

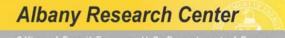
Albany Research Center

Office of Fossil Energy - U.S. Department of En

Solutions that make the Nation's energy systems safe, efficient

Metallic Materials Development for Solid Oxide Fuel Cells

J. Dunning, J. Hawk, D. Alman, P. Jablonski, G. Holcomb, M. Ziomek-Moroz, S. Cramer, A. Petty and R. Walters


Albany Research Center Albany, OR, 97321 www.alrc.doe.gov

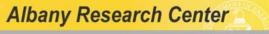
SECA Core Technologies Peer Review Workshop Tampa Bay, Florida, January, 27-28, 2005

Outline

- 1. Low CTE Nickel Base Alloys (J.Dunning)
 - Composition
 - Production of Strip
- 2. Modifications for Improved Oxidation Resistance (J. Dunning)
 - Nickel-Base and Ferritic Alloys
- 3. Balance of Plant (J. Hawk)

Low CTE Nickel Alloy Design Concepts

Oxidation Resistance and Low CTE


Oxidation Resistance: Chromia former required

Cr-Mn Spinel is conductive and minimizes Chrome evaporation

CTE vs. Oxidation Resistance: A balancing act

Chrome raises CTE while Mo and W lower CTE Al, Ti and C also lower CTE Fe and Co raise CTE

SECA CTP Review Meeting Tampa Bay, FL, January 27-28, 2005

Alloy Design Concepts

Formulation for CTE
 CTE=13.87 + 7.28x10⁻²[Cr] - 7.96x10⁻² [W]

 - 8.23x10⁻²[Mo] - 1.83x10⁻²[Al]
 - 1.63x10⁻¹ [Ti]

R. Yamamoto et. al., in Materials for Adavanced Power Engineering – 2002, Proc. 7th Leige Conf. Sept 30-Oct 3, 2003, <u>Energy and Technology Vol. 21</u>.

- ThermoCalc software used to verify phases.
- Melted 28 different compositions

SECA CTP Review Meeting Tampa Bay, FL, January 27-28, 2005

J-Series Ni-Cr-Mo Alloys

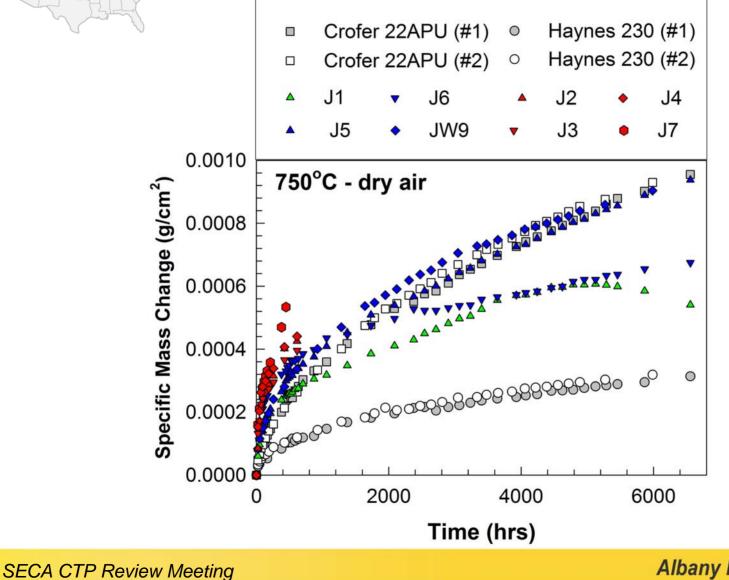
Nominal Composition (wt%)

			Mo				
J1	Bal	12	18	1.1	0.9	0	0
J2	Bal	10	22.5	3	0.1	0.5	0.1
J3	Bal	12.5	22.5	3	0.1	0.5	0.1
J4	Bal	15	22.5	3	0.1	0.5	0.1
J5	Bal	12.5	18 22.5 22.5 22.5 22.5	1	0.1	0.5	0.1
J6	Bal	12.5	27.7	0	0	0.5	0.1
J7	Bal	22	36.1	0	0	0.5	0.1

