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ABSTRACT

A new method for estimating the Dancoff factors in pebble beds has been developed and implemented 
within two computer codes.  The first of these codes, INTRAPEB, is used to compute Dancoff factors for 
individual pebbles taking into account the random packing of TRISO particles within the fuel zone of the 
pebble and explicitly accounting for the finite geometry of the fuel kernels.  The second code, PEBDAN, 
is used to compute the pebble-to-pebble contribution to the overall Dancoff factor.  The latter code also 
accounts for the finite size of the reactor vessel and for the proximity of reflectors, as well as for 
fluctuations in the pebble packing density that naturally arises in pebble beds. 
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EXECUTIVE SUMMARY 

The task reported on in this document was initially meant to investigate the methods available in 
the literature for accounting for the randomness of TRISO particle packing when computing Dancoff 
factors in doubly heterogeneous pebble beds.  It was planned then to either determine which method is 
fully applicable to the design of the pebble bed version of the Next Generation Nuclear Plant (NGNP) or 
to produce a method that correctly accounts for the random packing of TRISO particles (this is referred to 
below as the infinite-medium or intra-particle Dancoff factor contribution).  It was planned to retain the 
best method from the literature for incorporating the pebble-to-pebble effects on the overall Dancoff 
factor.  However, during the course of this study it was determined that even the most widely accepted 
pebble-to-pebble method was not acceptable for the case of the NGNP, and a fully rigorous method (and 
code) was developed.  These developments are summarized here. 

Infinite-medium Dancoff factors are calculated for spherical kernels with a stochastic packing as 
used in High Temperature Reactors, and compared with four methods from the literature. The latter 
assume either infinitely small kernels with a random distribution, or finite kernels with some restrictive 
assumptions.  In the new method developed in this work (and presented here for the first time), we 
calculate the infinite-medium Dancoff factor by numerically integrating the Dancoff factor of two 
adjacent kernels over their surfaces and respective positions.  It turns out that for practical pebble-bed fuel 
designs all four methods give results accurate within 2%, but that larger deviations are obtained for 
extreme cases (either at high or low dilution).  It follows that whereas all methods are applicable to the 
currently contemplated design of the pebble for the NGNP, they are not equally applicable to possible 
alternate designs.  Furthermore, the current study points to the likelihood of serious inadequacy of the 
methods currently in use in the literature and in computer codes developed elsewhere for the design of the 
prismatic version of the NGNP, in which substantially higher packing fractions of TRISO particles are 
contemplated.  The method developed here, for the pebble case, should be applicable to the prismatic 
design case, with the appropriate modifications.  The methods developed in this project are summarized 
in the next two paragraphs. 

The first method pertains to the computation of the contribution of the “within-pebble” features to 
the overall doubly heterogeneous Dancoff factor.  For this, a Monte-Carlo program called INTRAPEB 
was written that calculates the average value and the space-dependence of the Dancoff factor of one 
single fuel pebble.  The code also computes the angular distribution of neutrons escaping the pebble.  For 
the Dancoff factor, the analytical results from the literature agree very well with ours at TRISO packing 
values typical of the currently planned design of the pebble bed NGNP fuel.  However, for a cubic 
packing of particles, as is usually modeled in MCNP calculations, a 10% larger Dancoff factor is found, 
which might explain some differences in resonance absorption reported in the literature.  In the nominal 
random packing case, the angular distribution of neutrons escaping from the moderator zone of a pebble 
predicted in this work is much more forwardly peaked than the cosine angular distribution assumed in 
analytical methods. 

The second method developed in this work pertains to the contribution to the doubly heterogeneous 
Dancoff factor that arises from the presence of multiple pebbles (i.e., the inter-pebble and pebble-to-
pebble effects).  For this, a second program called PEBDAN was written that calculates the average value 
and the space dependence of the inter-pebble Dancoff factor (the probability that a neutron escaping from 
the fuel zone of a pebble crosses a fuel particle in another pebble) and the pebble-pebble Dancoff factor 
(the probability that a neutron escaping from the fuel zone of a pebble crosses the fuel zone of another 
pebble).  In this program, the coordinates of the pebbles in a randomly packed bed are determined, after 
which the Dancoff factors are calculated by a Monte Carlo ray-tracing method. 
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In order to determine the positions of the pebbles, a random placing of pebbles in the vat of the 
reactor is assumed, and then packing is allowed until no room to move is available.  This procedure 
generates a porosity distribution for the pebble bed (or conversely a density or packing distribution).  The 
distributions generated in the PEBDAN code were compared with experimental values.  The radial 
porosity profile of the packed bed shows less pronounced peaks and a slightly larger average value than 
those experimental results.  However, the experimental results are for a vat diameter to sphere diameter 
ratio that is much larger than that of the NGNP pebble bed, and hence a direct comparison is not fully 
valid.  A more recently developed method (and code) for modeling packing that uses a more realistic 
representation of pebble motion gives results nearly identical to the experimental ones (for comparable 
configuration).  This new method will also be incorporated into PEBDAN.  Using PEBDAN, this work 
demonstrated that due to the larger escape probability of neutrons, the Dancoff factors drop several tens 
of percents along the inner and outer reflector of the core.  In the literature the effect of the proximity of 
reflectors was not accounted for when computing Dancoff factors, whereas Monte Carlo models 
inherently incorporate all geometric effects, including boundary effects.  The new method removes this 
additional source of discrepancy.  It must be noted that the PEBDAN code and the pebble packing 
fraction modeling codes were not part of the initial task. 
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Computation of Dancoff Factors for Fuel Elements 
Incorporating Randomly Packed TRISO Particles 

