
 

 

The Center for Component Technology for Terascale 
Software Simulation (CCTTSS) at Indiana University. 

Final Report. 
 

DE-FC02-01ER25492 A002 
 
 

PI: Dennis Gannon 
Co-PI: Randall Bramley 

Department of Computer Science 
Indiana University 

Bloomington, Indiana 
812 855-4510 

gannon@cs.indiana.edu 
bramley@cs.indiana.edu 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71314013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction 
 
Indiana University-Bloomington (IUB) research in CCTTSS has concentrated on four 
areas:  

1. XCAT. Composing applications where the components may be distributed across 
the wide area network.  In collaboration and coordination with the University of 
Utah and SUNY Binghamton University, we have shown the CCA concept works 
very well in this context. We researched and developed a bridge between CCA 
components and emerging Grid computing standards, particularly web services. 
Building CCA interfaces to web services leverages emerging standards in 
location-independence of codes, access to distributed data management systems, 
and to on-line sensors and instruments.   

2. Proteus.  To support the bridge between CCA technology and the Web service 
world, it was essential that we examine the low level communication layer.  As 
Web services are based on XML and the SOAP standard, it was essential that we 
consider the performance and implementation details of these protocols in the 
context of scientific computing.  

3. DCA. The third major area of work involves the problem of connecting parallel 
components across a wide area network.  For example one component may be 
running on a 1000 node machine at Oak Ridge while the other component may be 
running on a 789 node machine at Los Alamos.  Connecting these two 
components together in parallel is what we call the MxN problem.  We have had 
substantial success on this problem. 

4. Component Toolkit. Our fourth area of work involves the help we have provided 
to the development of the first CCA component toolkit.  We have  created a single 
component interface for sparse linear solvers including PetSC, Trilinos and 
SPLib.  We also developed a CCA interface for a parallel IO library. 

IUB has also collaborated with the CCA Forum in developing and presenting CCA 
tutorials, and provided systems support and HPC cluster accounts in support of those 
tutorials. Several students have been encouraged by the work to seek internships at DOE 
labs, and two Ph.D. graduate students are now faculty at SUNY Bingampton, where they 
continue to collaborate with DOE researchers on projects. A total of five students have 
completed dissertations on CCA-related work, and another two will complete theirs in 
2007. 
 
 
 

2. Technology Results 
 
XCAT 
The current industry standard for composing software into large applications is based on 
Web Services standards being developed by IBM, Microsoft, HP, Sun through 
organizations like OASIS and W3C.  While these standards have roots in ideas first 



proposed by CCA, they are focused more on coupling services over the internet than on 
the CCA goal of  coupling code modules in a single  program for a massively  parallel 
computer.  One goal of the XCAT subproject was to turn the tables: what can CCA learn 
from all this progress in Web Services?     
 
The XCAT3 framework provides an implementation of the CCA specification for 
distributed components on the Grid using web services. Making CCA components 
compatible with Grid standards enables access using protocols and clients shared by other 
useful Grid services, apart from adding desirable features such as multiple level naming 
and dynamic service introspection as specified by the Grid specifications. Furthermore, 
complex applications on the Grid can be conveniently composed by using composition 
techniques prescribed by CCA. 
 
In XCAT3 every component is modeled as a set of Grid web services - every Provides 
port is a Grid web service, every Uses port is a Grid web service client.  
 

 
 
 

Figure 1.  This illustration show how a standard Grid web service client can interact with XCAT3 
components 

 
We use Babel to generate the interfaces for the framework for compatibility with the 
CCA specification.  In addition, XCAT3 has  been used as a research vehicle to 
investigate (a) distributed user-level checkpointing for components, to be used for fault 
tolerance, and (b) migration of individual components to adapt to dynamic Grid 
environments. To this end, the framework provides APIs for component writers to load 
and store their states to stable storage, and algorithms that enable storing a consistent 
global state into stable storage for distributed checkpointing, and that enable storing 
individual component states into stable storage for migration purposes.  This work 



resulted in a Ph.D. thesis for Sriram Krishnan who is now employed at the San Diego 
Supercomputing Center.  
 
To test XCAT3 in a real application we are working with a large collaboration of 
meteorologists  and atmospheric scientists to study mesoscale storms such as tornadoes 
and hurricanes.   We  have constructed a component composition tool  which  allows the 
user to compose weather data analysis and simulation tools by connecting boxes with a 
standard “drop and drag” programming model. 
 