SECA CTP Review Meeting

Tampa Bay, FL, January 27-28, 2005

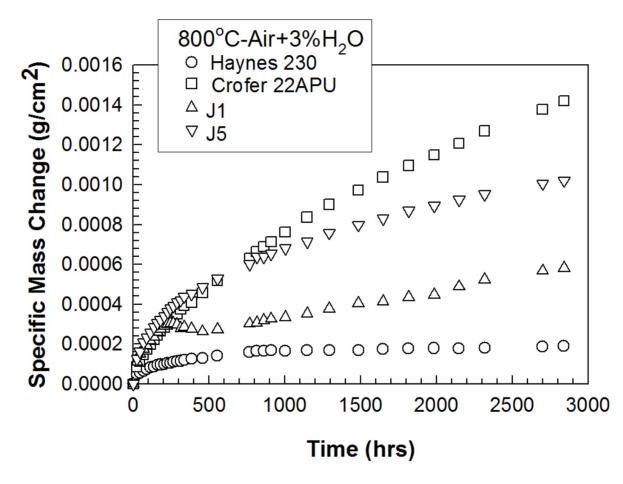
Albany Research Center


Office of Fossil Energy - U.S. Department of Energy Solutions that make the Nation's energy systems safe, efficient and secure

CTE-J series alloys

			•	
Alloy	Predicted (23-700°C)	Measured (23-700°C)	Measured (23-800°C)	Measured (23-900°C)
J1	13.06	12.9	13.6	14.4
J2	12.25	12.5	13.2	14.0
J3	12.44	12.3	13.4	14.3
J4	12.61	12.7	13.6	14.4
J5	12.71	12.6	13.4	14.0
J6	12.50	13.8	14.6	15.7
J7	12.50	11.2	11.9	12.5
Crofer		11.0	11.9	12.6
Haynes 230	14.2	13.3	14.3	15.4
	SECA CTP Review Meeting Albany Research Center Tampa Bay, FL, January 27-28, 2005 Office of Fossil Energy - U.S. Department of			/8/ /

