

Protein Expression in Shewanella oneidensis MR-1

Carol S. Giometti ANL Biosciences Division March 16, 2004

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

MR-1: A Microbe with Metal Reducing Capability

Gram negative

- Facultative anaerobe capable of using multiple electron acceptors
 - •Oxygen
 - •Fumarate
 - Nitrate
 - •Iron
 - •Manganese
 - •Uranium
 - •Chromium

Links carbon cycling to reduction of metal oxides

How is this activity regulated??

Is gene expression the sole determinant of metal reduction activity?

OR

Are the proteins involved in metal reduction reactions regulated by cofactors or post-translational modifications?

S. oneidensis MR-1 Genome

• 5.2 Mbp

- Chromosome: 4.9 Mbp
- Megaplasmid: 150 Kbp
- Phage: 50 Kbp
- Plasmid: Kbp

• 4748 Open Reading Frames

- 54.4% with predicted function
- 22.2% conserved hypothetical
- 23.4% hypothetical

(Nature Biotechnology 20:1119 (2003)

4.9Mb

How many of these genes are expressed and when??

Comparison of Gene and Protein Expression

S. oneidensis MR-1 cells (wild type or mutant) were grown at ORNL in batch culture with different electron acceptors (e.g., fumarate, iron)

Photo from PNNL (J. Fredrickson)

Gene expression monitored using microarrays (J. Zhou, ORNL)

Array image from ORNL

Protein expression monitored using two-dimensional gel electrophoresis and mass spectrometry

(C. Giometti, ANL; J. Yates III, Scripps)

U.S. Departmer

MR-1 Whole Cell Lysate Proteins with Different Electron Acceptors

Omics (2002) 6: 39-59; Belieav et al.

of Energy

Office of Science

U.S. Department

5

Quantitative Analysis of Protein Expression

- •Multiple gels per sample (e.g., 4-6)
- •All patterns matched to a reference pattern
- Integrated densities normalized
- Integrated densities averaged within groups
- •Student t test applied
- •Proteins showing statistically significant differences identified

QUANTITATIVE PROTEIN DIFFERENCES IN

Shewanella oneidensis MR1 GROWN WITH DIFFERENT ELECTRON ACCEPTORS

Protein Identification

S. oneidensis Proteins

Anaerobic < Aerobic

MSN	F/I/N	ANNOTATION
41	+/+/+	DNA TOPOISOMERASE II, B
54	+/+/+	ALCC PROTEIN
67	+/+/+	AGGLUTINATION PROTEIN
123	+/+/+	ELECTRON TRANSFER
		FLAVOPROTEIN, ALPHA
125	+/+/+	CONSERVED HYPOTHETICAL
		PROTEIN
139	+/+/+	DIHYDROLIPOAMIDE SUCCINYL
		TRANSFERASE
121	_/_/+	OPRF

S. oneidensis Proteins Anaerobic > Aerobic

MSN	F/I/N	ANNOTATION		
146	+/+/+	FORMATE ACETYLTRANSFERASE		
598	+/+/+	CONSERVED HYPOTHETICAL		
1099	+/+/+	PHOSPHOMANNOMUTASE		
1325	+/+/+	3,4-DIHYDROXY-2-BUTANONE 4- PHOSPHATE SYNTHASE		
693	_/+/+	PRISMANE		
1326	_/+/_	CONSERVED HYPOTHETICAL		
1327	+/+/-	FUMARATE REDUCTASE		

9

Shewanella oneidensis Partial Microarray

- Green = cy3 label = aerobically expressed.
- Red = cy5 label = anaerobically expressed, nitrate as a terminal electron acceptor

frames

Protein/mRNA Abundance Under Anaerobic Conditions (relative to O2)

MSN	ANNOTATION	FUM	FE	NO3
41	DNA topoisomerase II	0.4/0.8	0.6/1.4	0.4/0.9
54	AlcC protein	0.3/0.1	0.5/0.01	0.6/0.5
123	Electron transfer flavoprotein	0.4/0.4	0.5/0.1	0.7/0.5
139	Dihydrolipoamide succinyltransferase	0.6/0.3	0.7/0.4	0.5/0.4
146	Formate acetyltransferase	5/0.9	5/1.5	12/0.9
693	Prismane	1.4/1.8	17/2	12/56
1099	Phosphomannomutase	5/0.4	7/0.3	7/0.45
1327	Fumarate reductase	50/4.8	100/1.4	nd/1.6

Good correlation observed between mRNA and protein expression in some but not all cases.

