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1. Introduction

Indiana University-Bloomington (IUB) research in CCTTSS has concentrated on four

areas:
1.

XCAT. Composing applications where the components may be distributed across
the wide area network. In collaboration and coordination with the University of
Utah and SUNY Binghamton University, we have shown the CCA concept works
very well in this context. We researched and developed a bridge between CCA
components and emerging Grid computing standards, particularly web services.
Building CCA interfaces to web services leverages emerging standards in
location-independence of codes, access to distributed data management systems,
and to on-line sensors and instruments.

Proteus. To support the bridge between CCA technology and the Web service
world, it was essential that we examine the low level communication layer. As
Web services are based on XML and the SOAP standard, it was essential that we
consider the performance and implementation details of these protocols in the
context of scientific computing.

DCA. The third major area of work involves the problem of connecting parallel
components across a wide area network. For example one component may be
running on a 1000 node machine at Oak Ridge while the other component may be
running on a 789 node machine at Los Alamos. Connecting these two
components together in parallel is what we call the MxN problem. We have had
substantial success on this problem.

Component Toolkit. Our fourth area of work involves the help we have provided
to the development of the first CCA component toolkit. We have created a single
component interface for sparse linear solvers including PetSC, Trilinos and
SPLib. We also developed a CCA interface for a parallel IO library.

IUB has also collaborated with the CCA Forum in developing and presenting CCA
tutorials, and provided systems support and HPC cluster accounts in support of those
tutorials. Several students have been encouraged by the work to seek internships at DOE
labs, and two Ph.D. graduate students are now faculty at SUNY Bingampton, where they
continue to collaborate with DOE researchers on projects. A total of five students have
completed dissertations on CCA-related work, and another two will complete theirs in

2007.

2. Technology Results

XCAT

The current industry standard for composing software into large applications is based on
Web Services standards being developed by IBM, Microsoft, HP, Sun through
organizations like OASIS and W3C. While these standards have roots in ideas first



proposed by CCA, they are focused more on coupling services over the internet than on
the CCA goal of coupling code modules in a single program for a massively parallel
computer. One goal of the XCAT subproject was to turn the tables: what can CCA learn
from all this progress in Web Services?

The XCAT3 framework provides an implementation of the CCA specification for
distributed components on the Grid using web services. Making CCA components
compatible with Grid standards enables access using protocols and clients shared by other
useful Grid services, apart from adding desirable features such as multiple level naming
and dynamic service introspection as specified by the Grid specifications. Furthermore,
complex applications on the Grid can be conveniently composed by using composition
techniques prescribed by CCA.

In XCAT3 every component is modeled as a set of Grid web services - every Provides
port is a Grid web service, every Uses port is a Grid web service client.
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Figure 1. This illustration show how a standard Grid web service client can interact with XCAT3
components

We use Babel to generate the interfaces for the framework for compatibility with the
CCA specification. In addition, XCAT3 has been used as a research vehicle to
investigate (a) distributed user-level checkpointing for components, to be used for fault
tolerance, and (b) migration of individual components to adapt to dynamic Grid
environments. To this end, the framework provides APIs for component writers to load
and store their states to stable storage, and algorithms that enable storing a consistent
global state into stable storage for distributed checkpointing, and that enable storing
individual component states into stable storage for migration purposes. This work



resulted in a Ph.D. thesis for Sriram Krishnan who is now employed at the San Diego
Supercomputing Center.

To test XCAT3 in a real application we are working with a large collaboration of
meteorologists and atmospheric scientists to study mesoscale storms such as tornadoes
and hurricanes. We have constructed a component composition tool which allows the
user to compose weather data analysis and simulation tools by connecting boxes with a
standard “drop and drag” programming model.
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Figure 2. XCAT version of LEAD portal composer

The resulting composed application is run on a distributed Grid of compute and data
servers. The result was demonstrated at SC 2004 in Pittsburgh.

Proteus

We have designed, prototyped and measured a multiprotocol, web-services invocation
framework for CCA components. Development was divided into three fronts. The first
front is a C++-based SOAP implementation with a dynamic invocation interface. The
second front is providing a protocol-independent Web services invocation toolkit. The
third front is on Babel/Proteus integration.

