National Energy Technology Laboratory

Evaluating the Relationship between Slabbing of Cr₂O₃/MgO Refractories Used in Steelmaking and Spalling of High Chrome Oxide Refractories Used in Gasification

<u>NETL</u>: James Bennett, Hugh Thomas, Jasper Kwong

National Energy Technology Laboratory – Albany, Oregon

Office of Fossil Energy

Outline

• Acknowledgement

USDOE - NETL

Advanced Gasification Technologies Advanced Metallurgical Processes

• Background

- Issues/Consequences
- Post-Mortem Analysis
- Summary

Gasification Background

 $C + H_2O (gas) + O_2 \rightarrow CO + H_2 + CO_2 + minority gases/by-products$

Material Challenges Inherent to Air-cooled Slagging Gasifiers

<u>ConocoPhillips</u> (2 stage - syngas cooler)

- Operating temperatures of 1325° to 1575°C.
- Thermal cycling.
- Alternating reducing and oxidizing environment.
- Corrosive slags of variable chemistry.
- Corrosive gases.
- Pressures ≥ 400 psi.

<u>GE Design</u> (1 stage syngas cooler or water quench)

Refractory Material Issues - Consequences

- **1.** Low system reliability, on-line availability
 - gasifier down as frequently as once/month
 - possible need for "spare" gasifier
- 2. Lost opportunity costs
- 3. Frequent maintenance; 3-24 months
- 4. Need for zoning larger "spare" material inventory
- 5. High material repair costs
 - \$1 million for refractory lining
- 6. Excessive safety margins

Research Goal

Enhance gasifier reliability and economics through the development of improved refractory materials with longer service life

Two major types of wear in gasifiers: corrosion and spalling

- Research directed towards reducing/eliminating spalling wear of gasifier refractories
- Spalling wear is similar to known wear mechanisms in chromia/magnesia – magnesia/chromia steelmaking refractories (peeling, slabbing, chemical spalling)

Causes of Refractory Wear in Gasfiers (High Cr₂O₃ Materials)

Main Wear - Spalling and Chemical Corrosion

Bakker W. T. (1998) "Materials Guidelines for Gasification Plants" EPRI Report TR-110507, Palo Alto, CA.

Chemical wear and spalling

Corrosion and Spalling

Corrosion and Spalling

Spalling – Refractory Surface and Interior

Stages of Refractory Wear in the Hot Zone of a Slagging Gasifier (Surface Corrosion, Spalling)

Corrosion and Spalling Mechanism

Impact of Spalling on Refractory Wear

Chemical Composition* of High Cr₂O₃ Gasifier and Steel Making Refractories

Causes of Spalling

- 1. Density/porosity differences between slag infiltrated/non-infiltrated layers
- 2. Crystalline phase differences between slag infiltrated/non-infiltrated layers
- **3.** Bursting expansion observed in chromia/magnesia steelmaking refractories (*reoxidation of FeO*)
- 4. Reaction of alkali (Na and K) with chromia/alumina grain, resulting in the formation of disruptive sodium aluminate phases (vapor interaction)

High Chrome Oxide Refractory Microstructure

High Chrome Oxide Gasifier Refractory Infiltrated with Slag

Slag diffusion, corrosion

Refractory Surface Microstructure – Slag Attack (Continued)

Al

Si

Elemental Analysis (*Refractory/Slag Interface*)

	Point	Element (wt pct)					
		Cr	AI	Fe	Si	Ca	
	1 – int. ref. grain	63.8	5.7	-	-	-	
	2 – surface ref. grain $(FeCr_2O_4)$	37.8	5.6	25.2	-	-	
	3 – inter. ref. grain (FeCr ₂ O ₄)	39.9	3.5	24.0	-	-	
	4 – slag	-	7.2	21.1	23.2	3.5	
	$5 - crystallized slag (FeAl_2O_4)$	-	27.0	31.1	-	-	
	6 – interior slag	1.3	8.0	1.4	32.7	1.6	

Iron – Chrome – Alumina Interactions

Known Phase Interactions

FeO – Cr₂O₃ Phase Diagram (from <u>Phase</u> <u>Diagram for Ceramics 1975 Supplement</u>, # 4187)

Na₂O – A₂O₃ Phase Diagram (from <u>Phase Equilibria</u> <u>Diagrams Volume XII</u>, # 9884)

Post-Mortem Analysis

Thermal Expansion Cores

Cold face: 7.68 x 10 -⁶ mm/mm/°C Hot face: 8.18 x 10 -⁶ mm/mm/°C

<u>Chemical,</u>

X-Ray Crystalline Phases,

Microstructure of Layers

Distance from Hot	Bulk Chemistry (wt pct)					X-Ray Crystalline Phases
Face (mm)	Cr ₂ O ₃	Al ₂ O ₃	SiO ₂	CaO	Fe	1 110000
H.F. to 2.3	80.0	10.8	5.4	0.3	1.6	P - Cr ₂ O ₃ Tr– FeCr ₂ O ₄
6.9	84.2	10.2	3.9	0.3	0.4	P - Cr ₂ O ₃ Tr– FeCr ₂ O ₄
11.4	83.9	10.7	3.2	0.4	0.4	P - Cr ₂ O ₃ Tr– FeCr ₂ O ₄
16.0	87.7	10.3	3.5	0.5	0.3	P - Cr ₂ O ₃
20.6	83.9	10.3	3.0	0.5	0.3	Same
25.1	83.5	10.7	3.0	0.6	0.3	Same
29.7	84.3	10.4	2.7	0.6	0.3	Same
34.3	83.5	10.4	2.8	0.6	0.4	Same
38.9	82.7	10.0	1.6	0.6	0.3	Same
43.3	83.9	9.3	2.3	0.5	0.2	Same
48.0	85.4	9.6	0.6	0.1	0.2	Same
52.7	85.7	10.5	0.9	0.2	0.2	Same
57.2	86.1	10.5	0.2	0.0	0.2	Same
61.7	86.1	10.6	0.2	0.0	0.2	Same
127	87.4	9.4	0.2	0.2	0.2	Same

Core Analysis

(Chemical and Crystalline Phases)

Summary

- Slabbing in chromia/magnesia refractories used in steelmaking and spalling in gasifier refractories are similar wear mechanisms
- Issues causing spalling/slabbing are complicated, but include:
 - Reaction between Cr_2O_3 and FeO to form $FeCr_2O_4$, increase in Al_2O_3 in Cr_2O_3 , some structure swelling on surface
 - Microstructure differences between slag infiltrated/non-infiltrated areas
 - Cyclic operation of the gasifier

American Encaustic Tiling Co., 1920 – Zanesville, OH (1st Tunnel Kiln in Used in Tile Industry, Largest Tile Producer)

ZANESVILLE, OHIO.-Only Concrete Y Bridge and Largest Tile Works in the World.

Mosaic Tile Co., 1906 – Zanesville, OH (Also Once the Largest Tile Company in the World)