1. INTRODUCTION AND REVIEW OF THE LITERATURE 

This report presents the results of a study conducted at the INEEL and partly completed at Delft 
University of Technology (The Netherlands) to assess the validity for the pebble-bed high-temperature 
gas-cooled reactor (HTGR) of Dancoff factors, as computed using methods from the literature.  As part of 
this study, a more systematic method for computing Dancoff factors was devised.  The motivation for the 
study derived from observed discrepancies between deterministic predictions (using diffusion theory and 
cross sections derived using Dancoff factors) on the one hand and MCNP (Monte Carlo neutron-photon) 
model results on the other.  Such studies had been carried out at INEEL, ANL, and Georgia Institute of 
Technology in the context of the NGNP design and of related projects (NERI), and were reported on 
previously (some results are referenced herein).  A prime source of discrepancy was recognized as the 
inadequate representation of the random packing of TRISO particles by the various models.  This project 
was therefore proposed to remedy this problem by identifying the best approach possible to modeling the 
random packing of TRISO particles in the cross section preparation phase.  Subsequently, the scope was 
expanded (at no additional cost) to include modeling the effects of random packing of the pebbles as well 
as modeling the effect of the proximity of reflectors. 

The new method relaxes some of the simplifying assumptions encountered in all previous 
developments.  In particular, the new method rigorously (albeit numerically) accounts for the random 
packing of the TRISO particles within the pebble.  In addition, as stated above, besides the explicit 
treatment of the random packing of the TRISO particles, the new method accounts for the actual finite 
geometry of the pebble bed and the proximity of reflectors in determining Dancoff factors.  Although the 
new methods presented here were meant for, and applied to, the pebble bed reactor concept, their 
conclusions and implications are relevant to any other HTGR fuel shape, including the prismatic block 
fuel type. 

 Dancoff factors are used in resonance shielding calculations to adjust the first-flight escape 
probability of a fuel lump for the probability that a neutron that escapes will enter a neighboring fuel lump 
without interaction in between.  Many programs and subroutines exist that calculate Dancoff factors for 
regular or irregular lattices, see for example References 1–3.  The calculation of Dancoff factors of HTGR 
fuel types, both pebble-bed and prismatic types, has always been more problematic than that of LWR 
fuels, because of the six times smaller scatter cross section of the moderator in the resonance region.  
Consequently, the influence of the double or even triple heterogeneity involved in HTGR fuel types has to 
be accounted for in the Dancoff factor calculation. 

HTGR fuel typically consists of a fuel kernel with a diameter of 350 to 500 m, covered by a 
porous buffer layer and a combination of pyrolytic carbon and SiC layers.  The buffer layer 
accommodates the gaseous fission products that escape from the fuel kernel and protect the outer coating 
layers from recoiling fission products.  The total thickness of all the layers covering the fuel kernel is 
typically about 200 m.  The coated particles are embedded in a graphite matrix with either spherical 
shape for pebble-bed reactors or cylindrical shape for prismatic graphite block types.  In pebble-bed 
reactors, which is the main focus of this report, the spherical fuel zone of a pebble, containing about 10–
20 thousand of these coated particles, has a radius of 2.5 cm and is covered by a graphite layer with a 
thickness of 0.5 cm.  Besides these fuel pebbles, the core may contain moderator pebbles containing 
graphite but no coated particles, which, from a neutronics point of view, increases the effective thickness 
of the outer graphite shell of a fuel pebble. 
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For pebble-bed reactors, Teuchert accomplished the numerical calculation of Dancoff factors in 
1967,4 while Bende et al.5 solved the problem in 1999 analytically (although while still requiring the 
numerical evaluation of exponential integral functions of the third order).  In the latter article, the problem 
is solved in two steps.  First, the Dancoff factor of an infinite number of fuel particles (in an infinite 
medium) is calculated and corrected for the probability that neutrons may leak from the fuel zone of a 
pebble to the moderator shell without interaction.  This contribution is called the intra-pebble Dancoff 
factor.  Second, the probability that these escaping neutrons may enter a fuel kernel in another pebble, 
either a neighboring pebble or one further away, is calculated and added to the first term.  This latter 
contribution is called the inter-pebble Dancoff factor.  Both contributions can be calculated analytically 
by using the first-flight escape probability for spheres derived by Case et al.,6 and the transmission 
probabilities for spheres derived by Westfall.7  For the inter-pebble term, this imposes no approximation 
as long as no moderator pebbles are admixed with the fuel pebbles.  Then, the actual geometry of the 
physical situation and the geometry used to calculate the escape and transmission probabilities are both 
spherical.

For the intra-pebble Dancoff factor, however, the underlying assumption that the transmission 
probability of a large number of fuel kernels randomly distributed in a graphite matrix may be 
approximated by the moderator transmission probability in a spherical unit cell was never proven, nor was 
it addressed.  For new fuel designs with large fuel kernels at high density, the infinite-medium Dancoff 
factor based on this assumption may not be accurate.  Because the same assumption is implicitly used by 
resonance shielding codes such as the MICROX-2 code8 used at the INEEL, an assessment of the validity 
of this formulation, elaborated on in Section 2.2, was needed. 

