National Energy Technology Laboratory

Evaluation of a Surface Treatment on the Performance of Stainless Steels for SOFC Interconnect Applications

D.E. Alman, G.R. Holcomb, T.A. Adler, R.W. Wilson, and P.D. Jablonski NETL, Albany, OR www.netl.doe.gov

> International Conference on Metallurgical Coatings and Thin Films San Deigo, CA April 23-27,2007

ACKNOWLEDGEMENTS

- Christopher Johnson at NETL-Morgantown
- W.K. Collins, D.Smith, R.Chinn, A. Hunt, P. Danielson, M. Arnold, M Hayes, D. Davis and NETL-Albany

OUTLINE

- WHY RARE EARTH SURFACE TREATMENTS
- OXIDATION BEHAVIOR OF SURFACE TREATED CROFER 22APU
- WHY SURFACE TREATMENT WORKS IN IMPROVING OXIDATION RESISTANCE
- SOFC BUTTON CELL WITH TREATED ANNODE CURRENT COLLECTORS
- IMPROVING ELECTRICAL PERFORMANCE

- "Half-cell" ASR-measurements

• SUMMARY AND CONCLUSION

CHROMIA FORMING FERRITIC STEELS AS METALLIC INTERCONNECTS

Low Cost

Physical Compatibility

SOFC Degradation

- i. Cr poisoning due to evaporation from alloy
- ii. Formation of non-conductive internal oxides at alloy/oxide scale interface
- iii. Excessive oxide scale growth

REACTIVE ELEMENT EFFECT

• Characteristics

- Reduction in the oxidation rate
 - Change in scale growth mechanisms
 - cation transport \rightarrow anion transport
 - Modification of scale microstructure
 - Large columnar grains \rightarrow small grains
- > Stabilize Cr_2O_3 scales at lower Cr levels
 - Lower Cr levels
- Improvement in scale adhesion
 - resistance to spallation

Alloy	Fe	Cr	Mn	Si	Ti	ΑΙ	La
Crofer 22APU	Bal	22.0	0.5		0.08		0.06 La
ZMG232	Bal	22.0	minor:	Mn, Ni,	Zr, La		

IMPROVING OXIDATION RESISTANCE WITH RARE EARTHS

• Melt addition

- + Elements added during ingot production (single manufacturing step)
- Difficulty in melting (react with crucibles)
- Surface concentration limited by solubility and diffusivity

Surface treatments

- + Rare Earth concentrated where needed (at surface and have most benefit)
- -\$"Extra" manufacturing step.
- ? Long term effectiveness (as with any coating or surface treatment)

NETL DEVELOPED SURFACE TREATMENT

- Investigate rare earth surface treatment for improving oxidation resistance of ferritic steels for SOFC interconnect applications.
- Two different surface treatments investigated
 - -Developed at NETL
 - Similar to pack cementation: coated with a powder mixture containing CeO₂ and halide activator followed by heating in a controlled atmosphere (900°C-12 hrs), after which residual "pack" coating is washed off the surface.
 - Patent application filed with USPTO in September, 2005.
 - Applied to over 50 alloys.
 - –Described in a paper by P.Y. Hou and J. Stringer (H/S)
 - J. Electrochem Soc., Vol 134, No. 7, July 1987, pp. 1836-1849
 - Coupons heated to 200°C were coated with a cerium-nitrate slurry (10w/o nitrate adjusted with HNO₃ to pH=2), followed heating in air at 400°C to decompose to CeO₂

800°C-4000hrs-Air+3%H₂O

"smaller" internal oxidation zone

Early batch of Crofer w/ high AI and Si contents (610 ppm AI, 530 ppm Si by GDMS)

REPEATABLE RESULTS

THERMODYNAMIC PREDICTION

 $1073 \text{ K}, \text{ mole } Ti/(CeO_2 + Cr + Mn) = 0$

412/2007

C:(FackageTEST\Egulib OTI Ce02-Cr-Mn.bmp

CeO₂ reacts with Cr during treatment to form CeCrO₃

AS-TREATED SURFACE: PRIOR TO TESTING

SURFACE PRIOR TO OXIDATION

THERMAL PORTION OF SUFACE TREATMENT

Surface modification process includes a thermal treatment in a controlled atmosphere. Does this influence oxidation behavior by "pre-oxidizing" surface?

