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Abstract

Designs of proposed fusion reactors, such as the ITER project, typically involve the use of liquid
metals as coolants in components such as heat exchangers, which are generally subjected to strong
magnetic fields. These fields induce electric currents in the fluids, resulting in magnetohydrodynamic
(MHD) forces which have important effects on the flow. The objective of this SBIR project was to
develop computational techniques based on recently developed lattice Boltzmann techniques for the
simulation of these MHD flows and implement them in a computational fluid dynamics (CFD) code for
the study of fluid flow systems encountered in fusion engineering.

The code developed during this project, solves the lattice Boltzmann equation, which is a kinetic
equation whose behaviour represents fluid motion. This is in contrast to most CFD codes which are based
on finite difference/finite volume based solvers. The lattice Boltzmann method (LBM) is a relatively
new approach which has a number of advantages compared with more conventional methods such as the
SIMPLE or projection method algorithms that involve direct solution of the Navier–Stokes equations.
These are that the LBM is very well suited to parallel processing, with almost linear scaling even for
very large numbers of processors. Unlike other methods, the LBM does not require solution of a Poisson
pressure equation leading to a relatively fast execution time. A particularly attractive property of the
LBM is that it can handle flows in complex geometries very easily. It can use simple rectangular grids
throughout the computational domain – generation of a body-fitted grid is not required.

A recent advance in the LBM is the introduction of the multiple relaxation time (MRT) model;
the implementation of this model greatly enhanced the numerical stability when used in lieu of the single
relaxation time model, with only a small increase in computer time. Parallel processing was implemented
using MPI and demonstrated the ability of the LBM to scale almost linearly.

The equation for magnetic induction was also solved using a lattice Boltzmann method. This
approach has the advantage that it fits in well to the framework used for the hydrodynamic equations, but
more importantly that it preserves the ability of the code to run efficiently on parallel architectures. Since
the LBM is a relatively recent model, a number of new developments were needed to solve the magnetic
induction equation for practical problems. Existing methods were only suitable for cases where the fluid
viscosity and the magnetic resistivity are of the same order, and a preconditioning method was used to
allow the simulation of liquid metals, where these properties differ by several orders of magnitude. An
extension of this method to the hydrodynamic equations allowed faster convergence to steady state. A
new method of imposing boundary conditions using an extrapolation technique was derived, enabling
the magnetic field at a boundary to be specified. Also, a technique by which the grid can be stretched
was formulated to resolve thin layers at high imposed magnetic fields, allowing flows with Hartmann
numbers of several thousand to be quickly and efficiently simulated.

In addition, a module has been developed to calculate the temperature field and heat transfer.
This uses a total variation diminishing scheme to solve the equations and is again very amenable to
parallelisation. Although, the module was developed with thermal modelling in mind, it can also be
applied to passive scalar transport. The code is fully three dimensional and has been applied to a wide
variety of cases, including both laminar and turbulent flows. Validations against a series of canonical
problems involving both MHD effects and turbulence have clearly demonstrated the ability of the LBM
to properly model these types of flow.

As well as applications to fusion engineering, the resulting code is flexible enough to be applied
to a wide range of other flows, in particular those requiring parallel computations with many processors.
For example, at present it is being used for studies in aerodynamics and acoustics involving flows at
high Reynolds numbers. It is anticipated that it will be used for multiphase flow applications in the near
future.
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Summary
The objective of this Phase II SBIR project was to develop a computational fluid dynamics (CFD) code
to simulate three dimensional fluid dynamics problems in complex geometries, with an emphasis on
modelling the types of flow of relevance to fusion engineering. In particular, liquid metals are used as
coolants in many designs, and magnetohydrodynamic (MHD) effects due to high magnetic field strengths
need to be properly dealt with for application to these designs.

The code developed during this project, MetaFlow, uses the lattice Boltzmann method (LBM)
to solve the equations governing the fluid motion. This is in contrast to most CFD codes which are
based on finite difference/finite volume based solvers. The LBM is a relatively new approach which
has been widely developed and investigated in research institutions and universities, and has a number
of advantages compared with more conventional methods such as the SIMPLE or projection method
algorithms. These are that the LBM is much easier to parallelize and is much more scalable for very
large problems. This is because LB methods only require that a grid point share data with a small number
of surrounding neighbours during a computation, whereas equivalent continuum CFD methods, (e.g. the
widely used projection method of Temam, 2001) involve solution of an elliptic Poisson-type equation
that requires extensive non-local data. Furthermore, solution of the Poisson equation takes up 80-90%
of CPU time. As this is not required in the LBM, MetaFlow is much faster per time step. A particularly
attractive property of the LBM is that it can handle flows in complex geometries very easily. It can use
a simple rectangular grid throughout the computational domain – generation of a body-fitted grid is not
required. This is because the LBM maintains high accuracy at cut-cell boundaries in a Cartesian grid,
eliminating the need for the complex boundary-fitted grids required in a conventional CFD code.

A number of variants of the LBM are available. Most codes, including the only commercial LBM
code, Exa Corporation’s PowerFlow, use the single relaxation time (SRT) model. However, a recent
development is the multiple relaxation time (MRT) scheme. This is a much more advanced model which
exhibits far better stability and better accuracy than the SRT. For this reason an MRT-based scheme was
formulated and implemented in MetaFlow, and successfully tested for a variety of cases, including large
eddy simulation (LES) of turbulence, using a Smagorinsky model with wall-damping for the unresolved
scales of motion. Investigation of the performance of the code revealed the following:

• The MRT was more stable than the SRT by a factor of about three (on the basis of the maximum
flow rate for a particular problem)

• Comparisons of execution speed showed MetaFlow to be faster than a finite difference based code
by a factor of about three (on a per time step per grid point basis)

• Almost linear scaling could be achieved on a parallel supercomputer with distributed memory

These findings were in keeping with those found by other researchers in the field. The superior stability
of the MRT makes it much easier to simulate more complex flows, particularly turbulent cases. It also
avoids certain unphysical behaviour found with the SRT which could be the reason why LBM has not
received wider acceptance to date, in particular for turbulence simulations.

The LBM also allows complex flows and physics to be incorporated and models for MHD have
been developed and included in the MetaFlow code. The MHD solver uses a similar lattice-Boltzmann
type approach to the flow solver, and this fits in naturally to the code. Also, by using an LB approach
for the MHD preserves the ability of MetaFlow to run efficiently on parallel architectures. Very little
work had previously been done on LBMs for MHD, and whilst existing models from the literature
were adequate for some simple flows and problems of academic interest, they proved unsatisfactory for
application to more general problems of interest to fusion engineering, in particular. A number of new
innovations were needed, and these included:
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• Existing models were restricted to flows with magnetic Prandtl numbers, Prm, of order one. In fu-
sion applications, Prm is typically several orders of magnitude lower. In response to this, a method
based on a preconditioning algorithm with an adjustable scaling parameter has been developed to
enable the simulation of flows with low Prm. This model also allows more rapid convergence to
steady-state flows.

• A new method of imposing boundary conditions has been formulated. This involves using an
extrapolation technique and enables the magnetic field at a boundary to be specified.

• A technique by which the grid can be stretched was formulated to resolve thin layers at high
imposed magnetic fields. This allowed flows with Hartmann numbers of several thousand to be
quickly and efficiently simulated.

The approach was found to be efficient in dealing with three-dimensional high Hartmann (Ha)
number MHD flow problems, an area where conventional approaches have significant limitations.

In addition, a module has been developed to calculate the temperature field and heat transfer.
This uses a total variation diminishing (TVD) scheme to solve the equations and is again very amenable
to parallelisation. Although, the module was developed with thermal modelling in mind, it can also be
applied to passive scalar transport.

In support of the code, a graphical user interface (GUI) has been written so that the user can easily
input the problem specification. Also, a module for reading and processing CAD files was incorporated,
in order that complex geometries could easily be imported into the code. Also, the GUI links to MatLab,
allowing rapid visualisation of the results.

An extensive set of validation and other simulations have been performed, and some of the key
results are summarized . For turbulence modelling, these have included LES of channel flow with a
free surface and the flow through a square duct. Comparison with benchmark results showed very good
agreement, even for the more challenging case of the duct flow, where the characteristic secondary flows
were correctly predicted.

For MHD flows, the 3-D lid driven cavity provides an excellent test of a code, since, unlike many
other test cases, all the terms in the equations are non-zero, i.e. it is a fully 3D MHD problem.

Cavity is unit cube

Figure i: Lid driven cavity; orange arrows denote applied magnetic field.

Figure i shows the arrangement of this case. The flow in a cube is driven by a moving lid and
a magnetic field is applied in a direction perpendicular to the motion. Figure ii shows velocity profiles
calculated for Case 1 with low magnetic Reynolds number and compares them with those obtained by
the MHD group at UCLA based on a finite difference method. The Hartmann number was 45 and the
Reynolds number 100 (both based on length of a side of the cube). Note that the scales have been
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Figure ii: Velocity profiles for lid-driven cavity. Profile taken through centre of y-z plane (upper graph),
centre of x-y plane (middle) and centre of x-z plane (bottom). Re=100, Ha=45. (Case 2.)

normalised such that the sides of the cube and the lid velocity are unity. Good agreement with available
data is shown.

Another case done was of fully-developed turbulent flow through a pipe entering a magnetic
field. The parameters were chosen to correspond to those being used in a recent experiment performed
at UCLA. This computation used a large domain size of 2400×120×120 grid points and this was run in
parallel on 32 processors on the DOE NERSC supercomputer Bassi. With this domain size, a length of
twenty diameters was simulated, and Fig. iii shows the mean velocity profile and turbulence statistics 15
diameters into the region with the magnetic field. A Hartmann number of 20 (based on the pipe radius)
and Reynolds number of 5000 (based on mean velocity and diameter) was used and the profiles are in
the direction parallel to the field and through the pipe centre.

It can clearly be seen that the turbulence is greatly suppressed by the magnetic field. This is what
is expected and the results were in line with preliminary results from the experimental programme. At
the position where the statistics were gathered (15 diameters downstream, as in the experiment), the flow
is not likely to be fully developed, and further suppression of the turbulence downstream is expected,
with flattening of the velocity profile.

A series of tests were done for Hartmann flow using our new stretched grid model. Figure iv
shows the velocity and induced magnetic field for a Hartmann number of 10 000 (based on half the
channel width). Very good agreement between MetaFlow and the analytical solution can be seen for this
case, which used 192 points. The error in the velocity at the centre was about 0.5%.

The results of the simulation of an MHD flow through a square duct are shown in Fig. v. This
case had insulating walls and was run at Ha=500 – with a 128×128 grid this only took a few hours on a
single processor PC. Naturally much higher Hartmann numbers could be run on parallel machines.

Two dimensional plots of field and the velocity are shown in Fig. (v). Over the central region,
the velocity profile can be seen to be very flat, with the induced field having a constant gradient. These
observations are in keeping with expected trends and quantitative comparisons with analytical solutions
were in good agreement (as discussed in the main text).

One example involved the 3-D CFD simulation of a section of a thermal blanket. A cross section is
shown schematically in Fig.vi. In this cell, there is a central region of lead-lithium (PbLi) surrounded by
an insulating layer, another channel with PbLi and finally ferritic steel. The PbLi enters at a temperature
of 400◦C and is subjected to heating by the neutron flux, as are the other materials; the cell is 1.4m long.
Figure vii shows the predicted induced magnetic field and flow velocity, and Fig. viii and ix show the
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Figure iii: Profiles of mean velocity and rms fluctuations along z axis through centre. Solid line is
LBM for no magnetic field, crosses DNS of Eggels et al. (1994) Ha=0 and dashed line LBM with
Ha=20, Re=5000. U , V and W are streamwise, spanwise and wall-normal components, respectively,
with applied field was z direction.

predicted temperature. The results are discussed more thoroughly in the main text.
The work is expected to lead to several publications. Journal articles will include one paper on

the MRT model, one on a study of turbulent duct flow performed with our code, and two papers on
the the advances we have made in MHD modelling. In addition, a paper on the MHD aspects was
recently presented at the American Nuclear society meeting, and a paper on turbulence modelling has
been accepted for a major conference on turbulent flows in Germany later this year.

In conclusion, the code has shown itself capable of accurately simulating a variety of problems,
including turbulent and MHD flows and has demonstrated its efficiency on parallel machines. The code
is now in a state from which it can used for studies of MHD systems of interest to fusion engineers,
particularly at high Hartmann numbers in 3D, and it is hoped that it will be usefully employed in this
application. In addition, the code is now being further developed with funding from NASA for aero-
acoustic applications (noise from aircraft components). In the near future, it is expected that the code
will be applied to some cases for the Nuclear Regulatory Commission. At present, we are forming a
consortium of companies in chemical process industry to extend our code to deal with the simulation of
flow and transport processes of interest to them. The lattice-Boltzmann based code – MetaFlow – in this
work appears to be promising for simulating large scale 3D CFD problems of interest to the engineering
community.
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Figure vi: Schematic diagram showing cross-section of thermal blanket module.
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1 Introduction
The objective of this Phase II SBIR project was to develop a computational fluid dynamics (CFD) code
to serve the needs of the fusion community. More specifically, the ITER project will use liquid metals
in its heat exchangers, and computational tools to model the flow in magnetic fields where magneto-
hydrodynamic effects dominate will prove valuable. The code developed, MetaFlow, uses the lattice
Boltzmann method (LBM) to solve the equations governing the behaviour of fluids. This is in contrast
to most CFD codes which are based on finite difference/finite volume based solvers. The LBM has a
number of advantages compared with more conventional methods such as the SIMPLE or projection
method algorithms. These are that the LBM is much easier to parallelize and is much more scalable for
very large problems. This is because LB methods only require that a grid point share data with a small
number of surrounding neighbours during a computation, whereas equivalent continuum CFD methods,
(e.g. the widely used projection method of Chorin, 1968 and Temam, 2001)) involve solution of an ellip-
tic pressure Poisson equation, and require extensive non-local data. Furthermore, solution of the Poisson
equation takes up 80-90% of CPU time in both our experience and that of others (e.g. Madhabushi &
Vanka, 1991; Premnath et al., 2002). As this is not required in the LBM, MetaFlow is much faster per
time step. A particularly attractive property of the LBM is that it can handle flows in complex geometries
very easily and can use a simple rectangular grid throughout the computational domain – generation of a
body-fitted grid is not required. This is because the LBM maintains high accuracy at cut-cell boundaries
in a Cartesian grid, eliminating the need for the complex boundary-fitted grids needed in a conventional
CFD code.

The code used the multiple relaxation time (MRT) model, a state-of-the-art lattice Boltzmann
formulation which was originally developed by d’Humières et al. (2002) and extended by Premnath
and Abraham (2006) and Premnath and Pattison (2007). This method has been found to have clear
advantages over earlier models using a single relaxation time (SRT). The use of multiple time scales
in this model results in better accuracy, and, more importantly, it is substantially more stable than SRT
models for more challenging problems in CFD, particularly those involving turbulent flow. We believe
that our code is set to become the first commercial code to use the MRT implementation of the LBM.

The report is organised as follows. Section 2 presents the overall elements of the code developed
in this work. A particularly important aspect of the work was the simulation of liquid metal flows with
magnetohydrodynamic (MHD)effects. Earlier researchers (Dellar, 2002; Breyiannis and Valougeorgis,
2004) had developed and used basic models for solving the equations of MHD within the lattice Boltz-
mann framework, and these were extended significantly in the work here to allow their application to
practical problems. Section 3 and 4 detail the models used and the techniques developed within this
project to allow their application to bounded flows and low magnetic Prandtl number fluids, representing
liquid metals of interest to fusion engineering problems, and for steady state cases. A key feature of
the approach taken here was again that grid points only need exchange data with nearest neighbours,
allowing fast and efficient execution on parallel machines.

The potential application of MetaFlow to heat exchangers in ITER and other applications neces-
sitated development of a suitable scheme for solving the equations governing the transport of heat. Due
to the requirement of efficient execution on parallel architectures, an explicit scheme was required, with
greater fidelity through control over numerical errors. Section 5 discusses the total variation diminishing
(TVD) scheme which was developed and implemented in the code, that addresses this aspect.

Section 6 deals with the implementation of a stretched grid scheme within our 3D lattice Boltz-
mann MRT model. This proved to be computationally efficient and highly effective in resolving the thin
layers characteristic of high Hartmann number flows.

MetaFlow is intended to be used for a variety of problem types, and has been designed so as to
be flexible in the types of scenario it can handle and the geometries that can be modelled. Section 7
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Module Algorithm Section

Flow solver 19 velocity Lattice Boltzmann MRT model 3.1
Boundary conditions 3.2
Preconditioning algorithm for steady-state 3.4
Subgrid-scale turbulence model for LES 3.3
MPI parallel processing 3.5

MHD model 7 velocity LBM model for magnetic induction 4
Boundary conditions 4.2
Low Prandtl number algorithm 4.3
Stretched grid model for high Ha flows 6

Thermal module TVD scheme 5

Table 1: Main functions embedded in MetaFlow code.

discusses the import of complex geometries from CAD files – more information on running the code can
be found in the users manual (see www.metah.com). Section 8 presents an example of a computation
of flow through a section of a thermal blanket, and the report is wrapped up with the conclusions in
Section 9.

Supporting information is given in the appendices. Appendix A lists the papers arising from this
project. Appendices B through E provide the details of the major components in the MRT model, with
Appendix F discussing the optimised solution procedure. Appendix G discusses a method for obtaining
strain rates directly from the LBM (i.e. without taking finite differences). The methodology used for
accelerating convergence to steady-state is presented in Appendix H. A particularly valuable procedure
developed was the extension of this method to stretched grids, and the interpolation procedure is given in
Appendix I. The perturbation field used to initialise velocity fields in order that turbulence would develop
is listed in Appendix J, and Appendix K presents a formulation of the magnetic induction equation in the
general case of spatially varying electrical conductivity.