To clarify the potential problem, we show in Figure 1 the infinite-medium Dancoff factor 
calculated with Bende’s method as a function of the fuel kernel radius and the number of fuel kernels in a 
standard fuel pebble with a radius of 
2.5 cm, while in Figure 2 we show the 
ratio of this Dancoff factor and that of 
Lane et al.9  The latter model is based 
on a statistical treatment elaborated on 
in Section 2.3, and is said to be 
accurate only at high dilution (low 
particle densities).  Surprisingly, the 
discrepancy between Bende’s model 
and that of Lane is large at high 
dilution, while at low dilution (high 
particle densities) there seems to be a 
nice agreement.  The first-mentioned 
fact is most probably due to the fixed 
minimum value of the inter-particle 
spacing in Bende’s model, while in a 
randomly distributed collection of 
particles, the few particles that are very 
close to each other contribute significantly 
to the Dancoff factor.  Fortunately, 
because the Dancoff factor itself is very 
low at high dilution, this discrepancy is of 
low significance.  The second-mentioned fact, the good agreement at high particle density, may be more 
serious, as we are not aware of any seriously limiting assumption in Bende’s method in this region. 

Figure 1.  The infinite-medium Dancoff factor according 
to Bende et al.5  The kernel radius is given in units of 
25 m (maximum is 400 m), the density in units of 
5,000, in a standard fuel pebble (maximum is 40,000). 
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In Section 2, some theory about 
Dancoff factors is reviewed: 
Section 2.1 discusses the 
application of Dancoff factors in 
resonance shielding calculations, 
Section 2.2 the calculation of 
infinite-medium Dancoff factors 
according to Bende’s model, and 
Section 2.3 the statistical model 
of Lane.  In Section 2.4, we 
discuss some methods to test the 
applicability of the two 
previously mentioned models for 
lattices with a high packing 
fraction.  Section 2.5, finally, 
describes the extension of 
infinite-medium Dancoff factors 
to intra-pebble Dancoff factors.  
Results about this issue are given 
in Section 3. 

The second issue addressed in 
this report is the influence of the 
particle distribution in the fuel pebble 
on the Dancoff factor.  In a recent paper,10 Kim et al. found that the eigenvalues of the Next Generation 
Nuclear Plant (NGNP) under study at INEEL differ significantly for a random distribution of fuel kernels 
and for a regular lattice, with the latter values always being lower.  They found that this discrepancy is 
due to an overestimation of the neutron capture rate in the main resonance absorbers by about 1%.  To 
investigate and verify this effect, a Monte-Carlo program was written that calculates the intra-pebble
Dancoff factor for random and cubic packing of particles in the fuel pebble.  Besides the pebble-average 
Dancoff factors, this program also calculates the radial dependence of Dancoff factors, and the escape 
probability as well as the angular distribution of the outgoing current.  Results are given in Section 4. 

The third issue addressed in this report concerns the calculation of space-dependent Dancoff factors 
for pebble-bed reactors.  Because of enhanced neutron leakage, the inter-pebble Dancoff factor will be 
lower at the boundary of a reactor core.  For water-moderated reactors, this effect is quite small because 
of the small diffusion length, but for graphite-moderated reactors, the effect might be more significant.  A 
Monte-Carlo program was written that calculates the different contributions to the Dancoff factor as a 
function of radius and height in a cylindrical reactor core (although the latter is not a limitation of the ray-
tracing method, and other geometries could be easily programmed as well).  Results are given in 
Section 5.  The report’s conclusions are given in Section 6 

Figure 2.  The ratio of the infinite-medium Dancoff factor 
according to Bende et al.5 and Lane et al.9  The kernel radius 
is given in units of 25 m (maximum is 400 m), the density 
in units of 5,000, in a standard fuel pebble (maximum is 
40,000).
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.

2. THEORY 

2.1 Dancoff Factors 
As mentioned, the application of Dancoff factors arises in the calculation of group-wise resonance 

shielded cross sections.  Most resonance shielding codes solve the two-region slowing-down equation: 
/ ' ' '

1 '
1 '

FE F F
s F FM tF

t F FM
FE

E E P E E
E E P E dE

E E
 (1) 

where the symbols have their usual meaning (see for example Chapter 10 in Reference 11).  The 
probability PFM accounts for the chance that a neutron that escapes from a fuel lump will have its next 
interaction in the moderator.  The equation above is solved for the spatial average of the neutron flux in 
the fuel lump.  In deriving this equation, several assumptions were made: the neutron slowing down 
source in the fuel lump and in the moderator should be spatially flat (flat source approximation), such that 
the reciprocity theorem12 may be applied, the energy loss per collision with a moderator nuclide should be 
much larger than the width of the resonance (narrow resonance approximation for moderator nuclides), 
and no absorption should take place in the moderator. 

For isolated lumps, the first-flight escape probability, which were derived analytically for several 
geometries by Case et al.,6 can be substituted for PFM without large error.  However, when resonance 
neutrons that escape from a fuel lump can enter another lump, a correction to the first-flight escape 
probability has to be made, as explained in Reference12.  A neutron that escapes from a fuel lump will 
have a probability 0

MP  to have its first subsequent interaction with a moderator nuclide surrounding that 
lump, a probability 100 11 MFM PPP  to that first interaction with a moderator nuclide after traversing 
one other fuel lump, a probability 21100 1111 MFMFM PPPPP  to have that first interaction with a 
moderator nuclide after traversing a second fuel lump, etc.  The probability that the first interaction be 
with a moderator atom after any number of transits through fuel lumps is the sum of all these 
probabilities, which is the sum of an infinite series.  Assuming 0

M
i

M PP  and 0
F

i
F PP  for all 0i , this 

sum of probabilities converges, and the total probability for a neutron to escape from a fuel lump 
becomes: 