SOAP Implementations
Proteus can use an existing SOAP implementation, but we were not able to find a suitable

existing implementation. The primary requirement is that the SOAP implementation
have a dynamic invocation interface (DII). This allows Proteus to pass a service-



independent invocation object to the SOAP implementation, which can then directly
invoke the service. Without a DII, stubs and skeletons for the SOAP implementation
would have to be generated in a separate step, in addition to Proteus stubs and skeletons.
The two leading contenders, gSOAP and Axis C++ both do not currently have a DIL

Thus, we have developed a SOAP implementation, and made significant progress on that
front. We currently have a SOAP implementation that has demonstrated interoperability
with XSOAP Java under Proteus for a subset of XML Schema types. We also worked on
HTTP 1.1 improvements such as chunking and persistent connections.

WSIT

A number of independent but related factors have led us to the realization that we should
factor out all Web services invocation classes into a Web services invocation toolkit.
This includes the Proteus stub and skeleton design, the Proteus generic serialization
framework, and our WSDL-to-Proteus-Invocation-Model code generator. This left us
with three significant bodies of code. Proteus focused on the multiprotocol mediation
aspects. XSOAP is the SOAP implementation. WSIT handles all invocation aspects.
WSIT and XSOAP can be used independently without Proteus.

The primary motivation behind this refactoring is the realization that there is significant
utility to a stand-alone SOAP implementation, for those situations where multiprotocol
capability is not necessary. To achieve this independence in a practical manner, however,
it is necessary that the invocation aspects of Proteus be factored out, so that these can be
used with XSOAP without the other aspects of Proteus.

A secondary motivation is that other people may wish to use our WSIT with their own
SOAP implementation (or other protocol implementation, such as a binary XML
implementation). This refactoring involved modifying XSOAP to use Proteus invocation
patterns and interfaces, work that is substantially complete.
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Figure 1 This diagram shows how an invocation progresses through the layers from an
application down to the transport layer, and the relationships among WSIT, Proteus, and
XSOAP.

Babel

We have also researched integrating Babel with Proteus. Babel provides language
interoperability, but has only recently begun to explore distributed communication
capabilities. By integrating Babel with Proteus, we provided a path for distributed
framework interoperability.

We completed a prototype that demonstrated how Babel with Proteus can provide Babel
with RMI capabilities (see Figure 2). This prototype uses hand-written glue code. We
are now in the process of modifying Babel so that it will generate the necessary glue code
automatically.

Legion

We have also researched a design for integrating Proteus into Legion/CCA. Since
Legion/CCA does not use Babel, distributed interoperability with Legion requires that
Legion use SOAP. Integrating with Proteus allows them to negotiate and then switch to
an efficient shared binary protocol. An initial design and preliminary prototype have
been carried out.
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Hllustration 2 Bridging between Babel and Proteus. Green lines are compile-time inputs,
blue lines are run-time inputs. At run-time, only the binding and addressing information
is used from the WSDL document.
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Figure 3. Proteus is a multiprotocol Remote Method Invocation (RMI) library designed
to plugged into larger systems. Proteus has been integrated with the Babel language
interoperability package at Lawrence Livermore National Laboratory. Babel RMI allows
one process to call another process on a different machine. The RMI call proceeds
through the Babel implementation layers to an RMI skeleton which packages the
invocation in a form suitable for the Proteus multiprotocol library. The Proteus layer
transmits the invocation across the network to the server. On the server side Proteus
delivers the invocation to the server-side IOR, which then calls the actual user
implementation.

Lessons Learned and Further Directions

Our experience with XCAT has provided valuable information about using distributed
scientific applications within a CCA simulation. While the CCA model of directly
coupling components extends to the distributed case, there are some fundamental
differences in the nature of the computations that must be accounted for. First, in the
wide-area distributed case security is a very big factor. The messages that travel between
components should be encrypted and digitally signed. Authentication and Authorization
is an important issue. To solve this problem we have incorporated web service security
mechanisms into our system. In doing so we have discovered several important new ways
to optimize security for our distributed applications. We have now published these



results in the security community and in the high performance distributed computing
conference.

Second, we observe that in the distributed case, the world is more asynchronous and
subject to failure. = The trend in web services is to communicate by asynchronous
messages rather than remote procedure call. Components have to be designed with
much greater fault tolerance in mind. Consequently, components need to be as stateless
as possible. One essential part of any distributed system is a mechanism that allows
components to publish notification events that any other component can subscribe to.