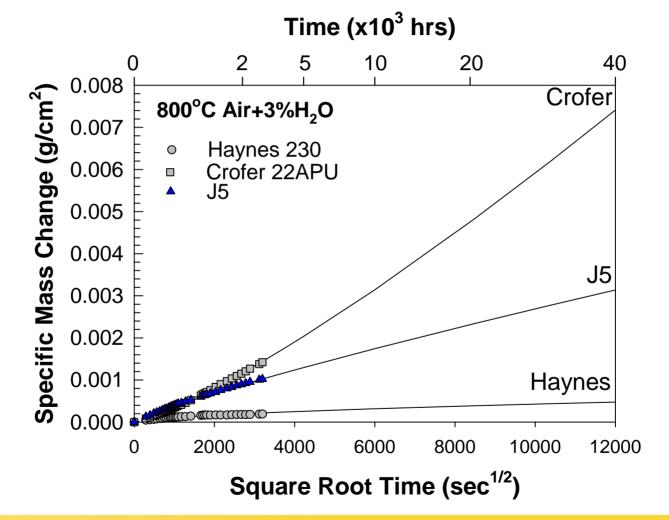
750°C Oxidation


Tampa Bay, FL, January 27-28, 2005

Albany Research Center

Office of Fossil Energy - U.S. Department of Energy

800°C Oxidation



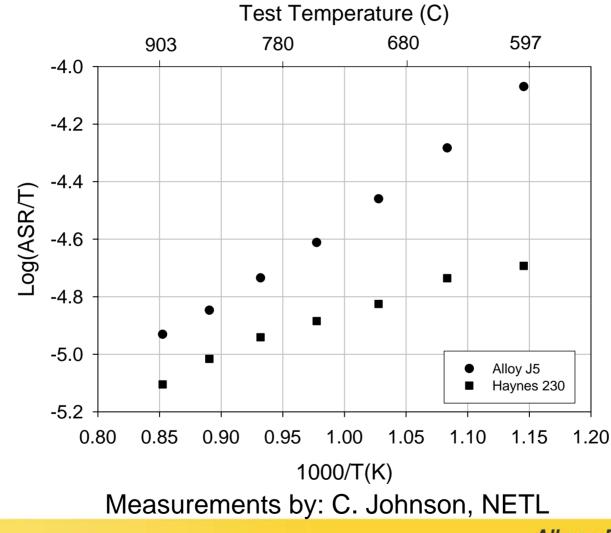
SECA CTP Review Meeting

Albany Research Center

Tampa Bay, FL, January 27-28, 2005

40,000 hr Extrapolated Behavior

SECA CTP Review Meeting


Albany Research Center

Tampa Bay, FL, January 27-28, 2005

ASR

700C/100h/Dry Air

SECA CTP Review Meeting

Albany Research Center

Tampa Bay, FL, January 27-28, 2005

Modifications for Improved Oxidation Resistance

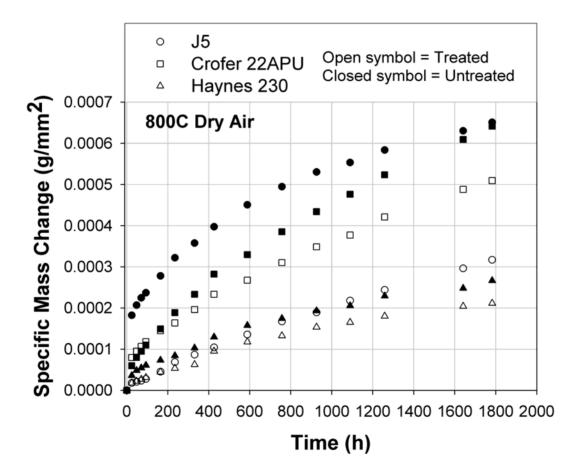
Ferritic Steels

Nickel Alloys

SECA CTP Review Meeting

Albany Research Center

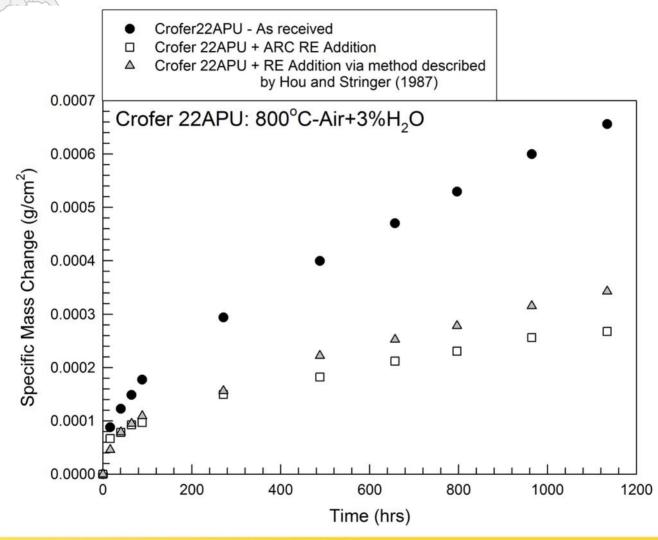
Office of Fossil Energy - U.S. Department of Energy Solutions that make the Nation's energy systems safe, efficient and secure



Reactive Element Additions

- Minor additions of rare earth (Ce, La, Y, etc.) improve oxidation resistance.
- Developed method for enhancing rare earth element (RE) content of alloys (patent application filed).
- Comparing with other treatments, such as method described by Hou and Stringer (1987).

