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Overview 
 
This is the final report for the study of factors affecting the penetration rate of carbon capture and 
storage technologies in the electric power sector (award DE-FG02-02ER63473).  This project falls 
under the Technology Innovation and Diffusion topic of the Integrated Assessment of Climate Change 
Research Program.  Specifically, we are investigating ways of “improving methods and models for 
assessing innovation and diffusion of technologies that affect the emission of greenhouse gasses” 
(quote from this year’s call for proposals).   
 
Advanced technologies will play a critical role in achieving significant greenhouse gas reductions.  
Energy-economy models commonly illustrate that the adoption of advanced technology such as carbon 
capture and sequestration (CCS) is economically attractive under most emission reduction policies.  
However, embedded within integrated assessment models are ad hoc assumptions on the penetration 
rate of these advanced technologies.  This research seeks to refine our understanding of plausible 
technology penetration rates and improve the representation of CCS technologies in integrated 
assessment models. 
 
This study accomplished several research tasks:  a survey of the ways modelers currently control 
penetration rates (task 1), historical analysis of technology adoption (task 2), analysis of factors 
affecting technology adoption rates (tasks 3-5, comprising industry structure, resources constraints and 
logistics, and regulations and environmental policy), and the identification of critical factors and their 
incorporation into integrated assessment models (task 6).   
 
The first two tasks are summarized in sections 1 and 2.  Our literature review of empiric and theoretic 
factors affecting technology adoption rates (tasks 3-5) uncovered several additional factors beyond 
those identified in the initial proposal.  Section 3 summarizes this work.  Research to assess the 
significance and relative importance of these factors involves the development of a microeconomic, 
system dynamics model of the US electric power sector.  The model explicitly represents power sector 
operation and investment as well as fuel supply and CO2 storage.  By containing more sector-level 
detail than integrated assessment models, it should generate more plausible estimates of CCS 
penetration rates.  The model is described in section 4.  Section 5 summarizes the identification of the 
factors critical to CCS adoption and our efforts to incorporate a reduced form model into an integrated 
assessment model. 
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1. Survey of penetration rate control in integrated assessment models 
 
Six integrated assessment models designed for the study of interactions between energy, climate, and 
economy were surveyed for how the models control the penetration rates of CCS technologies as listed 
in Table 1.1  The models range in construction from bottom-up engineering cost models to top-down 
macroeconomic computable general equilibrium models.  Half of the models are fully dynamic and 
optimize over all time periods (typically to 2100).  The other half is recursive dynamic and maximizes 
production or minimizes cost for each time period of simulation without regard for conditions in 
subsequent time periods.   
 
Table 1.  Current methods for controlling penetration rates in integrated assessment models 
Model, Reference Description Method for controlling CCS penetration rates 
DNE21 
Fujii and Yamaji (1998) 
Fujii (2003) 

Bottom-up hybrid, 
fully dynamic 

Exogenous constraint.  CCS decadal capacity addition 
limited to 20% of total carbon flux from electric power 
by region. 

EPPA 
McFarland et al. (2004) 

Top-down CGE 
hybrid, recursive 
dynamic,  

Endogenous constraint responsive to carbon price.  
CCS capacity addition limited to 20% share growth 
over 20 years (similar to growth of nuclear power in 
US) at carbon prices of $200/tC.2   

MESSAGE 
Riahi et al. (2004), Riahi 
(2005) 

Bottom-up hybrid, 
fully dynamic 

Exogenous constraint.  Capacity growth constraint of 
20% per annum for niche and demonstration reaching a 
maximum of 10% per annum during commercialization 
phase (slightly more than doubling every 10 years).3 

MERGE 
Manne and Richels (2004) 

Bottom-up hybrid, 
fully dynamic 

Exogenous constraint.  Maximum share:  1% in year of 
introduction, 3% after 10 years, 9% after 20 years, 27% 
after 30 years, and 81% after 40 years, no limit beyond 
40 years. 