A main effort for XCAT has been to show how to extend the concept of event
notification to a “message bus” that can be made a standard part of the CCA
programming model.  This allows a component to be programmed with a slightly
different semantics than is currently possible with CCA. Currently each component has
one or more provides ports and one or more uses ports. An invocation of a provides port
causes the component to respond. This response may involve an invocation of a uses port
on another component. In a message bus model a component can be initialized to
“subscribe” to a class of messages by “topic”. It may also publish new messages onto the
bus with any topic. In this way one or more components may receive the messages
published by other components. This allows components to publish events, such as error
conditions or task completions, which other components may need to know about. It
also allows for a type of performance monitoring that is not easily accomplished with
standard approaches. At the same time it provides a form of decoupling to handle the
more asynchronous character of distributed computations, and increased failure recovery
opportunities in that a secondary component can respond to a published event if the
primary intended recipient is disconnected or fails.

This can be done completely within the CCA model: Each component would have a
subscription and a publish uses port and a event listener provides port. We have
implemented event-based programming paradigm with several applications and it is now
a critical component of our Mesoscale Weather Prediction System LEAD and the
preliminary framework for fusion energy simulations in the CSWIM project. We
continue to explore other concepts from the web services model that can be valuable in
the CCA context.

DCA and the Distributed MxN Problem

Indiana University has researched the problem of connecting distributed parallel
programs, with different components running on different sites — and possibly with
different numbers of processes. The semantics of these MxN interactions is a novel
problem in scientific computing, and IUB has developed the Distributed CCA
Architecture (DCA) for exploring the issues of parallel remote method invocation within
the CCA context. DCA uses MPI as a run-time system because it provides distributed
synchronization and communication utilities, letting us concentrate on the semantics and
performance of parallel-remote method invocation. In recent years this has led to a major



expansion in how CCA is perceived and used, and we have routinely connected test
applications. Currently we are working with geologists, climate models and space
systems to evaluate efficiencies and what kind of semantics are most useful for these
applications.

DCA provides remote method invocation between parallel components. This form of
invocation is designed to resemble that of collective calls in the Single-Program Multiple-
Data model of parallel programming. This is possible thanks to a flexible design based on
MPI communicator groups to define the sets of participating processes in both the source
and the target components.

In addition, large data objects that span multiple processes can be defined and deployed
at the target component at the time of the remote invocation. To do this, the DCA has
defined a special kind of "parallel" argument that is subject to data redistribution. The
DCA supports several types of layouts inspired by High Performance FORTRAN, such
as block, cyclic, block-cyclic, and more. Parallel arguments in our prototype
implementation are restricted to one-dimensional arrays. DCA is complementary to the
distributed MxN approach used by Utah's SciIRUN2 by allowing more complex coupling
between components.
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Figure 3. In the Direct-Connected framework, the coupling between components
does not requre network communication. The MxN problem requires coupling

An MPI-like interface provides a useful stepping stone for new users migrating to CCA,
and has useful concepts of collectivity and communicator groups that can help make
clearer the meaning of CCA invocations between components of different cardinalities.
Redistribution of data in DCA is dynamic and “manual” (as opposed to using pre-cooked
data arrangements). This is more work for the programmer, who must set the parameters
for the redistribution when distributed parameters are used but is flexible and uses well



known MPI-like constructs. In the past year DCA has added

* A simplified SIDL parser that parses ports and the most argument types: 1D arrays,
strings, parallel arguments. This has helped detect minor errors in the CCA SIDL
specification which have been corrected this year by the Babel team.

® Basic framework implementation: BuilderServices, setServices, register/use ports,
goPorts, etc. all implemented using MPI.

® MxN parallel remote method invocation ports.

® Automatic data redistribution for parallel arguments.

* DCA services not required by CCA: metadata management, logging, monitoring, and
basic dynamic application steering.

The DCA uses MPI communicator groups to establish process participation during
remote, collective port method calls: the component making the call can decide which
processes participate. On the receiving side, however, all processes must participate: this
is not a shortcoming of DCA, but is inherent in the uses-provides design pattern that CCA
requires.

In the past year the DCA has been implemented and has been tested on the large-scale
scheduling of scientific instruments on a low earth orbit satellite.