2 Overview of MetaFlow Code
The main functionalities of the code are illustrated schematically in Fig. 1.

The user specifies the problem to set up using a windows based graphical user interface (GUI).
This GUI generates an ascii file which is then read in by MetaFlow. Since this is an ascii (i.e. human
readable) file and is provided with embedded comments, it can be edited directly by the user, useful
when working on remote supercomputers for which the GUI is not supported. Geometry input can be
specified in two ways. One is for the user to set up a grid directly which can be imported into the code;
the other is to use a CAD package to generate an STL file. The latter approach is of course the preferred
method for complex geometries. The MetaFlow user manual discusses user input in more depth, and
section 7 describes the import of geometry from CAD files.

The core code includes solvers for the fluid equations, magnetic induction equation that are based
on LBM, and heat transfer, based on a hybrid finite difference LBM approach. Table 1 lists the principal
features, along with the sections where more information can be found.

Several output files are generated by MetaFlow. These include monitor files, where parameters at
requested locations are output each time step, a convergence history file, and a debug file which provides
information useful to identify any problems. Files with fields such as pressure, velocity and magnetic
field are generated at user-defined intervals, as are restart files. The GUI is coupled to MatLab, which
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enables data visualisation to be performed relatively easily using MetaFlow’s standard output files.

MetaFlow GUI

ASCII Input FileCAD files Restart files

METAFLOW
________________________________________

Initial Processing
•Read CAD files and detect fluid/solid regions

•Find walls and inflow/outflow boundaries

•Process input file and allocate memory

•For parallel jobs, distribute workload among CPUs

Flow Solver
•MRT 19 velocity solver

•Smagorinsky turbulence model with wall damping

•Preconditioner for steady-state cases

•Stretched grid capability

MHD Model
•Uses 7 velocity lattice Boltzmann algorithm

•Stretched grid capability for high Hartmann numbers

Heat Transfer
•Total variation diminishing (TVD) scheme

•Can be used for passive scalar transport

Debug & 
monitor files

Restart filesOutput files

MatLab-based 
postprocessor

Figure 1: Principal functionalities of MetaFlow lattice Boltzmann code.

As mentioned earlier, referring to Fig. 1, we now discuss the main modules including the “flow
solver”, based on the lattice Boltzmann method (Section 3), the “MHD model” based on the LBM
(Section 4) and the ”heat transfer model” based on the TVD scheme (Section 5). In each of these
sections, validation of the methods used is included.
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3 Lattice Boltzmann Model for Hydrodynamic Fields
3.1 Basic equations

The approach taken in this work is to solve the equations governing the flow of fluid using the lattice
Boltzmann method (LBM). The LBM is a relatively recent approach based on kinetic theory for solving
fluid mechanics and other physical problems (Succi, 2001; Chen and Doolen, 1998). In brief, the LBM
consists solving the evolution equation of the distribution function fα of particle populations as they
move and collide on a lattice. In the most advanced formulation currently available, the MRT, the
distribution function is calculated using the equation (d’Humières et al., 2002; Premnath and Abraham,
2006):

fα(−→x +−→eαδt, t + δt)− fα(−→x , t) = −
∑

β

Λαβ

(
fβ − f eq

β

)
+
∑

β

(
Iαβ −

1

2
Λαβ

)
Sβδt. (1)
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Figure 2: Three dimensional, 19 velocity (D3Q19) lattice used for LBM.

Here, the left hand side of Eq. ( 1) corresponds to the change in the distribution function during
a time interval δt, as the particles stream from location −→x to their adjacent location −→x + −→eαδt, with a
velocity −→eα along the characteristic direction α. At this point is is worth noting that the commonly used
SRT model uses a scalar relaxation parameter in place of the tensors Λαβ and there is no summation for
the terms on the right. Also note, however, that the implementation of Eq. (1) does not involve direct
summation as shown, but through a highly optimised procedure that exploits certain properties of Λαβ

(see Appendix F).
We consider a three-dimensional, nineteen velocity (D3Q19) particle velocities set, shown in

Fig. 2, given by

−→eα =


(0, 0, 0) α = 1
(±1, 0, 0), (0,±1, 0), (0, 0,±1) α = 2, · · · , 7
(±1,±1, 0), (±1, 0,±1), (0,±1,±1) α = 8, · · · , 19,

(2)

The Cartesian component c of the particle velocity −→eα is given by c = δx/δt, where δt is the lattice time
step. The corresponding vector of distribution functions f at a location may be written as

f = [f0, f1, f2, . . . , f18]
t . (3)
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The first term on the right hand side (RHS) of Eq. (1) represents the cumulative effect of parti-
cle collisions on the evolution of distribution function fα. Collision is a relaxation process in which fβ

relaxes to its local equilibrium value f eq
β at a rate determined by the relaxation time matrix Λαβ . The

MRT has a generalized collision matrix with multiple relaxation times corresponding to the underlying
physics: The macroscopic fields such as densities, momentum and stress tensors are given as various
kinetic moments of the distribution function. For example, collision does not alter the densities ρ and
momentum

−→
j = ρ−→u , while the stress tensors relax during collisions at rates determined by fluid proper-

ties such as viscosities. The components of the collision matrix Λαβ in the MRT are developed to reflect
the underlying physics.

The second term on the RHS of Eq. (1) introduces changes in the evolution of distribution function
due to external force fields

−→
F such as gravity or some driving force through a source term Sα. In this

term Iαβ is the component of the identity matrix I . The source term Sα may be written as (Premnath and
Abraham, 2006)

Sα =
(eαj − uj)Fj

ρc2
s

f eq,M
α (ρ,−→u ), (4)

where f eq,M
α (ρ,−→u ) is the local Maxwellian

f eq,M
α (ρ,−→u ) = ωαρ

{
1 +

−→eα· −→u
c2
s

+
(−→eα· −→u )

2

2c4
s

− 1

2

−→u · −→u
c2
s

}
, ωα =


1
3

α = 1
1
18

α = 2, · · · , 7
1
36

α = 8, · · · , 19.
(5)

and cs = 1/
√

3c is the speed of sound of the model. By neglecting terms of the order of O(Ma2) or
higher in its in Eq.(4) it may be simplified as (Premnath and Abraham, 2006)

Sα = wα

[
3

c2
(eαx − ux) +

9

c4
(−→eα · −→u ) eαx

]
Fx +

wα

[
3

c2
(eαy − uy) +

9

c4
(−→eα · −→u ) eαy

]
Fy +

wα

[
3

c2
(eαz − uz) +

9

c4
(−→eα · −→u ) eαz

]
Fz (6)

where Fx, Fy and Fz are the Cartesian components of the force field.
Note that for convenience, Eq. (1) may be considered as being composed of two steps, viz. colli-

sion and streaming steps, which may be given as:

f̃α(−→x , t) = −
∑

β

Λαβ

(
fβ − f eq

β

)
+
∑

β

(
Iαβ −

1

2
Λαβ

)
Sβδt. (7–a)

fα(−→x +−→eαδt, t + δt)− fα(−→x , t) (7–b)

respectively. In Eq. (7–a), f̃α refers to the post-collision distribution function.
The local macroscopic density and velocity fields are given by

ρ =
∑

α

fα, (8)

−→
j = ρ−→u =

∑
α

fα
−→eα +

1

2

−→
F δt, (9)
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and the pressure field p may be written as
p = c2

sρ. (10)

The physics behind the kinetic equation Eq. (1), and in particular, the collision matrix Λαβ will
become more transparent when it is specified directly in terms of a set of linearly independent moments

f̂ instead of the distribution functions f , i.e. through f̂ =
[
f̂0, f̂1, f̂2, . . . , f̂18

]t
. The moments have

direct physical import to the macroscopic quantities such as momentum and viscous stress tensor (The
components of f̂ are provided in Appendix B). This is achieved through a transformation matrix T :̂f =
T f (d’Humi‘eres et al., 2002). The elements of T are given in Appendix C. Each row of this matrix is
orthogonal to every other one. The essential principle for its construction is based on the observation
that the collision matrix Λ becomes a diagonal matrix Λ̂ through Λ̂ = T ΛT −1 in a suitable orthogonal
basis which can be obtained as combinations of monomials of the Cartesian components of the particle
velocity directions −→eα through the standard Gram-Schmidt procedure. As a result, this is a refinement
over the earlier relaxation approaches through collision matrices (Higuera 1989a, 1989b) in that the
relaxation is directly specified for the moments, in the spirit of the moment method by Grad (1949).
The transformation matrix T is maintained row-wise orthogonal instead of orthonormal to reduce the
floating-point operations involved in normalization. Thus, the collision matrix in moment space is greatly
simplified and the description of the dynamics of fluid flow can be naturally related to the underlying
physical model, which can be characterized through relaxation process of various fields based on kinetic
theory (Grad, 1949).

The collision matrix in moment space may thus be written as

Λ̂ = diag (s0, s1, s2, . . . , s18) , (11)

where s0, s1, s2, . . . , s18 relaxation time rates for the respective moments. The corresponding compo-

nents of the local equilibrium distributions in moment space f̂ eq =
[
f̂ eq

0 , f̂ eq
1 , f̂ eq

2 , . . . , f̂ eq
18

]t
are functions

of the local density and momentum fields and is given in Appendix D. When there is an external force
field, as in Eq. (4) represented in particle velocity space, appropriate source terms in moment space Ŝ

need to be introduced. In an earlier work, the functional expressions of Ŝ in terms of force and velocity
fields for the three-dimensional, fifteen velocity (D3Q15) particle velocities were derived (Premnath and
Abraham, 2006). In this report, we summarize the final expressions for Ŝ for the D3Q19 model in Ap-
pendix E. Effectively, due to collisions and the presence of external forces, the distribution functions in
moment space, or simply the moments, are modified by the quantity −Λ

(
f̂ − f̂ eq

)
+
(
I − 1/2Λ̂

)
Ŝδt

A multiscale analysis based on the Chapman-Enskog expansions (Chapman and Cowling, 1964)
shows that in the continuum limit the GLBE corresponds to the weakly compressible Navier-Stokes
equations with the density, velocity and pressure. The macrodynamical equations can also be derived
through an asymptotic analysis under a diffusive scaling (Sone, 1990; Junk, 2001; Junk et al., 2005).
The transport properties of the fluid flow, such as bulk ζ and shear ν kinematic viscosities can be related
to the appropriate relaxation times through either Chapman-Enskog analysis of the GLBE or the von
Neumann stability analysis of its linearized version (Lallemand and Luo, 2000):

ζ =
2

9

(
1

s2

− 1

2

)
δt, (12)

ν =
1

3

(
1

sβ

− 1

2

)
δt, β = 9, 11, 13, 14, 15. (13)

Notice that from Eq. (13) s9 = s11 = s13 = s14 = s15 to maintain isotropy of the stress tensor
and s2 determines the magnitude of bulk viscosity. The rest of the relaxation parameters do not af-
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fect hydrodynamics but can be chosen in such a way to enhance numerical stability to simulate higher
Reynolds number problems for a given grid resolution, in particular for the bounded turbulent flow con-
sidered here. Based on linear stability analysis (Lallemand and Luo, 2000), the following values for
the other relaxation parameters are determined (d’Humières 2002): s1 = 1.19, s2 = s10 = s12 = 1.4,
s4 = s6 = s8 = 1.2 and s16 = s17 = s18 = 1.98. For the conserved moments, the values of the relax-
ation parameters are immaterial as their corresponding equilibrium distribution is set to the value of the
respective moments itself. However, with forcing terms it is important that they be non-zero (McCracken
and Abraham, 2005; Premnath and Abraham, 2006). For simplicity, we set s0 = s3 = s5 = s7 = 1.0.
It may be noted that all relaxation parameters have the following bound 0 < sα < 2. In this paper,
we employ the above values for the relaxation parameters. It may be noted that when all the relaxation
times are equal, i.e., s1 = s2 = . . . = s18 = 1/τ , where τ is the relaxation time, the MRT reduces
to the single-relaxation time (SRT) model. The SRT, first proposed to model collision process in the
continuous Boltzmann equation by Bhatnagar, Gross and Krook (1954) was introduced in the LBE in
Qian et al. (1992) and Chen et al. (1992) . This form of LBE is also referred to as the BGK-LBE. Owing
to its apparent simplicity, it is in more common use. However, in particular for turbulence simulations
with a subgrid scale (SGS) model, as will be shown later, the MRT has marked advantages when com-
pared with the SRT: for a given resolution, MRT is more accurate and much more numerically stable
with a insignificant additional computational overhead, thereby allowing higher Reynolds numbers to be
reached than possible with the SRT.

On the subject of computational efficiency, it is important to note that the implementation of
Eq. (1) does not involve direct summation as shown, but through a highly optimised procedure that
exploits certain properties of λαβ (see Appendix F).

3.2 Boundary conditions

For solid wall boundaries, the simplest boundary condition is the bounceback scheme. In this method,
the populations are simply reflected:

fα(~x, t + δt) = f̃α(~x, t) (14)

where α is the direction opposite to α. In this equation, f̃α is the distribution function after the collision
step (and before the streaming step). This scheme is suitable for flat walls where the direction is parallel
to a coordinate axis plane. In this situation, the wall is located half way between two nodes, and for this
reason it is sometimes known as the halfway bounceback scheme.

A number of different options are available for curved boundaries. Those tested in this work were
those by Mei et al. (1999), Guo et al. (2002), Bouzidi et al. (2002) and Lallemand and Luo (2003a). All
these methods are based on applying interpolations/extrapolations around position of the boundary and
then executing bounce-back type conditions at the boundary location. After assessment, we chose the
so-called interpolated bounce back scheme (Bouzidi et al., 2001) due to its robustness. It specifies the
distribution functions for the incoming particle directions from the wall in terms of a parameter q, where
q represents the fractional distance of the wall from the near-wall lattice node in comparison with the
lattice spacing (see Fig. 3). The first-order implementation of the scheme is:

fᾱ(x, t + δt) = 2qf̃α(x, t) + (1− 2q)f̃ᾱ(x− eαδt, t) for q < 0.5 (15)

fᾱ(x, t + δt) =
1

2q
f̃α(x, t) +

2q − 1

2q
fᾱ(x, t) for q ≥ 0.5 (16)

(17)
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and the second-order version is:

fᾱ(xf , t + δt) =
1

q(2q + 1)
f̃α(xf , t) (18)

+(1− 2q)(1 + 2q)f̃ᾱ(x− eαδt, t) + q(1− 2q)f̃α(x− 2eαδt, t) for q < 0.5(19)

fᾱ(xf , t + δt) =
1

q(2q + 1)
f̃α(x, t) +

2q − 1

q
f̃α(x, t) +

1− 2q

1 + 2q
fᾱ(x− eαδt, t) for q ≥ 0.5(20)

In practice, very little improvement was found by using the second order scheme over the first order,
though both schemes gave substantially better results than just using the bounceback (to which the above
reduces for q = 0.5) in which curved boundaries are resolved in “staircase” fashion. For inflow
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Figure 3: Wall boundary implementation for cut-lattice cells.
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Figure 4: Implementation of inflow, outflow, and symmetry boundary conditions.

boundary surface with a specified velocity uin , extended bounce back (Ladd, 1994) that adds appropriate
momentum to the particle populations is implemented (see Fig. 4):

fα(~x, t + δt) = f̃α(~x, t) + 2wαρin
eα · uin

c2
s

(21)

For outflow boundaries, an extrapolation method (Chen et al., 1996) is employed

fα(~x, t + δt) = 2f̃α(~x, t)− f̃α(~x− eαδt, t) + 2wαρin
eα · uin

c2
s

(22)
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in which the equilibrium distribution in the collision step for the boundary lattice nodes are specified
in terms of the no-gradient conditions for the macroscopic quantities. For a symmetry surface (see
Fig. 3), we use the condition fβ(x, t + δt) = f̃α(~x, t). After implementation of these methods, initial
computations were carried out for a set of cases involving laminar flows to assess the suitability. These
tests yielded results that were in excellent comparison with analytical solution and other computational
solutions, demonstrating the suitability of these approaches.

3.3 Subgrid scale (SGS) turbulence modelling

We have implemented the standard Smagorinsky model to perform large eddy simulations (LES). The
eddy viscosity νt for this model can be written as

νt = (Cs∆)2 S, S =
√

2SijSij (23)

where Cs is a constant (this was set to 0.12 for the work described in this report). Here, ∆ is the cut-off
length scale set equal to the lattice-grid spacing, i.e. ∆ = δx, and Sij is the strain rate tensor given
by Sij = 1/2 (∂jui + ∂iuj). In LBM, the strain rate tensor can be computed directly from the non-
equilibrium part of the moments, without the use of finite-differencing of the velocity field. Recently,
Luo derived the expressions for the strain-rate tensor in terms of moments for the D3Q19 model of GLBE
without forcing term in Yu et al. (2006). In this report, we extend the results for GLBE with forcing term
and the final results are summarized in Appendix F. This procedure for calculation of strain rates in the
MRT model is fully local in space and is computationally efficient, particularly for complex geometries.
The eddy viscosity νt is added to the molecular viscosity ν0, obtained from the statement of the problem,
through the characteristic dimensionless number, such as shear Reynolds number for turbulent channel
flow problem, to yield the total viscosity ν (i.e., ν = ν0 + νt). Subsequently, the relaxation times may be
obtained from Eq. (13). When such eddy-viscosity type SGS models are used to provide additional con-
tributions to the relaxation times, the MRT model can be considered to be “coarse-grained” and it can be
readily shown that the macroscopic dynamical equations of fluid flow corresponds to the filtered equa-
tions with the SGS Reynolds stress represented through the eddy viscosity. The distribution functions,
or equivalently, the moments, including the hydrodynamic fields, can be considered to be grid-filtered
quantities. An alternative approach is to directly apply filters to the moment representation of the GLBE
and rigorously “derive” SGS models essentially from kinetic theory under appropriate scaling (Ansumali
et al., 2004);

To account for the damping of scales near the walls, following an earlier work (Moin and Kim,
1982), we have implemented the van Driest damping function

∆ = δx

[
1− exp

(
− z+

A+

)]
(24)

where z+ = zu∗/ν0 is the normal distance in wall units from the wall, where u∗ is the friction velocity
related to the wall shear stress τw through u∗ =

√
τw/ρ, and A+ is taken equal to 25. While this approach

has some empiricism built-in, for simple wall-bounded turbulent flows, such as the problem considered
here it has been shown to be reasonably accurate in prior work based on the solution of grid-filtered
Navier-Stokes equations. Also, as will be shown later in this report that the MRT model is able to
reproduce turbulence statistics in the near-wall region reasonable well using this damping supplemented
to the SGS model. A more advanced approach is to use dynamic SGS models (e.g., Germano et al.,
1991; Zhang et al., 1995; Salvetti and Banerjee, 1995) for LES, and this is a subject for future work.