MiniCAM 
Brenkert et al. (2004),  
Edmonds et al. (2004) 

Top down partial 
equilibrium hybrid, 
recursive dynamic 

Exogenous and endogenous.  Exogenous constraint on 
maximum share of electricity generation from a single 
technology.  Share is also endogenously determined as 
a function of cost differences using a logit specification 
(see Edmonds and Reilly, 1983).4 

SGM 
Sands (2004) 

Top down CGE 
hybrid, recursive 
dynamic 

Endogenous.  Share is endogenously determined as a 
function of cost differences using a logit specification 
(see Edmonds and Reilly, 1983).5   

 
All of the models contain an exogenous or endogenous constraint on the rate of CCS penetration to 
reflect the historically slow adoption of technologies in the electric power sector.  Without such 
constraints, new technologies would be adopted at unprecedented rates upon becoming economically 
attractive.  The specification of the constraints is summarized in Table 1.   
 
Although many other factors in the models affect the diffusion of CCS technologies (e.g., reference 
emissions, autonomous energy efficiency improvement, number and relative costs of competing 
technologies, and capital vintaging), a cursory comparison of the models under 550 ppm CO2 
                                                 
1 Energy Technology Perspectives (ETP) model from the IEA will be surveyed in the near future. 
2 Global share of electricity from CCS grows from 10% in 2045 to 80% by 2060 under a 550 ppm stabilization scenario that 
cuts emission dramatically in the latter half of the century. 
3 Global share of electricity from CCS grows from 10-12% in 2060 to 90% by 2090 under a 550 ppm CO2 stabilization 
scenario. 
4 Global share of electricity from CCS grows to 20-55% in 60 years depending upon technology assumptions. 
5 US share of electricity from CCS reaches 35% in 40 years at $200/tC. 
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stabilization scenarios is revealing.  EPPA, with a price responsive constraint, and MESSAGE, with a 
loose exogenous constraint, show the most rapid adoption of CCS technologies.  The share of 
electricity from CCS technologies grows from 10% to over 80% in less than 30 years.  In contrast, 
MiniCAM and SGM, which rely on logit functions, depict slower share growth, reaching 35% to 50% 
in 40 years.  Such large disparities have significant implications for modeling and climate policy. 
 
 

2. Empirical assessment of technology penetration rates 
 
Empirical evidence shows that technology diffusion frequently follows an S-shaped logistic curve with 
three characteristic phases (e.g., Rogers 2003, Stoneman 2002, Grubler et al. 1999, Thirtle and Ruttan 
1987).  Initially, market penetration is slow as small niche markets are filled and demonstration 
projects are undertaken.  Growth accelerates during the commercialization phase and market share 
increases rapidly.  The rate of growth slows as the size of the non-adopting market declines, the 
technology matures, and more advanced alternatives become available.  This component of the DOE 
sponsored research has examined technology penetration for:  1) large-scale, networked technologies, 
2) nuclear power, and 3) other electric generating technologies.  Results are presented below for parts 1 
and 2.  Empirical penetration rates of other electric generating technologies in the US will be 
completed as part of the calibration procedure for the system dynamics model as discussed in section 
4. 
 
The penetration rate of large-scale, networked technologies has been extensively examined by Grübler 
et al. (1999).  The study characterizes technologies by their relative advantage over competing 
technologies, scale, infrastructure needs, and technical interdependence.  Technologies with great 
scale, infrastructure needs, and technical interdependence such as coal use, railways, and home 
electrification required between 44-80 years to move from 10% market share to 90% market share6.  In 
the US, railways, telegraphs, oil pipelines, and roads needed 50-65 years to achieve similar changes in 
market share.  The authors also note a wide variation in the diffusion rate with a mean of 41 years and 
standard deviation of 42 years for 265 processes. 
 
Turning to the expansion of nuclear power, the USA, Japan, and EU-15 required between 9 to 15 years 
to expand nuclear power from 5% to 20% of their electricity generation (see Figure 1 below).  The 
greatest rate of growth in nuclear power generation occurred from 1974-1988 during the 
commercialization phase.  The diffusion paths for the USA, Japan, and EU-15 excluding France are 
quite similar as all regions generate between 20-25% of their electric power from nuclear by 1990.7  
France, due to national policy, changed its mix of electricity generation from 10% to 70% in less than a 
decade.8   
 
 
 
 
 

                                                 
6 The authors define this as the diffusion rate. 
7 The research, development, and demonstration phase comprised 15-20 years of low absolute growth but high percentage 
growth in output. 
8 From 1960 to 2002, France added average of 26,000 GWh/yr while the USA added 77,000 GWh/yr. 
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Figure 1.  Share of nuclear power generation in the USA, Japan, EU-15, EU-15 excluding France and France 
(source: IEA, 2004).  The right graphic excludes France.   
 