 
Figure 2.  XCAT version of LEAD portal composer 

 
The resulting composed application is run on a distributed Grid of compute and data 
servers.  The result was demonstrated at SC 2004 in Pittsburgh.   
 
Proteus 
 
We have designed, prototyped and measured a multiprotocol, web-services invocation 
framework for CCA components.  Development was divided into three fronts.  The first 
front is a C++-based SOAP implementation with a dynamic invocation interface.  The 
second front is providing a protocol-independent Web services invocation toolkit.  The 
third front is on Babel/Proteus integration. 
 
SOAP Implementations 
 
Proteus can use an existing SOAP implementation, but we were not able to find a suitable 
existing implementation.  The primary requirement is that the SOAP implementation 
have a dynamic invocation interface (DII).  This allows Proteus to pass a service-



independent invocation object to the SOAP implementation, which can then directly 
invoke the service.  Without a DII, stubs and skeletons for the SOAP implementation 
would have to be generated in a separate step, in addition to Proteus stubs and skeletons.  
The two leading contenders, gSOAP and Axis C++ both do not currently have a DII. 
 
Thus, we have developed a SOAP implementation, and made significant progress on that 
front.  We currently have a SOAP implementation that has demonstrated interoperability 
with XSOAP Java under Proteus for a subset of XML Schema types.  We also worked on 
HTTP 1.1 improvements such as chunking and persistent connections. 
 
WSIT 
 
A number of independent but related factors have led us to the realization that we should 
factor out all Web services invocation classes into a Web services invocation toolkit.  
This includes the Proteus stub and skeleton design, the Proteus generic serialization 
framework, and our WSDL-to-Proteus-Invocation-Model code generator.  This left us 
with three significant bodies of code.  Proteus focused on the multiprotocol mediation 
aspects.  XSOAP is the SOAP implementation.  WSIT handles all invocation aspects.  
WSIT and XSOAP can be used independently without Proteus. 
 
The primary motivation behind this refactoring is the realization that there is significant 
utility to a stand-alone SOAP implementation, for those situations where multiprotocol 
capability is not necessary.  To achieve this independence in a practical manner, however, 
it is necessary that the invocation aspects of Proteus be factored out, so that these can be 
used with XSOAP without the other aspects of Proteus. 
 
A secondary motivation is that other people may wish to use our WSIT with their own 
SOAP implementation (or other protocol implementation, such as a binary XML 
implementation).  This refactoring involved modifying XSOAP to use Proteus invocation 
patterns and interfaces, work that is substantially complete.   
 

 



 
 
 
Figure 1 This diagram shows how an invocation progresses through the layers from an 
application down to the transport layer, and the relationships among WSIT, Proteus, and 
XSOAP. 
 
 
Babel 
 
We have also researched integrating Babel with Proteus.  Babel provides language 
interoperability, but has only recently begun to explore distributed communication 
capabilities.  By integrating Babel with Proteus, we provided a path for distributed 
framework interoperability. 
 
We completed a prototype that demonstrated how Babel with Proteus can provide Babel 
with RMI capabilities (see Figure 2).  This prototype uses hand-written glue code.  We 
are now in the process of modifying Babel so that it will generate the necessary glue code 
automatically. 
 
Legion 
 
We have also researched a design for integrating Proteus into Legion/CCA.  Since 
Legion/CCA does not use Babel, distributed interoperability with Legion requires that 
Legion use SOAP.  Integrating with Proteus allows them to negotiate and then switch to 
an efficient shared binary protocol.  An initial design and preliminary prototype have 
been carried out.  
 
 
 

 



 
Illustration 2 Bridging between Babel and Proteus.  Green lines are compile-time inputs,  
blue lines are run-time inputs.  At run-time, only the binding and addressing information 
is used from the WSDL document. 
 

 
 
 
Figure 3. Proteus is a multiprotocol Remote Method Invocation (RMI) library designed 
to plugged into larger systems. Proteus has been integrated with the Babel language 
interoperability package at Lawrence Livermore National Laboratory. Babel RMI allows 
one process to call another process on a different machine. The RMI call proceeds 
through the Babel implementation layers to an RMI skeleton which packages the 
invocation in a form suitable for the Proteus multiprotocol library. The Proteus layer 
transmits the invocation across the network to the server. On the server side Proteus 
delivers the invocation to the server-side IOR, which then calls the actual user 
implementation. 
 