0

0 0 0

1
1 1 1 1 1

M
FM esc esc

M F F

P C
P P P

P P C P
  . (2)

Here Pesc is the first-flight escape probability, and 01 MPC  is the Dancoff factor, which is equal 
to the probability for a neutron that escapes from a fuel lump to enter another lump without interaction 
with a moderator nuclide in between.  Note that the “gray” effect, which accounts for the probability that 
a neutron may traverse one or more fuel lumps without interaction, is already accounted for in the 
Dancoff factor itself.  To calculate the probabilities 0

MP  and 0
FP , one usually assumes that all neutrons 

escaping from a fuel rod and all neutrons entering a moderator zone have an isotropic angular 
distribution.  This means that in calculating the transmission probabilities, each surface can be considered 
as a white boundary source, which practically translates into the assumption of a cosine angular current 
through that surface.  The validity of this assumption is discussed in Section 4. 



5

2.2 Infinite-Medium Dancoff Factors According to Bende et al. 
In the method of Bende and his co-workers,5 the transmission probabilities are calculated in a 

spherical unit cell containing a fuel kernel and a moderator zone with thickness that preserves all 
moderator nuclides in the fuel zone of a pebble.  The moderator zone thus includes the carbon and silicon 
atoms from the coatings that cover each fuel kernel, but excludes the carbon atoms from the 0.5-cm-thick 
outer shell of the fuel pebble.  The infinite-medium Dancoff factor then becomes the product of the 
probability of a neutron emitted from a fuel kernel to reach the outer boundary of the spherical unit cell 

iot , the probability to cross the moderator zone of an arbitrary number of n adjacent unit cells without 

entering a fuel kernel n
oot , and the probability of a neutron emitted from the outer boundary of the 

moderator zone to reach another fuel kernel oit .  In accordance with the theory described in the 
previous section, these transmission probabilities, reported for spherical geometry by Westfall,7 should be 
calculated assuming a white boundary.  In equation form, the Dancoff factor becomes: 

0 1
Bende n io oi

io oo oi
n oo

t t
C t t t

t
  . (3) 

Note that because of the way the unit cell is defined, in this formalism a neutron always travels 
through the moderator zone of the coated particle that includes the average amount of moderator nuclides 
corresponding to the graphite located between the coated particles.  The minimum distance a neutron has 
to travel to another kernel is therefore always larger then the distance between two coated particles 
adjacent to each other, which may give a biased value for the Dancoff factor at low dilution. 

2.3 Infinite-Medium Dancoff Factors According to Lane et al. 
In 1962, Lane et al.9 derived the infinite-medium Dancoff factor for randomly distributed particles.  

If m is the particle density, the macroscopic cross section for crossing a fuel kernel equals 2
1rmF

t ,
where 1r  is the geometrical radius of the kernel.  The probability that the volume element dV contains one 

or more particles equals mdVmdV
n

mdV

n

n

exp
!1

.  The probability that a ray of length r does 

not cross a fuel kernel equals rF
texp , while the probability that a neutron along the same ray does 

not interact with a moderator nuclide equals rM
texp .  Using these probabilities, the infinite-medium 

Dancoff factor becomes: 

l
drrmrC M

t
F
t

M
t

F
tM

t
F
t

Lane

1
1exp

0

2
1

1  (4) 

with FFM SVVl /4  is some kind of average chord length.13  If all the particles contain a coating 
with thickness c, the lower limit for the integral should be 2c instead of 0, and the Dancoff factor changes 
accordingly9 to 

F
t

M
tF

t
M
t

F
tLane cC 2exp2   . (5) 
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However, for many cases considered in this report, this modification gives worse results than the 
previous formula. 

In conjunction with this model, a Green’s function can be defined that gives the contribution to the 
Dancoff factor of two particles a distance r apart with only moderator in between.  This Green’s function 
reads 2 2

1( ) exp / 4Lane M
tG r r r r  and accounts for the fraction of the isotropic source emitting neutrons 

in solid angle 2 2
1 /r r .  The infinite-medium Dancoff factor according to Lane’s model can then be 

restated as 

0

21 4exp)( drrrrGC F
t

Lanelane  (6) 

which will be the form used for numerical comparison with the dual-particle model introduced in the next 
section.

Note that a slight modification can be made to Lane’s model by adjusting the moderator cross 

section with the volume fraction occupied by the fuel kernels according to 3
1

*

3
41 rmM

t
M
t .  In 

this case, one gets a similar expression for the Dancoff factor, 

**
0

2
1

*

1
1exp

l
drrmrC M

t
F
t

M
t

F
tM

t
F
t

Janssen  (7) 

but with a slightly different chord length given by FM SVl /4* .  Janssen originally derived this 
approximation in a memorandum that has not been widely distributed.14

2.4 Dual-Particle Model 
In the previous section, the kernel size was assumed to be infinitely small, which is likely to give 

deviations for large kernels.  Therefore, we derived a Green’s function that describes the probability for a 
neutron escaping from the surface of one fuel kernel to reach another fuel kernel with its center a distance 
d away without interaction with moderator nuclei in between.  This Green’s function, which can be 
considered as a dual particle Dancoff factor, is given by 

22
1

2
0 0

2211

4

exp
22 11

sr

dAdAs

dG A A

M
t

Dual   . (8)  

The areas and angles are shown in Figure 3.  The integration over area A1 of the emitting kernel is 
only to be performed for outgoing directions 01 , while the integration over area A2 of the receiving 
kernel is only for inward directions 02 .  Because the integration over the angle 1  can be carried 
out analytically, the surface element dA1 reduces to 11