Treatment to Enhance Oxidation Resistance Via RE Additions

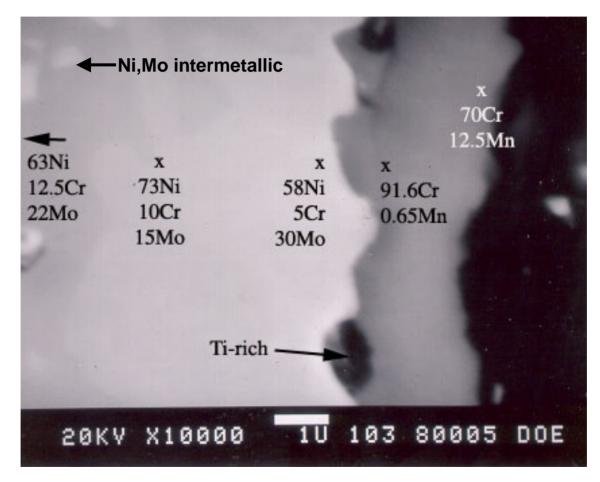


SECA CTP Review Meeting

Albany Research Center

Tampa Bay, FL, January 27-28, 2005

Crofer 22APU

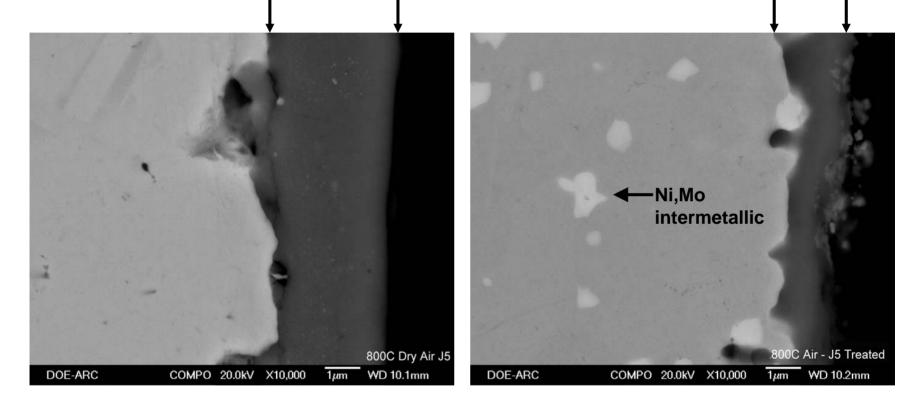

SECA CTP Review Meeting

Albany Research Center

Tampa Bay, FL, January 27-28, 2005

Oxide Scale: Alloy J5 500hr - 800°C dry air

SECA CTP Review Meeting


Tampa Bay, FL, January 27-28, 2005

Albany Research Center

ffice of Fossil Energy - U.S. Department of Energy

Oxide Scale: Alloy J5 1800 hrs - 800°C dry air

As polished

+ ARC Treated

SECA CTP Review Meeting

Tampa Bay, FL, January 27-28, 2005

Albany Research Center

ffice of Fossil Energy - U.S. Department of Energy

Alloy J5: Strip Production

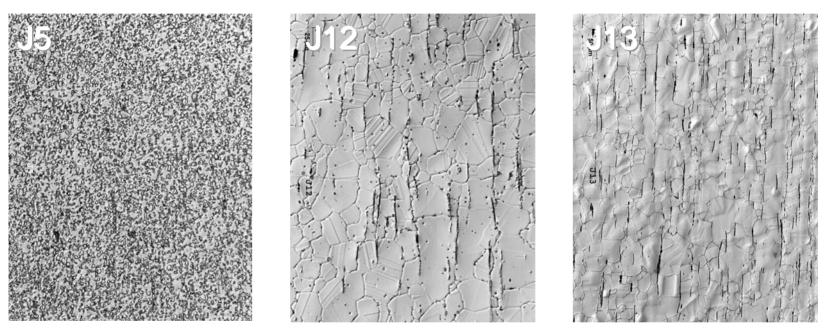
A length of 4" wide x 0.020" thick Alloy J5 prepared by cold rolling

SECA CTP Review Meeting

Albany Research Center

fice of Fossil Energy - U.S. Department of Energy

Alloy J5 Strip and Treated J5 Strip


- PNNL (J. Stevenson and G. Yang)
 - Sent for testing
- GE (J. Guan, GE-Energy Systems and K. Browall, GE-GR&D)
 In process of delivering material
- Requests for material from:
 - Versa Power Systems (Canada)
 - Korean Advanced Institute of Science and Technology (Korea)
 - Ikerlan Technical Research Center (Spain)
- Will send sample of J5 to any SECA participant or US entity for evaluation Contact: J. Dunning: dunning@alrc.doe.gov (541) 967-5885

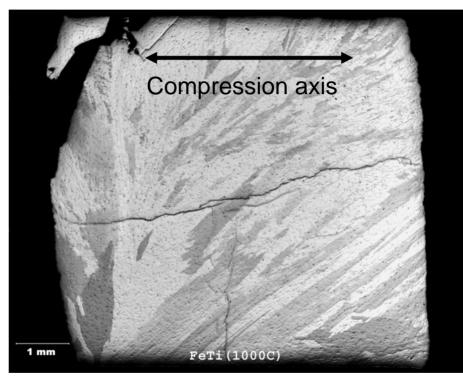
SECA CTP Review Meeting

Albany Research Center

Alloys J12&J13

- J5 derivates designed using ThermoCalc (minimize Ni-Mo ppt)
- Microstructures after aging at 800°C for 40 hours
 J5 → Ni-Mo ppt prevalent; J12 & J13 → few ppt
- Evaluating corrosion behavior ($800^{\circ}C$ -Air+3%H₂O)

SECA CTP Review Meeting Tampa Bay, FL, January 27-28, 2005


Albany Research Center

Office of Fossil Energy - U.S. Department of Energy Solutions that make the Nation's energy systems safe, efficient and secure

Fe-Ti for Argonne National Laboratory

- Two Fe-Ti intermetallic alloys prepared by arc melting.
- Hot-hardness and hotcompression tests to determine formability
 - poor formability
 - p/m alloy
- Ingots sent to ANL (Terry Cruse)

Sample after compression testing at 1000°C.

Albany Research Center

SECA CTP Review Meeting Tampa Bay, FL, January 27-28, 2005

Albany Research Center

Office of Fossil Energy - U.S. Department of Energy

Solutions that make the Nation's energy systems safe, efficient and secure

Materials Performance for Heat Exchangers & Other Balance of Plant (BOP) Components for (SOFC)

Generic SOFC System Components

- 1. Fuel Cell Stack
- 2. Fuel Pre-reformer/Reformer
- 3. Process Gas Heater
- 4. Fuel De-sulfurizer
- 5. Air Pre-heater
- 6. Effluent Burner
- 7. Heat Recovery
- 8. Fuel Management
- 9. Air Blower
- 10. Control Unit
- 11. Power Conversion Unit
- 12. Back-up Power Unit
- 13. Purge Gas
- 14. Water Purification for Start-up Steam

Fontell et al., "Conceptual Study of a 250 kW Planar SOFC System for CHP Application," J. Power Sources, 131 (2004) 49-56.