OXIDATION RESITANCE

Nucleation

- $-CeO_2 \rightarrow CeCrO_3$ during treatment \rightarrow nominally continuous surface oxide
- ? Finer Cr_2O_3 grain size.
- Ce in scale changes mechanism of subsequent Cr₂O₃ (or (Cr,Mn)_xO_y) scale growth

 oxygen controlled mechanism → slower scale growth, less internal oxidation.

• Future work: TEM examination of scales.

LABORATORY SCALE SOFC

SOFC button cell

- Nextech Materials (Nextcell-2.5D).
- -2.5 cm diameter Zirconia-based electrolyte supported cell.
- $-1.27\ \text{cm}$ diameter, 50 μm thick LSM cathode
- -Gd-doped CeO₂ layer at the electrolyte-cathode interface.
- -1.27 cm diameter, 50 µm thick Ni-GDC anode.

• Fe-22Cr-0.5Mn steel current collector

-Crofer, NETL-Alloy F5

- Results of experiments in press:
 - D.E. Alman, Johnson, Collins, Jablonski, J. Power Sources, available on line at www.sciencedirect.com

STAINLESS STEEL CATHODE CURRENT COLLECTOR

Alloy Composition (wt%)

Alloy	Fe	Cr	Mn	Ti	AI	Si
F5	73.3	22.0	0.44	0.007	0.03	0.02
Crofer 22APU	75.9	22.7	0.45	0.095	0.11	0.27

F5: Produced in house at NETL-Albany (VIM, forging and rolling).Crofer 22APU: procured from ThyessenKrupp.1 mm thick

CATHODE CURRENT COLLECTOR

Machined Current Collectors were Ce Surface Treated

SOFC ASSEMBLY

- Fe-22Cr-0.5Mn steel current collector was attached to the cathode with Pt paste (a Pt mesh placed between interconnect and cathode).
- Pt mesh attached to anode.
- Ag current cables and voltage taps spot welded to current collectors

SOFC TEST APPARATUS

LABORATORY SCALE SOFC TESTING: OPERATING CONDITIONS

• Heated to 800°C (2hrs)

 $> N_2$ on anode side: air+3%H₂O on cathode side

• 800°C (2hrs)

 $>10\%H_2/90\%N_2$ mixture on anode side

Cell Operation

➢ Fuel: 97% H₂/3%H₂O at 400 cm³/min

➢Oxidant: air+3%H₂O at 1000 cm³/min

➤Constant voltage: 0.7V

➢Periodic voltage sweeps: 1.1V to 0.V

Cathode Current Collector Surface Condition

≻Untreated condition: polished (1 µm diamond)

Ce-treated condition: cleaned with scotch-brite® pad in water

CELL PERFORMANCE

CELL PERFORMANCE

PRE-OXIDIZED CROFER 22APU CURRENT COLLECTORS: PNNL

• S.P. Simner, Anderson, Xia, Yang, Pederson, Stevenson, J. Electrochemical Soc., vol 154 (4), pp. A740-A745, 2005

ANALYSIS OF Cr IN CATHODE Under Channel

Cr composition by WDX (weight percent)

	Crofer	F5+Ce	Crofer+Ce
	(78 h)	(117 h)	(38 h)
(1)	0.00	0.00	0.00
(2)	0.02	0.02	0.06
(3)	0.48	0.15	0.08
(4)	0.08	0.08	0.11
(5)	0.09	0.09	0.08

ANALYSIS OF Cr IN CATHODE

Adjacent Metal

NETL-ARC

Cr composition by WDX (weight percent)

	Crofer	F5+Ce	Crofer+Ce
	(78 h)	(117 h)	(38 h)
(1)	0.00	0.00	0.00
(2)	0.12	0.09	0.00
(3)	0.56	0.24	0.08
(4)	0.09	0.14	0.09
(5)	0.13	0.17	0.10

COMPO 15.0kV

X3,700

1*u*m

WD 10.0mm

Haynes 230

Cr-Depletion

Haynes 230: 800°C - Air+3%H₂O - 4000h

Chromium content determined by WDX analysis

Initial Conductivity: ASR Experimental Setup

ASR

SUMMARY

• Ce-surface treatment Fe-22Cr-0.5Mn steels

➢Improves oxidation resistance → thinner scales, less internal oxidation

Pre-oxidizes surface

Modifies scales w/ RE to get RE benefit upon subsequent oxidation.

• Ce-surface treated interconnects in SOFC

>Act in a similar manner as pre-oxidized steels

Delays Cr poisoning

Longer duration testing required

• Working on improving process to improve initial contact resistance.