3.4 Accelerating convergence to steady-state

The equations so far presented have been for the general case of transient flows. For steady state cases,
it is possible to reformulate the equations such that they can be solved more quickly with computational
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methods. This can be done by introducing a pre-conditioning factor γ into the Navier–Stokes equations:

∂

∂t
(ρu) +

1

γ
∇ · (ρuu) =

1

γ
∇p +

1

γ
∇ · (ρν∇u) +

1

γ
F (25)

where F is a body force that may include contributions from external forces such as buoyancy or MHD
effects. A suitable preconditioned MRT model is developed that recovers Eq. (25) (Premnath and Patti-
son, 2007) By adjusting the parameter γ, the speed at which convergence to steady state can be achieved
can be considerably reduced. The lower the value of γ, the faster the speed up – a value of γ = 1
corresponds to the transient solution with no acceleration. The minimum value of γ that can be used is
determined by the maximum fluid velocity – for flows with low mach numbers, much lower values can
be used without stability problems creeping in. MetaFlow automatically computes a suitable value of γ.
The details of the implementation are given in Appendix H.

Figure 5 shows how the value of γ influences the rate at which convergence of the computation
takes place. The case chosen was a simple pressure-driven flow, plane Poiseuille flow and results are
shown for two different viscosities. These show a considerable speed up. Note that the viscosities have
been normalised with the grid spacing and time step, as will be the case for most the plots discussed in
this report.
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Figure 5: Effect of γ on the rate of convergence of plane Poiseuille flow.

A thorough investigation of the preconditioning was undertaken as part of the project, and a
detailed discussion is presented in the paper by Premnath and Pattison (2007).

It should be noted that the preconditioning approach taken here was based on work in a paper
by Guo et al. (2004); however it was noticed that their method was limited to cases with constant body
forces (no spatial variation), and this shortcoming is corrected here. Moreover, their approach is limited
to the SRT model which has been generalised by Premnath et al. (2007) for the MRT model.

3.5 Parallelisation and performance on a multiprocessor cluster

A key advantage of using the LBM over finite difference/finite volume (FD) methods is that they are very
amenable to parallelisation. MetaFlow has been parallelised using the Message Passing Interface (MPI)
technique for distributed memory machines. The key step involved in parallelisation is to divide the
computational domain into a number of subdomains, each of which is assigned to a different processor.
After each time step, each processor exchanges data with a number of other processors. In the LBM,
computations only require information from nearby adjacent points (and in some cases from points two
nodes away). What this means is that a processor only needs to exchange data with the processors
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dealing with adjacent sub-domains; in most cases this means they need to transfer data to two or perhaps
eight other processors. This contrasts with other schemes where each processor may have to receive
information from every other processor. This can place a limit on how many processors can usefully be
employed.

A series of tests were performed by running a simple channel flow case with a Smagorinsky
SGS turbulence model on the NCSA machine at Urbana–Champaign. It was found that as long as the
width of the subdomains remained reasonable large (above about 12 points) the proportion of time spent
communicating stayed low, as would be expected. Figure 6 shows the speed of the computer simulation
as a function of the number of processors used. A factor of about 14 was achieved with 16 processors,
which should be considered very good – if the number of points in the streamwise direction had been
a multiple of 16 (to ensure equal distribution among the processors), even better performance would be
expected.
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Figure 6: Variation of computing speed with number of processors.

Another test was to compare the speed of our LBM with that of a finite difference code. The
code selected for comparison was an established LES solver which used a second order finite difference
scheme (Salvetti and Banerjee, 1995; Salvetti et al., 1997). The simulations were set to run the same
number of grid points for the same problem, channel flow with a Smagorinsky turbulence model. Both
the codes were run on a single processor of AMD Athlon 2000 dual processor computer running the
Linux operating system. The GNU compiler with the -O3 optimisation was used and checks were made
to ensure that the results were reproducible – it was found that the times taken did not vary significantly
(within about 1%).

Grid Size LB code Finite Difference Ratio
270 × 135 × 47 516 2015 3.9
180 × 90 × 32 153 505 3.3

135 × 135 × 92 510 1824 3.6
135 × 270 × 47 516 1849 3.6
90 × 45 × 32 38 88 2.3

Table 2: Computational times of MRT and FD codes running LES of a turbulent channel on a single
processor.

Table 2 shows the times required for 100 time steps for each code. It shows that as far as the
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computational cost per grid node and per time step is concerned, the MRT code runs faster than the
FD code employed. Despite being substantially more complex, the MRT only about 30% slower than
the SRT, probably because the nature of the MRT permits many optimisations to be performed. The
limiting time step was also examined, for the MRT it was found to be at a CFL number of about 0.42,
whereas the FD code became unstable at about 0.35. However the accuracy at the largest time steps
may not be so good. In any case, GLBE implementation is competitive as compared to the FD code.
An important point to note here is the elimination of the need to solve the time consuming Poisson-type
equation for pressure field by the GLBE, but which is inherent in most of the FD methods. It is also
interesting to observe that a very recent work based on a LBE for DNS of turbulence flows reported it
to be competitive in terms of run-times when compared with the Chebyshev-spectral methods on single
processors (Lammers et al., 2006).

After the MRT model had been implemented in our code, it soon became clear that it was much
more stable than the earlier SRT model. Simulations of some of the more challenging cases suggested
that it was more stable by a factor of about three, a value in keeping with previous work. Also, for the
simple case of turbulent channel flow, it did not produce the spurious spikes in turbulent fluctuations near
the wall which had been observed with the SRT implementation on relatively coarser grids. To obtain a
more quantitative assessment of the stability, tests were made with a lid-driven cavity flow. Following the
example of d’Humières et al. (2002), the lid velocity was imposed by setting the distribution functions
at the lid to the equilibrium distribution function. This method is more stable than alternative methods
for setting the velocity, but it should be noted that it is unsuitable for setting velocities where there is
a component normal to the wall, for which the Ladd (1994) scheme discussed earlier is recommended.
In these tests, the velocity of the lid was gradually increased until the computation failed (i.e. crashed
or showed unphysical behaviour). If the velocity was increased slowly enough, the point at which this
occurred was found to be reproducible. Table 3 shows the velocities at which the computation became
unstable – it is clear that the MRT performed much better than the SRT on this test. Furthermore, it
should be noted that the transition to turbulence takes place at a Reynolds number of about 12 000, so
the SRT was unable to reach the turbulent region on any of the runs, whereas the MRT was, when similar
grid resolutions are maintained.

Grid Viscosity Maximum velocity Maximum Re Ratio
643 0.0005 0.0295 0.149 3776 19100 5.1
643 0.001 0.059 0.232 3776 14848 3.9
643 0.002 0.123 0.385 3936 12320 3.1
963 0.0005 0.0265 0.188 5088 36096 7.1

Table 3: Point at which LBM became unstable for lid driven cavity flow.

3.6 Validation examples

As part of the development of the LBM code, numerous validation studies have been performed. Some
examples with turbulent flow are briefly discussed in this section. More thorough analyses are being
submitted to journals as papers.

3.6.1 Turbulent channel flow

The channel flow case involved the simulation of a free surface flow with a shear Reynolds number
Re∗ = u∗H/ν where H is the channel depth, ν is the molecular viscosity, and u∗ the friction velocity.
The case is documented fully in Premnath et al. (2007), but the main results are presented here too.

A schematic diagram of the channel flow problem with the top surface being considered as slip
surface is shown in Fig. 7.
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Figure 7: Schematic diagram of channel flow simulation.

As shown in this figure, the computational domain is chosen with appropriate aspect ratios to
sample wall-layer streaks adequately and to let proper decay of two-point correlations (Kim, Moin and
Moser, 1987). We considered a uniform grid, and chose the height H to be resolved by 45 grid nodes
such that spacing in wall units becomes 4.08. The first grid point inside the fluid is half this distance
from the wall, 2.08 wall units. The computational domain thus consists of 270×135×45 grid points.

The initial mean velocity is specified to satisfy the 1/7th power law with initial perturbations
superimposed to initiate turbulence. The perturbations are specified such that they satisfy divergence
free velocity field (Lam, 1989; Lam and Banerjee, 1992). The flow is driven by pressure gradient in
the x or streamwise direction. The friction velocity can be related to the gradient by dP/dx = ρu2

∗/H .
The computation was run until a dynamically steady state was achieved, then continued for a sufficiently
long time to collect statistics.

Figure 8 shows the computed mean velocity profile as a function of the distance from the wall
and compares it with predictions for the viscous layer and log law regions. The axes are normalised
with wall units (ν/u∗) and friction velocity. It can be seen that the computations agree reasonably well
with the viscous sub layer and log-law wall scalings, there is a slight overprediction, but this is generally
expected with LES.
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Figure 8: Comparison of the computed mean velocity profile with scaling laws for fully-developed
turbulent channel flow at Re∗ = 183.6.

Figure 9 shows the comparisons of the components of the root-mean-square (rms) streamwise,
spanwise and wall-normal velocity fluctuations, respectively, computed using LBM with DNS (Kim,
Moin and Moser, 1987) and experimental (Kreplin and Eckelmann, 1979) data. Computed results agree
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reasonably well with prior data.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 20 40 60 80 100 120

z
+

LBM/LES

DNS (Kim, Moin & Moser (1987))

Expt. (Kreplin & Eckelmann (1979))

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120

z+

v
r
m
s
/u
*

LBM/LES

DNS (Kim, Moin & Moser (1987))

Expt. (Kreplin & Eckelmann (1979))

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120

z
+

w
r
m
s
/u
*

LBM/LES

DNS (Kim, Moin & Moser (1987))

Expt. (Kreplin & Eckelmann (1979))

Figure 9: Root-mean-square streamwise velocity fluctuations for fully developed turbulent channel flow
at Re∗ = 183.6.

3.6.2 Turbulent flow through a square duct

Turbulent fluid flow through a square duct is characterised by the existence of net flows in directions
perpendicular to the bulk flow. These circulations, frequently termed secondary flows of the second kind,
also arise in turbulent flow through channels of other non-circular cross-sections, but are not found in
laminar flows. Although long recognised to be associated with the turbulence, the exact cause of these
circulations has been a subject of debate, though it is generally recognised to be associated with gradients
in the Reynolds stress in the cross-sectional plane. A more detailed explanation is given by Huser
and Birigen (1993) who describe the mechanisms in terms of the interaction of turbulence structures
generated at the wall.

In a square duct, these secondary flows manifest themselves as a set of eight vortices, each one
enclosed by a wall, a corner bisector and a wall bisector. The general features are not sensitive to the
Reynolds number, except that it should be high enough that the flow be fully turbulent. The velocities
associated with these flows is relatively small, of the order of 1% of the mean streamwise velocity, and
thus significantly smaller than the turbulent velocity fluctuations. However, since they do lead to net
flows in directions perpendicular to the walls, they can have a significant effect on heat transfer and
passive scalar transport. Despite their weak nature, these secondary circulations are therefore of great
interest to a number of engineering problems.
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Figure 10: Schematic diagram showing geometry modelled.

The prediction of these secondary flows is relatively difficult. For example, the ability of RANS
to capture the secondary circulations is dependent on the relations used for the stresses, for example a
simple k-ε model will not reveal these motions. Since the coefficients in Reynolds stress models are
problem-specific and often not well known, they are not well suited for predicting phenomena which are
particularly sensitive to parameter choices.

This was chosen as a validation case for the LBM as the prediction of these secondary flows is
quite challenging, and would be a good test of whether our model could properly capture the turbulent
behaviour. DNS data of Gavrilakis (1992) and Huser and Birigen (1993) were available for comparison,
as was LES of Madabhushi and Vanka (1991). The full analysis can be found in Pattison et al. (2007),
and a selection of the results is presented here.

A schematic representation of the geometry used is shown in Fig. 10. The Reynolds number used
was 300. This is defined as Re∗ = u∗w/ν where w is the duct width and the mean friction velocity
is calculated from the imposed pressure gradient as ρu2

∗ = w |dP/dx|/4. The dimensionless viscosity
(normalised by the grid spacing and time step) was set to 0.001.

Periodic boundary conditions were applied in the x (streamwise) direction, and no-slip conditions
in the other two directions. The use of grid points within the wall meant that the boundary was half a
grid spacing from the outermost points, thus the effective width was 72 grid separations. A uniform grid
was used for the simulation, though it should be noted that stretched grids can be used with the LBM
(Premnath and Abraham, 2004). The choice of domain proportions followed the recommendation of
Huser and Birigen (1993), who found that a streamwise extent of about six times the duct width was
sufficiently long to yield accurate simulations.

For the initial conditions, an approximate velocity field was set up, based on the 1/7 power law.
As with the channel flow case, in order to initiate turbulence, a perturbation profile with sinusoidal
fluctuations was superimposed on this, chosen so as to satisfy continuity.

The simulation was run using the MRT model with a pressure gradient providing the driving
force. A single processor Pentium IV machine was found to be sufficient for this. The computation was
run until a dynamically steady state was reached, and then continued for a period of over 100 000 time
steps over which statistics were collected.

Three main sources of data were used for comparisons with the MetaFlow simulations, and they
are summarised in Table 1. The DNS of Gavrilakis was performed at the same Reynolds number as our
simulation and these results are likely to be very accurate. Comparisons with Madabhushi and Vanka’s
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data are included to enable the performance of the LBM LES code to be judged against that of a pseudo–
spectral LES code.

Figure 11a shows contours of the streamwise velocity in the cross-sectional plane. In this plot, the
velocity has been averaged over both time and the length of the domain. Figure 11b shows the secondary
velocities (the non-streamwise component); in this case, and in all other plots unless otherwise stated,
statistics were also averaged over the eight similar octants.
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Figure 11: Mean velocities in the cross-sectional plane: (a) streamwise velocity contours (b) secondary
velocity vectors.

Secondary flow vectors Figure 11b clearly shows the expected vortex moving in a sense such that
fluid moves toward the corner along the corner bisector and away from the wall along the wall bisector.
The vortex is centred at about (0.45, 0.18) where the numbers in parenthesis are the y and z coordinates
normalised with respect to the half width. This compares well with Gavrilakis’s DNS which gave the
centre at (0.5, 0.2). Madabhushi and Vanka’s LES predicted the centre at (0.55, 0.25) and Huser and
Birigen’s DNS, (at higher Reynolds number) at (0.4, 0.2). The plot also suggests the presence of a small
vortex very close to the corner – this was also noticed by Gavrilakis.

The contours of streamwise velocity can be seen to bend toward the walls near to the corners. This
is a characteristic of duct flow and is associated with the secondary flow. The secondary vortex transports
faster–moving fluid from the central region toward the corners along the corner bisectors while slower–
moving fluid from the vicinity of the wall is advected toward the centre near the wall bisectors, resulting
in the bulge in the contours.

Figure 12 shows the mean streamwise velocity along the wall bisector. To be consistent with the
data with which it is compared, the velocity is normalised using the local friction velocity at the wall
bisector, calculated as u2

τ = τ/ρ where τ is the wall stress and ρ the density. Distance is plotted in terms
of wall units ν/uτ , where ν is the viscosity. When compared with Gavrilakis’s DNS, the mean velocity is
slightly overpredicted, as is often the case with the lower resolutions used with LES. Huser and Birigen
used a lower resolution in the wall-normal direction than Gavrilakis and the is the likely reason for the
higher velocity predicted, though there could also be Reynolds number effects. Also, Huser and Birigen
had performed a preliminary DNS at a coarser resolution, and this had given higher velocities than the
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Figure 12: Mean streamwise velocity along wall bisector. Lines are MetaFlow predictions, circles Huser
& Birigen, triangles Madabhushi & Vanka, and crosses Gavralakis.

final DNS.
Figure 13 shows the secondary velocity plotted along a corner bisector, normalised with the mean

friction velocity, u∗. The results are compared with those of Gavrilakis, and good agreement can be seen.
The secondary velocity exhibits a minimum close to the corner, which is indicative of a small secondary
vortex in this region. Gavrilakis also observed such a vortex in the region close (y < 0.1w/2) to the
corner, but did not provide any quantitative values for the secondary velocity in this region. Profiles for
the spanwise (y) component of velocity are plotted as a function of z for fixed values of y in Fig. 14.
Comparisons are made with both DNS results Gavrilakis (1992) and experimental data (Cheesewright
et al., 1990) taken at a similar, though slightly lower, Reynolds number.
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Figure 13: Magnitude of secondary flows v
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2 along a corner bisector. Circles are DNS data
from Gavrilakis.

Turbulence statistics are presented in Fig. 15 which shows the root mean square (rms) velocity
fluctuations along a wall bisector, together with data from LES and DNS for comparison. The level of
agreement with the DNS data can be seen to be good, and MetaFlow shows significantly better agreement
with the DNS data than the other LES, despite the fact that MetaFlow was run with a much coarser
resolution in the important near-wall region. The variation in rms velocities is very similar to that found
in other wall–bounded flows and comparisons with plane channel data can be found in Gavrilakis’s paper.
Gavrilikas raised the question of whether the friction velocity at the wall centre, uτ , or the average friction
velocity, u∗, should be used for the normalisation of the data, and noted that agreement with channel data
was best if uτ was used near to the wall and u∗ farther out.