 
 

3. Empirical and theoretical analysis of factors affecting technology 
penetration rates 

 
Our initial proposal identified three factors affecting the rate of CCS diffusion: retrofitability of the 
existing capital stock, access to CO2 reservoirs and pipeline infrastructure, and environmental 
regulation.  An extensive survey of the technology adoption and diffusion literature revealed several 
additional factors that should be considered in a complete analysis of CCS penetration.  The factors 
that determine penetration rates are analyzed by McFarland and Herzog (2006) and may be 
summarized as follows:  
 
Characteristics of the technology   
Perhaps the most obvious and expansive factor influencing technology adoption rates are the 
technology’s characteristics – such as the expected returns and risk relative to existing technologies, 
the exclusivity of the technology’s intellectual property, the degree and form of regulatory barriers, and 
the complexity relative to existing processes.  High expected returns accelerate adoption while risk and 
regulation deter it.   
 
Characteristics of potential adopters   
Empirical studies suggest that firms’ size, access to credit, and quality of human capital influence 
technology adoption.  Large firms tend to have a larger capital stock that increases the opportunities to 
replace aging capital and lowers the risk of investing in a novel technology.  Rose and Joskow’s (1990) 
study of electric utilities finds that large firms adopt new technologies earlier than small firms even 
after controlling for capital stock turnover.  Firms with older vintages of capital may find it more 
profitable to replace that capital with new technology.  Heterogeneity across firms may contribute to 
the historic pattern of S-shaped technology adoption as the largest firms adopt first followed by the 
majority of mid-sized firms and finally by the smallest firms.   
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Declining technology costs   
McDonald and Schrattenholzer (2002) cite numerous studies of cost (and/or price) reductions in 
energy-related technologies.  Costs may decline via several mechanisms: learning by doing, learning 
by using, economies of scale in production or unit size, and research and development by the supplier 
or adopter.  Declining costs increase the relative economic advantage of a technology, thus promoting 
its adoption.  This technology characteristic may explain the increasing rates of adoption in the early 
stages of technology diffusion.  Initially, a technology may be economically attractive to only a small 
set of adopters.  As costs decline, the technology appeals to a greater number of adopters.  This process 
of adoption, production, and cost reduction is reinforced until it is no longer profitable for others to 
switch technologies. 
 
Availability of information   
Early models of technology adoption were based on the concept that the dissemination of information 
explains diffusion (see e.g., Mansfield 1961).  Similar to the spread of an epidemic, information 
spreads slowly from the first adopters then increases geometrically as the number of adopters grows.  
Adoption slows as the percentage of non-adopters declines.  Taylor (2001) describes how information 
dissemination promoted adoption as well as learning in the development of SO2 scrubbers.  Unlike 
distributed generation technologies, for example, innovations in large-scale generating technologies 
typically require several years to test and evaluate. 
 
Industry characteristics   
In addition to adopter characteristics, the economic benefits of acquiring a technology are dependent 
on the industry concentration, industry structure, and business cycle dynamics.  The empirical basis of 
the effect of industry concentration is contradictory, perhaps reflecting countervailing processes.  With 
relatively fewer firms, information flow is facilitated in concentrated industries, yet firm size tends to 
be highly variable in concentrated industries, which tends to slow diffusion.  The competitiveness of 
the firms supplying and supporting technologies encourages price reductions, and therefore, diffusion.  
Anex et al. (1999) note that the restructuring of the U.S. electric power sector promoted the adoption of 
less capital-intensive advanced gas technologies.  Business cycle dynamics may lead to erratic rates of 
investments and technology adoption.  As evidenced by Ford (2001), the electricity generating industry 
is highly susceptible to such behavior. 
 