 

Lessons Learned  and Further Directions 
 
Our experience with XCAT has provided valuable information about using distributed 
scientific applications within a CCA simulation.  While the CCA model of directly 
coupling components extends to the distributed case, there are some fundamental 
differences in the nature of the computations that must be accounted for.  First, in the 
wide-area distributed case security is a very big factor.  The messages that travel between 
components should be encrypted and digitally signed.  Authentication and Authorization 
is an important issue.  To solve   this problem we have incorporated web service security 
mechanisms into our system. In doing so we have discovered several important new ways 
to optimize security for our distributed applications.  We have now published these 

 



results in the security community and in the high performance distributed computing 
conference. 
 
Second, we observe that in the distributed case, the world is more asynchronous and 
subject to failure.   The trend in web services is to communicate by asynchronous 
messages rather than remote procedure call.   Components have to be designed with 
much greater fault tolerance in mind.  Consequently, components need to be as stateless 
as possible.  One essential part of any distributed system is a mechanism that allows 
components to publish notification events that any other component can subscribe to.   
 
A main effort for XCAT has been to show how to extend the concept of event 
notification to a “message bus” that can be made a standard part of the CCA 
programming model.   This allows a component to be programmed with a slightly 
different semantics than is currently possible with CCA.   Currently each component has 
one or more  provides ports and one or more uses ports.  An invocation of a provides port 
causes the component to respond.  This response may involve an invocation of a uses port 
on another component.   In a message bus model a component can be initialized to 
“subscribe” to a class of messages by “topic”.  It may also publish new messages onto the 
bus with any topic.   In this way one or more components may receive the messages 
published by other components.   This allows components to publish events, such as error 
conditions or task completions, which other components may need to know about.   It 
also allows for a type of performance monitoring that is not easily accomplished with 
standard approaches.  At the same time it provides a form of decoupling to handle the 
more asynchronous character of distributed computations, and increased failure recovery 
opportunities in that a secondary component can respond to a published event if the 
primary intended recipient is disconnected or fails. 
 
This can be done completely within the CCA model: Each component would have a 
subscription and a publish uses port and a event listener provides port. We have 
implemented event-based programming paradigm with several applications and it is now 
a  critical component of our Mesoscale Weather Prediction System LEAD and the 
preliminary framework for fusion energy simulations in the CSWIM project.  We 
continue to explore other concepts from the web services model that can be valuable in 
the CCA context. 
 
DCA and the Distributed MxN Problem 
 
Indiana University has researched the problem of connecting distributed parallel 
programs, with different components running on different sites – and possibly with 
different numbers of processes.  The semantics of these MxN interactions is a novel 
problem in scientific computing, and IUB has developed the Distributed CCA 
Architecture (DCA) for exploring the issues of parallel remote method invocation within 
the CCA context.  DCA uses MPI as a run-time system because it provides distributed 
synchronization and communication utilities, letting us concentrate on the semantics and 
performance of parallel-remote method invocation. In recent years this has led to a major 



expansion in how CCA is perceived and used, and we have routinely connected test 
applications. Currently we are working with geologists, climate models and space 
systems to evaluate efficiencies and what kind of semantics are most useful for these 
applications. 
 
DCA provides remote method invocation between parallel components.  This form of 
invocation is designed to resemble that of collective calls in the Single-Program Multiple-
Data model of parallel programming. This is possible thanks to a flexible design based on 
MPI communicator groups to define the sets of participating processes in both the source 
and the target components.  
 
In addition, large data objects that span multiple processes can be defined and deployed 
at the target component at the time of the remote invocation. To do this, the DCA has 
defined a special kind of "parallel" argument that is subject to data redistribution. The 
DCA supports several types of layouts inspired by High Performance FORTRAN, such 
as block, cyclic, block-cyclic, and more. Parallel arguments in our prototype 
implementation are restricted to one-dimensional arrays. DCA is complementary to the 
distributed MxN approach used by Utah's SciRUN2 by allowing more complex coupling 
between components. 