In conclusion, the MRT model has demonstrated its ability to simulate turbulence in these test
cases, and its ability to capture the secondary flows in the square duct is particularly encouraging.
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4 Lattice Boltzmann Model for Magnetic Induction Fields
4.1 Basic equations

Magnetohydrodynamic effects are of particular importance to many systems of interest to fusion re-
searchers, since liquid metals are commonly used. In these flows, the equations of motion take the same
form as in non-MHD flows, but the body force term includes a component due to the Lorentz force
arising from the interaction of induced current with magnetic induction. The hydrodynamic equations
are:

∂ρ

∂t
+ ∇ · (ρu) = 0 (26)

∂ρu

∂t
+ ∇ · (ρuu) = ∇P + F + ∇ · (2νρS) (27)

where the contribution to the body force term F from the Lorentz force is given by:

F Lorentz = J ×B = ∇ ·
[
− 1

2µ
B ·B I +

1

µ
B ·∇B

]
(28)

The magnetic field, B, can be calculated from the magnetic induction equation. The form nor-
mally used for this is:

∂B

∂t
+ ∇ · (uB −Bu) = η∇2B (29)

where η is the magnetic resistivity or diffusivity, defined by η = 1/σµ and σ and µ are the electrical
conductivity the magnetic permeability respectively. Note that the above equation assumes constant η;
in practical situations, liquid metals may flow through channels with insulating walls, rendering this
assumption invalid. A rigorous derivation of the equations from Maxwell’s equations and Ohm’s law
was carried out to identify what extra terms may need to be included when η is a function of spatial
coordinates, and this is presented in Appendix K. The extra terms do not appear to have been included
in most other MHD codes, but may be incorporated in the next version of MetaFlow and the effect is
assessed.

Using the LBM, the equation for the magnetic field can be solved in a similar fashion to the
fluid dynamic equations. A solution procedure based on that of Dellar (2002) was incorporated into
MetaFlow; in this model, a vector distribution function h is employed, and the following equation is
used for its evolution:

h̃i(x, t) = hi(x, t)− [hi(x, t)− heq
i (x, t)]/τm (30)

hi(x + ei, t + 1) = h̃i(x, t) (31)

The values with a tilde are known as post-collision values, as was the case with the hydrodynamic equa-
tions. The relaxation time τm which is a function of the conductivity and permeability of the medium.

τm =
1

2
+ 4ηm

δt

(δx)2
(32)

In practical implementations of this scheme, it is found that only seven directions are required;
these are taken to be directions parallel to the axes and a zero vector, i.e. the first seven directions used
in the lattice used for the fluid dynamic calculations.
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The equilibrium distribution functions heq
i are calculated through:

heq
αi = wα

[
Bi +

4em
αj

c2
(ujBi −Bjui)

]
(33)

The magnetic field can be recovered from the model by taking zeroth kinetic moments:

Bi =
∑

α

hαi (34)

The current can be calculated in two ways. One is of course from taking the curl of the magnetic
field. The other, which avoids the need to taken finite differences, is to extract the current from the higher
kinetic moments:

Jk = − 4

µmc2τm

εijk

bm∑
α=0

(em
αigαk − em

αig
eq
αk) (35)

where
bm∑

α=0

em
αig

eq
αk = (ujBi −Bjui) (36)

A number of validation cases have been used to assess the performance of MetaFlow for flows
with MHD effects. These range from one dimensional Hartmann flow to three-dimensional lid-driven
cavity with an imposed magnetic field. In this report, results for the most demanding case, the MHD
lid-driven cavity, are shown – other validations have been presented in papers arising from this work (see
Appendix A).

4.2 Boundary conditions

For the induction equation, no suitable formulations for the boundary conditions could be found in the
literature. Dellar (2002) had used a reverse bounceback scheme for the boundaries, but this method was
only suitable for a limited range of geometries and did not allow an induced component in the direction
parallel to the imposed field.

A new method of applying boundary conditions for the applied field was therefore formulated.
The approach taken was similar to the extrapolation scheme used for the fluid flow. This is an extrapola-
tion method and is similar to that described by Chen et al. (1996), except applied to magnetic field rather
than fluid fluxes. The procedure is:

• for nodes on domain boundary (e.g. point a in Fig. 16), calculate post-collision values, h̃α using the
imposed field B0 in place of that calculated from the zeroth moment of the distribution functions,
appearing through the equilibrium distribution (see Eq. 33).

• calculate the post-advection values, hα, using the extrapolation scheme

hα(x, t + δt) = 2h̃α(x, t)− h̃α(x− eα, t) (37)

In practice, since the distribution function has seven direction vectors, only one of which points
into the domain, only one distribution value for each face is calculated is calculated with the above. For
reasons of stability it was found that the two points neighbouring a face on which the magnetic field
should be imposed should have the same electrical conductivity. For example to impose a insulating
wall boundary condition, in Fig. 16), the grid points a and b should both lie within the solid region
(which of course is assigned a very low conductivity). The insulating boundary will then lie midway
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between points b and c. In practice, with this scheme that one more extra layer of grid points than might
otherwise have been needed is required. Conducting walls can also be similarly modelled handled by
selecting appropriate values of the conductivity for the wall.

wall

fluid

Computational domain boundaryB0

a

b

c

Figure 16: Boundary of flow in MHD case.

4.3 Application to steady-state MHD flows with low magnetic Prandtl numbers

One problem that had not previously been addressed by other researchers working on the LBM was that
the timescales for the induction and the flow equations differ by several orders of magnitude for most
practical situations. The magnetic Prandtl number is often used to describe this. This quantity is defined
as the ratio of the viscosity to the resistivity:

Prm =
ν

ηm

(38)

For a liquid metal, the Prandtl number may typically be of the order 10−7, with the fluid dynamics
being dominated by convection and the magnetic induction by diffusion. The relaxation time for the
fluid flow go as the reciprocal of the viscosity and for the magnetic induction as the reciprocal of the
resistivity. Appropriate treatment to handle this large disparity is required to ensure stability of the
system. A method that overcomes this problem and allows “real” metals to be modelled was derived by
introducing a scaling factor in a preconditioning approach that also allows faster convergence to steady
state. Essentially this involves introducing a preconditioning factor γm and a scaling factor χ, such that
the induction equation becomes:

∂B

∂t
+

χ

γm

∇ · (uB −Bu) =
1

γm

η∇2B (39)

and the current must then be calculated with:

J =
1

χµm

∇×B (40)

In this above, χ is a scaling parameter to change the effective Prandtl number, Preff = χPr, and
γm is a parameter that can be used to speed up the rate of convergence to a steady state. It should be
noted that this approach is strictly only valid for steady state problems, which is often the case in fusion
MHD problems, though in practice transients could be modelled provided the parameters are adjusted
such that the magnetic field relaxes much more rapidly than the flow field. The relaxation parameter τm

becomes
τm =

1

2
+

4ηm

γm

δt

δx2
(41)

Note that the computation will become unstable as τm increases too far above one and will lose
accuracy. Similarly, it will become unstable as τm approaches 0.5. A full study of the effect of this
scheme on the stability and convergence rates of the LBM is presented in one of our papers (Premnath
and Pattison, 2007) but a few of the results are also given here. Appendix H provides more details, along
with the equations used for the steady-solution hydrodynamics.
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Other equations that need modification are the relation for the equilibrium distribution and the
current

heq
αi = wα

[
Bi +

4em
αjχ

c2γm

(ujBi −Bjui)

]
(42)

Jk = − 4

χµmc2τm

εijk

bm∑
α=0

(em
αigαk − em

αig
eq
αk) (43)

where
bm∑

α=0

em
αig

eq
αk =

χ

γm

(ujBi −Bjui) (44)

One of the first tests was to check the model performance for Hartmann flow, the flow between two
parallel plates with a magnetic field applied in the wall-normal direction. This flow, which is equivalent
to Poiseuille flow with an imposed field, is characterised by the Hartmann number, Ha, given as

Ha = B0L

√
σ

ρν
(45)

where L is a length scale, in this case the half-width of the channel. Figure 17 shows the profiles of
magnetic field and velocity along the wall-normal direction, and comparison with the analytical solution
shows very close agreement. In these simulations, the magnetic resistivity was set equal to the viscosity
and the effective Prandtl number is set to the desired value by varying the scaling factor χ.

η =
γm

4

(
τm −

1

2

)
(δx)2

δt
(46)

where γm can be adjusted such that it accelarates convergence while maintaining numerical stability.
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Figure 17: Magnetic field (left) and velocity (right) profiles for Hartmann flow at Ha=71.6.

Figure 18 shows the effect of the hydrodynamic preconditioning parameter γ magnetic induction
preconditioning parameter γm on the convergence rate for two problems, Hartmann flow and a lid driven
cavity with a magnetic field applied; both cases were started from rest. The residual error is a measure
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of the difference in the velocities at successive time steps. For cases with low γ, this is higher at first
because of the accelerating effect of the preconditioning, but later on it becomes much lower as the cases
with low γ approach the converged solution earlier. Both cases used γ = γm. Tests had found that
setting the convergence parameters in the flow and induction equations to be the same gave the fastest
convergence (when using equal viscosity and resistivity), and it can be seen that an order of magnitude
decrease in compuational effort results from the preconditioning algorithm.
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Figure 18: Convergence to steady state for Hartmann flow (left) and a 3-D lid driven cavity (right).

4.4 Validation examples

4.4.1 MHD flow in a circular pipe – Gold problem

One case for which an analytical solution is available is the laminar flow through a pipe with a magnetic
field imposed in the direction perpendicular to the axis. This is often known as the Gold problem after
an early paper (Gold, 1962). The arrangement is shown in Fig. 19.

B
y

z

Figure 19: MHD flow in a pipe (Gold problem).

Figure 20 shows the velocity profiles for the directions parallel and perpendicular to the imposed
magnetic field for a Hartmann number of 10 (based on pipe radius); 80 grid points were used to resolve
one diameter. Good agreement with the analytical solution can be seen.

4.4.2 3D MHD flow in a lid-driven cubic cavity

A true 3-D MHD validation case is provided by the lid-driven cavity. In the cases presented here, the
flow is in a cubic box with a the top lid moving in the x direction and the magnetic field applied either
in the y or the z direction as in Fig. 21.

Figure 22 compares the results for Case 1 (field perpendicular to lid) for low and high Pr. These
show velocities through the centre of the cube faces. Significant differences can be seen, demonstrating
the effect of Pr on the flow. This is an important result, as most codes use a reduced formulation in
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Figure 20: Velocity profiles for directions parallel (left) and perpendicular (right) to applied field
(Ha=10).

Figure 21: Schematic view of lid-driven cavity problem.

which non-linear terms in the MHD equations are neglected, corresponding to low Pr. Tests with our
code showed that when the induced magnetic became comparable with the applied field, the value of
Pr started to influence the results. Thus, below the value at which the induced field becomes small, the
results will become insensitive to Pr. Figure 23 shows the value of u in the central plane (z = 0.5), which
indicates the presence of side wall jets for this case.

Figure 24 compares the results for Case 2 (field in spanwise direction) with those obtained with
a finite difference code (Morley et al., 2004). Good agreement can be seen, although there is a slight
departure for the case with the profile of u against y; this is most likely a consequence of the resolution
used in the LBM (1282) and examination of runs with different resolutions upheld this.

4.4.3 Turbulent MHD pipe flow

This case involved the simulation of a turbulent flow through a cylindrical pipe as in Fig. 25. A fully
developed flow entered a pipe; at the inlet, there was no magnetic field, but further downstream it entered
a region where a field was imposed perpendicular to the pipe axis. In the simulations, a linear variation
from zero to the desired strength was made over a distance of two pipe diameters. This arrangement
is similar to the recent experiments at UCLA (Morley, 2006, private communication). Statistics were
collected downstream to see how the field had affected the turbulence.

The inlet conditions were obtained by running a pressure-driven pipe flow simulation with period
boundary conditions in the axial direction. After a statistically steady state had been reached, the flow
field on one cross sectional plane was output every time step for 5000 time steps. The Reynolds number
based on the bulk velocity was 4900.

The domain size used for the computation was 2400×120×120 and this was run on 32 processors
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Figure 22: Comparison of results of lid-driven cavity problem (Case 1) for low and high Pr.

on the NERSC supercomputer Bassi. With this domain size, a length of twenty diameters was simulated,
and Fig. 26 shows the mean velocity profile and turbulence statistics 15 diameters into the region with
the magnetic field. A Hartmann number of 20 (based on the pipe radius) was used and the profiles are in
the direction parallel to the field and through the pipe centre.

It can readily be seen that for the case with no MHD, the LBM overpredicts the turbulence and
there is a corresponding underprediction in the velocity. Studies showed this was a resolution effect,
with the error changing roughly as the square of the grid spacing. The choice of boundary conditions
on the curved wall may have played a part – very little work has been done on turbulent flows in curved
geometries with the LBM. While the boundary conditions are known to work well for laminar flows, the
situation for turbulent flows is unclear, and there may be some staircasing effects.

The velocity profile shows some flattening, the profile is not as flat as is the case in (laminar)
Hartmann flow, but it could be that with a longer pipe the profile would become flatter. At 15 diameters
downstream, the flow would not be expected to be fully developed. The overall velocity appears to be
slightly lower, but one should keep in mind that this is for a line through the pipe so this does not imply
mass loss. All three components of turbulent fluctuations are substantially reduced and the peaks shifted
away from the pipe wall, and these trends are consistent with preliminary results from UCLA (Morley,
2006, private communication).
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code.
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5 Heat Transfer and Passive Scalar Transport
Many fluid flow problems encountered in fusion engineering, such as flows in thermal blankets or the
liquid walls of fusion chambers involve the transport of large amounts of heat. In such cases, one
approach to modelling the thermal transport is to solve the advection–diffusion equation:

∂h

∂t
+ ∇ · (uh) = ∇ · (κ∇T ) + S (47)

where h is the specific enthalpy, u the velocity, κ is the thermal conductivity and S is a source term,
which may arise from, for example, chemical reactions or neutron absorption. A similar equation can be
written for the transport of a fluid constituent. For the calculation of the density of a component s, ρs,
the equation used is:

∂ρs

∂t
+ ∇ · (uρs) = ∇ · (Dsρ∇(ρs/ρ) + S (48)

where ρ is the total density, D is the diffusion coefficient, and S is again a source term. This can be due
to chemical reactions, or, particularly for the case of tritium breeding, nuclear reactions.

Since Eqs. (47) and (48) are of the same general form, the same method will be used for their
solution. The subsequent discussions in this section will be applicable to both the heat transfer and the
mass transport equations. For simplicity, the discussion of the solution procedure will use the generic
form of the advection–diffusion equation:

∂φ

∂t
+ ∇ · (uφ) = ∇ · (k∇λ) + S (49)

The approach taken here was to use a hybrid approach in which the lattice Boltzmann equation
was used to calculate the velocity field and a finite difference scheme for Eq. (49). Although it is
possible to solve this equation directly within the LB framework, in practice problems such as numerical
instabilities make a hybrid scheme the preferred choice (Lallemand and Luo, 2003b).

One of the principal motivations for using an LB solver in MetaFlow was to allow the code to run
efficiently on parallel supercomputers with large numbers of processors. In order that Eq. (49) could be
solved without requiring additional data packets to be sent, an explicit method was required. Although
at first sight Eq. (49) appears to be very straightforward to solve, given that the velocity field is specified,
it does present potential difficulties. Simple central difference schemes are unstable for low diffusivities
and care must be taken to avoid the introduction of numerical diffusion in upwind differencing schemes
(Press et al., 1997), which are typically employed to control numerical dispersion errors.

5.1 Solution of advection equation by TVD scheme

We employ a total-variation diminishing (TVD) scheme to represent the advection step in the transport
equation, so as to maintain sharpness of profiles with controllable numerical dispersion error. The ap-
proach taken here was to start by considering a simple one-dimensional case with no diffusion or source
terms. Figure 27 shows a control volume around node 0. The upstream node is denoted by the suffix
W and the downstream node by E. Lower case letters are used to identify the upstream and downstream
faces of the control volume. The approach taken here was to start by writing expressions for the values
of φ on the faces, averaged over the period from t to δt:

φw = φW + (φ0 − φW )(0.5 + û/2) (50)

φe = φ0 + (φE − φ0)(0.5 + û/2) (51)
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where φ is calculated at t and û = uδt/δx is a dimensionless velocity, which is obtained by solving the
MRT-LBM as discussed in previous sections. Note that the above uses upwind differencing and assumes
flow from W to E; the formulations can easily be modified for flow in the opposite direction by switching
W and E (and w and e) and reversing the sign of û. There are other expressions which can be used for
φw and φe, and a discussion of these, along with the principles on which the derivation of our scheme
was based, can be found in (lecture notes).

u

0W Ew e

Figure 27: Control volume for scalar equation.

Considering the fluxes across the faces w and e, the value at t + δt, φ′0 is:

φ′0 = φ0 + û(φw − φe) (52)

substituting the relations for φw - φe leads to:

φ′0 = φ0 − û(φ0 − φW )− 0.5û(1− û) [(φE − φ0)− (φ0 − φW )] (53)

The application of this equation to problems in can lead to numerical problems, with spurious
oscillations developing in regions in which there exist large changes in the gradients of φ. For example,
for a case initially having a top-hat profile with values of φ = 1 and φ = 0 inside and outside the hat, use
of Eq. (53) leads to negative values of φ at the trailing edge. In cases where there is enough diffusion,
these negative regions are damped out, but with low or no diffusion (as in Eq. (53) the ripples propagate
out and grow, making the whole computation unstable.