11

Protein Expression in *fur (ferric uptake regulator)* Mutant

Spot Number	Annotation	FUR1/WT ratio (Protein)	FUR1/WT ratio (mRNA)	
166	Superoxide dismutase	0.35	0.5	
384	Alcaligin siderophore biosynthesis protein	5.2	137	
681	Hemin binding protein	ND (not on partial array)	4.4	

App. Environ. Microbiol. (2002) 68: 881-892; D.K. Thompson et al.

Other Whole Cell Analyses in Progress

- Hydrogen peroxide effects
 - Post-translational modification???

- Oxy R mutant
 - Fumarate reductase differential expression??

Ting Li, ORNL

Analysis of MR-1 Gene and Protein Expression in Whole Cells

Conclusions

- In experiments with different soluble electron acceptors, major gene and protein expression differences observed were indicative of cells adjusting their metabolism to the availability of varying electron acceptors.
- Correlation was found between some mRNAs and their corresponding proteins, but not all. Regulation at the protein translation/degradation level?
- An example of post-translational modification observed after growth with hydrogen peroxide.

Response to electron acceptor availability involves regulatory mechanisms at both the gene and protein levels.

Shewanella oneidensis MR-1 Makes Contact with the Environment and with Neighboring Cells

Shewanella on hematite (PNNL)

Shewanella biofilm (PNNL)

Shewanella on goethite (Virginia Tech; Atomic Force Microscopy)

New NABIR Project FY04

Analysis of *Shewanella oneidensis* Membrane Protein Expression in Response to Electron Acceptor Availability

•To identify of all of the proteins expressed in wild type *S. oneidensis* membrane fractions from cells grown with a variety of terminal electron acceptors (including solid-phase as well as soluble metals, e.g., iron and manganese oxides)

•To quantify the differences in the membrane proteins expressed by wild type *S. oneidensis* cells after growth with different terminal electron acceptors

•To use mutants of *S. oneidensis* (e.g., *mtrB* and *mtrC*) to dissect the outer membrane electron transport pathways by comparing the membrane protein expression in the mutant cells with wild type cells

Two Complementary Proteomics Approaches

2DE with LC/MS-MS of particular proteins for the assessment of relative abundance and the identification of specific proteins showing differential expression (ANL)

"Shotgun" Proteomics with LC/MS-MS for the identification of ALL proteins present in membrane preparations (ORNL – R. Hettich and N. VerBerkmoes)

First Challenge: Isolate Membranes

of Energy

Flow Chart for Dual CNBr/Trypsin for LC/LC-MS/MS for Full Protein Inventory

Membrane Fraction Acetone Precipitate Solubilize in 70% Formic Acid Digest with Excess CNBr (24hrs) Neutralize solution to pH 7.5 **Digest with Trypsin (24hrs)** Analyze sample with LC/LC-MS/MS

Membrane prep at ANL → ORNL for LC/LC-MS/MS

But What About Function?

Classical 2DE requires denaturation of proteins into their polypeptide subunits, in most cases causing total inactivation of biochemical function and loss of noncovalently-bonded ligands/cofactors.

An additional aspect of proteomics is the analysis of protein function and identification of the components of protein complexes.

Non-Denaturing 2DE

- Cell lysis by sonication at pH 8.0 in isotonic buffer containing protease inhibitors
- First-dimension isoelectric focusing with carrier ampholytes no denaturants
- Second-dimension electrophoresis (charge-to-mass ratio) no denaturants

Membrane proteins require a low concentration of zwitterionic detergent (CHAPS) in the gels.

Membrane Proteins Under Nondenaturing Conditions

MR-1 Crude Membrane Preparation separated under nondenaturing conditions

Differences with growth conditions???

Exploration of the MR-1 Membrane Proteome

- Comparison of membrane proteins from cells grown with different electron acceptors (quantitative and qualitative)
 - Soluble (Fe, Cr, Ur)
 - Solid (e.g., birnesite, goethite, hematite): K. Nealson @ USC
- Comparison of membrane protein expression in wildtype MR-1 and specific mutants with genetic deficiencies in specific membrane proteins:
 - MtrB -
 - MtrC A. Belieav @ PNNL

Goal: To elucidate the specific membrane proteins involved in reduction of different metals with environmental relevance.

Office of Science

U.S. Department

of Energy

Acknowledgments

This research is funded by the U. S. Department of Energy, Office of Biological and Environmental Research, NABIR Program.

Tripti Khare, ANL Gyorgy Babnigg, ANL Sandra Tollaksen, ANL

Joe Zhou, ORNL Dorothea Thompson, ORNL Alex Belieav, ORNL/PNNL Ting Li, ORNL Ken Nealson, USC

24