daho National Laboratory

Geocentrifuge Studies of Flow and Transport in Porous Media

Carl D. Palmer

Idaho National Laboratory

Earl D. Mattson

Idaho National Laboratory

Robert W. Smith

University of Idaho

Environmental Remediation Sciences Program PI Meeting Airlee Conference Center, Warrenton, VA April 3-5, 2005

INL Geocentrifuge

- Actidyn Systemes
- 2-meter radius
- 5-130 g acceleration

Motivation for Geocentrifuge

- Decrease the time required to complete an experiment compared to 1g experiments.
- Obtain spatial scaling real-world problems according to the acceleration.
- Study a wider range of conditions than is capable under 1g acceleration.

Vadose Zone Transport

Scaling Factors <i>Gravity</i> 1/N	
Length	N
Velocity	1/N
Time	N^2
Decay Rate	1/N ²
Dispersion	1
Porosity	1
Temperature	1
Pressure	1
Density	1
Viscosity	1
Mass Fractions	1

Accelerations

Fluid Potential

If Coriolis term is insignificant, velocity is small, and steady-state flow:

$$\phi = -\frac{\omega^2 r^2}{2} + gz + \frac{p}{\rho_f}$$

Pressure and Piezometers

$$p = p_c + p_g = -\rho_f \omega^2 (r_2^2 - r_1^2) + \rho_f g(z_2 - z_1)$$

 $p = -\rho_f \left[\left(\omega^2 \sin^2 \beta \right) \psi^2 - \left(2\omega^2 r_1 \sin \beta + g \cos \beta \right) \psi \right]$

Pressure and Piezometers

For
$$\beta = \pi/2$$

 $\psi_{\pi/2} = r \left(1 - \sqrt{1 - \frac{p}{\rho_f \omega^2 r^2}} \right)$

For
$$\beta = 0$$

 $\psi_0 = \frac{p}{\rho_f g}$

Elevation Head and Hydraulic Head

 $= \left[\left\| \tilde{\xi} \right\|^2 + \left\| \tilde{\psi} \right\|^2 + 2 \left\| \tilde{\xi} \right\| \left\| \tilde{\psi} \right\| \cos \gamma \right]^{1/2}$

$$\tilde{q} = -\frac{\rho_f}{\mu} \tilde{\bar{k}} \tilde{\nabla} \phi$$

$$q_{z} = -\frac{\rho_{f}}{\mu} \left[k_{zr} \left(-\omega^{2}r + \frac{1}{\rho_{f}} \frac{\partial p}{\partial r} \right) + k_{zz} \left(g + \frac{1}{\rho_{f}} \frac{\partial p}{\partial z} \right) \right]$$

Idaho National Laboratory

$$q_{r} = -\frac{k_{rr}\rho_{f}}{\mu} \left[-\omega^{2}r - \left(2\omega^{2}\sin^{2}\beta\right)\psi\frac{\partial\psi}{\partial r} + (2\omega^{2}\sin\beta)\psi + \left(2\omega^{2}r\sin\beta + g\cos\beta\right)\frac{\partial\psi}{\partial r} \right]$$

$$q_{z} = -\frac{k_{zz}\rho_{f}}{\mu} \left[g - \left(2\omega^{2}\sin^{2}\beta\right)\psi\frac{\partial\psi}{\partial z} + \left(2\omega^{2}r\sin\beta + g\cos\beta\right)\frac{\partial\psi}{\partial z} \right]$$

$$+ \left(2\omega^{2}r\sin\beta + g\cos\beta\right)\frac{\partial\psi}{\partial z} \right]$$
Idea National Laboratory

For
$$\beta = \pi/2$$

$$q_{r} = -\frac{k_{rr}\rho_{f}\omega^{2}}{\mu} \left[\left(2\psi - r \right) + 2\left(r - \psi \right) \frac{\partial\psi}{\partial r} \right]$$

$$q_{z} = -\frac{k_{zz}\rho_{f}}{\mu} \left[g + 2\omega^{2}(r - \psi)\frac{\partial\psi}{\partial z}\right]$$

For $\beta = 0$

$$q_{r} = -\frac{k_{rr}\rho_{f}g}{\mu} \left[-\frac{\omega^{2}r}{g} + \frac{\partial\psi}{\partial r} \right] = -K_{rr} \left[-N + \frac{\partial\psi}{\partial r} \right]$$

$$q_{z} = -\frac{k_{zz}\rho_{f}g}{\mu} \left(1 + \frac{\partial\psi}{\partial z}\right) = -K_{zz} \left(1 + \frac{\partial\psi}{\partial z}\right)$$

Non-dimensionalization of the Navier-Stokes Equation for Flow in a Centrifugal Field

$$\frac{\partial^2 u^*}{\partial r^{*2}} - \frac{2}{Ek} u^* = \frac{1}{Ek Ro} r^* + \frac{\partial p^*}{\partial r^*}$$

where

$$Ek = v/\omega r_0^2$$

= viscous force Coriolis force

$$Ro = V_0 / \omega r_0$$

inertial forces

Coriolis force

Rossby Number

Coriolis Effects

Coriolis effects can be ignored if:

$$\frac{2Ro}{r^*/u^*} = \frac{2u}{\omega r} = 1$$

Coriolis Effects

Idaho National Laboratory

Column Design Schematic

New Flexible Moisture Probe Design

C)

d)

Fraction Collector Designed to withstand High Accelerations

Column Experiments

Column Experiments

Comparison of 20-g and 1-g Experiments

Pore Volume (-)

Column Experiments

Capillary Barrier Studies

Summary

- Developed theoretical background that serves as a basis for improved design, interpretation, and simulation of experiments
 - fluid potential,
 - pressure, pressure head, & hydraulic head in centrifugal field,
 - specific discharge,
 - -Coriolis effects,
- Advanced techniques needed to conduct in-flight sampling and monitoring on the geocentrifuge,
 - Improved moisture probes,
 - fraction collector for geocentrifuge,
 - general experimental setups for geocentrifuge
- Conducted experiments that demonstrate that the geocentrifuge technique is a viable experimental method for the study of subsurface processes where gravitational acceleration is important

Summary

Key Advantages of Geocentrifuge Approach:

- Decrease time required to complete an experiment compared to 1g experiments.
- Obtain spatial scaling real-world problems according to the acceleration.
- Study a wider range of conditions than is capable under 1g acceleration.

Coriolis Effects

