility to perform in vivo 

experiments in small animal models.  

A microscope system suitable for in vivo application in a clinical setting should 

be able to provide: a) contrast between components of intact tissue to reveal 

histopathologic information, b) sufficiently high spatial resolution to separate structures 

and components of interest and, c) fast image acquisition for real time imaging of an 

object (tissue component or organ) that may be continuously moving due to heartbeat 

and blood flow. We believe that this microscope design offers the promise to fulfill all 
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these objectives. Our preliminary results are strongly suggestive that our experimental 

microscope system can provide high resolution spectroscopic images of superficial 

tissue microstructures that are related to the pathologic state of the tissue. Furthermore, 

the image acquisition time can be very fast due to optimization of the light collection 

efficiency. All autofluorescence images shown were captured with exposure times of 1 

second under laser irradiation that did not exceed 5-mW/mm2 in the visible and 0.5-

mW/mm2 in the ultraviolet spectrum. 

The image quality of an in vivo microscope system depends not only on the 

designing characteristics of the optical components but also the degree to which the 

object being imaged can be kept immobilized with respect to the imaging system 

(microscope) during image acquisition. Obviously, this is a problem when imaging in 

vivo, due to intrinsic micro- and macro-movements of the vasculature, musculature, etc.  

An effective solution to this problem is to acquire an image much faster than the tissue 

can move beyond the instrument’s specified spatial resolution of- and relative to the 

imaging system. This can be achieved using pulsed illumination, such that the image is 

acquired from exposure to a single pulse. In this case, the effective image acquisition 

time of an autofluorescence image is on the order of a few nanoseconds (determined by 

the longer of the emission lifetime or laser pulselength). For example, using illumination 

of ≈ 0.5 mJ/mm2 in the UV obtained from a Q-switched laser, our results suggest that 

this photoexcitation is sufficient to acquire a high quality image of the tissue. In this 

case, even if we assume that the relative microscope-tissue speed of motion is an 

extreme value of 10 cm/sec, the relative movement during a 10 ns time interval is about 

1 nanometer. Consequently, pulsed illumination shorter than about 10 µsec offers 
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image acquisition fast enough to eliminate any loss in spatial resolution during in vivo 

application. 

Since the imaging elements of this design are separated from the optical 

elements delivering the excitation light (via off-axis illumination), excitation at multiple 

wavelengths is unrestricted by chromatic aberrations and the transmissive properties of 

optical components. This approach also eliminates any background signal (noise) 

arising from the optical elements, an issue most notable under UV excitation. 

Furthermore, off-axis illumination is capable of providing topological images of tissue, 

based on shadowing of the illumination light by microstructures in the tissue.  This effect 

is maximized under UV excitation due to the smaller photon penetration depth. 

A key disadvantage of the microscope design utilized in this work when 

compared to confocal or nonlinear microscopies is that it has no image sectioning 

capability. This feature is sacrificed in order to achieve optimal signal collection for fast 

image acquisition times and incorporation of different imaging methods that can be 

easily exchanged during operation. However, structured illumination can be used to add 

sectioning capabilities and enhance the image contrast of superficial tissue 

microstructures [12], but important aspects of this design (such as the system’s 

complexity, adaptability for endoscopic designs and the speed of image acquisition) 

may be compromised.

Our experimental results indicate that tissue cells and microstructures can be 

quickly imaged microscopically using their autofluorescence under UV excitation. We 

have tested various tissue systems of interest such as colon, liver, pancreas, bladder, 

esophagus and normal tissue structures were clearly visible in all cases. A clear benefit 
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in using UV excitation is that the short photon penetration depth due absorption by 

tissue facilitates a low signal arising from the subsurface tissue layers providing for 

enhanced signal of the in-focus features on the surface layer of the tissue. On the other 

hand, imaging in the visible spectrum may offer valuable information to highlight disease 

specific optical signatures as shown in Figure 4. In these cases, imaging using UV 

excitation complemented by disease specific imaging in the visible or NIR may offer 

sufficient information for histopathologic evaluation and accurate delineation of tumor’s 

margins. 

The knowledge obtained from the experimental system described in this work 

can provide the basis for the development of a microscopic imaging instrument that can 

assist during surgery by providing pathologically relevant tissue information in real time. 

This method may be best suited as a complementary tool to a low spatial resolution 

optical modality that rapidly provides examination at the tissue level and may utilize 

native contrast mechanisms or contrast agents. In this arrangement, a high-resolution 

imaging instrument can assist to better delineate the tumor's margins and as a 

screening tool of small tumors not visible in the macroscopic field. It may also be used 

as a monitoring tool of tissues or organs during treatment or exposure to adverse 

conditions by employing an array of spectroscopic methods that can provide information 

at the microscopic level (e.g. change of tissue chromophore properties, location of 

uptake of contrast agent, cell swelling etc).
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Figure Captions

Figure 1. Schematic layout of the key optical components of prototype hyperspectral 

microscope

Figure 2. a) Microscopic autofluorescence image of normal human kidney under 260-

nm excitation. Inset illustrates the histologic structure of two kidney tubules 

from an H&E stained section. b) Image of a set of sliced tubules by the 

surgical knife. c) Image of an intact tubule. Dark features are believed to be 

the cell nuclei.

Figure 3. Microscopic autofluorescence image of a 360 X 340 µm section of normal 

human kidney under 330-nm excitation.

Figure 4. a) NIR autofluorescence image of a 960 X 600 µm section of normal human 

kidney tissue under 532-nm excitation and b) in the area of tumor interface 

with the normal tissue. c) Contrast enhanced H&E stains of the tumor-normal 

tissue interface. d) Higher magnification image of the normal kidney tissue 

and e) of the tumor.

Figure 5. Autofluorescence image of 650 X 500 µm section of the interior surface of 

porcine small intestine recorded under 280-nm excitation.

Figure 6. Light scattering microscopic images of a 1000 X 850 µm section of a human 

breast specimen at the intersection of normal adipose and tumor tissue using 

a) an 450±20-nm filter, b) an 800±40-nm filter and, c) Ratio image. d) A 

higher magnification ratio image of a 300 X 360 µm section.
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