Oxidation of Interconnect Alloys in an Electric Field

Gordon R. Holcomb David E. Alman Thomas A. Adler Paul D. Jablonski

National Energy Technology Laboratory 1450 Queen Ave. SW, Albany OR 97321

Materials Science & Technology Cincinnati OH, October 16-19, 2006

Office of Fossil Energy

Outline

- Introduction
- Research Goals
- Procedures
- Results
- Conclusions

Improving Oxidation Resistance of Alloys for SOFC Applicants

• Ferritic stainless steel interconnect

- -Driver for use is to lower cost of stack
- Questions on performance over a 40,000 hr projected life SOFC span (USDOE-SECA program target)
 - particularly for temperature >700°C

Research Goals

- Determine the effect, if any, of electric fields on the oxidation of interconnect alloys
- Compare the effects between:
 - -EBrite, a Fe-Cr ferritic chromia former
 - -Crofer 22 APU, a Fe-Cr ferritic chromia former with Mn and oxygen active additions (La)

Current passing from the metal/oxide interface to the oxide/gas interface is + interface

Ionic Flux (rate of oxidation) $\frac{dn}{dt} = \left(\frac{dn}{dt}\right)_{0} + \frac{t_{ion}I_{ext}}{|z_{a}|eb}$

Subscript 0 = without an external current

- t_{ion} = transport number for ionic conductivity
- I_{ext} = Externally applied current
- $z_a e = charge of the anion$
- $b = the b in M_a X_b$

 Cr_2O_3 is an electrical semiconductor (t_{ion} is close to 0), so little to no direct effect from an electric field

Electric Field Effects

- Contrasting E-Brite with Crofer 22 APU
- E-Brite forms an essentially pure Cr₂O₃ scale -No effect expected
- Crofer 22 APU is more complex, with
 - $-ivinCr_2O_4 \text{ outer scale} \begin{cases} Stevenson, Yang, Singh \\ and Meier, 2004 \end{cases}$ $-MnCr_2O_4$ outer scale

 - -Benefits from reactive element (La)
 - -Could possibly see a change in scale or internal oxide morphologies due to electric field effects

Alloy Composition (wt%) via XRF

	Fe	Cr	Мо	Mn	Si	Ti	AI	Ni
EBrite	72.28	26.13	1.00	0.036	0.13	<0.001	0.04	0.19
Crofer	75.99	22.79	0.003	0.45	0.12	0.098	0.11	0.34

	Со	W	Nb	Cu	Та	V	Р	La*
EBrite	0.025	<0.01	0.12	0.004	<0.01	0.036	<0.01	
Crofer	0.018	<0.01	<0.01	0.058	<0.01	0.026	<0.01	0.10

*La analysis via GDMS

Schematic of Experimental Setup

LSM Compact Porosity

- $(La_{0.85}Sr_{0.15})_{0.98}MnO_3$
- 40µm average size
- LSM powder pressed at 260 kg/cm²
- Fired at 1200°C for 24 hours in air
- Dry Polish to 1000 grit
- 55% Dense

Black areas are pores

Voltage vs Time

ASR vs Current (before and after)

Crofer

200 mA/cm²

No Current or LSM

 Incorporation of LSM paste into scale

Similar morphologies

 More dark phase (SiO₂) right next to metal on lower left compared to upper left

Crofer

EBrite

 Much less incorporation of LSM paste into scale than with Crofer

No Current or LSM

Future Work

- Investigate the effect of barrier coatings on the growth of oxides and ASR of SOFC interconnect materials.
- Coatings applied by screen-printing.
- Perovskite coatings such as
 - $-La_{0.8}\mathrm{Sr}_{0.2}\mathrm{CoO}_3$
 - $-La_{0.8}Sr_{0.2}Co_{0.5}Mn_{0.5}O_{3}\\$
 - $-La_{0.8}Sr_{0.2}MnO_3$
- Spinel coatings such as
 - $-(Mn,Co)_3O_4$
- Applied to interconnect materials such as Crofer 22 APU and J5. With and without Ce surface treatments

Summary

• Applied electric field can change the amount of SiO₂ that forms at the base of the scale

-Would change ASR behavior

- -Highlights the need for reduced Si in these alloys
- With Crofer the LSM paste is incorporated into the oxide.
 - -Could be indicative of an outward growing scale
 - -Increased Mn levels in the scale lowers Cr activity and so should reduce Cr vaporization