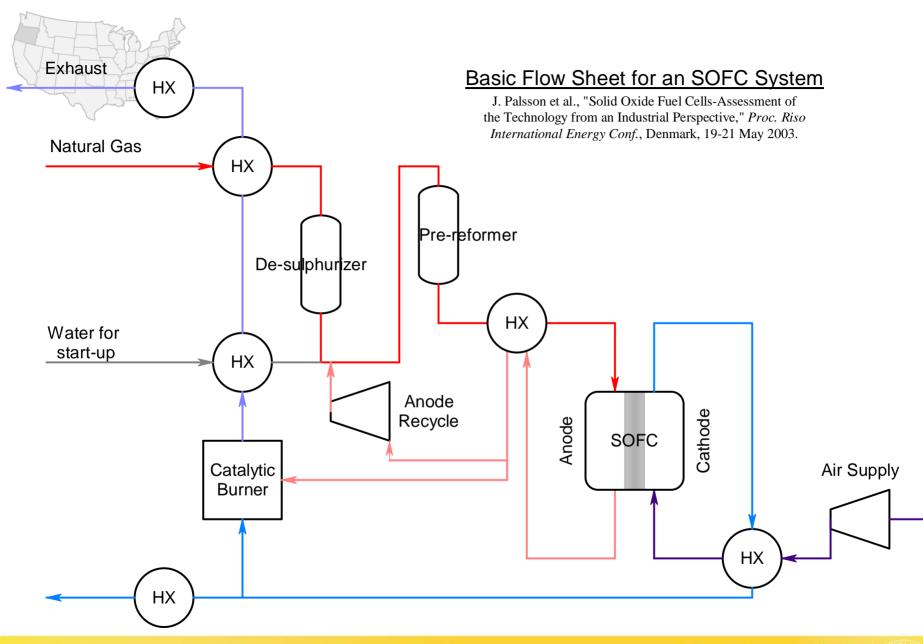
SECA CTP Review Meeting

Albany Research Center

Cost Structure for 250 kW SOFC System

Stack	31%
Fuel System	8%
Air System	6%
Exhaust System	2%
Start-up System	2%
Purge Gas System	0%
System Control	17%
Power Electronics	15%
Insulation	3%
Structure	2%
Labor and Overhead	15%

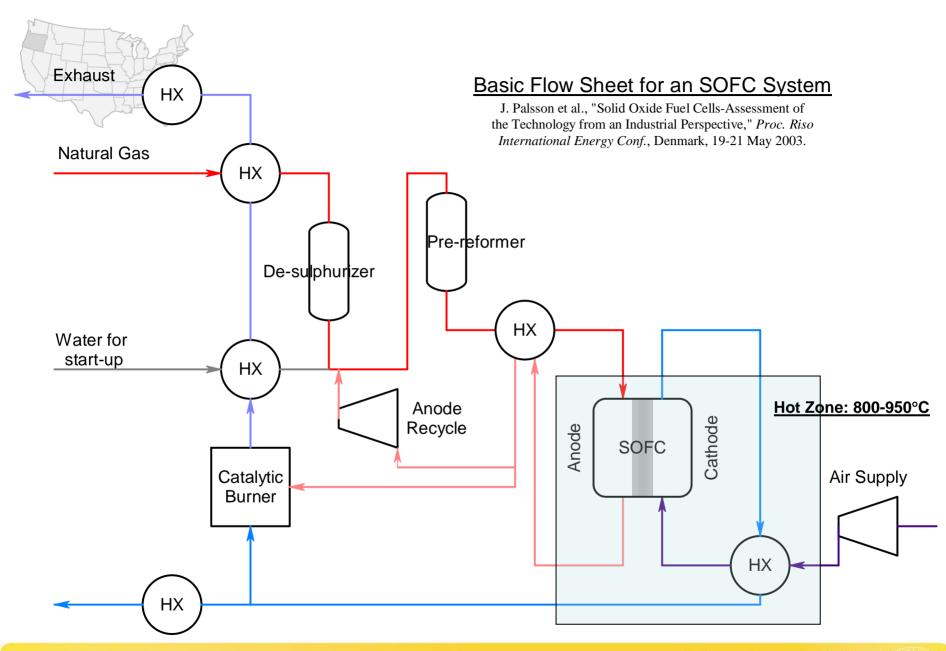
Fontell *et al.*, "Conceptual Study of a 250 kW Planar SOFC System for CHP Application," *J. Power Sources*, 131 (2004) 49-56.



