# **Reductive Immobilization of Toxic Metals and Radionuclides by Hydrogen Sulfide**

**Baolin Deng (PI) and Silvia Jurisson University of Missouri-Columbia, Missouri** 

E.C. Thornton Pacific Northwest National Laboratory (PNNL)

Jeff Terry <sup>3</sup>Illinois Institute of Technology (IIT), Chicago, IL

<u>Acknowledgments:</u> Financial support - DOE Environmental Remediation Science Program/EMSP

# **Reductive Immobilization**

 $\begin{aligned} HCrO_{4}^{-} + 3e^{-} + 4H^{+} &= Cr(OH)_{3}(s) + H_{2}O \\ UO_{2}^{2+} + 2e^{-} &= UO_{2}(s) \\ TcO_{4}^{-} + 3e^{-} + 4H^{+} &= TcO_{2}(s) + 2H_{2}O \end{aligned}$ 

**Reductants for groundwater remediation Dithionite, sulfide** Fe<sup>2+</sup>, Fe<sup>0</sup>, FeS **Organic compounds** 

**Biotic vs abiotic processes** 

**Gaseous Reductant for soil remediation Hydrogen Sulfide** 

# In Situ Gaseous Reduction with H<sub>2</sub>S

>70% of Cr(VI) at the demonstration site was immobilized
ISGR technology can be safely deployed



# **Aqueous Chromate Reduction by Sulfide in Anoxic Systems**

### Temp. $[S^{II}]_{t=0}$ $[Cr^{VI}]_{t=0}$ S<sup>II-</sup> oxidized v.s. $R^2$ Cr<sup>VI</sup> reduced (°C) (µM) (µM) 15 100 **40** Y = 1.49 x - 0.280.9625 Y = 1.60 x + 0.380.9968 15 100 200 25 100 200 Y = 1.54 x + 0.720.9972 25 100 **40** Y = 1.53 x + 2.740.9894 Y = 1.44 x + 0.420.9769 25 200 **40**

Molar ratios of the consumption of S(-II) vs. Cr(VI)



**HRTEM Image** 

# Reaction Stoichiometry: $2CrO_4^{2-} + 3HS^- + 7H^+ = 2Cr(OH)_3(s) + 3S(s) + 2H_2O$

NOT as previously reported (8CrO<sub>4</sub><sup>2-</sup> +  $3H_2S$  +  $10H^+$  +  $4H_2O \rightarrow 8Cr(OH)_3(s)$  + $3SO_4^{2-}$ )

# Kinetics of Chromate Reduction by Sulfide in Anoxic Systems (pH=7.80, 25°C, $[S^{II-}]_0 = 800 \mu M$ )



### **Kinetics Determined by the Initial Rate Method**



3.0 2.5 ( hu) ( hu) ( 0.0 m) ( hu) ( h -16 1.5 -20 -23 -3.4 -3.2 log[H\_S]\_ -36 -3.0 1.0 10 50 0 20 30 40 Reaction time (min.)

### Reaction order with respect to $[Cr^{VI}] = 0.94$

### Reaction order with respect to $[H_2S]_0 = 1.1$



Reaction rate increases as pH is decreased

# **Proposed Reaction Mechanism**

Step 1. Precursor Formation  $\operatorname{CrO}_4^{2-} + \operatorname{H}_2S \xleftarrow{k_1 \atop k_{-1}} {\operatorname{HS} \cdots (\operatorname{CrO}_3) \cdots \operatorname{OH}}^{2-}$ 

**Step 2. Electron Transfer** 

 $\{HS\cdots(CrO_3)\cdots OH\}^{2-} \xrightarrow{k_2} S_0 + Cr^{IV}O_3^{2-} + H_2O$ 

Step 3. Fast reactions involving Cr(IV) and Cr(V)