Specialized resources   
The production and operation of new technologies require specialized human or physical capital, such 
as engineers, tooling equipment or natural resources (e.g., suitable CO2 reservoirs), the supplies of 
which are limited in the short term.  Thus the availability of these critical resources constrains the 
profitable level of technology adoption.  Over time, the supply of these resources is increased or 
technology costs decline and adoption resumes. 
 
General equilibrium effects   
Significant adoption of technologies that use a particular input will drive up the demand for the input 
and price of the input.  Likewise, as the adoption of new technologies drive output prices down, other 
firms are pressured to follow suit.   
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4. Assessing the importance of technology diffusion factors using system 
dynamics 

 
The primary focus of our work to date has been to develop a system dynamics model of the US electric 
power sector incorporating the factors discussed in section 3 in order to understand their significance, 
interactions, and implications for technology and climate policy.  This work is documented in 
McFarland (forthcoming 2007).  System dynamics is an appropriate methodology for this endeavor.  
System dynamics has been used extensively to model energy and electric power systems.  Ford (1997) 
cites 33 system dynamics applications involving electric power.  The scope of the work ranges from 
national energy systems to the investment behavior of individual firms.  Furthermore, system dynamics 
models have successfully represented the boom and bust investment cycles in the utility industry as 
well as utility responses to rate of return regulation and restructuring (Ford, 1997).   
 
For the purpose of tractability, the model is limited to the U.S. electric power sector.  The major 
drawback of this assumption is that technology spillovers and from other regions of the world cannot 
be represented in the model.9  The timeframe of the model is from 2004 through 2100.  The longevity 
of capital life in this sector (20 to 50 years for a power plant) necessitates the lengthy time scale.  Table 
2 summarizes the model boundaries.   
 
 
Table 2.  Model boundaries 

Region USA 
Years 2004 -2100 
Key Exogenous 
Parameters 

GDP growth, carbon penalties, regulatory policies (subsidies, 
demonstration programs, and siting and monitoring requirements) 

Key Sub-models Plant dispatch, electricity demand, capital vintaging, investment, 
technology supply, resource supply (fossil fuel, renewables, CO2 storage 
volume). 

Generating Technology Aggregation 
Peak simple cycle gas/oil 

Intermediate combined cycle gas, pulverized coal, gas CCS, coal CCS 
Base combined cycle gas, pulverized coal, nuclear, hydro, wind, solar, 

geothermal, gas CCS, coal CCS 
 
 
Causal loop structure 
 
The factors discussed in section 3 are endogenously represented by the variables and feedback 
structure of the model.  While space limitations prohibit a discussion of how each factor is 
incorporated into the model, the causal loop diagram below depicts the critical factors and feedbacks 
represented in the US electricity model. 
 

                                                 
9 Once the utility of this technique has been demonstrated for one region, it can be expanded to model multiple regions. 
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Figure 2.  Causal loop diagram of technology adoption in the electric power sector 

 
 
The loops in such a diagram are labeled as “balancing” or “reinforcing”.  Balancing loops stabilize 
variable values at a dynamic equilibrium, at least in the long run, while reinforcing loops create 
exponential growth or decay.   The “plus” and “minus” signs on the arrows indicate the relationship 
between the variables.  The “plus” sign from electricity demand shows that higher demand leads to 
higher prices.  The “minus” sign from electricity price to demand indicates that an increase in price 
lowers demand.  A discussion of these feedback loops provides an overview of the model.  Three 
exogenous variables (economic growth, carbon penalty, and demonstration programs and incentives) 
have important effects on model behavior but are not contained in the feedback loops. 
 
The majority of the balancing loops represent the economic relationship between supply and demand.  
Demand balance (B1) captures the short and long-run price responsiveness of consumer demand to 
electricity prices.  As prices escalate, consumers use less electricity.  Similarly, short-run supply 
balance (B2) and long-run supply balance (B3) depict increases in electricity output as electricity price 
rises.  The short-run effect involves bringing idle capacity on-line and increasing the capacity factor of 
plants that are already in operation.  Plant dispatch is treated endogenously in the model.  The long-run 
effect of an electricity price increase leads to a higher expected profitability, more capacity investment, 
and subsequently higher output.  As capacity investment outstrips the short-run ability of equipment 
suppliers to deliver the products, the price of capital equipment will rise to slow investment (B4) until 
additional manufacturing capacity is available to meet demand. 