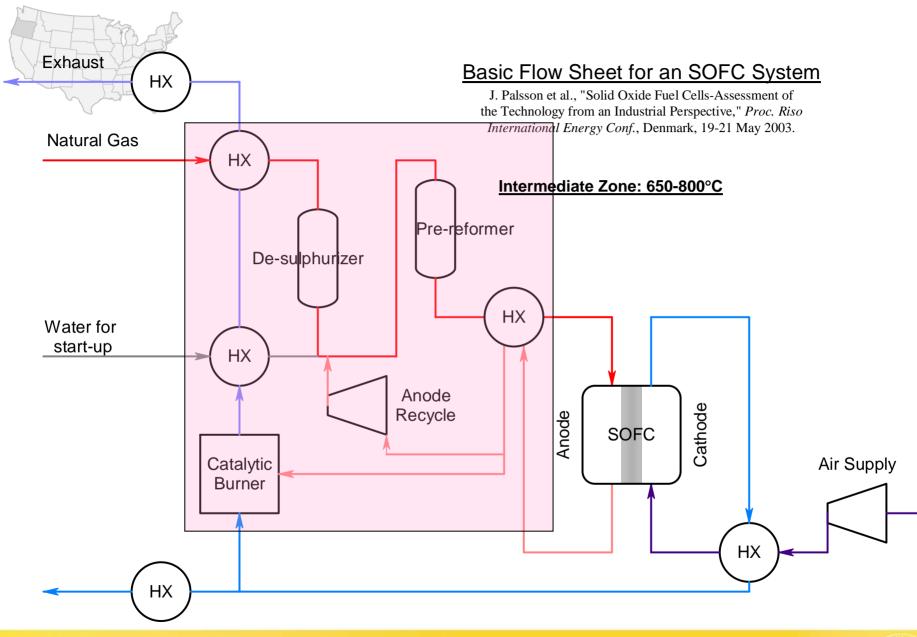
Cost Structure for 250 kW SOFC System

Stack	31%	
Fuel System	8%	
Air System	6%	
Exhaust System	2%	
Start-up System	2%	
Purge Gas System	0%	<u>= 54%</u>
System Control	17%	
Power Electronics	15%	
Insulation	3%	
Structure	2%	
Labor and Overhead	15%	1

Fontell *et al.*, "Conceptual Study of a 250 kW Planar SOFC System for CHP Application," *J. Power Sources*, 131 (2004) 49-56.

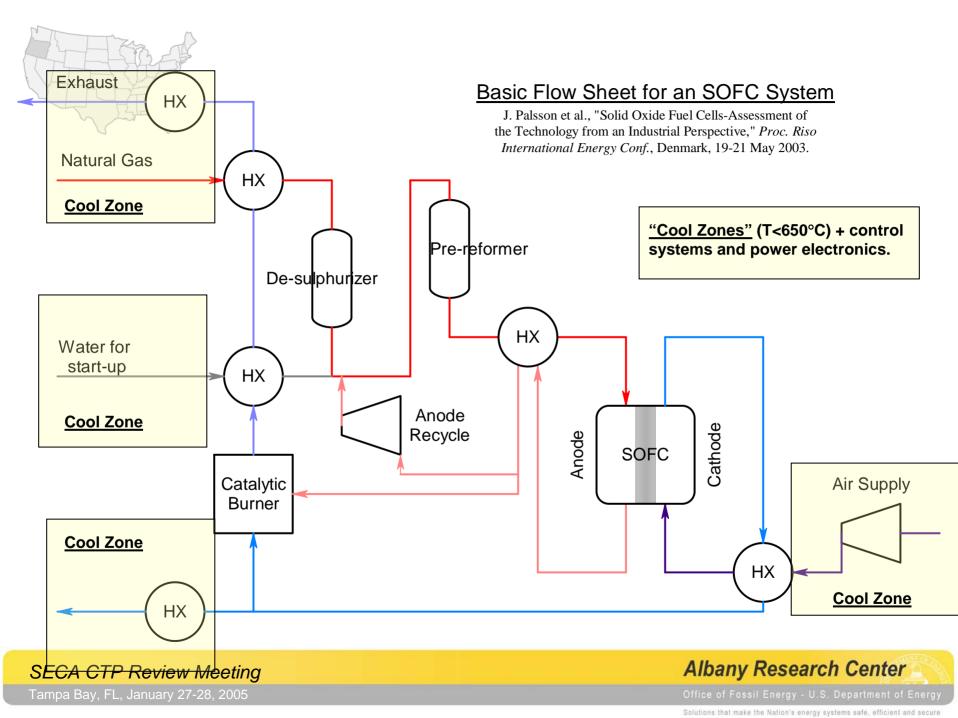


Tampa Bay, FL, January 27-28, 2005


Albany Research Center

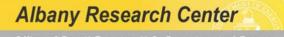
office of Fossil Energy - U.S. Department of Energ