 $\begin{array}{cccc} \mathbf{Cr^{IV} + Cr^{VI}} & \xleftarrow{k_3} & \mathbf{2Cr^{V}} \\ \mathbf{2Cr^{IV}} & \xleftarrow{k_4} & \mathbf{Cr^{III} + Cr^{V}} \\ \mathbf{Cr^{V} + S^{II-}} & \xleftarrow{k_5} & \mathbf{2Cr^{III} + S^{0}} \end{array}$ 

The following derived kinetic equation explains all experimental observations

$$\frac{d[Cr(VI)]}{dt} = \frac{-k_1k_2[CrO_4^{2-}][H_2S]_T}{k_{-1}+k_2} \{ \frac{[H^+]^2}{[H^+]^2 + [H^+]K_1 + K_1K_2} \}$$

# **Reduction of Re-spiked Cr(VI)** (pH=7.80, 25°C, [Cr(VI)]<sub>0</sub> =40μM, [S(-II)]<sub>0</sub>=800 μM)



# Effect of externally added elemental S (pH=8.30, 25°C, [H<sub>2</sub>S]=800mM)







### Elemental sulfur nanoparticles catalyze Cr(VI) reduction by sulfide

*Environ. Sci. Technol.* 39, 2087 – 2094 (2005)

# **Cr(III) Reoxidation and Remobilization**

### **Possible Mechanisms**



### **Coupled Biotic/Abiotic Processes for Cr(III) Oxidation**



•Pseudomonas putida was obtained from ATCC

•Microbial experiments were conducted in modified LEP medium with 10mM HEPES buffer (pH 7) in a shaker at 150 rpm at 26°C

- •Cell density (OD600): using spectrophotometric method at 600 nm
- •Mn oxides: modified LBB assay (Boogerd and de Vrind, 1987)
- •Cr(VI): measured using diphenyl carbazide colorimetric method after filtration through 0.2 μm membrane filters.
- •Total soluble Mn and Cr: measured with ICP.



## Cr(III) Oxidation Coupled with Microbially-mediated Mn-Oxides Production



Geomicrobiology Journal, 22:161-170, 2005

# Long term stability of Cr in soils following H<sub>2</sub>S treatment



Contaminated soil sample from the 100K Area at the Hanford Site was treated with diluted hydrogen sulfide gas.

**Original Cr(VI) concentration:** 110 mg/kg

# How Important Is U(VI) Reduction by Hydrogen Sulfide in the Aqueous Phase??? --- UNCLEAR ---

- U(VI) could coexist with high concentration of sulfide (400mM) in anoxic see water (Anderson et al., 1989)
- U(VI) was not reduced by sulfide in bicarbonate (30 mM) buffered solution (Lovley et al., 1991).
- Uranyl (CO<sub>2</sub>-free) was precipitated by 800 mg/L  $H_2S$  at pH 6.0-6.5 (Kochenov et al., 1977).
- Uranyl was reduced to uraninite by 500 mM sulfide in the anoxic system with  $P_{CO2} = 0.15$  atm (Beyenal et al., 2004).
- A better understanding of the effect of carbonate on U(VI) reduction by sulfide is needed.



# Molar ratio of $[U(VI)]_{reduced}$ to $[S^{2-}]_{oxidized}$ (pH = 6.89; $[CO_3^{2-}]_T = 4.0 \text{ mM}$ )





**HRTEM Micrograph** 

**Electron Diffraction Pattern** 

Effects of  $[CO_3^{2-}]_T$  on  $[U(VI)]_{reduced}/[U(VI)]_0$  (%) ( $[S^{2-}]_0 = 2.0 \text{ mM}; [U(VI)]_0 = 168 \text{mM};$ reaction time = 60 min) Effects of pH on U(VI) reduction ( $[CO_3^{2-}]_T = 4.0 \text{mM}; [S^{2-}]_0 = 2.0 \text{ mM}$ )





## Impact of carbonate on U(VI) speciation and reduction (calculated with MINEQL+, 1998)



 $-\frac{d[U(VI)]}{dt} = (k_1[UO_2^{2+}] + k_2[UO_2OH^+] + k_3[(UO_2)_2(OH)_2^{2+}]^2 + k_4[(UO_2)_3(OH)_5^{2+}]^3 + k_5[UO_2CO_3] + k_6[UO_2(CO_3)_2^{2-}] + k_7[UO_2(CO_3)_3^{4-}])[H_2S]_{total}$ 