 9

 
Resource scarcity (B5) depicts the rising costs of physical resources (coal, gas, CO2 storage areas, 
pipeline right of ways, etc.) as those resources with the highest quality or easiest access are used.  We 
will use the Carbon Management GIS or similar system to produce supply curves for CO2 transport 
and storage costs.  Resource extraction and depletion models will be based on previous system 
dynamics models (see e.g., Naill 1973).  Omitted from the diagram, but not from the final model is 
technological progress in resource discovery, extraction, and utilization that has historically 
outstripped depletion costs for most raw materials in the 20th century. 
 
Causal loops leading to exponential growth in technology adoption in this model involve cost-reducing 
innovations that are generally classified as learning effects.  Generating entities lower costs through 
operational improvements (i.e., learning by using R1) and through reapplying knowledge from 
repeated acquisition of a particular technology (i.e., learning by doing R2).  These cost reductions 
enhance the expected profitability of future investments, which leads to greater capacity acquisition 
and further learning.  A similar phenomenon exists for the technology supplier (R3).  Higher 
cumulative production leads to standardization of designs, innovations in manufacturing, and the 
streamlining of organizational processes which in turn lower costs.  This increases demand for the 
technology to the extent that such cost reductions are passed along to the buyers.  Although not 
depicted in the diagram, economies of scale may also play a reinforcing role in these three areas of 
technology cost reduction. 
 
The last reinforcing loop involves capital stock turnover (R4).  As new capacity comes on line, the 
profitability of older vintages of capital declines.  Lower profitability leads to less investment in 
operations and maintenance and eventually translates into the retirement of older capacity.  With less 
system capacity during peak demand periods, prices will spike higher which in turn makes new 
capacity investment more attractive.  Unlike most other models with capital vintaging, investment 
decisions regarding existing capacity are endogenous to the model.  For each of the three vintages per 
technology, the economic decision will be made regarding whether or not a technology should receive 
a life extension, CCS retrofit, or retirement.  The option to life extend is believed to be important as 
much of the existing coal-fired capacity in the US will soon surpass its design life, yet few plants are 
expected to be retired. 
 
 
Example of stock and flow structure: capacity 
 
To offer a sense of the level of detail within the model, we describe the stock and flow structure of 
generating capacity, one of the macro-level variables presented in Figure 2 above.   As Figure 2 
illustrates, capacity is a component of the long-run supply balance (B3) and stock turnover (R4).   
 
The annual total potential generating output (see top of Figure 3) is a product of the total capacity, 
plant availability, and the hours in a year.  Total capacity is the sum of six vintages of capital:  three 
vintages of capital that have not been retrofit with carbon capture and storage (or cannot be retrofitted, 
e.g., wind, hydro, and nuclear) and three vintages of fossil plants that have been retrofitted with carbon 
capture and storage technology.  At the completion of new construction, new capacity is added to the 
stock of vintage 1 capacity.   
 
As the capital ages, it is moved to vintages 2 and 3, respectively, based on an average physical life that 
varies by technology.  The rate of capacity aging is specified as the stock of capital divided by the 
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average life of capacity for that vintage.  For each vintage of capacity, an investment decision is made 
as to whether some or all of the capacity should be given a life extension or retrofit with carbon 
capture and storage technology.  If the capacity is retrofit with CCS technology, it continues to age and 
is subject to life extensions.  A separate, parallel structure, called a co-flow, tracks the heat rate and 
operations and maintenance requirements for each plant type and vintage. 
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Figure 3.  Stock and flow structure of generating capacity 
 
 
 
To date, the majority of the feedback loops have been incorporated into the model.  More work is 
needed to characterize natural resource sector (coal, oil, and gas supply).  The model is calibrated to 
2004 data for power plant characteristics and electricity demand.  Estimates of model parameters (e.g., 
plant construction times, profitability hurdle rates, and demand expectations) have been obtained from 
the literature, econometric analysis when possible, and expert elicitation or judgment. 
 