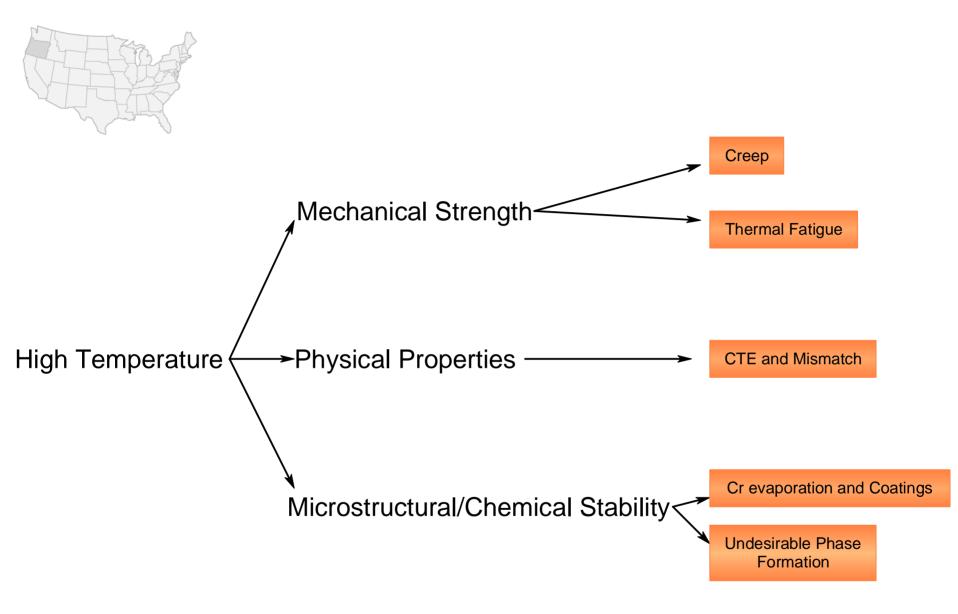
Tampa Bay, FL, January 27-28, 2005


Albany Research Center

Tampa Bay, FL, January 27-28<u>, 2005</u>

Albany Research Center


Thice of Fossil Energy - U.S. Department of Energ

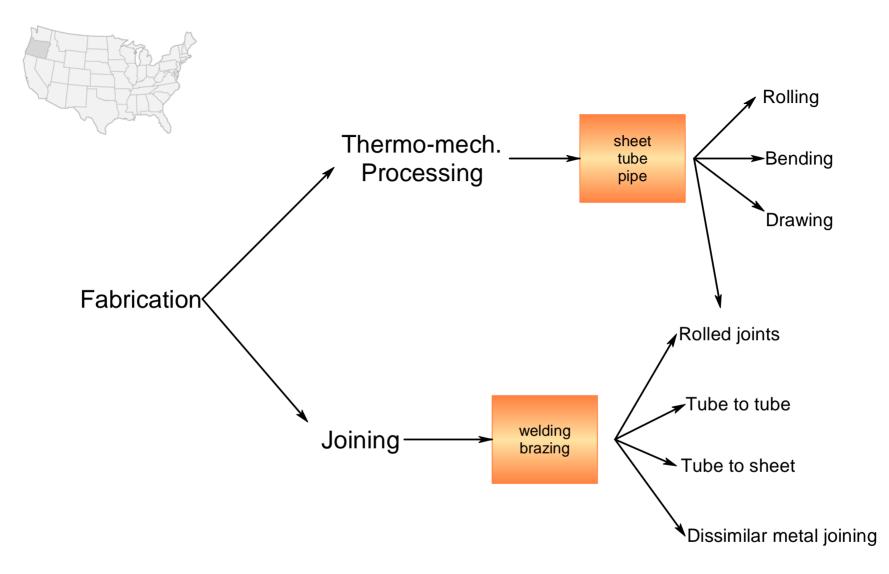


BOP Component Design and Testing Strategy

- 1. Define the component requirements.
- 2. Identify candidate materials.
- 3. Evaluate materials in depth.
- 4. Specify and select materials.
- 5. Establish a strategy for evaluating generic candidate BOP components.