 
 
 
 
 
 
An MPI-like interface provides a useful stepping stone for new users migrating to CCA, 
and has useful concepts of  collectivity and communicator groups that can help make 
clearer the meaning of CCA invocations between components of different cardinalities. 
Redistribution of data in DCA is dynamic and “manual” (as opposed to using pre-cooked 
data arrangements). This is more work for the programmer, who must set the parameters 
for the redistribution when distributed parameters are used but is flexible and uses well 

Figure 3.  In the Direct-Connected framework, the coupling between components 
does not requre network communication.  The MxN problem requires coupling 
components that span different parallel computers of different sizes. 



known MPI-like constructs. In the past year DCA has added 
 
• A simplified SIDL parser that parses ports and the most argument types: 1D arrays, 

strings, parallel arguments.  This has helped detect minor errors in the CCA SIDL 
specification which have been corrected this year by the Babel team. 

• Basic framework implementation: BuilderServices, setServices, register/use ports, 
goPorts, etc. all implemented using MPI. 

• MxN parallel remote method invocation ports. 
• Automatic data redistribution for parallel arguments. 
• DCA services not required by CCA: metadata management, logging, monitoring, and 

basic dynamic application steering. 
 
The DCA uses MPI communicator groups to establish process participation during 
remote, collective port method calls: the component making the call can decide which 
processes participate. On the receiving side, however, all processes must participate: this 
is not a shortcoming of DCA, but is inherent in the uses-provides design pattern that CCA 
requires.  
 
In the past year the DCA has been implemented and has been tested on the large-scale 
scheduling of scientific instruments on a low earth orbit satellite. 
 
Note: an overview of the entire CCA research effort on the NxM problem won the “best 
software track paper” award at the 2005 International Parallel and Distributed 
Processing Symposium. 
 
 

CCA Component Toolkit 
 
A crucial part of the CCTTSS effort is building a toolkit of interfaces that are mapped to 
HPC codes.  IU’s research for this includes parallel I/O, sparse linear solvers, and a 
metadata management system.  Each of these is already a Ph.D. dissertation topic for a 
graduate student. 
 
Parallel I/O is increasingly a bottleneck operation as the scale of both simulations, 
visualization, and analysis codes has grown.  Currently most hard drives can write at the 
rate of 100 Mbyte/second, while data soon will be generated at the rate of petabytes per 
second.  Parallelism is the only way to resolve this, and IU is building a parallel I/O 
library interface and implementation.  MPI-2 provides parallel I/O, but the interface is 
complex including dozens of functions and fairly sophisticated ideas dealing with shared 
pointers, collective calls, etc.  Many application users simply need to read and write 
distributed arrays, and in collaboration with ORNL and PNL we have defined a 
“distributed array descriptor” (DAD) interface that succintly describes how an array is 
distributed across processors.   By using a DAD object, a distributed array can be read or 
written using a simple function call with only 3-4 arguments.   As with the DCA, an MPI-
like idiom has been adopted to ease the transition for end-applications users.  A parallel 



I/O capability is present in Global Arrays (GA), and recently ANL has developed a 
parallel netCDF interface.  GA requires that the array be allocated and used with the GA 
library, and for many existing applications converting all arrays to use the GA package is 
a large amount of work.  The IU parallel I/O library is intended to work with any array 
that has a DAD, and so adding the capability to existing MPI programs is straightforward.  
In tests on a128 node Opteron cluster, the I/O performance has only been limited by the 
speed of the interconnect network, not the hard drives.  
 
Sparse linear solvers are an important kernel for most HPC codes, and the DOE has 
supported highly effective, reliable, and scalable libraries providing them.  In 
collaboration with ANL and Sandia we have defined a single interface that allows users 
to exchange a PetSC solver for a Trilinos one,  or to switch to using the sparse direct 
solver SuperLU.  Currently using one or the other of those libraries alone tends to “lock-
in” an application, and the new interface encourages rapid prototyping and 
experimentation from an application.  Furthermore the solvers have complementary 
strengths and weaknesses so combining them in a single interface provides important 
utility. The Linear Solver Interface (LISI) is a CCA interface which has been developed 
in collaboration with other CCA researchers, presented both at the CCA forum and other 
conferences, and appears to be likely to become the single interface desired. It has been 
tested with PetSC, Trilinos, SPLIB, and Sparskit solvers and works well. 
 