2
11 sin2 drdA ; in contrast dA2 remains 

222
2

12 sin ddrdA .  The distance s is measured from dA1 to dA2, and approaches d, the distance 
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between the kernel centers, with little relative error when the particles are widely spaced.  This Green’s 
function accounts for the geometrical size of the particles, and can directly be compared with that of 
Lane’s model.  Integration from zero to infinity, weighted with the probability that there are no fuel 
kernels in between, gives the infinite-medium Dancoff factor.  This weighting process needs some care, 
however.  The ray from the surface of one kernel to another, could intersect a third kernel only if the 

distance between the coatings of the emitting and receiving kernel is larger than 2
1

2
22 rr , with 1r  the 

fuel kernel radius, and 2r  the outer radius of the coating.  For distances less, there can only be moderator 
in between. 

Figure 3.  Geometry for integration in the dual-particle model. 

2.5 Intra-Pebble Dancoff Factor 
The intra-pebble Dancoff factor is obtained by volume averaging the Green’s function over the 

entire volume of the fuel zone of a pebble.  Because of symmetry reasons, this volume integral reduces to 
an integral over the cross sectional area of the pebble.5  The result can be expressed in terms of the first-
flight escape probability escP  originally derived by Case et al.:6

1
*1 RPCC esc

fk
Intra   . (9) 

The argument of the first-flight escape probability function is the product of the cross section of the 
fuel zone (the probability per unit length to interact with a moderator nuclide, or to intersect another fuel 
kernel), and the radius of the fuel zone of the pebble.  For Lane’s method, this cross section simply 
becomes the sum of the moderator cross section and the fuel cross section given by 2

1rmF
t , with m

the particle density, and 1r  the radius of the fuel kernel.  For Bende’s method, the result is more 
complicated (see Reference 5). 
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3. RESULTS FOR INFINITE-MEDIUM DANCOFF FACTORS 

3.1 Dual-Particle Dancoff Factor 
In Figure 4 we compare the 

Green’s function of the dual-particle 
model with that of Lane’s for fuel 
kernel radii varying from 25 to 400 

m, and for particle densities up to 
40,000 per standard fuel pebble.  
Clearly, for large radii and large 
densities (low dilution), the 
discrepancy between the two 
functions reaches about 10%. 
However, one must realize that the 
packing fraction in this region is 
about 55%, which is almost equal to 
the maximum achievable for 
randomly packed beds (62%).  Such 
high packing fractions are not likely 
in pebble-bed HTR fuel designs for 
which packing of the order of 10% is 
expected.  In contrast, the packing 
fraction might reach intermediate to 
high values (30%) in prismatic fuel 
designs.  Nevertheless, based on these 
results, one may expect (small) 
differences in Dancoff factors as well. 

3.2 Infinite-Medium Dancoff Factor 
Integrating the Green’s function of the dual-particle model over distance d ranging from 12r  to ,

or that of Lane’s model from 0 to , gives the infinite-medium Dancoff factor.  Of course, if the 
integration is performed accurately enough, the latter method gives results equal to the analytical ones 
given in Equation (4), and care is taken that this is indeed the case.  In Figure 5, we compare the four 
models from the literature given in Equations (3), (4), (5), and (7) with ours.  There are few remarkable 
results; the simplest formula to calculate infinite-medium Dancoff factors, Lane’s model given in 
Equation (4) (Lane1), gives remarkably good results, while the modification for particles with fixed 
coating [Lane2, Equation (5)], improves slightly the results at high dilution, but worsens them 
considerably at low dilution.  The reason for this is that the Green’s function according to Lane’s model 
gives smaller values than that of the dual particle model (see Figure 4), which is compensated in the 
Lane1 model by an extra contribution in the integral [Equation (4)] starting at zero instead of twice the 
thickness of the coating layers 2c .

Figure 4.  The ratio of the Green’s function of the dual-
particle model and Lanes’. The kernel radius is given in units 
of 25 m (maximum is 400 m), the kernel density in units of 
5,000 in a standard fuel pebble (maximum is 40,000).  For 
large kernels at high density, Lane’s model9 underestimates 
the probability for a neutron to reach a neighboring fuel 
kernel by about 10%. 
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Figure 5.  Percentage differences between infinite-medium Dancoff factors calculated with methods from 
literature and the dual particle model.  The coating thickness is 200 m. Dotted lines show negative 
differences, solid lines positive. 

Janssen’s rational approximation gives reasonably good results as well, while Bende’s model 
shows a tendency to underestimate Dancoff factors at high dilution by 4 to 5%.  This latter fact is also 
recognized in Reference 5, which gives confidence in our model.  At high density, the discrepancy is no 
more than 2%, which is quite acceptable.  For all practical cases considered (i.e., cases in the design range 
of the NGNP pebble bed fuel), Bende’s model agrees with ours within 1%. 

