Heterogeneity in Bioreduction and Resulting Impacts on Contaminant Dynamics

Stanford University

CONTRIBUTORS

- Shawn Benner, Boise State University
- Deborah Bond, USGS
- Matt Ginder-Vogel, Stanford University
- Colleen Hansel, Stanford University
- Jim Neiss, Stanford University
- Peter Nico, LBNL
- Kristin Revill, RHE
- Brandy Stewart, Stanford University
- Bruce Wielinga, MFG Incorp.

COLLABORATORS

- Yuri Gorby, Alice Dohnalkova, John Zachara, PNNL
- Phil Jardine, Scott Brooks, Tracy Banks, ORNL

FUNDING: DOE-NABIR/ERSP

Transformations and Variation In Iron

Reductive Transformation of Iron

- S. putrefaciens strain CN32 inoculated ferrihydrite coated quartz-sand

- pH 7, 3 mM lactate

Solid-phase Distribution

Iron Biomineralization

Alteration in Surface Composition

Ferrihydrite Reduction: Impact of Phosphate

Alteration of Ferrihydrite Reactivity by Phosphate

Fe Biomineralization: Impact of Phosphate

Day 1

Day 17 <u>with</u> P

Day 17 without P

Biomineralization Products with Phosphate

Fe EXAFS

Iron Biomineralization with P

Impacts of Iron Transformation:

Reduction of Uranium

Uranyl Reduction by Shewanella alga

U(VI)-Fe(III) Reduction

10 μm

Nutrientpoor

Nutrient-

rich

Uranyl Reduction by Shewanella sp.

Reactive Transport of Uranium

Transport of Uranium: Pore-water Concentration

Uranium Sequestration

Uraninite Deposition

Physical-Biogeochemical Linkage

Iron Biomineralization

Spatial Heterogeneity in Biogeochemical Processes

Solid-Phase Evolution

Heterogeneity in Iron Biomineralization

Biomineralization within Physically Complex Media

Pore-scale Heterogeneity in Uranium Dynamics

Impacts of Iron Transformation:

Reduction of Chromium

Reductants of Chromate

- Dissolved Fe(II)
- Dissolved (S-II)
- Soluble and particulate organic molecules/material
 - mineral catalyzed
 - > photoinduced
- 'Reduced' Minerals
 - Fe(II) bearing
 - ≻ 'reduced' sulfur (-II, 0, …)
- Bacteria (enzymatic reduction)

Impact of Biomineralization on Chromium Dynamics

Comparative Rates of Reduction

Ferrihydrite transformation proceeds rapidly

- Coupled biotic-abiotic reaction path
- Generation of goethite and magnetite (lepidocrocite and green rust)
- Chromate reduction is dominated by Fe(II) (sorbed and aqueous) and green rust.
- Uranyl reduction is dependent on aqueous speciation and active metal reducing bacteria

- Biomineralization of ferric hydroxide, a ubiquitous and reactive aerobic iron phase, results dominantly in goethite and magnetite
- Biomineralization occurs via a coupled, biotic-abiotic process that results in solids with constrained size and morphology
- Physical complexity will result in biomineralization
 heterogeneity
- Iron transformations in natural systems will impact contaminant dynamics and Fe availability
 - alter magnitude and retention strength of contaminants
 - impart reductive capacity

Reaction Progression

 ${}^{1}_{4}C_{3}H_{5}O_{3}^{-} + Fe(OH)_{3} \rightarrow {}^{1}_{4}C_{2}H_{3}O_{2}^{-} + Fe^{2+} + {}^{1}_{4}HCO_{3}^{-} + 2/3H_{2}O + 7/4OH^{-}$

Processes Controlling Uranium Reduction

Physical-Chemical/Mineralogical Challenges

Defining reactive constituents within innately heterogeneous media

Cr(VI) Reactions within Hanford Sediments

Defining reactive constituents within innately heterogeneous media

Reactive Transport of Cr(VI) within Hanford Sediments

Cr(VI) (0.2 mM, pH 8) was reacted with Hanford sediments
 Cr breakthrough was retarded in acid treated sediment
 > 300 mg/Kg Cr retained within sediment
 > What are the specific reductants?

DOC

after Tokunaga et al., 2005

Reductants of Uranium

Localized Biogeochemical Processes

Ferrihydrite Transformation Upon Reaction with Fe(II)

Changing Reactivity of Ferrihydrite

 $C_{3}H_{5}O_{3}^{-} + 4Fe(OH)_{3} \rightarrow C_{2}H_{3}O_{2}^{-} + 4Fe^{2+} + HCO_{3}^{-} + 8/3H_{2}O + 7OH^{-}$

Rate of Mineralogical Transformation

Comparative Rates of Chromate Reduction

Controlling Factor in U(VI) Reduction