A third toolkit component is Obsidian, a set of components that lets users rapidly build a 
metadata management system for an application. Unlike most other metadata managers,  
Obsidian does not impose a particular schema and so allows flexibility in creating 
metadata management that is particularly efficient and useful for a given application.  
Obsidian includes utilities for creating a metadata database, maintaining logical relations 
ships between objects, tracking data, and archiving it.   This system has been used in a 
wide variety of applications over the past year, including job management in 
bioinformatics, x-ray crystallography at remote sites, clinical radiation therapy, and long 
term photometric studies in astronomy.  In crystallography over 100 Gbytes of data has 
been managed in a single month, and the software has been distributed and used in five 
different laboratories both on and off campus.  For bioinformatics a researcher needed to 
build a database of genome-genome and protein-protein similarities; this required over 
50,000 parallel jobs to create and subsequently requires about 250 jobs a month to 
maintain (each time GeneBank adds a genome or protein entry, all pairwise interactions 
need to be computed with it and existing data).  Handling such a large number of jobs 
running on different platforms and with different batch managers requires automated 
relaunch capability and complex decisions to determine whether or not a job has “failed”.   
Tracking this information and the subsequent data has been done with Obsidian.  This 
year we have just started the collaboration with a fully automated (unattended) astronomy 
observatory.  Over twelve years of observations have been accumulated and each night 
up to 150 news ones are generated.  Astronomers are interested in mining this data to 
search for quasars and variable stars, and the first step is to build systematic data 
management into it.   Obsidian is not a competitor with the OGSA-DAI interface or 
SDSC’s  SRB/MCAT, instead constituting a higher-level architecture which can use 
those as components.  We intend to extend Obsidian to use for combined simulations in 



the fusion simulation project as part of the CSWIM effort. 
 

3. People Supported 
 
The people supported by this project include  

• Dennis Gannon, PI 
• Randall Bramley, PI 
• Kenneth Chiu, Postdoc – now on the faculty at SUNY Binghamton University. 
• Felipe Bertrand, Graduate Research Assistant.  Ph.D. completed 2006   
• Sriram Krishnan, Graduate Research Assistant. Ph.D. completed 2005  – now at 

San Diego Supercomputing Center. 
• Alek Slominski, Graduate Research Assistant.  Ph.D. expected 2007 
• Yogesh Simmhan, Graduate Research Assistant. Ph.D expected 2007 
• Madhu Govindaraju, Ph.D. 2005 – now on the  faculty of SUNY Binghamton 

University. 
• Wei Liu, Graduate Research Assistant 
• Yongquan (Cathy) Yuan, Graduate Research Assistant.  PhD. 2006.  
• Fang (Cherry) Liu, Graduate Research Assistant 
• Yu (Maried) Ma, Graduate Research Assistant. Ph.D. 2006. 
• Al Rossi, Graduate Research Assistant. M.S. in CS, 2004.  
• Rachana Ananthakrishnan, Graduate Research Assistant. M.S. in CS, 2004  
• Lavanya Ramakrishnan, Graduate Research Assistant. M.S. in CS, 2004  
• Caroline Olariu,  visiting Ph.D. student from University of Versailles, France  
• Nicolas Rey-Cenvaz, visiting Ph.D. student from University of Versailles, France 
• Raul Indurkar, Graduate Research Assistant. M.S. in CS, 2004 
 

 

4. Publications. 
 

1. Rachana Ananthakrishnan, Sriram Krishnan, Madhusudhan Govindaraju, 
Lavanya Ramakrishnan, Aleksander Slominski, Dennis Gannon, Grid Web 
Services and Application Factories,' Chapter 9 in "Grid Computing: Making the 
Global Infrastructure a Reality" Fox, Berman, Hey, Eds., Wiley 2003. 

2. D. E. Bernholdt, B. A. Allan, R. Armstrong, F. Bertrand, K. Chiu, T. L. Dahlgren, 
K. Damevski, W.R. Elwasif, T. G. W. Epperly, M. Govindaraju, D. S. Katz, J. A. 
Kohl, M. Krishnan, G. Kumfert, J. W. Larson, S. Lefantzi, M. J. Lewis, A. D. 
Malony, L. C. McInnes, J. Nieplocha, B. Norris, S. G.Parker, J. Ray, S. Shende, 
T. L. Windus, S. Zhou. A Component Architecture for High-Performance 
Scientific Computing. Intl. J. High-Perf. Computing Appl., 2005 in ACTS 
Collection special issue.  

3. Felipe Bertrand, David E. Bernholdt, Randall Bramley, Kostadin B. Damevski, 
James A. Kohl, Jay W. Larson, and Alan Sussman. Data redistribution and remote 
method invocation in parallel component architectures. In Proceedings of the 19th 



International Parallel and Distributed Processing Symposium: IPDPS 2005, 2005. 
Best Paper Award. 