The results in the previous two sections were calculated for a coating with thickness of 200 m, 
which is a good approximation for coatings considered nowadays, which range from 160 m for the 
HTTR16 to 216 m for the HTR-10.17  To check the dependency on the coating, calculations were 
repeated for thickness of 150 and 250 m, but differences turned out to be much smaller than the 
percentage differences shown in Figure 5. 
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4. RESULTS FOR INTRA-PEBBLE DANCOFF FACTORS 

To investigate the effect of the kernel packing on the Dancoff factor, a Monte Carlo program, 
called INTRAPEB, was written that calculates the Dancoff factor, the distribution of distances traveled by 
neutrons until their first intersection with another fuel kernel, the escape probability, and the angular 
distribution of the escaping neutrons.  In this program, the kernels are positioned either in a cubic lattice, 
or in a random lattice.  The latter is done for each particle by drawing a random position, and checking 
whether there is no overlap with any other particle (kernel with surrounding coatings).  After positioning 
all particles, a kernel is selected randomly, as well as the position and angular distribution of the emerging 
neutron.  The distances between this escape position and all other particles traversed by the ray are 
calculated to obtain the first intersection of the ray with a fuel kernel.  This process is repeated many 
times (typically between 100,000 and 1,000,000) to obtain statistically small errors for the Dancoff factor.  
If there is no fuel kernel intersection, the neutron, corrected for the probability that it might have had a 
collision with a moderator nucleus, contributes to the escape probability.  In this way, the the intra-pebble 
Dancoff factors are calculated with a relative standard deviation <<1%. 

Besides the Monte-Carlo-based Dancoff factors, INTRAPEB also calculates the intra-pebble 
Dancoff factor based on the methods of Bende and Lane.  For both methods, this factor depends on the 
infinite-medium Dancoff factor 
shown in Figure 2, and on the 
cross section of the fuel zone 
[ * in Equation (9)].  The ratio of 
the latter parameters is shown in 
Figure 6.  Clearly, at high packing 
fraction, the cross sections are not 
the same, which is due to the fact 
that in Lane’s method, the fuel 
kernels are assumed to be 
infinitely small, which is not a 
valid assumption anymore in the 
low dilution region (i.e., for high 
packing cases).  Fortunately, 
because *  becomes very large in 
this region (between 3–4 cm-1),
due to the large packing fraction, 
the escape probability becomes 
very small, and the final result is not very 
sensitive to the value of * .  On the 
other hand, the infinite-medium Dancoff 
factors are pretty much the same in this 
region (see Figure 2). 

In Figure 7, we show the intra-pebble Dancoff factor as a function of the kernel density in a 
standard pebble with a fuel zone radius of 2.5 cm for kernel radii of 100 and 250 m.  Clearly, the cubic 
lattice gives Dancoff factors significantly higher than the stochastic lattice.  This is in agreement with the 
observations made in Reference 10, where it was found that the eigenvalue for the Next Generation 
Nuclear Plant is consistently lower for a regular packing of fuel particles due to increased resonance 
absorption.

Figure 6.  The ratio of the fuel zone cross section for 
Lanes’ method6 and that of Bende.5  The kernel radius is 
given in units of 25 m (maximum is 400 m), the 
density in units of 5,000 in a standard fuel pebble 
(maximum is 40,000). 
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Figure 7.  Intra-pebble Dancoff factors as a function of the number of kernels in a standard fuel pebble 
with a radius of 2.5 cm, with the kernel radius as a parameter. Clearly, the Dancoff factors for a cubic 
lattice are larger than for the other methods. The standard deviations in the results for cubic and random 
lattices are much less then 1%. 

Figure 8.  Distribution of the distances traveled by neutrons until their first intersection with 
another fuel kernel (upper plot), and the cumulative Dancoff factor. In a cubic lattice, neutrons have a 
large probability to hit one of the nearest neighbors, which results in a relatively large contribution to the 
Dancoff factor. This is for quite an extreme case, with a particle density of 40,000 per standard fuel 
pebble, and a fuel kernel radius of 250 m. 

However, the results found here are in contradiction with observations made in Reference 5, where 
it was found that for kernels with a radius of 100 m, Monte Carlo calculations with MCNP gave 
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consistently lower Dancoff factors.  This was attributed to channel ray effects that would enhance neutron 
leakage.  Although these channel ray effects might exist for scattered neutrons, they could not be 
confirmed for the unscattered neutrons that make up the contribution to the Dancoff factor.  In Figure 8 
we show that in a cubic lattice, relatively many neutrons, much more than in a stochastic lattice, intersect 
the nearest kernels, which results in a relatively high Dancoff factor.  Furthermore, for kernels with a 
radius of 250 m, the escape probability in a cubic lattice is lower than in a random lattice for all particle 
densities considered here.  The differences increase with particle density, and range from 2% at 5,000 
particles per pebble, to 6% at 40,000 particles). 

In Figure 9, the intra-pebble Dancoff factor is shown for a single pebble as a function of the radial 
position in the fuel zone of the pebble, together with the escape probability.  Clearly, both parameters 
depend strongly on the position in the pebble.  For the 15,000 and 30,000 particle cases, the average 
values of the Dancoff factor reach 0.358 and 0.540, respectively, which agree within 1% with the methods 
of Bende, Lane, and Janssen.  The neutrons that escape from the pebble contribute partly to the inter-
pebble Dancoff factor, which means that the total Dancoff factor (the sum of the intra- and inter-pebble 
contributions) shows a less pronounced dependency on position (see Figures 9 and 10 in Reference 5). 
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Figure 9.  Dancoff factor and escape probability as a function of the position in a pebble, with the number 
of kernels as a parameter (15,000 or 30,000 fuel kernels per pebble with fuel zone radius of 2.5 cm). The 
fuel kernel radius equals 250 m. Clearly, the Dancoff factor decreases toward the outer boundary of the 
pebble, whereas the escape probability increases.
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In Figure 10, we show the angular distribution of neutrons escaping from the pebble without any 
interaction and without crossing another fuel kernel.  For the boundary between the fuel zone and the 
moderator layer, the cosine distribution seems a reasonable assumption, but the angular distribution at the 
outer boundary of the moderator layer is much more forwardly peaked.  This means that the white 
boundary condition assumed in the calculation of transmission probabilities (see Sections 2.1 and 2.2) is 
not fully valid. 
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Figure 10.  The angular distribution (neutrons per unit cosine) escaping from the pebble without 
interaction with a moderator nuclide and without crossing another fuel kernel. Clearly, the distribution of 
neutrons escaping the fuel zone is reasonably cosine distributed, but that of neutrons escaping the 
moderator zone is much more forwardly peaked. This figure is for a standard pebble (radii 2.5 and 3.0 cm 
for the fuel zone and moderator) containing 15,000 kernels, with a radius of 250 m, but the results for 
30,000 kernels are very similar. 
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5. RESULTS FOR SPATIALLY DEPENDENT DANCOFF FACTORS 

