
Final Report

Development of PUNDA
(Parametric Universal Nonlinear Dynamics Approximator)

Models for Self-Validating Knowledge-Guided
Modelling of Nonlinear Processes in

Particle Accelerators & Industry

DE-FG02-04ER86225

Dr. Bijan Sayyar-Rodsari, PI
Dr. Carl Schweiger and Dr. Eric Hartman

Pavilion Technologies, Inc., Austin, TX 78758

October 4, 2007

Summary

Optimization-Based Control (OBC) is a widely adopted control technology that optimizes forecasts of
process behavior, over the manipulatable process inputs, . The forecasting is accomplished with a process
model. The accuracy and computational efficiency of the process model are critical to the feasibility of the
OBC approach. While “accuracy” determines whether process response is correctly anticipated, “compu-
tational efficiency” determines the frequency at which an OBC solution can be reliably applied. The main
modelling challenge is how to accommodate the need for higher model accuracy while limiting the compu-
tational cost of real-time optimization. Our Phase II STTR research has pursued a systematic methodology
for building Accurate and Computationally Efficient (ACE) models using an innovative parametric mod-
elling framework known as Parametric Universal Nonlinear Dynamics Approximator (PUNDA).

The main activities during the two year period of the Phase II STTR project may be divided in three
categories:

1. Software Development: The software framework for constrained training of PUNDA models has
been developed. Efforts are made to integrate the newly developed training framework with Pavil-
ion’s commercially available modelling, optimization, and control software (Known as Pavilion8).

2. Nonlinear Dynamic System Identification1: Varying parameters of nonlinear dynamic systems are
identified using PUNDA model structure. In addition to synthetically generated data, real process
data from a fermentation process in a bio-reactor has been used to demonstrate the applicability of
the PUNDA modelling framework in nonlinear dynamic identification problems.

(a) Both continuous and discrete representations of the nonlinear dynamic systems are examined
in our study:

i. For continuous domain representation, parameters such as gain, K, and residence time, τ,
that are commonly used to describe dynamic behavior of the system are identified.

ii. For discrete domain representation, a1,2 /b1,2 for first and second order difference equations
are identified.

(b) Both nonlinear input/output and nonlinear state-space representations of a nonlinear process
are studied in the course of this STTR Phase II project.

3. Emittance Modelling for rf Photoinjectors: Given beam size measurements for a range of
quadrupole magnet currents for Gun Test Facility (GTF) at Stanford Linear Accelerator Center
(SLAC), beam size has been modelled as a function of quad magnet current using a PUNDA struc-
ture. Three different scenarios have been considered here:

(a) The transport matrix between the exit of the linac section and the spectrometer screen is fully
known.

(b) The transport matrix is identified at the same time the beam matrix parameters are identified.
Physically meaningful constraints on how the quadrupole current affects transport matrix ele-
ments are used to guide the optimizer’s search for best beam parameters.

(c) Using first principles knowledge, the transport matrix is modelled as an explicit function of
quadrupole magnet current. Two specific cases are examined here:

i. The relationship between quad magnet current and the exerted magnetic field is assumed
known.

1To the best of our knowledge this is the first systematic attempt in identification of nonlinear systems with varying dynam-
ics.

p. 1

ii. A neural network is used to model the relationship between quad magnet current and the
exerted magnetic field.

4. Beam Lifetime Modelling for Synchrotron Light Sources: Given a fundamental model of beam
lifetime in which Touschek, Bremsstrahlung, and Coulomb effects on beam loss are reflected, a
PUNDA model is developed to capture the dependence of the beam lifetime on gap voltage (Vrf),
vertical scraper position (Ys), dynamic vacuum pressure (Pdyn) and number of bunches (Mb). The
PUNDA model is shown to correctly predict electron beam loss under various operating conditions
of the synchrotron light source.

The results of our Phase II STTR research on emittance modelling for rf photoinjectors and beam lifetime
modelling for synchrotron light sources were presented as three papers at the 2007 meeting of Particle
Accelerator Conference in Albuquerque, NM.

p. 2

1 - Introduction

Optimization-Based Control (OBC) is a widely adopted control technology that optimizes forecasts of
process behavior, over the manipulatable process inputs. The forecasting is accomplished with a process
model (i.e. a mathematical representation of the process), and, therefore, the model is a key component of
any optimization-based control strategy [1]. Optimization-based control is “the most natural and in some
cases the only methodology for control of systems that are governed by constrained dynamics [2]” and
therefore, is increasingly the control methodology of choice in difficult nonlinear applications that range
from biochemistry [3], medicine [4], and process industries [5], to aerospace [6].