At this point, it is useful to note that a finite scheme developed by Succi et al. (1999) for solving
the scalar equation in a hybrid LB model was originally incorporated into our model. This scheme
was found to be unstable for cases with low diffusion where there were sharp changes and had to be
abandoned. Inspection of validations presented in the original paper revealed oscillations in such regions
which grew in time, and if the validations had been continued longer, we expect that they would have
failed.

The usual way to deal with this problem is to introduce flux limiter functions Ψ(r) to constrain the
flux at the faces of the control volume (Leveque, 1990, 2002; Toro, 1999). Equation (53) then becomes:

φ′0 = φ0 − û(φ0 − φW )− 0.5û(1− û) [Ψ(rW )(φE − φ0)−Ψ(rP )(φ0 − φW )] (54)

where rW and rP are consecutive gradient functions, defined as:

rW =
φW − φWW

φP − φW

(55)

rP =
φP − φW

φE − φ0

(56)

Many different forms of the flux limiter Ψ have been proposed, and a comparison of some of
them can be found in the paper by Suratanakavikul and Marquis (1999). As well as satisfying certain
conditions to ensure physically realistic behaviour, the function should be such that it preserves sharp
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changes in φ and avoids numerical diffusion without leading to instabilities. For this work, the superbee
limiter was chosen:

Ψ(r) = max[0, min(2r, 1), min(r, 2)] (57)

Up to now, we have just considered one dimensional flow. In the implementation in our three
dimensional code, φ was updated by applying Eq. (54) in turn in all the coordinate directions, updating
φ after each step.

5.2 Incorporation of diffusion and source terms

Equation (54) does not contain the diffusion or source terms. However, these may be added relatively
easily, through a central differencing for the diffusion term and local explicit values for the source term.
The following equation is used for the remaining terms and also includes a correction term for compress-
ible flows:

φt+dt
i,j,k = φ′i,j,k +

(
ki+ 1

2
(λi+1,j,k − λi,j,k) + ki− 1

2
(λi−1,j,k − λi,j,k)

)
dt/dx2

+
(
kj+ 1

2
(λi,j+1,k − λi,j,k) + kj− 1

2
(λi,j−1,k − λi,j,k)

)
dt/dy2

+
(
kk+ 1

2
(λi,j,k+1 − λi,j,k) + kk− 1

2
(λi,j,k−1 − λi,j,k)

)
dt/dz2

+

[
(ρi+1,j,k(ui+1,j,k − ui,j,k)− ρi−1,j,k(ui−1,j,k − ui,j,k)) /(2dx)

+ (ρi,j+1,k(ui,j+1,k − ui,j,k)− ρi,j−1,k(ui,j−1,k − ui,j,k)) /(2dy)

+ (ρi,j,k+1(ui,j,k+1 − ui,j,k)− ρi,j,k−1(ui,j,k−1 − ui,j,k)) /(2dz)

]
φi,j,k

ρi,j,k

+ Sdt (58)

where φ′i,j,k is the value after performing the advection step in the three directions. Some care needs to be
taken in the calculation of the diffusion/conduction term where k changes. It was found that calculating
the value of k as

ki+ 1
2

= 2

[
1

ki+1,j,k

+
1

ki,j,k

]−1

(59)

avoided any problems at discontinuities. In the implementation of Succi et al.’s (1999) model, it had
been found that Succi’s model was only suitable for constant k and led to severe problems when there
were discontinuities, but when the diffusion term was cast in the way described here, it worked well.
However, as mentioned previously, there were other problems with Succi et al.’s method.

5.3 Validation examples

This section presents some of the cases used for testing the code. The validations presented cover all
aspects of scalar transport, advection, diffusion and reaction, and include a few standard problems where
data from comparison are available.

30



Diffusion Test Case

A test to check on the diffusion part of the formulation was undertaken in which the evolution
of a step profile over time was calculated. This problem considered the diffusion of a tracer whose
concentration was initially unity for x < 0 and zero for x > 0. The diffusion coefficient was 0.1
when normalised with the time step and grid spacing, and the simulation was run for 100 000 iterations.
Figure 28 compares the computed profiles with those from the analytical solution, which is (Arcidiacono
et al., 2006):

ρs =
1

2
+

∆ρs

2
erfc

(
x√
4Dt

)
(60)
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Figure 28: Evolution of temperature profile over time. Results for 100 (triangles), 1000, 10 000, and
100 000 time steps (squares). Lines are MetaFlow predictions and symbols are values from analytical
solution.

The excellent agreement between the code results and the analytical solution verifies the suitabil-
ity of the solution scheme.

Advection with no Diffusion

An important test of any advection/diffusion solver is to see whether it can preserve sharp changes.
A useful test is to start with a top hat profile in a uniform velocity field and track the evolution of the
concentration or temperature for the case of zero diffusion/conduction. Some smoothening at the sides is
inevitable, but it is important to check that the central region does not decay. One example is illustrated
in Fig. 29. In this case a square region of side 13 grid points centred on (106.5, 56.5) was assigned an
initial temperature of 400K, 100K above that of the rest of the domain. The flow field had a velocity
of 0.2 (normalised with the grid spacing and time step) in both the x and y directions and the simu-
lation was run for 500 time steps during which the hot region moved 100 grid points in each direction.
The central region can be seen to be still flat, with a peak temperature of 399.8K, which is what is desired.
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Figure 29: Temperature field after 500 time steps.

Flow Between two Heated Plates

A classic problem in heat transfer is that of a fully developed flow entering a region where it is
subjected to heating. The case undertaken in this study is illustrated in Fig. 30; in this case, the flow
was between two parallel walls and a constant heat flux was applied by the heating elements. The flow
entered the heated region with a parabolic velocity profile and constant temperature, and temperature
profiles 5, 10 and 15 channel widths downstream from the start of the heated zone are shown in Fig. 31.
The channel width was resolved with 64 grid spacings. Results from MetaFlow are compared with an
analytical solution for large z (Bird et al., 2002), and it can be seen that the agreement far downstream is
excellent.

Taylor Dispersion

If a miscible fluid is suddenly injected into a fluid flowing through a channel, a small region
with a high concentration of the solute will result. As this region travels along the channel, it gradually
broadens. The axial dispersion is a result of both diffusion and (for non-uniform velocity profiles)
convection, since the diffusion causes the solute to move to regions with different velocities. This case is
known as Taylor dispersion and is discussed by Deen (1998). It can be shown that, for sufficiently long
observation times, the dispersion coefficient is given by:

K = D

(
1 +

Pe2

C0

)
(61)

where C0 is a constant which depends on the flow profile and the Peclet number, Pe=U0H/D is defined
in terms of the peak velocity U0, the channel width, H , and the molecular diffusion coefficient D. The
term involving Pe reflects the effect of hydrodynamic stretch resulting from the flow shear, and at high
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Figure 30: Flow between parallel plates. Fluid enters with parabolic velocity profile and constant tem-
perature.

Pe is the dominant term.
A series of numerical experiments were performed in which a point source was introduced into

the centre of a square duct in which there was fully developed flow. Figure 32 shows the evolution of
the concentration field for a case with Pe=92. As the introduced fluid diffuses away from the centre, it
moves into regions with lower velocity leading to the comet tail appearance.

For a quantitative test of the dispersion, the code was set to calculate variance of the concentration
in the axial direction σ2 =

∫
(x − x)2c where c is the proportion of introduced fluid at x. This can be

related to the dispersion coefficient through K = σ2/2t. According to Eq. (61), the relative dispersion,
K/D− 1, should vary linearly with Pe2 and this is indeed seen in Fig. 33. The constant C0 is the ratio of
the value of the ordinate to the abscissa and this was found to be about 530, the numerical computations
gave values ranging from 517 to 551, a very small variation when one considers that the simulations
spanned an order of magnitude change in Pe.

Falling Liquid Film with Chemical Reaction

Another validation considered the case of absorption of a gas into a falling liquid film and its
subsequent reaction. This is illustrated in Fig. 34 where the liquid film enters a region where there is
a gas present which dissolves in it and then undergoes an irreversible first order reaction. A example
of such a situation would be the absorbtion of carbon dioxide by a concentrated aqueous solution of
sodium hydroxide. Figure 35 shows the concentration profiles of the absorbed gas at different positions
downstream from the entrance point. The computed profiles are compared with the analytical solution
given by Bird et al (2002) for large z

c

c0

=
cosh

[√
k1L2/D(1− x/L)

]
cosh

[√
k1L2/D

] (62)
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Figure 31: Temperature profile across channel. Results for 5, 10 and 15 channel widths. Lines are
MetaFlow predictions and symbols are values from analytical solution for large z.

where k1 is the rate constant for the reaction with the liquid. The agreement at large z can be seen to be
very good.
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Figure 32: Concentration profiles after 2200, 4400 and 8800 time steps for Pe=92.
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Figure 33: Concentration profiles after 2200, 4400 and 8800 time steps for Pe=92 Variation of relative
dispersion with Péclet number.
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6 Non-Uniform Grid Stretching in LBM to Resolve Thin Hartmann Layers
The use of nonuniform grids is desirable in many applications and is important in regions of flow where
sharp gradients are present. Magnetohydrodynamic flows at high Hartmann numbers provide examples
where stretched grids are likely to result in very high savings in computational time. The regions with
high gradients are contained within very narrow layers close to the wall, with the flow being relatively
constant outside these layers. Figure 36a shows an example of a stretched grid where higher resolution
is achieved in the wall-normal direction near the wall.

In their basic form, the LBE formulations are restricted to uniform grids in that the minimum
streaming distance of the particle populations in one time step is exactly equal to the minimum lattice
spacing. In other words, the discretization of the configuration and particle velocity spaces are coupled.
This lockstep advection of particle populations is a feature inherited from its predecessor, i.e. the lattice-
gas automaton (LGA) (Wolf-Gladrow, 2000) and is not necessary for the LBE. It was realized that
the LBE are actually simplified forms of the Boltzmann equation and hence can be solved without the
coupling of the physical and particle velocity spaces and can in principle be implemented on any mesh
(Cao et al., 1996). Thus, it was proposed by He et al. (1996) that the collision step can be computed
locally on the lattice grids in the usual manner; after the collision step, the particle distributions move
according to their velocities ~eα; although the advected distance of the particle distributions may not, in
general, coincide with the mesh spacing (as shown in the example in Fig. 37). The distribution functions
in these locations can always be computed using interpolation; after interpolation, the collision and
streaming steps are repeated. It has been shown that, if the interpolation method is at least of second-
order, the Navier-Stokes equations can still be recovered from LBE (He, 1997). Thus, the order of
interpolation schemes should not be lower that the order of accuracy of the LBE.

To improve the computational efficiency, here we employ a variant of this original interpolation-
supplemented LBE, in which the streaming and the interpolation steps are carried out in two distinct
steps. Here, we combine them in one step - the interpolated-streaming step. Also, the original approach
was applied to the SRT-LBE. However, inspection of the method shows no reason why it cannot be
applied in a similar manner to the MRT and the induction equation, and this is indeed what was done
in this project. A second-order Lagrange interpolation was employed in the implementation, which is
are carried out in the respective upwind directions for the particle velocity directions. An example of
this implementation for one particle velocity direction, including the interpolation coefficients in 3D, is
given in Appendix I.

An alternative method for variable grid spacing is what we shall term the multiblock method, in
which local grid refinement is applied in regions requiring higher resolution, such as around boundaries.
This is illustrated in Fig. 36b, where the grid spacing is reduced by a factor of two in the regions close
to the walls. There is also a change in the timestep used so that the coarse region uses a step as twice
as long as the fine region. A second order interpolation scheme is used to ensure continuity between
the coarse and fine regions, and this is discussed further by Fillipova and Hänel (1998) and Lu et al.
(2002). Transformation relations for the distribution functions on the fine and coarse grids. Although
this approach allows higher resolution in regions of interest, it does not permit non-cubic grids.

In constrast, the ISLBM does allow non cubic grids, though it is not suitable for stretching grids
in any coordinate direction relative to the others, i.e. for non-rectangular meshes. However, this does
not pose a problem for many cases of practical interest. On the other hand the need to use the same,
small grid spacing in the streamwise and spanwise directions, would limit the effectiveness of local grid
refinement for 3-D applications. Moreover, the ISLBM is relatively easy to implement and naturally
amenable for parallel implementation and for this reason was employed in this project.
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(a) Variable grid for use with ISLBM (b) Locally refined grid

Figure 36: Different types of grids for the LB method.
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Figure 37: Illustration of a second-order upwind Lagrangian interpolation for a particle velocity direction
(α= 7) to implement non-uniform grids in the LBM.

6.1 MHD Flow between parallel plates at high Hartmann number

Following preliminary tests with non-MHD flows to ensure the ISLBM was working correctly, a series of
studies was carried out with MHD flows. The case described here was a simple Hartmann flow between
two insulating parallel plates, where the magnetic field is applied perpendicular to the plates. For this
case, there is an analytical solution for the velocity v and the induced magnetic field Bi

v =
dP

dx

L

B0

√
ρ

σν

[
1− cosh(Ha z/L)/ cosh(Ha)

tanh(Ha)

]
(63)

Bi =
dP

dx

µ0ρL

B0

[sinh(Ha z/L)/ sinh(Ha)− z/L] (64)

where dP/dx is the driving pressure gradient, ρ density, σ electrical conductivity, ν kinematic viscostity
and µ0 magnetic permeability. The coordinate z is defined such that z = −L on the lower plate and
z = L on the upper plate. The Hartmann number is defined as:

Ha = B0L

√
σ

ρν

The solution is discussed in depth Müller and Bühler (2002), who also give the more general
solution for finite conductivity walls and a square duct. Note that at very high Hartmann numbers,
computer code may fail to solve the above equation, since the terms inside the hyperbolic functions
become to large. In this situation, approximate (asymptotic) forms for high Ha can be used (this is also
addressed by Müller and Bühler).
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The grid used should be set such that several points lie within the Hartmann layer, with the grid
point separation increasing to large values outside this region. One suitable formulation is due to Roberts
(1971) in which a uniform grid (i.e. with equally spaced points) zk in the range 0 < zk < 1 is transformed
into a stretched grid z:

z = 2L
(β + 2α) [(β + 1)/(β − 1)](z−α)/(1−α) − β + 2α

(2α + 1)
{

1 + [(β + 1)/(β − 1)](z−α)/(1−α)
} (65)

If the parameter α is used to control where the points cluster. With α = 0, only points near z = 2L are
spaced closely; with α = 0.5, points are closely spaced at regions near z = 0 and z = 2L. The parameter
β determines the degree of stretching, and Smolentsev et al. (2005) suggest using a value

β =

[
Ha

Ha− 1

]0.5

In practice, this was found to give grids in which the spacing was far too small near the walls.
The above recommendation was based on the assumption that that the dimensionless boundary layer
thickness (corresponding to the Hartmann layer in this case) is ∼1/Ha. Inspection of profiles generated
suggested that a the boundary layer thickness, δ/L, was actually∼5/Ha, though the definition of the end
of the layer is somewhat arbitrary.

In the Hartmann flow computations presented here, the relation used was modified to become:

β =

[
Ha/5

Ha/5− 1

]0.5

With this factor, flow velocities predictions within 1% of the analytical solutions could be obtained by
the lattice Boltzmann code.
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Figure 38: Velocity (U) and magnetic field (B) profiles for Ha=100; line LBM, circles analytical. 96 grid
points.

Figures 38–40 show the velocity and induced magnetic field profiles for Hartmann numbers span-
ning two orders of magnitude of 100, 1000, and 10 000. The coordinate z in these figures runs from 0 at
the wall to 1 at the centre. Figure 38 uses a linear scale, but the other two use a logarithmic scale for the
abscissa since the Hartmann layers are very narrow in these cases. The comparison with the analytical
solution is very good, and all cases predicted the centreline velocity to within 0.5%; the locations of the
circles correspond to the grid points so it can be seen that about 10 points are used to resolve this layer.
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Figure 39: Velocity and magnetic field for Ha=1000; line LBM, circles analytical. 128 grid points. Log
scale used for abscissae.
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Figure 40: Velocity and magnetic field for Ha=10 000; line LBM, circles analytical. Log scale used for
abscissae. 192 grid points.

In all cases, the use of a stretched grid considerably reduced the number of grid points by an order of
magnitude or more. For the Ha=10 000 case, use of a uniform grid would have required 85 000 points
to achieve the same near wall resolution, but in this simulation only 192 points were used to span the
channel (total was actually 196 points because extra points are needed for bounding walls) – a drastic
saving in computer resources.

6.2 MHD flow in insulating duct at high Hartmann number

Another test case used was the flow through a square duct with insulating walls at a high Hartmann
number (in this case Ha=500). Duct flow velocity profiles are again characterised by a flat central region
with narrow layers with high gradients near to the walls. The width of the layers adjacent to the walls
perpendicular to the applied field direction (the Hartmann layers) varies as 1/Ha, but for those parallel
to the field (the side layers), the width varies as 1/

√
Ha. The case was resolved by using 128 grid

points in each direction, and Fig. (41) shows the velocity profiles obtained with MetaFlow along the
wall bisectors along with the analytical solutions. The velocity at the centre differs from the analytical
solution by about 2%, rather more than that in the earlier simulations. The reason for this is that the ideal
grid distribution required for the y and z directions are rather different and the stretching profile used
was a compromise. Use of a few more grid points in the y direction would be expected to significantly
reduce the discrepancy.
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The profile through the side walls was calculated with the following approximate formula, taken
from Moreau (1990)

u = u0(1 + η2)(1− erf(η/
√

2))− η
√

2/π exp(−η2/2) (66)

where η is a dimensionless distance η = y
√

Ha/2, with y being the distance from the wall, normalised
with the duct half width. The velocity u0 is the velocity at the centre for the equivalent case with no side
walls. This solution is also given a thorough discussion by Müller and Bühler (2002), but readers are
warned that during the course of this analysis, the equation given in their book was found to contain a
typographical error.