## Effects of $[CO_3^{2-}]_T$ on $\Sigma[U(VI)$ -hydroxyl species]<sub>0</sub>



# Measured initial rate is directly proportional to the calculated $\Sigma[U(VI)-hydroxyl species]_0$



### U(VI) Reduction on FeS - A Two-step Process



FIG 1. Rapidly U(VI) uptake by iron sulfide ([U(VI)]<sub>0</sub> = 168.0 μM; [FeS] = 0.18 g/L





FIG. 2 Release of Fe(II) is proportional to the amount of U(VI) uptake (pH 6.90. ([U(VI)]<sub>0</sub> = 168.0  $\mu$ M)

FIG. 3. Reduction of [U(VI)] on the FeS surfaces measured by carbonate extraction of U(VI).

# Technetium Sulfide Chemistry

- Investigation the pertechnetate-sulfide chemistry in aqueous solution
  - Controlled pH, O<sub>2</sub>, ionic strength
  - Product determination
  - Tc immobilization (precipitation/colloid formation)
  - Reaction kinetics and stoichiometry determination

# Pertechnetate-sulfide chemistry in aqueous media

In acidic solution:

 $2 \operatorname{TcO}_4^- + 7 \operatorname{H}_2^{} \mathrm{S} + 2 \operatorname{H}^+ \longrightarrow \operatorname{Tc}_2^{} \mathrm{S}_7^- + 8 \operatorname{H}_2^{} \mathrm{O}$  (Equation 1) In basic solution:

- $TcO_4^- + S^2 \rightarrow Tc(S)O_3^-/TcS_4^-$  (Equation 2)
- $2 \operatorname{TcO}_{4}^{-} + 7 \operatorname{HS}^{-} + H_2 O \longrightarrow \operatorname{Tc}_2 S_7 + 9 OH^{-} \quad (\text{Equation } 3)$

 $2 \text{ TcO}_4^- + 7 \text{ S}^2 + 8 \text{ H}_2\text{O} \longrightarrow \text{Tc}_2\text{S}_7 + 16 \text{ OH}^-$  (Equation 4)

# Kinetics studies under pH 9 anaerobic conditions



## Kinetics studies under pH 4 aerobic conditions



**Sample characterization** 

# • XANES & EXAFS

# Elemental analysis

| Sample                                  | S (%)  | Tc (%) | Mole ratio of<br>S/Tc | Suggested<br>formula           |
|-----------------------------------------|--------|--------|-----------------------|--------------------------------|
| Product from pH 4<br>aerobic solution   | 45.585 | 39.95  | 3.53                  | Tc <sub>2</sub> S <sub>7</sub> |
| Product from pH 9<br>anaerobic solution | 45.88  | 40.5   | 3.54                  | Te <sub>2</sub> S <sub>7</sub> |

 $TcO_4^{-} + 3e^{-} + 4H^{+} = TcO_2(s) + 2H_2O$  ???

# **SUMMARY**

- Reductive Cr(VI) immobilization could be achieved by ISGR treatment. Reoxidation of Cr(III) is possible by biogenic Mnoxides. A thorough evaluation under a wide variety of environmental conditions is needed.
- Reductive immobilization of U(VI) takes place by  $H_2S$  under anoxic environments, and the rate depends on pH and  $[CO_3^{2-}]_{total}$ . It is  $\Sigma$  [U(VI)-hydroxyl complex], not total [U(VI)], that determines the rate of U(VI) reduction at various pH and  $[CO_3^{2-}]_{total}$ . Reduction rates could be predicted through speciation calculation. U(VI) reduction on FeS surfaces takes place through a two-step process.
- Tc(VII) could be immobilized by  $H_2S$  treatment, with  $Tc_2S_7$  being the product. Research is under way to understand the reaction mechanism.



# QUESTIONS?