The results presented in the previous section clearly indicate that the intra-pebble Dancoff factor 
depends on the radial position in the fuel zone of a pebble.  In practice, it will be very difficult to account 
for this effect, as it would require dividing the pebbles in the core in radial zones and performing cross 
section treatment for each zone.  However, a similar effect can be expected for the inter-pebble Dancoff 
factor, as neutrons originating near the boundary of the reactor core have a larger escape probability than 
other neutrons.  Dividing the core into regions with different cross section sets is common practice, and 
one could provide each region with its own Dancoff factor.  This would especially be useful for resonance 
shielding codes that account for the intra-pebble Dancoff factor (or equivalent treatment) themselves and 
that only need the inter-pebble Dancoff factors or the pebble-pebble Dancoff factors to be given in the 
input (the pebble-pebble Dancoff factor is defined as the probability that a neutron escaping from the fuel 
zone of a pebble enters another fuel zone).  This is the case for the MICROX-2 code8 in use at INEEL. 

A program called PEBDAN was written that calculates the spatially dependent Dancoff factors in a 
cylindrical core with outer and inner reflectors.  The problem tackled in this code can be divided into two 
large portions: (1) calculation of the pebble coordinates randomly stacked in the core volume and (2) the 
computation of the Dancoff factors proper. 

5.1 Generation of Randomly Packed Pebbles 
The literature on the first problem can be divided into two approaches.  One approach is to use 

rigorous algorithms that simulate pebble flow as accurately as possible based on physics laws.17-19  The 
other approach is based on synthetic techniques,19-21 such as a rain model in which a pebble is randomly 
dropped in the vessel until it reaches another pebble, after which a Monte Carlo shaking routine is used to 
increase the packing fraction of the bed.  The first method is expected to give realistic packing fractions 
and porosity profiles, while the second class of methods may not. 

This report presents a new method, developed and employed at the INEEL, that belongs to the 
second class.  First, a large collection of random points is generated, about 100,000 times the number of 
pebbles that would fit within the vessel.  Then, starting at the bottom of the vessel, each random point is 
checked as to whether it is suitable as a pebble center coordinate.  If a pebble at that coordinate would 
overlap with other pebbles or structures in the core, it is rejected; otherwise, it is accepted, and a pebble is 
located at that position.  Besides some problems that need to be avoided, such as integer overflows, this 
algorithm is extremely simple to program.  Furthermore, overlap of pebbles is easily avoided, whereas for 
the rigorous methods such avoidance is much more difficult.  For example, in a packed bed of 5-cm 
pebbles within a nuclear reactor, it is reported18 that the average overlap for the rigorous method is 1% 
with a maximum of 20%.  However, as may be expected from the discussion above, no physics are 
simulated in our model, and the resultant pebble-bed packing does not necessarily reflect all 
characteristics of a real packed bed.  Nevertheless, this method was incorporated into the PEBDAN code. 

Some results are shown in Figure 11, which displays a comparison with experiments performed by 
Benenati and Brosilow22 in the early sixties.  Although the calculations reflect the main trends in radial 
porosity, there are a few remarkable differences.  First of all, the peaks in the calculated porosity profile 
are not as pronounced as in the measurements.  Second, in the calculations, the porosity profile reaches its 
average value after only two oscillations, while in the measurements at least four oscillations are clearly 
visible.  Third, the average porosity in the calculations (0.40) seems to be larger than the experimental 
value (0.38).  In the algorithm, the density of the packed bed can be increased by generating more random 
points or by allowing a small overlap between pebbles (as is usually the case in algorithms of the first 



15

kind18).  The first option is not very practical, as more random points deteriorate the simplicity and 
performance of the algorithm, while the second option is unrealistic.  [Note: Since completion of the 
PEBDAN code, we have developed an enhanced version of the rigorous method that produces the correct 
packing fraction and boundary density fluctuations while suffering very little overlap (of the order of 
microns at pebble surfaces).  This latter method is being verified and corrected for an overly simple 
treatment of friction between pebbles before incorporation into PEBDAN.] 
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Figure 11.  Measured and calculated radial porosity profiles in a cylinder with radius 10.15 times the 
pebble diameter (0.080 inch).  The measurements were read from a plot in the literature22, case 2 and 
interpolated with a spline fit to get a fluent curve.  Clearly, the calculated peaks in the profile are not as 
pronounced as in the experimental curve. 