Tampa Bay, FL, January 27-28, 2005

Albany Research Center


monolithic surface modified composite cladded

SECA CTP Review Meeting

Tampa Bay, FL, January 27-28, 2005

fice of Fossil Energy - U.S. Department of Energy

Tampa Bay, FL, January 27-28, 2005

Albany Research Center

Heat Exchangers

- 1. Plate and fin
- 2. Shell and tube
- 3. Finned tubes
- 4. Tube-in-tube

Materials of Construction

Raw materials Alloy processing Fabrication Joining HX production method

ost

- 1. Ferritic stainless steels
- 2. Austenitic stainless steels
- 3. Nickel alloys
 - . Ni-base superalloys
- 5. Ceramics
- 6. Hi-temp composites

Decreasing temperature

Albany Research Center

SECA CTP Review Meeting

Tampa Bay, FL, January 27-28, 2005

BOP Systems Approach (Identify-Evaluate-Specify)

ARC Alloy Design/Development

Laboratory Materials Testing

BOP Prototype Component Testing

SECA CTP Review Meeting

Investigate low cost material alternatives:

> Identify coating/surface modification strategies.

- Develop application strategies for any material/component configuration.
- > Optimize for lowest cost and greatest protection.
- Evaluate efficacy of approach.

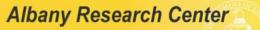
Laboratory Materials Testing

- Exposure to airExposure to fuel
 - gas/effluent
 - (with and without S)
- Exposure to dual
 - environment

Develop empirical equations to quantify material wastage in SOFC environment.

SECA CTP Review Meeting

Albany Research Center


Office of Fossil Energy - U.S. Department of Energy Solutions that make the Nation's energy systems safe, efficient and secure

Prototype Component Testing Serve as a test platform for SOFC-BOP prototype components: >Test single components >Test "system" components • Upstream of the FC stack Downstream of the FC stack

For a set of SOFC conditions: (1) measure component efficiency
(2) determine material wastage
(3) perform forensic analysis of
spent component

SECA CTP Review Meeting Tampa Bay, FL, January 27-28, 2005

Office of Fossil Energy - U.S. Department of Energy Solutions that make the Nation's energy systems safe, efficient and secure

Research Approach

- 1. Construction of BOP Component Testing Facility
- 2. Material and Component Testing of High Temperature Heat Exchangers and Other BOP Components
- 3. Fuel Chemistry: Effects of Sulfur on BOP Components
- 4. SOFC/BOP Efficiency Optimization

Construction of BOP Testing Facility

Approach

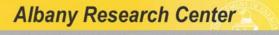
Simulated combustion environment using a "furnace/hotbox" with feed through connections for air and fuel/effluent gases.

SECA CTP Review Meeting Tampa Bay, FL, January 27-28, 2005 Albany Research Center

Material and Component Testing of High Temperature Heat Exchanger

- Mechanical and Physical Property Behavior of BOP Candidate Materials
- Prototype BOP Component Testing
- Microscopic Investigations
- Characterization of Scales

Prototype BOP Component Testing


- Test facility must be flexible enough to use: different fuel chemistries different operating temperatures different operating pressures (but not pressurized)
- Must be modular in design to facilitate the easy insertion and removal of BOP components
- Allow easy post mortem analysis of BOP components
- Allow evaluation of operating efficiency of the "system" for both the SOFC and the BOP components

General Summary

- <u>Identify</u>, <u>evaluate</u> (test as needed) and <u>specify</u> materials for use as BOP components in SOFC applications. Explore coating/surface modification strategies to extend operational range.
- Design and construct a BOP component and BOP component system test facility.

Summary

(Mechanical and Physical Property Behavior)

- 1. Physical characterization of the potential materials of construction for BOP components.
- 2. Analysis of mechanical behavior of materials of construction for BOP components.
- 3. Evaluation of the microstructural stability of BOP materials after long-term, high temperature exposure.
- 4. Evaluation of BOP materials after long-term, dualatmosphere, high temperature exposure.
- 5. Characterization of the microstructure and integrity of joints between similar and dissimilar materials in BOP components.

Summary

(Proposed BOP Material and Component Test Conditions)

<u>Temperature</u>		Pressure	<u>Environment</u>	Flow Rate
to	<u>НТ</u> 700°С to 900°С	♀ 110 kPa (internal)	Fuel Gas Effluent Air H ₂ O (w/ and w/o S)	100 slpm (or any other suggestions)

SECA CTP Review Meeting

Tampa Bay, FL, January 27-28, 2005

Albany Research Center

fice of Fossil Energy - U.S. Department of Energy

Summary

(Proposed BOP SOFC Environmental Conditions)

Air	<u>Fuel Gas</u>	<u>Effluent</u>
Laboratory	76.0 N ₂	46.5 N ₂
Air	15.0 O ₂	27.0 H ₂
	6.5 H ₂ O	6.0 H ₂ O
	2.5 CO ₂	3.5 CO ₂
	(Sulfur)	13.0 CO
		4.0 CH ₄
		(SO ₂)

SECA CTP Review Meeting

Tampa Bay, FL, January 27-28, 2005

Albany Research Center

Office of Fossil Energy - U.S. Department of Energy Solutions that make the Nation's energy systems safe, efficient and secure