Note: an overview of the entire CCA research effort on the NxM problem won the “best
software track paper” award at the 2005 International Parallel and Distributed
Processing Symposium.

CCA Component Toolkit

A crucial part of the CCTTSS effort is building a toolkit of interfaces that are mapped to
HPC codes. IU’s research for this includes parallel I/O, sparse linear solvers, and a
metadata management system. Each of these is already a Ph.D. dissertation topic for a
graduate student.

Parallel I/O is increasingly a bottleneck operation as the scale of both simulations,
visualization, and analysis codes has grown. Currently most hard drives can write at the
rate of 100 Mbyte/second, while data soon will be generated at the rate of petabytes per
second. Parallelism is the only way to resolve this, and IU is building a parallel 1/0
library interface and implementation. MPI-2 provides parallel I/O, but the interface is
complex including dozens of functions and fairly sophisticated ideas dealing with shared
pointers, collective calls, etc. Many application users simply need to read and write
distributed arrays, and in collaboration with ORNL and PNL we have defined a
“distributed array descriptor” (DAD) interface that succintly describes how an array is
distributed across processors. By using a DAD object, a distributed array can be read or
written using a simple function call with only 3-4 arguments. As with the DCA, an MPI-
like idiom has been adopted to ease the transition for end-applications users. A parallel



I/O capability is present in Global Arrays (GA), and recently ANL has developed a
parallel netCDF interface. GA requires that the array be allocated and used with the GA
library, and for many existing applications converting all arrays to use the GA package is
a large amount of work. The IU parallel I/O library is intended to work with any array
that has a DAD, and so adding the capability to existing MPI programs is straightforward.
In tests on al28 node Opteron cluster, the I/O performance has only been limited by the
speed of the interconnect network, not the hard drives.

Sparse linear solvers are an important kernel for most HPC codes, and the DOE has
supported highly effective, reliable, and scalable libraries providing them. In
collaboration with ANL and Sandia we have defined a single interface that allows users
to exchange a PetSC solver for a Trilinos one, or to switch to using the sparse direct
solver SuperLU. Currently using one or the other of those libraries alone tends to “lock-
in” an application, and the new interface encourages rapid prototyping and
experimentation from an application. Furthermore the solvers have complementary
strengths and weaknesses so combining them in a single interface provides important
utility. The Linear Solver Interface (LISI) is a CCA interface which has been developed
in collaboration with other CCA researchers, presented both at the CCA forum and other
conferences, and appears to be likely to become the single interface desired. It has been

tested with PetSC, Trilinos, SPLIB, and Sparskit solvers and works well.

A third toolkit component is Obsidian, a set of components that lets users rapidly build a
metadata management system for an application. Unlike most other metadata managers,
Obsidian does not impose a particular schema and so allows flexibility in creating
metadata management that is particularly efficient and useful for a given application.
Obsidian includes utilities for creating a metadata database, maintaining logical relations
ships between objects, tracking data, and archiving it. This system has been used in a
wide variety of applications over the past year, including job management in
bioinformatics, x-ray crystallography at remote sites, clinical radiation therapy, and long
term photometric studies in astronomy. In crystallography over 100 Gbytes of data has
been managed in a single month, and the software has been distributed and used in five
different laboratories both on and off campus. For bioinformatics a researcher needed to
build a database of genome-genome and protein-protein similarities; this required over
50,000 parallel jobs to create and subsequently requires about 250 jobs a month to
maintain (each time GeneBank adds a genome or protein entry, all pairwise interactions
need to be computed with it and existing data). Handling such a large number of jobs
running on different platforms and with different batch managers requires automated
relaunch capability and complex decisions to determine whether or not a job has “failed”.
Tracking this information and the subsequent data has been done with Obsidian. This
year we have just started the collaboration with a fully automated (unattended) astronomy
observatory. Over twelve years of observations have been accumulated and each night
up to 150 news ones are generated. Astronomers are interested in mining this data to
search for quasars and variable stars, and the first step is to build systematic data
management into it.  Obsidian is not a competitor with the OGSA-DAI interface or
SDSC’s SRB/MCAT, instead constituting a higher-level architecture which can use
those as components. We intend to extend Obsidian to use for combined simulations in



the fusion simulation project as part of the CSWIM effort.
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