4. Felipe Bertrand, Randall Bramley, Kostadin B. Damevski, James A. Kohl, David 
E. Bernholdt, Jay W. Larson, and Alan Sussman, Data Redistribution and Remote 
Method Invocation in Parallel Component Architectures, Best Paper of the 
Software Track by the International Parallel and Distributed Processing 
Symposium, Denver, CO,  4-8 April 2005. 

5. Felipe Bertrand, Yongquan Yuan and Kenneth Chiu and Randall Bramley, "An 
Approach to Parallel MxN Communication", Proceedings of the Los Alamos 
Computer Science Institute (LACSI) Symposium,  Oct, 2003. 

6. Felipe Bertrand, Yongquan Yuan, Kenneth Chiu, Randall Bramley, An Approach 
to Parallel MxN Communication, International Journal of High Performance 
Computing Applications, volume 19, Number 4, Winter 2005, pp 399-407. (Item 
5 above is a conference version of this paper.) 

7. Felipe Bertrand, Data Redistribution and Remote Method Invocation in Parallel 
Component Architectures, IUB Ph.D. dissertation, 2006. 

8. Felipe Bertrand, Randall Bramley,  "DCA: A distributed CCA framework based 
on MPI", Proceedings of the 9th International Workshop on High-Level Parallel 
Programming Models and Supportive Environments (HIPS'04), IEEE Press pp. 
80-89. 2004. 

9. Randall Bramley, Rob Armstrong, Lois McInnes, High-Performance Component 
Software Systems, Chapter in Frontiers of Parallel Processing For Scientific 
Computing, M. A. Heroux,   P. Raghavan and H. D. Simon, editors, SIAM series: 
Software, Environments, and Tools, Dec 2005. 

10. Kenneth Chiu, Tharaka Devadithya, Wei Lu, and Aleksander Slominski. A binary 
XML for scientific applications. In e-Science 2005, 2005. 

11. Kenneth Chiu,  "XBS: A Streaming Binary Serializer for High Performance 
Computing", Proceedings of the High Performance Computing Symposium 2004, 
April 2004 

12. Kenneth Chiu, Madhusudhan Govindaraju, and Dennis Gannon,``The Proteus 
Multiprotocol Library,''  In Proceedings of the 2002 Conference on 
Supercomputing, November 2002.  

13. Kenneth Chiu, An Architecture for Concurrent, Peer-to-Peer Components, IUB 
Ph.D. dissertation, 2001. 

14. L. Fang and D. Gannon, "XCAP - An Extensible Capability-based Authorization 
Infrastructure for Grids", 4th Annual PKI R\&D Workshop: Multiple Paths to 
Trust, NIST Gaithersburg, MD April 19-21, 2005 

15. D. Gannon, J. Alameda, O. Chipara, M. Christie, V. Dukle, L. Fang, M. Farrellee, 
S. Hampton, G. Kandaswamy, D. Kodeboyina, S. Krishnan, C. Moad, M. Pierce, 
B. Plale, A. Rossi, Y. Simmhan, A. Sarangi, A. Slominski, S. Shirasuna, T. 
Thomas, Building Grid Portal Applications from a Web-Service Component 
Architecture, Proceedings of the IEEE. Special Issue on Grid Technology, Vol. 
93, no. 3, pp. 551-563, March 2005 

16. D. Gannon, S. Krishnan, L. Fang, G. Kandaswamy, Y. Simmhan, A. Slominski, 
On Building Parallel and Grid Applications: Component Technology and 
Distributed Services, Proceedings, Challenges of Large Applications in 



Distributed Environments (CLADE) In conjunction with the 13th International 
Symposium on High Performance Distributed Computing (HPDC-13), pp. 44-51, 
June, 2004. (to appear in a special issue of Cluster Computing 2005.) 

17. D. Gannon, S. Krishnan, A. Slominski, G. Kandaswamy, L. Fang, "Building  
Applications from a Web Service based Component Architecture", in In V. Getov 
and T. Kielmann, editors, Component Models and Systems for Grid Applications. 
Proc. of the Workshop on Component Models and Systems for Grid Applications, 
June 26, 2004 held in Saint Malo, France. Springer, 2005,  ISBN: 0-387-23351-2. 