The optimization problem at the heart of OBC is an open-loop finite-horizon optimal control problem
that is solved repeatedly. Therefore, the feedback in an OBC controller is only an implicit feedback that
is produced by receding horizon implementation (i.e. applying a fraction of the optimal trajectory for
manipulatable process inputs, measuring process outputs, and solving the optimization problem again at
the next step). With an implicit feedback, accuracy and computational efficiency of the process model
essentially determine whether an OBC controller will be successful. “Accuracy” determines whether the
OBC controller correctly anticipates process response. “Computational efficiency” determines whether
real-time optimization can produce an acceptable solution by the time the OBC controller is expected to
commit its next move. The main challenge in modelling for OBC stems from the need to build highly
accurate models that are computationally efficient. This STTR project was indeed motivated by the fact
that a systematic methodology for building Accurate and Computationally Efficient (ACE) models was
absent in prior research.

In Phase I, we introduced Parametric Universal Nonlinear Dynamics Approximator (PUNDA) mod-
els [7], as a framework for building ACE models. As shown in Figure 1, a PUNDA model is formed
by a series connection of a Static Nonlinear Mapping (SNM) block and a Parametric Nonlinear Model
(PNM) block. The parameters, ~p, in the PNM block may vary as a function of process inputs, ~u. A
parametric multi-input multi-output (MIMO) difference equation is the default choice for the PNM block,
although other parametric nonlinear models may be used. Neural Networks (NN) are a preferred choice
for the SNM block, which is fully determined by the NN weights and biases. Constrained optimization
determines the NN weights and biases such that the modelling error (the objective function) is minimized,
subject to any imposed constraints. This constrained optimization is known as the training of the PUNDA
model.

The main technical objective of the Phase I research was to demonstrate that PUNDA models are
accurate and computationally efficient (ACE) models that can be successfully trained using constrained
optimization. In Phase II we have further explored this technical objective and have systematically exam-
ined its suitability to model nonlinear dynamic systems. In particular, We have used PUNDA framework
to model beam emittance as a function of quadrupole magnet current, I2 , given real measurements of beam
size at Gun Test Facility (GTF) at SLAC. We have also used a PUNDA structure to study beam loss in
synchrotron light sources, and have developed models for beam lifetime that capture the dependence of
the beam lifetime on gap voltage (Vrf), vertical scraper position (Ys), dynamic vacuum pressure (Pdyn) and
number of bunches (Mb).

2 - Background Information

This section provides background information for complex system modelling. In particular a brief
mathematical description of the PUNDA model is provided to facilitate the discussion of research results
in Sections 3.

p. 3

Actual Nonlinear Process
(ANP)

Parametric
Nonlinear

Model
(PNM)

Static
Nonlinear
Mapping

(SNM)
(e.g. Neural
Networks)

Parametric Universal Nonlinear Dynamics
Approximator (PUNDA) Model

Σ

Modeling
Error

Process
Inputs

Process
Outputs

u y

e

p

Fig. 1: Diagram of the modelling with a PUNDA model. In this diagram: (a) ANP block represents the actual nonlinear
process to be modelled whose inputs/outputs (I/O) are measured. Often I/O measurements are augmented with additional
information about the process. (b) The PUNDA model is formed by the series connection of the static nonlinear mapping
(SNM) block and the parametric nonlinear model (PNM) block. Both steady state and dynamic models may be used for the
PNM block. The diagonal arrow through the PUNDA model indicates that the “modelling error” is the objective function to be
minimized during the training of the PUNDA model.