In Figure 12, comparison is made with a packed bed of 5-cm pebbles in a nuclear reactor core with 
a diameter of 3.75 m.18  Again, the peaks in our model are less pronounced, and the porosity is too high.  
However, two remarks can be made.  First, in Reference 18, the pebbles overlap on average with 1%, 
which is not the case in our model.  Second, compared with the data in Figure 11, the peaks in 
Reference 18 seem a bit too high.  Despite some shortcomings in our model, the results were used to 
calculate Dancoff factors for the 600-MW Next Generation Nuclear Plant in development at INEEL. 
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Figure 12.  Radial porosity profile of a pebble bed reactor with a diameter of 3.75 m and a ball diameter 
of 10 cm, calculated with a discrete element method (Reference 18) and with the algorithm discussed in 
this paper.  As with the measurements in Figure 11, the oscillations calculated here are much less 
pronounced than the literature values (upper curve). 

5.2 Calculation of Dancoff Factors 
Once the pebble coordinates are known, Dancoff factors are calculated by PEBDAN using a ray-

tracing method.  First, a starting coordinate is uniformly sampled in an arbitrary fuel pebble in the core 
(the core can also contain moderator pebbles, but these are discarded as starting points for the ray-tracing 
method).  Subsequently, a direction is uniformly sampled, and the contribution to the intra-pebble
Dancoff factor is determined by calculating the probability that the neutron will interact with a fuel kernel 
in the same pebble.  This is done using Lane’s method [Equation (4)] with the upper limit of the integral 
replaced by the distance the neutron travels in the starting pebble.  Subsequently, all pebbles that the ray 
intersects are stored and ordered with ascending distance to the starting pebble.  During the ray tracing 
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process, each trajectory through a pebble (either through the moderator zone or through the fuel zone) 
reduces the weight of the neutron, while each trajectory through the fuel zone of a pebble contributes to 
the inter-pebble Dancoff factor [again using Lane’s method, Equation (4)].  The intra-pebble Dancoff 
factor should not depend on the starting position in the core, and should virtually be equal to that 
calculated with Bende’s method (Figure 2), while the inter-pebble Dancoff factor will depend on position, 
as neutrons originating in pebbles in the outer regions of the core experience a larger escape probability. 

Besides the intra- and inter-pebble Dancoff factor, the pebble-pebble Dancoff factor is also 
calculated.  The pebble-pebble Dancoff factor is defined as the probability for a neutron that leaves the 
fuel zone of a pebble to enter another fuel zone without any interaction in between.  Actually, it is this 
Dancoff factor that is needed by the MICROX-2 code in use at INEEL. 

In Figure 13, we show the pebble-pebble Dancoff factor as a function of height and radial position 
in the packed bed of the Next Generation Nuclear Reactor under development at INEEL.  Clearly, the 
Dancoff factor to be input to the MICROX-2 code decreases several tens of percents along the boundaries 
of the reactor core.  The center values ( 0.46) are slightly larger than the average value according to 
Bende’s model (0.4436).  It must be noted that heretofore, in comparisons between MICROX-2 and other 
methods (primarily MCNP) conducted by the INEEL NGNP team and their collaborators, this spatial 
dependence of the pebble-pebble Dancoff factor was never taken into account, and the observed 
discrepancies remain largely unexplained.  This new method should be incorporated into future 
comparisons.  In total, the reactor core volume fraction along the boundaries having a significantly lower 
Dancoff factor equals about 15%.  The influence of this effect on the eigenvalue of the system is 
something to be investigated in the future. 
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Figure 13.  Pebble-Pebble Dancoff factor for the NGNP as a function of radial position (top figure) and 
height (with a reflective boundary at 96 cm from the bottom).  The radial inner reflector has a radius of 
147.8 cm, while the outer reflector starts at 246.6 cm.  Clearly, due to leakage, the Dancoff factor 
decreases several tens of percents at the radial and axial boundaries. 
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6. CONCLUSIONS 

Infinite-medium Dancoff factors, calculated according to four methods reported in the literature, 
are compared with a dual-particle model developed in this work and reported for the first time.  The latter 
method integrates the Dancoff factor contribution over the surfaces of the two kernels involved and 
accounts for the stochastic distribution of other kernels in between, while the other methods use either 
infinitely small kernels (Lane9/Janssen14), or finite kernels with some (minor) assumptions regarding their 
stochastic distribution (Bende5).

The differences between our method and that of Lane are only a few percents. The latter gives 
remarkably good results at high packing fraction (large particles at high density), while the suggested 
correction for coated particles worsens the results in this region considerably.  Janssen’s method, which is 
very similar to that of Lane, gives deviations between 2 and 3%, while Bende’s method, based on 
transmission probabilities in spherical geometry, underestimates Dancoff factors at low packing, and 
overestimates them at high packing.  For many practical cases, however, deviations are within one 
percent.

The intra-pebble Dancoff factor for a single pebble is calculated using a Monte Carlo program 
called INTRAPEB.  The resultant Dancoff factor depends strongly on the radial position within the 
pebble; it decreases sharply toward the edge of the pebble, while the escape probability shows the 
opposite tendency.  The Dancoff factor for a pebble with a cubic kernel packing arrangement is about 
10% larger than for the same pebble with a stochastic packing of the kernels.  The angular distribution at 
the boundary between the fuel zone and the moderator zone is very similar to a cosine distribution, while 
at the outer boundary of the moderator, the angular distribution is much more forwardly peaked.  This 
means that the assumption of a cosine angular distribution that is usually applied in analytical methods is 
not valid at the outer boundary of the pebble. 

A program named PEBDAN was written that calculates the pebble coordinates in a stochastically 
packed bed and the pebble-pebble Dancoff factor as a function of the radial and axial positions in the 
reactor core.  Along the radial and axial boundaries, this Dancoff factor decreases several tens of percents 
due to enhanced neutron leakage. 
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