The result of this effort is a bottom-up model of the US electric power sector that incorporates all of 
the empirical and theoretical factors affecting technology penetration rates as discussed in Section 3.  
The model offers insights into the interactions between penetration rate factors for a given carbon price 
path using reference parameter estimates.  For example, although the some features of the model are 
not complete, the adoption of CCS technology is much slower in the bottom-up, system dynamics 
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model than in the EPPA model.  For a carbon tax beginning in 2010 at $25/tCO2 and growing at a real 
rate of 4% per year the EPPA model shows the share of CCS generation climbing from 5% to 65% in 
20 years.  In contrast, the system dynamics model requires 35-40 years for CCS to gain such high 
shares of generation.  This difference is partly due to the greater technology disaggregation in the 
bottom-up model as well as the supply chain delays. 
 

5. Identification of critical variables and incorporation into integrated 
assessment models 

 
Upon completion of the model, we plan to use it to identify the most critical factors influencing 
technology penetration, and to incorporate the important feedbacks into at least one integrated 
assessment model.  These results will be presented in McFarland (2007). 
 
Through sensitivity testing, we plan to determine which exogenous factors (e.g., carbon price, 
subsidies, demonstration programs, learning rates, resource estimates) and endogenous feedback loops 
(e.g., learning by doing for technology supplier and user, stock turnover, and resource scarcity) have 
the greatest influence on the CCS technology penetration path.  Different variables will have greater 
influence at different stages of market penetration.  For example, demonstration programs may 
accelerate initial penetration, but will not likely have as great an impact on the long-term rate of 
commercialization.  The same holds true for the endogenous feedback loops.  Initial tests of the model 
suggest that the exogenous factors have the greatest effects followed by capital stock turnover and 
technology supply. 
 
Having identified the critical variables and feedbacks, we plan to place probability distributions on the 
key parameters10 and use Monte Carlo techniques to establish confidence intervals around the CCS 
adoption pathways.  The probability distributions for parameters may be derived from the literature 
where possible and expert elicitation.  We plan to develop a reduced-form fit of CCS penetration as a 
function of carbon prices by developing confidence intervals around the CCS adoption path for a 
variety of carbon price paths.  
 
We have incorporated several important feedbacks into one integrated assessment model, the recursive 
version of the MIT Emission Prediction and Policy Analysis (EPPA) model (Paltsev et al., 2005).  In 
Otto et al. (forthcoming), we examine the effects of capital vintaging, learning, and adjustment costs 
on the adoption of CCS technologies.  As we have shown in the bottom-up model, the short-run supply 
of specialized resources (e.g., natural resources, human or physical capital) constrains the optimal level 
of investment in a new technology.  The novel piece of this analysis was constructing an endogenous 
specification of adjustment costs11.  To accomplish this, we have developed a method that 
endogenously incorporates the real costs of short-run resource supply constraints.  In this version of the 
model, as the level of investment in CCS technologies exceeds the specialized resource base, the cost 
of the technology increases thus tempering demand for the technology.  The current version of EPPA 
controls the penetration rate of CCS technologies using a specialized resource factor that grows as a 
function of technology output in the previous period.  By modifying the parameters of this endogenous 
specification we can match CCS adoption in EPPA’s USA region to the reduced-form fit of the system 
dynamics model.   
                                                 
10 This does not include policy parameters such as the carbon price or subsidies. 
11 Earlier work (Jacoby et al. 2006 and McFarland et al. 2004) examine the effects of learning and capital vintaging. 
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This work should facilitate the incorporation of CCS penetration rates into other models as well.  The 
reduced-form fit of CCS adoption as a function of carbon price can be directly implemented in bottom-
up models with fully exogenous constraints (e.g., DNE21, MESSAGE).  Similarly, we believe that 
models with endogenous constraints based on logit specifications can adjust the “elasticity” parameter 
as function of carbon price to simulate the reduced-form behavior.  Having established a calibration 
procedure for the US and conducted a sensitivity analysis, similar work can be readily repeated for 
other regions.   
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