Two dimensional plots of field and the velocity are shown in Fig. (42). Over the central region,
the velocity profile can be seen to be very flat, with the induced field having a constant gradient. These
observations are in keeping with expected trends.
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7 Input of Complex Geometry
Two methods for specifying the geometry to be simulated are available for the MetaFlow code. The
first is for the user to supply an ascii file sequentially listing all the grid points and specifying (by
means of an index) which material is at each point. This is a very easy and useful method for simple
geometries, as are often used for validation cases. However it does have shortcomings – information on
the exact location of boundaries cannot be supplied, so the code simply uses the bounceback scheme for
solid/fluid boundaries, which is equivalent to taking the wall to lie halfway between grid points and can
lead to inaccuracies where walls do not align with coordinate axes. Also generation of such a file for
complex geometries is not easy.

The other method, which is expected to be more commonly used, is to import the geometry from
a CAD file. After consideration of the file formats available, the one selected for use by MetaFlow was
the STL format, since virtually all CAD suites either produce this format directly, or the files can be
subsequently converted into STL form. In an STL file, the surface of a body is rendered as a series of
triangles – a simple example is shown in Fig. 43. For simple geometries only a few triangles are required,
for example a cube can be constructed with just 12; for complex shapes many more triangles may be
used, especially if high resolution of curved surfaces is needed.

Figure 43: Illustration of surface triangulations as used in STL files.

The method used to generate the grid and boundary information is best illustrated with a simple
case. Consider the situation in Fig. 44, where the flow through a pipe is to be modelled. The user
would supply an STL file with the pipe geometry and specify the boundary of the computational domain
(dashed line in the figure). In most cases, the domain need only extend a very short distance beyond the
sides. The user must also specify a point within the pipe and a point outside and the material there (fluid
or solid). In the general case, the user will specify the material in each continuous region by specifying a
point in that region and the index of the material there, except that there is an option to set all unspecified
regions to a particular material.

The procedure followed by the code is:

1. Code opens STL file, checks if it is in ascii or binary format and reads in triangles.

2. A Cartesian grid is generated to fit the size of computational domain requested – spacing is user
defined

3. All grid points are checked to see if they are on the surface of a triangle (in practice within a set
tolerance of it). These points are set aside to be dealt with later.
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Figure 44: Schematic diagram showing cylinder and computational domain (dashed line).

4. Starting from the user-specified point, neighbouring grid points are checked to determine whether
they are in the same continuous region. This is done by finding whether a line from one grid point
to the other passes through a triangle. This procedure is repeated for all neighbouring points found
to be in the same region, until all the points within the region are found.

5. Step 4 is repeated for all the other continuous regions.

6. Points found to be on the boundary in step 3 are assigned to neighbouring regions. Where they lie
between a fluid and solid region, they are assigned to the fluid region.

7. On grid points adjacent to solid regions, the distances from the wall required for the boundary
condition routines are calculated.

8 Example of 3D MHD Simulation for a Thermal Blanket Section
One case undertaken that is relevant to a current fusion engineering problem was the simulation of a
section of a thermal blanket (e.g. Smolentsev et al., 2006). A cross-section of the geometry for the
problem tackled is shown in Fig. 45 (Morley, 2006, Private Communication). The widths of the layers
are assumed to be uniform around the perimeter, and the cell is 1.4m long. Liquid lead/lithium flows
through the central region which is surrounded by the flow channel insert (FCI), a layer of a silicon
carbide composite designed to provide thermal and magnetic insulation. This is in turn surrounded by a
layer of Pb/Li with the outer casing being ferritic steel.

Conditions and thermophysical properties were set to be similar to those in the design. The sim-
ulation assumes the mean Pb/Li inlet velocity to be 0.1ms−1 with a temperature of 400◦C. It it subjected
to heating from the neutron flux, taken to be

q̇′′′ = 3.92 exp(−0.35y) + 2.1 Ferritic Steel (67–a)
q̇′′′ = 14.33 exp(−0.90y) + 4.0 PbLi (67–b)
q̇′′′ = 5.31 exp(−0.52y) + 1.6 SiC (67–c)

with the heating rate q̇′′′ in MW and the distance from the front wall, y in cm. The heat transfer coefficient
at the outer walls was taken to be 4000Wm−2K−1 with the external temperature rising linealy from 305–
375◦C for the front wall; for all other walls, a temperature of 375◦C was used.

43



 

Figure 45: Schematic diagram showing cross-section of thermal blanket module.

The computations are currently underway, using the NERSC parallel supercomputer Bassi. How-
ever, some preliminary results are presented here. In both the y and z directions 118 grid points were
used, with the nodes clustered such that they were close at the liquid wall and the outer boundaries. The
Roberts stretching formula was used in the central Pb/Li core flow, and exponential stretching in the
other regions. Uniform spacing of the nodes in the streamwise (x) direction was used.
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Figure 46: Induced field (Bx) and velocity (U) plots on cross-section of TBM module.

A pressure gradient was imposed to drive the flow. It was found that during the convergence
process, the velocities fluctuated greatly though the amplitude of these fluctuation did decay rapidly. To
avoid numerical problems, the pressure gradient was ramped up in stages. The reason for the fluctuations
is not clear, but is thought to be associated with the preconditioning methdod used to accelerate conver-
gence to steady state. Very similar behaviour was observed by Smolentsev et al. (2005); in both codes,
these fluctuations were only observed when there were conducting walls. A Hartmann number of about
100 was used. Due to the dependence of the viscosity on temperature, the effective Ha increased along
the length of the channel. In practice, higher Hartmann numbers would be used in the real situation, but
here the objective was to obtain a similar flow distribution for the purposes of calculating the temperature
profile, and value used here was high enough that the Hartmann and side layers were small compared
with the central region. Naturally, higher Ha flows could be simulated with more grid points and the
used of more processors with parallel jobs.
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Figure 46 shows the induced field and the velocity profile on a cross-section of the cell. The
velocity can be seen to have peaks near the side walls – this is due to the finite conductivity of the
SiC composite in the FCI, and peaks would not be observed for a perfectly insulating FCI. In the other
direction, there is a very steep climb in the velocity near the walls (the Hartmann layers). The velocity in
the narrow channels is low compared with the main channel, and is higher in the sections perpendicular
to the applied field. The induced magnetic field shows the usual steep climb at the outer walls and
a constant slope over most of the rest of the domain. Note the presence of a step near z = 0, this
corresponds to the FCI which has low electrical conductivity, inhibiting changes in the field.

Temperature profiles at x=0.7m and x=1.4m are shown in Fig. 47; these stations correspond to
planes halfway down the channel from the inlet, and at the end of the channel. The profile taken on an
x− y plane through the centre is shown in Fig. 48. The temperatures are highest in the regions near the
front wall, where the volumetric heating is greatest, and elevations in the temperature can also be seen
to peak in the FCI. The two plots are broadly similar, though the the temperature in the central region is
higher in the second plot than the first. In fact, the temperature in the core flow increases roughly linearly
with distance from the inlet to reach about 440◦C at the end. One can also observe dips toward the front
and back of the core flow region – these locations correspond to the side wall jets where the flow is
faster. It should be noted that these are preliminary results – subsequent runs on the supercomputer with
slightly different parameters and higher resolution are expected to show somewhat lower peaks in the
region around the FCI.
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Figure 47: Temperature at 0.7m (left) and (1.4m right) from inlet.

These initial results with the MetaFlow code for the thermal blanket problem are encouraging.

45



0
0.5

1
1.5

2
2.5

−0.1

−0.05

0

400

420

440

460

480

500

x (m)y (m)

T
 (

ºC
)

Figure 48: Temperature on x− y plane through centre of duct.

9 Summary, Conclusions and Outlook
In this report, the development of three-dimensional CFD code for the simulation of complex flows has
been documented. The core solver is based on the lattice Boltzmann method and uses the most advanced
formulation available, the recently developed multiple relaxation time (MRT) model. This is supple-
mented by a lattice Boltzmann based models for MHD flows and a TVD scheme for heat transport. A
key feature of all the numerical schemes used within MetaFlow is that they allow efficient parallelisation
for modern supercomputers with distributed memory architectures.

The MRT implementation of the fluid solver has proven its accuracy in validation exercises in-
volving a range of different flow scenarios. As well as a number of laminar cases, large eddy simulations
(LES) of turbulent flows have been performed using a Smagorinsky model for the unresolved scales with
wall damping. Excellent agreement with benchmark data has been found, including the challenging case
of duct flow, where the secondary flows were successfully captured.

To put the present work in perspective, accuracy, stability and cost of MRT computations were
compared with those of the single relaxation time (SRT) LBM – which is in more common use presently
– with MRT showing significant advantages for eddy capturing simulations. For a given resolution,
the MRT model was found to be more accurate and markedly more stable numerically – by at least a
factor of 3 in Reynolds number for turbulent flow problems tested in this project, than the SRT-LBM.
Also, after careful optimisation, the additional computational overhead of using the MRT in lieu of
SRT-LBM was found to be small, between 10% and 30% depending on the machine tested. Thus,
significantly higher Reynolds number simulations are possible than with the SRT-LBM. Moreover, the
parallel performance tests carried out for up to 16 processors showed near linear scalability. In addition,
the MRT implementation was found to be competitive when computational cost comparisons were made
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for a single processor with those of a finite-difference method (FDM) for LES. For the same case, and
the same number of grid nodes employed and for the same number of time steps, the MRT was found to
be faster than the FDM, by a factor of about 3 in a range of cases tested.

A key feature of MetaFlow is the incorporation of models for magnetohydrodynamic flows. As
with the flow solver, the magnetic induction equation solver uses a lattice Boltzmann type approach.
This fits well into the framework used for the flow calculations, in particular permitting efficient par-
allelisation. A number of extensions to the existing (and rather limited) LB models for MHD were
developed. These advances allowed the application to wall-bounded flows and fluids with low magnetic
Prandtl number, and a technique was developed to accelerate convergence of flows to steady-state. By
use of appropriately stretched grids, flows with Hartmann numbers of several thousand could be effi-
ciently simulated. Examples performed with MHD effect included duct flows, flow through a section of
a thermal blanket and the simulation of turbulent flow through a pipe. Comparison of computed results
with prior data, where available, showed good agreement.

The trend in computing is currently to be toward the use of supercomputers with very large
numbers of processors. The lattice Boltzmann method is very well suited to this sort of computation,
with almost linear scaling of computing speed with the number of processors. This is in contrast to other
CFD techniques based on finite difference or finite volume, methods where the need to solve a Poisson-
type pressure equation hampers the ability to efficiently parallelise. Also, the MRT model has proven to
perform very well, and avoids the stability problems of earlier models which may have prevented wider
acceptance of this method before. In view of this, lattice Boltzmann codes can be expected to become
increasingly popular in the solution of very large computational problems in CFD and MHD.
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B Components of Moments for the D3Q19 Lattice
The components of the various elements in the moments are as follows d’Humières et al. (2002):

f̂0 = ρ

f̂1 = e f̂2 = e2 f̂3 = jx f̂4 = qx f̂5 = jy f̂6 = qy

f̂7 = jz f̂8 = qz f̂9 = 3pxx f̂10 = 3πxx f̂11 = pww f̂12 = πww

f̂13 = pxy f̂14 = pyz f̂15 = pxx f̂16 = mx f̂17 = my f̂18 = mz

In addition to the conserved hydrodynamic moments, viz., density and components of momentum (ρ, jx, jy

and jz), we have the following non-conserved moments, some of which have direct physical import and are all
relaxed during collision process: various components of the symmetric traceless stress tensor (3pxx, pww, pxy, and
pyz , where pww = pyy − pzz , and

∑
i=x,y,z pii = 0 ), components of heat flux, qx, qy and qz , kinetic energy (e),

square of kinetic energy (e2), and the rest are based on certain combinations of polynomials of the momentum.
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C Transformation Matrix for the D3Q19 Lattice
The transformation matrix T can be written as (d’Humières et al., 2002):

T =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8

12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 −4 4 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 −4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 −2 −2 2 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0
0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0
0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1


From this transformation matrix, a diagonal scaling matrix L̂, whose elements correspond to the sum of

the inner products of the elements of the respective row of T can be constructed. This L̂, which is given in the fol-
lowing, is useful in actual implementation of the MRT as the transformation matrix T itself is never used directly
in calculations in order to optimize the computational speed:

L̂ = diag (19, 2394, 252, 10, 40, 10, 40, 10, 40, 36, 72, 12, 24, 4, 4, 4, 8, 8, 8)

It may be noted that since T is row-wise orthogonal, its transpose T t is related to its inverse T −1 through T −1 =
T tL̂. Thus, the inverse of the transformation matrix is never need to be carried out explicitly, but can always be
substituted by the product of the transpose of the transformation matrix and the diagonal scaling matrix L̂. This
scaling matrix will be useful in the optimization strategies discussed in Appendix G in this report.

D Equilibrium Distributions in Moment Space for the D3Q19 Lattice
The equilibrium distributions in moment space for each of the 19 discrete particle velocity directions for the D3Q19
lattice, which are functions of the conserved hydrodynamic fields, i.e. fluid density ρ and momentum, jk(= ρuk)
are as follows (d’Humières et al., 2002):

f̂ eq
0 = ρ

f̂ eq
1 ≡ eeq = −11ρ + 19

(
j2
x+j2

y+j2
z

ρ

)
f̂ eq
2 ≡ e2,eq = 3ρ− 11

2

(
j2
x+j2

y+j2
z

ρ

)
f̂ eq
3 = jx

f̂ eq
4 ≡ qeq

x = −2
3jx f̂ eq

5 = jy f̂ eq
6 ≡ qeq

y = −2
3jy

f̂ eq
7 = jz f̂ eq

8 ≡ qeq
z = −2

3jz f̂ eq
9 ≡ 3peq

xx = [2j2
x−(j2

y+j2
z )]

ρ

f̂ eq
10 ≡ 3πeq

xx = 3
(
−1

2peq
xx

)
f̂ eq
11 ≡ peq

ww = [j2
y−j2

z ]

ρ f̂ eq
12 ≡ πeq

ww = −1
2peq

ww

f̂ eq
13 ≡ peq

xy = jxjy

ρ f̂ eq
14 ≡ peq

yz = jyjz

ρ f̂ eq
15 ≡ peq

xz = jxjz

ρ

f̂ eq
16 ≡ meq

x = 0 f̂ eq
17 ≡ meq

y = 0 f̂ eq
18 ≡ meq

z = 0
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E Source Terms in Moment Space for the D3Q19 Lattice
Earlier work (Premnath and Abraham, 2006) derived the source terms explicitly in terms of force field for the
D3Q15 lattice. In this project we are using the D3Q19 lattice which was found to have greater numerical stability
characteristics for simulating turbulent flows than that with the D3Q15 lattice. We derived the expressions for the
source terms Ŝα representing the external force field F = (Fx, Fy, Fz) imposed on the fluid in moment space
explicitly and only summarize the results below for brevity:

Sα = ωα

[
3
c2

(eαx − ux) +
9
c4

(−→eα · −→u ) eαx

]

+ ωα

[
3
c2

(eαy − uy) +
9
c4

(−→eα · −→u ) eαy

]
+ ωα

[
3
c2

(eαz − uz) +
9
c4

(−→eα · −→u ) eαz

]
(E–1)

S = [S0, S1, S2, . . . , S18]
t (E–2)

Ŝ =
[
Ŝ0, Ŝ1, Ŝ2, . . . , Ŝ18

]t
(E–3)

Ŝ = T S (E–4)

Ŝ0 = 0
Ŝ1 = 38(Fxux + Fyuy + Fzuz) Ŝ2 = −11(Fxux + Fyuy + Fzuz) Ŝ3 = Fx

Ŝ4 = −2
3Fx Ŝ5 = Fy Ŝ6 = −2

3Fy

Ŝ7 = Fz Ŝ8 = −2
3Fz Ŝ9 = 2(2Fxux − Fyuy − Fzuz)

Ŝ10 = −(2Fxux − Fyuy − Fzuz) Ŝ11 = 2(Fyuy − Fzuz) Ŝ12 = −(Fyuy − Fzuz)

Ŝ13 = (Fxuy + Fyux) Ŝ14 = (Fyuz + Fzuy) Ŝ15 = (Fxuz + Fzux)

Ŝ16 = 0 Ŝ17 = 0 Ŝ18 = 0

F Optimization of Computational Procedure for Solution of the MRT–LBM
with Forcing Term

Before we discuss the optimized computational procedure for solution of the MRT–LBM, some useful expres-
sions are developed in this regard. For brevity in presentation, define the following column vectors representing
distribution functions, their local equilibrium values and corresponding source terms, respectively, for the D3Q19
lattice:

f = [f0, f1, f2, . . . , f18]
t (F–1)

f eq = [feq
0 , feq

1 , feq
2 , . . . , feq

18 ]t (F–2)

Seq = [Seq
0 , Seq

1 , Seq
2 , . . . , Seq

18]
t (F–3)

Also, define the Cartesian components of the particle velocity directions and spatial location:

ei = [e0i, e1i, e2i, . . . , e18i]
t , i ∈ {x, y, z}, −→x = (x, y, z) (F–4)

Thus the effect of particle collisions, which provides amongst other things the viscous behavior of the fluid, and
the imposed forces through the source terms can be represented by the “effective” collision column vector (see
Eq. (1) in the main text)

$(−→x ,t) = −Λ (f − f eq)(−→x ,t) +
(
I − 1

2
Λ
)

S(−→x ,t) (F–5)
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So the column vector representing the post-collision distribution functions may be written as (see Eq. 7–a in the
main text)

f̃(−→x ,t) = f(−→x ,t) + $(−→x ,t) (F–6)

and the streaming step can be represented through

f
(−→x +

−→
δsδt,t+δt)

= f̃(−→x ,t),
−→
δs = (ex, ey, ez) (F–7)

Transform the column vectors given in particle velocity space to moment space, defined by the “hat” symbol,
through the transformation matrix T given in Appendix C

f̂ = T f f̂ eq = T f eq Ŝ = T S (F–8)

Since Λ̂ = T ΛT −1, $(−→x ,t) in Eq. (F–5) can be written in moment space as

$(−→x ,t) = T −1

[
−Λ̂

(
f̂ − f̂ eq

)
(−→x ,t)

+
(
I − 1

2
Λ̂
)

Ŝ(−→x ,t)

]
(F–9)

Using the row-wise orthogonal property of the transformation matrix, we can write the inverse in terms of
the transpose

T −1 = T tL̂ (F–10)

$(−→x ,t) = T tq̂ (F–11)

where

q̂ =
[
−L̂−1Λ̂

(
f̂ − f̂

eq
)

(−→x ,t)
+
(
L̂−1 − 1

2
L̂−1Λ̂

)
Ŝ(−→x ,t)

]
(F–12)

To simplify notation, let us define a “scaled” diagonal relaxation matrix in moment space

Γ̂ = L̂−1Λ̂ (F–13)

which may be written by substituting for L̂−1 from Appendix C.