18. D. Gannon, L. Fang, G. Kandaswamy, D. Kodeboyina, S. Krishnan, B. Plale, A. 
Slominski, "Building Grid Applications and Portals: An Approach Based on 
Components, Web Services and Workflow Tools", Invited Keynote Paper, 
Europar, Pisa Italy, August 2004. 

19. Dennis Gannon, Randall Bramley, Geoffrey Fox, Shava Smallen, Al Rossi, 
Rachana Ananthakrishnan, Felipe Bertrand, Ken Chiu, Matt Farrellee, Madhu 
Govindaraju, Sriram Krishnan, Lavanya Ramakrishnan, Yogesh Simmhan, Alek 
Slominski, Yu Ma, Caroline Olariu, Nicolas Rey-Cenvaz, ``Programming the 
Grid: Distributed Software Components, P2P and Grid Web Services for 
Scientific Applications,'' Journal of Cluster Computing, 5(3): 325-336 (2002) 

20. Dennis Gannon, ``Software Component Technology for High Performance 
Parallel and Grid Computing'', invited keynote paper.  Euro-Par 2001 Springer 
Verlag. 2001 

21. Madhusudhan Govindaraju, Sriram Krishnan, Kenneth Chiu, Aleksander 
Slominski, Dennis Gannon, Randall Bramley, ``Merging the CCA Component 
Model with the OGSI Framework'', to appear, Proceedings of CCGrid-2003, 
Tokyo March 2003. 

22. S. Krishnan and D. Gannon, "Checkpoint and Restart for Distributed Components 
in XCAT3", the 5th IEEE/ACM International Workshop on Grid Computing, 
Pittsburgh, Nov. 8, 2004. pp. 281-288. 

23. Sriram Krishnan, Dennis Gannon, “XCAT3: A Framework for CCA Components 
as OGSA Services", HIPS 2004, 9th International Workshop on High-Level 
Parallel Programming Models and Supportive Environments, IEEE Computer 
Society Press, April 26, 2004 

24. S. Krishnan, R. Bramley, M. Govindaraju, R. Indurkar, A. Slominski,  D. Gannon, 
J. Alameda, D. Alkaire ``The XCAT Science Portal,'',   Proceedings SC2001, 
Nov. 2001, Denver.  An extended version to appear in a special issue of the 
Journal of Scientific Computing, 2003. 

25. Sriram Krishnan, An Architecture for Checkpointing and Migration of Distributed 
Components on the Grid, IUB Ph.D. dissertation, 2004. 

26. Fang Liu, Randall Bramley, CCA-LISI: On Designing A CCA Parallel Sparse 
Linear Solver Interface, Proc. of the IEEE International Parallel and Distributed 
Processing Symposium, 2007. 

27. Wei Lu, Kenneth Chiu, and Dennis Gannon. Building a generic SOAP framework 
over binary XML. In The 15th IEEE International Symposium on High 
Performance Distributed Computing (HPDC-15), June 2006. 



28. Wei Lu, Kenneth Chiu, and Yinfei Pan. A parallel approach to XML parsing. In 
The 7th IEEE/ACM International Conference on Grid Computing, Barcelona, 
Septemer 2006. 

29. Yu Ma and Randall Bramley, "A Composable Data Management Architecture for 
Scientific Applications", Proceedings of Challenges of Large Applications in 
Distributed Environments 2005, July. 

30. Yu (Marie) Ma, A Composable Data Management Architecture for Scientific 
Applications, IUB Ph.D. dissertation, 2006. 

31. Srinath Perera and Dennis Gannon. Web Service Extensions for Scientific 
Workflows. In HPDC2006 Workshop on Workflows in Support of Large-Scale 
Science (WORKS06), Paris, France, June 2006. 

32. Lavanya Ramakrishnan, Helen Rehn, Jay Alameda, Rachana Ananthakrishnan, 
Madhusudhan Govindaraju, Aleksander Slominski, Kay Connelly, Von Welch, 
Dennis Gannon, Randall Bramley, Shawn Hampton, ``An Authorization 
Framework for a Grid Based Component Architecture,'' Grid2002 Workshop at 
SC2002, Baltimore Oct. 2002. 

33. Shirasuna S., Slominski A., Fang L., and Gannon D., Performance Comparison of 
Security Mechanisms for Grid Services, the 5th IEEE/ACM International 
Workshop on Grid Computing, Pittsburgh, Nov. 8, 2004.  pp. 360-364. 

 
 
 

 
 
 