Γ̂ = diag

(
1
19

s0,
1

2394
s1,

1
252

s2,
1
10

s3,
1
40

s4,
1
10

s5,
1
40

s6,
1
10

s7,
1
40

s8,
1
36

s9,
1
72

s10,

1
12

s11,
1
24

s12,
1
4
s13,

1
4
s14,

1
4
s15,

1
8
s16,

1
8
s17,

1
8
s18

)
(F–14)

Thus, Eq. (F–12) can be rewritten as

q̂ =
[
−Γ̂
(
f̂ − f̂ eq

)
(−→x ,t)

+
(
L̂−1 − 1

2
Γ̂
)

Ŝ(−→x ,t)

]
(F–15)

Equations (F–11), (F–14) and (F–15), which are in moment space, are computationally more efficient than
Eq. (F–5), which is in particle velocity space, for the effective collision step.

Now, from Eqs. (13) and (12) in the main text, some of the relaxation parameters of the relaxation matrix
Λ̂ = diag(s0, s1, . . . , s18) can be related to the transport coefficients and modulated by eddy viscosity as follows:

s−1
0 = s−1

ζ =
9
2
ζ +

1
2

(F–16)

55



s9 = s11 = s13 = s14 = s15 = sν (F–17)

where
s−1
ν = 3ν +

1
2

= 3(ν0 + νt) +
1
2

(F–18)

Here, eddy viscosity νt is given by the standard Smagorinsky SGS model modified by the van Driest wall damping
as discussed in section 3.3 in the main text. The strain rate tensors required in the SGS model are computed directly
from the non-equilibrium part of moments given in Appendix G. ν0 is the molecular kinematic viscosity and is
specified from the statement of the problem through dimensional group such as Reynolds number.

Other parameters can be tuned to enhance numerical stability at higher Reynolds numbers for a given lattice
grid resolution. Based on the von Neumann stability analysis of the linearized MRT–LBM, the following values
for the other relaxation parameters are determined (d’Humières et al., 2002): s1 = 1.19, s2 = s10 = s12 = 1.4,
s4 = s6 = s8 = 1.2, and s16 = s17 = s18 = 1.98. For the conserved moments, the values of the relaxation
parameters are immaterial as their corresponding equilibrium distribution is set to the value of the respective
moments itself. We could set s0 = s3 = s5 = s7 = 1 for simplicity. It may be noted that all relaxation parameter
have the following bounds 0 < sα < 2. In this project we use these values for the parameters.

With this prelude, the procedure to perform LES through an optimized MRT is as follows:
For every lattice node representing fluid region, at time step t

1. Compute the 19 elements of the forcing term column vector in moment space, Ŝ. (This is explicitly given in
terms of imposed force field

−→
F = (Fx, Fy, Fz) and velocity field −→u = (ux, uy, uz) in Appendix E).

2. Transform distribution function in particle velocity space to moment space through f̂ = T f . Here, explicit
matrix multiplication must be avoided as matrix T contains several zeroes and common sub expressions,
involving only integers. In other words, express each of the 19 elements of f̂ directly by the expanded form
as a group of terms involving the elements of f (most compact version).

3. Compute the 19 elements of the equilibrium distributions in moment space f̂ eq which are given in terms of
the algebraic expressions of the conserved hydrodynamic fields, i.e. local fluid density and momentum (see
Appendix D).

4. Obtain the 19 elements of the diagonal relaxation matrix in moment space Λ̂ modified by the Smagorinsky
SGS model. See Eqs. F–16 and F–17 and discussion therein.

5. Obtain the 19 elements of the “scaled” diagonal relaxation matrix Γ̂ from Eq. (F–14).

6. Compute the intermediate column vector q̂ in Eq. (F–15).

7. Perform the “effective” collision operation by updating the column vector $ in particle velocity space in
Eq. (F–11). As in Step 2, the matrix multiplication in $(−→x ,t) = T tq̂ must not be carried out explicitly.
Since T t is just the transpose of T , all the possible properties pertaining to T stated in Step 2 must be
exploited. Thus, express each of the 19 elements of $directly by the expanded form as a group of the most
compact terms involving the elements of q̂.

8. Compute the 19 elements of the post-collision distribution function in particle velocity space f̃ through
Eq. (F–6).

9. Perform “streaming” step in particle velocity space through Eq. (F–7). This updates the 19 elements of the
distribution functions at f for the time step t + δt.

10. In the streaming step given in Step 9, if for particle velocity directions −→eα, where −→eα = −−→eα, the incoming
distribution function is from a boundary node, apply appropriate boundary conditions.
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11. Compute hydrodynamic fields ρ,
−→
j (= ρ−→u ) and p from the updated distribution functions through Eqs. 8–

10. These quantities represent the grid-filtered fields as SGS effects are modeled by means of eddy viscosity
through effective relaxation times in the collision step.

12. Repeat steps 1 - 12.

G Local Computation of Strain Rate Tensors through Non-equilibrium
Moments in the MRT–LBM with Forcing Term

In this section, we derive a procedure for calculating the strain rate tensor from the MRT–LBM with forcing terms
directly through the non-equilibrium part of the moments. They can be obtained by using the Chapman–Enskog
analysis (Chapman and Cowling, 1964; Premnath and Abraham, 2006).
The non-equilibrium part of the distribution function may be written as

f̂ − f̂ eq ≈ f̂ (1)δt (G–1)

First order expansion yields

f̂ (1) = −Λ̂−1
(
∂t0 + Ξ̂1∂i

)
f̂ eq +

(
Λ̂− 1

2

)
Ŝ (G–2)

where
Dt = diag

(
∂t0 , ∂t0 +−→e1 ·

−→
∇ , . . . , ∂t0 +−→e18 ·

−→
∇
)

(G–3)

Ξ̂αi = T eαiT −1 (G–4)

D̂t = T DtT −1 = diag
(
∂t0 , ∂t0 + Ξ̂1i∂i, . . . , ∂t0 + Ξ̂18i∂i

)
(G–5)

The above equation for f̂ (1) can be simplified considerably by noting that

∂t0

(
j2
x

ρ

)
' 2uxFx, ∂t0

(
j2
y

ρ

)
' 2uyFy, ∂t0

(
j2
z

ρ

)
' 2uzFz, (G–6)

∂t0

(
jxjy

ρ

)
' uxFy + uyFx, ∂t0

(
jyjz

ρ

)
' uyFz + uzFy, ∂t0

(
jxjz

ρ

)
' uxFz + uzFx, (G–7)

∂t0ρ = −∂kjk, (G–8)

Thus the non-equilibrium part of moments related to viscous stresses may be written as

f̂
(1)
1 ≡ e(1) = − 1

s1

{
∂t0

(
−11ρ + 19

jkjk

ρ

)
+

5
3
∂kjk

}
+
(

1
s1
− 1

2

)
Ŝ1 (G–9)

f̂
(1)
9 ≡ 3p(1)

xx = − 1
s9

{
∂t0

(
j2
y − j2

z

ρ

)
+

2
3

(2∂xjx − ∂yjy − ∂zjz)

}
+
(

1
s9
− 1

2

)
Ŝ9 (G–10)

f̂
(1)
11 ≡ p(1)

ww = − 1
s11

{
∂t0

(
j2
y − j2

z

ρ

)
+

2
3

(∂yjy − ∂zjz)

}
+
(

1
s11

− 1
2

)
Ŝ11 (G–11)
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f̂
(1)
13 ≡ p(1)

xy = − 1
s13

{
∂t0

(
jxjy

ρ

)
+

1
3

(∂xjy + ∂yjx)
}

+
(

1
s13

− 1
2

)
Ŝ13 (G–12)

f̂
(1)
14 ≡ p(1)

yz = − 1
s14

{
∂t0

(
jyjz

ρ

)
+

1
3

(∂yjz + ∂zjy)
}

+
(

1
s14

− 1
2

)
Ŝ14 (G–13)

f̂
(1)
15 ≡ p(1)

xz = − 1
s15

{
∂t0

(
jxjz

ρ

)
+

1
3

(∂xjz + ∂zjx)
}

+
(

1
s15

− 1
2

)
Ŝ15 (G–14)

Simplifying this further, we get

f̂
(1)
1 = −38

3
1
s1

∂kjk −
1
2
Ŝ1 (G–15)

f̂
(1)
9 = −2

3
1
s9

(3∂xjx − ∂kjk)−
1
2
Ŝ9 (G–16)

f̂
(1)
11 = −2

3
1

s11
(3∂yjy − ∂zjz)−

1
2
Ŝ11 (G–17)

f̂
(1)
13 = −1

3
1

s13
(∂xjy + ∂yjx)− 1

2
Ŝ13 (G–18)

f̂
(1)
14 = −1

3
1

s14
(∂yjz + ∂zjy)−

1
2
Ŝ14 (G–19)

f̂
(1)
15 = −1

3
1

s15
(∂xjz + ∂zjx)− 1

2
Ŝ15 (G–20)

By solving the above set of equations for components of various velocity gradients or strain rate tensors,
we get

Sxx = − 1
38ρ

[
s1ĥ

(neq)
1 + 19s9ĥ

(neq)
9

]
(G–21)

Syy = − 1
76ρ

[
2s1ĥ

(neq)
1 − 19

(
s9ĥ

(neq)
9 − 3s11ĥ

(neq)
11

)]
(G–22)

Szz = − 1
76ρ

[
2s1ĥ

(neq)
1 − 19

(
s9ĥ

(neq)
9 + 3s11ĥ

(neq)
11

)]
(G–23)

Sxy = − 3
2ρ

s13ĥ
(neq)
13 (G–24)

Syz = − 3
2ρ

s14ĥ
(neq)
14 (G–25)

Sxz = − 3
2ρ

s15ĥ
(neq)
15 (G–26)

where ĥ
(neq)
α is the non-equilibrium part of the moments supplemented by source terms (representing forces, see

Appendix E).

ĥ(neq)
α = f̂α − f̂eq

α +
1
2
Ŝα, α ∈ {1, 9, 11, 13, 14, 15} (G–27)

Expressions for f̂α, f̂
(eq)
α and Ŝα are given in Appendices B, D and E respectively. From these expressions

the eddy viscosity, ντ , needed in the Smagorinsky SGS model (Smagorinsky, 1963) can be calculated as follows:
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νt = (Cs∆)2 |S| (G–28)

where

|S| =
√

2SijSij (G–29)

=
√

2(S2
xx + S2

yy + S2
zz + 2(S2

xy + S2
yz + S2

xz)) (G–30)

The use of Eqs. (G–21–G–30) circumvents the usual finite difference calculation of the derivatives of
velocity fields, i.e. Sij = 1

2 (∂jui + ∂iuj), and thus presents a completely local procedure. As a result, it becomes
computationally efficient for complex geometries. The expressions for calculating strain rate tensor presented here
generalises those presented in a recent work by Yu et al. (2006) for the case of MRT-LBM with forcing term.

H Accelerating Steady-State Convergence of Flow and Magnetic Fields
through Preconditioning

For the case of steady state flow, the equation solved is:

∂

∂t
(ρu) +

1
γ

∇ · (ρuu) = −1
γ

∇p∗ +
1
γ

∇ · (ρν∇u) +
F

γ
(H–1)

where the pre-conditioning parameter γ controls the acceleration of convergence.
The preconditioned Navier–Stokes equations can be recovered by solving the pre-conditioned MRT–LBM

f̂(x + eαδt, t + δt)− f̂(x, t) = −T Λ̂′
(
f̂ − f̂ eq,P

)
+ T (I− 1

2
Λ̂
′
)P̂ sŜδt (H–2)

where the terms for f̂
eq

, Λ̂′ and P̂ s become

f̂ eq,P
0 = ρ f̂ eq,P

1 = −11ρ + 19
(

j2
x+j2

y+j2
z

γρ

)
f̂ eq,P
2 = 3ρ− 11

2

(
j2
x+j2

y+j2
z

γρ

)
f̂ eq,P
3 = jx

f̂ eq,P
4 = −2

3jx f̂ eq,P
5 = jy f̂ eq,P

6 = −2
3jy f̂ eq,P

7 = jz

f̂ eq,P
8 = −2

3jz f̂ eq,P
9 = [2j2

x−(j2
y+j2

z )]

γρ f̂ eq,P
10 = ωxx

[2j2
x−(j2

y+j2
z )]

γρ f̂ eq,P
11 = [j2

y−j2
z ]

γρ

f̂ eq,P
12 = ωxx

[j2
y−j2

z ]

γρ f̂ eq,P
13 = jxjy

γρ f̂ eq,P
14 = jyjz

γρ f̂ eq,P
15 = jxjz

γρ

f̂ eq,P
16 = 0 f̂ eq,P

17 = 0 f̂ eq,P
18 = 0

The relaxation matrix alters due to preconditioning and can written as:

Λ̂
′
= diag

[
s′0, s′1, s′2, s′3, s′4, s′4, s′6, s′7, s′8, s′9, s′10, s

′
11, s

′
12, s

′
13, s

′
14, s

′
15, s

′
16, s

′
17, s

′
18

]
The scaling matrix P̂ s for the source terms becomes:

P̂ s = diag
[
0,

1
γ2

,
1
γ2

,
1
γ

,
1
γ

,
1
γ

,
1
γ

,
1
γ

,
1
γ

,
1
γ2

,
1
γ2

,
1
γ2

,
1
γ2

,
1
γ2

,
1
γ2

,
1
γ2

, 0, 0, 0
]
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where the components or source terms are given by

Ŝ0 = 0
Ŝ1 = 38(Fxux + Fyuy + Fzuz) Ŝ2 = −11(Fxux + Fyuy + Fzuz) Ŝ3 = Fx

Ŝ4 = −2
3Fx Ŝ5 = Fy Ŝ6 = −2

3Fy

Ŝ7 = Fz Ŝ8 = −2
3Fz Ŝ9 = 2(2Fxux − Fyuy − Fzuz)

Ŝ10 = −(2Fxux − Fyuy − Fzuz) Ŝ11 = 2(Fyuy − Fzuz) Ŝ12 = −(Fyuy − Fzuz)

Ŝ13 = (Fxuy + Fyux) Ŝ14 = (Fyuz + Fzuy) Ŝ15 = (Fxuz + Fzux)

Ŝ16 = 0 Ŝ17 = 0 Ŝ18 = 0

The macroscopic variables, such as density ρ, velocity u, and pressure p∗, can be expressed as:

ρ =
∑
α

fα (H–3)

ρu =
∑
α

eαfα +
1
2

F extδt

γ
(H–4)

p∗ = γc2
sρ

and the modified transport coefficients as:

ν =
γ

3

[
1
sk
− 1

2

]
δt, k = 9, 11, 13, 14, 15

ζ =
2γ

9

[
1
s1
− 1

2

]
δt

For SRT–LBM, the preconditioning leads to

fα(x + eαδt)− fα(x, t) = − 1
τ ′

[fα(x, t)− feq
α (x, t)] + (1− 1

2τ ′
)S′αδt (H–5)

feq
α = wαρ

[
1 +

eα · u
c2
s

+
(eα · u)2

2c4
sγ

− u2

2c2
sγ

]
, c2

s =
1
3
c2 (H–6)

where the source term is given by

S′α = wα


(
eαk − uk

γ

)
c2
s

+
eα`u`

c4
sγ

eαk

 Fext,k

γ
(H–7)

Extension to MHD flows
To accelerate steady-state convergence for simulations of flows with MHD effects, the magnetic induction

equation is modified to become:

∂B

∂t
+

χ

γm
∇ · (uB −Bu) =

1
γm

∇ · (η∇B) (H–8)

In this equation, γm is a preconditioning parameter for the magnetic induction equation. The parameter χ is a
scaling factor and is varied to adjust the effective Prandtl number, Prm,eff = χPrm.

The equation for the distribution function h is

hαi(x + em
α δt, t + δt)− hαi(x, t)− 1

τm
(hαi(x, t)− heq

αi(x, t)) (H–9)
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where heq
αi is modified due to preconditioning and Prandtl number scaling to become

heq
αi = wα

[
Bi +

4em
αj

c2

χ

γm
(ujBi − uiBj)

]
(H–10)

The magnetic resistivity, ηm, is related to the modified relaxation time τ ′m through

ηm = γm
c2

4

(
τ ′m − 1

2

)
δt

The current density J can be calculated by taking into account the magnetic Prandtl number scaling:

Jk =
1
χ

1
µm

(∇×B)k

= − 1
χ

4
µmc2τ ′m

εijk

bm∑
α=0

(
em
αihαj − em

αih
eq
αj

)
(H–11)

where
bm∑

α=0

em
αjh

eq
αi =

χ

γm
(ujBi −Bjui) (H–12)

and the Lorentz force that appears in the preconditioned MRT-LBM for flow computation is:

FLorentz = J ×B (H–13)

More details of the preconditioned MRT–LBM formulation and results, including MHD effects, can be found in
Premnath and Pattison (2007).

I Use of Nonuniform Grids in MRT–LBM through Second-Order Lagrangian
Upwind Interpolation

In the following, we discuss an example of the post- interpolated-streaming step value of the distribution function
corresponding to the direction α = 7 for the D3Q19 lattice shown in Fig. 2. Considering second-order upwind
interpolations along the respective Cartesian coordinate directions, we get (see Fig.37)

f7,i,j,k = a−1,i,j,k

[
b−1,i,j,kf̃7,i,j,k + b−2,i,j−1,kf̃7,i,j−1,k + b−3,i,j−2,kf̃7,i,j−2,k

]
+ a−2,i,j,k

[
b−1,i−1,j,kf̃7,i−1,j,k + b−2,i−1,j−1,kf̃7,i−1,j−1,k + b−3,i−1,j−2,kf̃7,i−1,j−2,k

]
+ a−3,i,j,k

[
b−1,i−2,j,kf̃7,i−2,j,k + b−2,i−2,j−1,kf̃7,i−2,j−1,k + b−3,i−2,j−2,kf̃7,i−2,j−2,k

]
(I–1)

Here, the “tilde” refers to the post-“effective” collision values of the distribution function (i.e., including forcing
terms) obtained by executing the collision step in moment space in the MRT–LBM as discussed in Appendix F.
The upwind Lagrange interpolation coefficients in Eq. (I–1) are given below:

a−1,i,j,k =

[
Xm(i,j,k) −

(
Xm(i−1,j,k) + δx

)(
Xm(i,j,k) + δx

)
−
(
Xm(i−1,j,k) + δx

)] [ Xm(i,j,k) −
(
Xm(i−2,j,k) + δx

)(
Xm(i,j,k) + δx

)
−
(
Xm(i−2,j,k) + δx

)] (I–2)

a−2,i,j,k =

[
Xm(i,j,k) −

(
Xm(i,j,k) + δx

)(
Xm(i−1,j,k) + δx

)
−
(
Xm(i,j,k) + δx

)] [ Xm(i,j,k) −
(
Xm(i−2,j,k) + δx

)(
Xm(i−1,j,k) + δx

)
−
(
Xm(i−2,j,k) + δx

)] (I–3)

a−3,i,j,k =

[
Xm(i,j,k) −

(
Xm(i,j,k) + δx

)(
Xm(i−2,j,k) + δx

)
−
(
Xm(i,j,k) + δx

)] [ Xm(i,j,k) −
(
Xm(i−1,j,k) + δx

)(
Xm(i−2,j,k) + δx

)
−
(
Xm(i−1,j,k) + δx

)] (I–4)
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and

b−1,i,j,k =

[
Ym(i,j,k) −

(
Ym(i,j−1,k) + δy

)(
Ym(i,j,k) + δy

)
−
(
Ym(i,j−1,k) + δy

)] [ Ym(i,j,k) −
(
Ym(i,j−2,k) + δy

)(
Ym(i,j,k) + δy

)
−
(
Ym(i,j−2,k) + δy

)] (I–5)

b−2,i,j,k =

[
Ym(i,j,k) −

(
Ym(i,j,k) + δy

)(
Ym(i,j−1,k) + δy

)
−
(
Ym(i,j,k) + δy

)] [ Ym(i,j,k) −
(
Ym(i,j−2,k) + δy

)(
Ym(i,j−1,k) + δy

)
−
(
Ym(i,j−2,k) + δy

)] (I–6)

b−3,i,j,k =

[
Ym(i,j,k) −

(
Ym(i,j,k) + δy

)(
Ym(i,j−2,k) + δy

)
−
(
Ym(i,j,k) + δy

)] [ Ym(i,j,k) −
(
Ym(i,j−1,k) + δy

)(
Ym(i,j−2,k) + δy

)
−
(
Ym(i,j−1,k) + δy

)] (I–7)

Similarly coefficients c−1,i,j,k, c−2,i,j,k, c−3,i,j,k, can be developed for the z direction which are needed for
certain other particle directions. In the above, δx, δy and δz, are the streaming distances based on the particle
velocity c during a time interval δt, i.e. δx = cδt, δy = cδt, δz = cδt. Xm(i,j,k), Ym(i,j,k) and Zm(i,j,k) are the
physical coordinates of grids. In general, the grids would be stretched such that Xm(i,j,k) − Xm(i−1,j,k) 6= δx,
Ym(i,j,k) − Ym(i−1,j,k) 6= δy and Zm(i,j,k) − Zm(i−1,j,k) 6= δz. In a similar way, if the particle velocity directions
are flipped as compared to the above, as in for e.g., in the calculation of the interpolated-streaming values of
f8,i,j,k (see Fig. 2), the respective interpolation coefficients are then based on the corresponding upwind directions,
i.e. a+

1,i,j,k, a+
2,i,j,k and a+

3,i,j,k, and b+
1,i,j,k, b+

2,i,j,k and b+
3,i,j,k.

J Initial Perturbation of Velocity for Turbulent Channel Flow Simulations
The initial velocity perturbation employed for turbulent channel flow simulations is (Lam, 1990)

u
′
0 = εL1 sin

(
2πz

L3

)[
cos
(

2πx

L1

)
sin
(

2πy

L2

)
+

1
2

cos
(

4πx

L1

)
sin
(

2πy

L2

)
+ cos

(
2πx

L1

)
sin
(

4πy

L2

)]

v
′
0 = −εL2 sin

(
2πz

L3

)[
1
2

sin
(

2πx

L1

)
cos
(

2πy

L2

)
+

1
2

sin
(

4πx

L1

)
cos
(

2πy

L2

)
+

1
4

sin
(

2πx

L1

)
cos
(

4πy

L2

)]

w
′
0 = −εL3

[
1 + cos

(
2πz

L3

)][
sin
(

2πx

L1

)
sin
(

2πy

L2

)
+ sin

(
4πx

L1

)
sin
(

2πy

L2

)
+ sin

(
2πx

L1

)
sin
(

4πy

L2

)]
where L1, L2 and L3 are the streamwise, spanwise and wall-normal lengths of the computational domain.

These initial perturbations contain products of the first odd and even modes and satisfy continuity. In
general, the solutions (in the statistical sense) should not depend on the particular choice of initial conditions.
However, it has been found that if the above initial perturbations are used without the second or third terms, not all
higher Fourier modes will be excited through nonlinear interactions in subsequent time steps.

K Derivation of Generalised Magnetic Induction Equation with
Spatially Varying Electrical Conductivities

Here we provide the derivation of the magnetic induction equation with variable electrical conductivities (Prem-
nath, 2006). Consider Faradays law relating the dynamics of magnetic induction B to the electric field E

∂tB = −∇×E (K–1)

When Ohm’s law
E =

J

σ
− u×B (K–2)
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is applied to Eq. (K–1), where J is the current density, σ = σ(~x) is the spatially varying electrical conductivity
and u is the velocity field, it becomes:

∂tB = −∇×
(

J

σ
− u×B

)
(K–3)

or

∂tB −∇× (u×B) = ∇×
(

J

σ

)
(K–4)

Now, let us apply the Ampère-Maxwell law

J =
1

µm
∇×B (K–5)

where µm is the magnetic permeability. Let us first simplify the left hand side of Eq. (K–4). Using the vector
identity:

∇× (A×B) = A(∇ ·B)−B(∇ ·A) + (B ·∇)A− (A ·∇)B (K–6)

and using divergence-free/solenoidal constraints on the velocity and magnetic fields,

∇ ·B = 0; ∇ · u = 0

−∇× (u×B) = − [(B ·∇)u− (u ·∇)B] = − [∇ · (Bu)−∇ · (uB)] = ∇ · (uB −Bu) (K–7)

Substituting Eq. (K-7) into Eq. (K-4), we get

∂tB + ∇ · (uB −Bu) = −∇×
(

1
σµm

∇×B

)
(K–8)

let η = 1/(σµm), where η ≡ η(~x) is usually called the magnetic resistivity, and using this, equation (K-8)
may be rewritten as:

∂tB + ∇ · (uB −Bu) = −∇× (η∇×B) (K–9)

The right hand side of Eq. (K-9) can be simplified, while considering that the resistivity, η, is a spatially
varying quantity. This is the magnetic induction equation with variable conductivity.

To simplify Eq. (K-9), let us first rewrite it in index notation. Then we will explicitly provide the compo-
nents in compact form, from which the components in Cartesian coordinates may be readily obtained. Considering
the usual summation convention for the repeated (i.e. dummy) indices, and noting that cross-products can be writ-
ten in terms of permutation tensor, we write Eq. (K-9) in index notation:

∂tBi + ∂j(ujBi −Bjui) = Si, (K–10)

where
Si = −εijk∂j{ηεklm∂lBm}. (K–11)

Here, εijk is the Levi-Civita permutation tensor, whose value for even and odd permutations, when indices i, j and
k are distinct, are +1 and -1 respectively; and otherwise zero. Indices i through m represent one of the Cartesian
component directions, i.e. {i, j, ..., m} ∈ {x, y, z}. Rewriting equation (K–11) and considering the permuting
property of the permutation tensor, we get:

Si = −εijkεklm∂j{η∂Bm} = εkijεklm∂j{η∂Bm} (K–12)
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Now, we employ the well known identity of the permutation tensor products

εkpqεkrs = δprδqs − δpsδqr (K–13)

in Eq. (K–12). The terms on the right hand side of Eq. (K–13) such as δpr are the Kronecker delta tensor, sometimes
also called the substitution tensor, whose value is unity if both the indices are equal and zero otherwise. We get

Si = −εkijεklm∂j{η∂Bm} = −(δilδjm−δimδjl)∂j{η∂Bm} = −δilδjm∂j{η∂Bm}+δimδjl∂j{η∂Bm} (K–14)

Using the substitution property of the Kronecker delta tensor, i.e. δilΓl = Γi, in equation Eq. (K–14), we can
considerably simplify it to:

Si = −∂j{η∂iBj}+ ∂j{η∂jBi} = ∂j{η∂jBi} − ∂j{η∂iBj} (K–15)

When the divergence-free condition for the magnetic induction is imposed, i.e. ∂jBj = 0, the term
∂j{η∂iBj} in Eq. (K–15) modifies to (∂iBj)(∂jη). So, an alternative form of Eq. (K–15) is

Si = ∂j{η∂jBi} − (∂iBj)(∂jη) (K–16)

Thus, substituting Eqs. (K–15) and (K–16) into Eq. (K–10), we obtain two equivalent forms for the generalised
induction equation in index notation

∂tBi + ∂j(ujBi −Bjui) = ∂j(η∂jBi)− ∂j(η∂iBj) (K–17)

∂tBi + ∂j(ujBi −Bjui) = ∂j(η∂jBi)− (∂iBj)(∂jη) (K–18)

The final term in Eqs. (K–17) and (K–18) is the additional term with respect to the standard induction equation for
constant conductivity, i.e.

∂tBi + ∂j(ujBi −Bjui) = ∂j(η∂jBi) (K–19)

Thus, to properly account for spatial variation of electrical conductivities or magnetic diffusivities, it ap-
pears from this short note that additional terms that are included on the right of Eqs. (K–17) and (K–18) should be
added to the standard form of the magnetic induction equation, Eq. (29).

To clarify things further, we provide in the following the expanded forms of Eqs. (K–17) and (K–18) for
three-dimensional (3D) problems. The Cartesian components corresponding to Eq. (K–17) are:

∂tBx + ∂y(uyBx −Byux) + ∂z(uzBx −Bzux) = ∂x(η∂xBx) + ∂y(η∂yBx) + ∂z(η∂zBx)
− [∂x(η∂xBx) + ∂y(η∂xBy) + ∂z(η∂xBz)] (K-20a)

∂tBy + ∂x(uxBy −Bxuy) + ∂z(uzBy −Bzuy) = ∂x(η∂xBy) + ∂y(η∂yBy) + ∂z(η∂zBy)
− [∂x(η∂yBx) + ∂y(η∂yBy) + ∂z(η∂yBz)] (K-20b)

∂tBz + ∂x(uxBz −Bxuz) + ∂y(uyBz −Byuz) = ∂x(η∂xBz) + ∂y(η∂yBz) + ∂z(η∂zBz)
− [∂x(η∂zBx) + ∂y(η∂zBy) + ∂z(η∂zBz)] (K-20c)

Similarly, we write the components corresponding to the equivalent generalized induction equation, i.e. Eq. (K–
18) as

∂tBx + ∂y(uyBx −Byux) + ∂z(uzBx −Bzux)
= ∂x(η∂xBx) + ∂y(η∂yBx) + ∂z(η∂zBx)
− [(∂xBx)(∂xη) + (∂xBy)(∂yη)∂xBy) + (∂xBz)(∂zη)] (K-21a)

64



∂tBy + ∂x(uxBy −Bxuy) + ∂z(uzBy −Bzuy)
= ∂x(η∂xBy) + ∂y(η∂yBy) + ∂z(η∂zBy)
− [(∂yBx)(∂xη) + (∂yBy)(∂yη)∂xBy) + (∂yBz)(∂zη)] (K-21b)

∂tBz + ∂x(uxBz −Bxuz) + ∂y(uyBz −Byuz)
= ∂x(η∂xBz) + ∂y(η∂yBz) + ∂z(η∂zBz)
− [(∂zBx)(∂xη) + (∂zBy)(∂yη)∂xBy) + (∂zBz)(∂zη)] (K-21c)

As before, the terms within the square brackets in Eqs. (K-20) and (K-21) represent the additional terms with
respect to the standard induction equation for constant conductivity. Inspection of these two equations indicates
that Eq. (K-20) is in conservative-like form and may be more suitable for numerical implementation for multi-
material magnetohydrodynamic (MHD) problems that involve use of variable conductivities.

If L and U0 are the length and velocity scales, respectively, then Rem = U0L/η = µmσU0L is the
magnetic Reynolds number. For liquid metal MHD, generally, Rem � 1 and so the total magnetic induction Bi

may be split into the applied field, BA
i and induced field BI

i , i.e. Bi = BA
i + BI

i . In such cases, the generalized
induction equations for the total field, i.e. Eqs. (K-20) or (K-21), may be reduced in terms of induced field as
the unknown quantity by neglecting higher order terms of the smaller quantities, i.e. BI

i so as to simplify their
numerical solution. We thus obtain the “reduced form” of the generalized induction equation from Eqs. (K-20)
and (K-21), respectively, as
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z )] (K-22a)
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and
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As before, between these two equations, Eq. (K-22) is more likely to be suitable for numerical solution
owing to its “conservative-like” form.

It may be noted that while the additional terms with respect to the standard form may have influence for
the general case of 3D problems, a simple analysis would show that they dropout at least for the classical 1D
Hartmann flows or for fully-developed MHD flows even when we consider variable conductivity in the direction
transverse to the flow. In any case, solving the generalized set of equations for magnetic induction - full or
reduced, which maintains all the electrodynamical laws for multi-material MHD problems intact and required in
general situations, appears to be a very challenging task. Some important factors to be considered that are specific
to numerical solution of generalized induction equation include: (i) the equations should be made available in
conservative form, in which case the starting point could involve Eq. (K-20) or (K-21). (ii) In contrast to that of
standard induction equation for constant conductivity, the components equations for the generalized case are fully
“coupled” with one another; For e.g. inspection of Eq. (K-20a), i.e. the equation for component Bx shows that its
RHS, through the additional terms within square brackets, contains all the possible components, i.e. Bx, By and
Bz , which make the system of induction equations coupled, a factor of great importance when they are attempted to
be solved using a fully-implicit procedure. Consideration of just these two factors implies that developing suitable
numerical solution techniques for general cases would be quite challenging.

As an example, in the following we just make an attempt to obtain the finite difference discretization of
the first additional term within square brackets in Eq. (K-20b). It is the cross-derivatives [∂x(η∂yBx)] in “quasi-
conservative” form. In this first attempt, we use a naive strategy, i.e. full stencil instead of the usual half-stencil
used for the inner derivative:

[∂x(η∂yBx)](i,j,k) ≈
(η∂yBx)(i+1,j,k) − (η∂yBx)(i−1,j,k)

x(i+1,j,k) − x(i−1,j,k)

=
η(i+1,j,k)(∂yBx)(i+1,j,k) − η(i−1,j,k)(∂yBx)(i−1,j,k)

x(i+1,j,k) − x(i−1,j,k)

=
η(i+1,j,k)

[
Bx(i+1,j+1,k)−Bx(i+1,j−1,k)

y(i+1,j+1,k)−y(i+1,j−1,k)

]
η(i−1,j,k)

[
Bx(i−1,j+1,k)−Bx(i−1,j−1,k)

y(i−1,j+1,k)−y(i−1,j−1,k)

]
x(i+1,j,k) − x(i−1,j,k)

(K-24)

This discretisation leads to variables residing only on diagonal nodes on the computational molecule, and
does not use those that are on the primary coordinate directions. At the very least, in conjunction with the other
discretised terms, this strategy entails solving on a larger computational stencil than that for the standard induction
equation. It may also cause undesirable numerical consequences, such as chequer-boarding, as the variables on the
principal coordinate directions are absent. An alternative attempt could be to try discretising the inner derivatives
using a half stencil, i.e. at (i + 1/2, j, k) and (i− 1/2, j, k), and then use some form of averaging, such as tht used
in finite-volume methods, to obtain the values at “half” nodes, e.g. (i + 1/2, j + 1/2, k). In this latter strategy, we
can introduce influence of variables at nodes along the principal coordinate directions. In any case, because of the
coupled nature of the system of equations, solving their discretised versions using a fully implicit strategy could
require use of “time-splitting” procedures. Other obvious, albeit simpler, possibilities include trying semi-implicit
or explicit techniques, which could pose significant limitation on the Hartmann number of the flow that could be
resolved. These difficulties mean unique opportunities for the development of suitable numerical techniques for
the solution of the generalised induction equation – challenging tasks for the future.
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