2.1 - Background Information on Complex System Modelling
The overwhelming success of model-based optimization and control in all aspects of modern life

(aerospace and transportation, materials and processing, biology and medicine, robotics, and information
and networks) has given mathematical modelling a critical role in all fields of engineering and physics.
“Mathematical models may be developed along two routes (or a combination of them). One route is to split
up the system, figuratively speaking, into subsystems, whose properties are well understood from previous
experiences. This basically means that we rely on laws of nature and other well-established relationships
that have their roots in earlier empirical work. These subsystems are then joined mathematically and a
model of the whole system is obtained. ... The other route to mathematical models is directly based on
the experimentation. Input and output signals from the system are recorded and subjected to data analysis
in order to infer a model [8].” Literature often refers to the first route as First-Principles (FP) modelling,
while the second route is commonly referred to as Empirical Modelling (EM) (although empirical data is
also involved in building FP models).

The accumulated experience over the past several decades has revealed the strengths and weaknesses
of these two routes when applied to real-world complex systems.

For the FP route it has become clear that:

1. FP models are built based on the science behind the process, and hence are better suited for repre-
senting general process behavior over the entire operation regime.

2. FP information is often incomplete/inaccurate.

3. FP model parameters must often be tuned before use in optimization/control.

4. FP models are computationally expensive (particularly when model output is not explicit2), and are
often only feasible for real-time optimization/control when the process is slow.

2An example is G(yk , uk , xk) = 0 where the output vector yk is an implicit function of input vector uk and state vector xk . An
internal solver is therefore needed to solve for yk at each interval.

p. 4

5. When the process changes, modification of the FP model is, in general, expensive. Designed exper-
iments may be needed to obtain the necessary data.

For the EM route it has become clear that:

1. Since data captures the non-idealities of the real process, an EM model can be more accurate where
data is available.

2. The available data is often highly correlated and in this case process data alone is not sufficient
to unambiguously break these correlations. This is particularly visible when process operation is
recipe-dominated3.

3. Designed experiments are often needed to produce the necessary uncorrelated data for EM modeling.
Designed experiments disrupt normal plant operation and hence are highly undesirable.

4. Certain regions of operation are typically avoided, and hence representative data for those regions
will not be available.

The complementary strengths and weaknesses of these two modelling routes are widely recognized [9,
10, 11], and the value of an approach that allows for their strengths to complement one another is generally
acknowledged [11, 12].

Logically, there are two basic ways to combine EM and FP models:

1. Parallel Combination, Figure 2.a, where the residuals, or errors, of an FP model are modelled by an
EM4, and the outputs of the two models are added together to give the combined output.

2. Series Combination, Figure 2.b, where an EM model directly rectifies a primary cause of FP model
errors, rather than simply compensating for them. Rather than fitting the FP parameters, ~p, to data
as constants, as is the common practice, an EM is used to model the parameters, ~p, as functions of
the process inputs. The output of the EM model is thus input to the FP model5. A powerful aspect
of this structure is that the capturing of the previously unknown (~u-~p) relationship by the EM model
requires no data for the parameters, ~p, which is generally unavailable, but requires only data for the
inputs/outputs of the combined model.

In comparing the two approaches, the parallel EM acts as a “clean-up” model to compensate for cumu-
lative inaccuracies in the FP model. This approach simply observes the errors of the FP model “from the
outside” and compensates for inaccuracies without improving the structure or accuracy of the FP model
itself. The series approach directly addresses insufficiencies in FP models “from the inside”, improving
their accuracy and extrapolation capability by adding detail to their structure.

In comparing the training of the EM blocks in the two approaches, a major distinction is that the
outputs of the EM model in the parallel combination are directly measurable, while the outputs of the
EM model in the series combination (i.e. FP parameter values, ~p) are not. Consequently, the objective
function in the parallel combination cannot be formulated explicitly in terms of the parameters, ~p; instead,

3For example, in a linear system with 2 inputs and 1 output, a recipe may require two inputs to move simultaneously, one
to increase by one unit and the other to decrease by one unit. Even if the output is known to increase by one unit, the sign and
value of the gains from the two inputs to the output can not be uniquely determined based on this data alone.

4In the literature on combined models, NN models have by far been the primary choice for empirical modelling, and are the
only construct to be considered for the SNM block in Figure 26 in this proposal.

5As a simple example, in the non-ideal gas model PV = zT , the compressibility factor z is traditionally fitted as a different
constant for different regions of T , P, and V . In the series combination, z is instead modelled as an (unknown) function of T
and P (and also mixture composition).

p. 5

First Principles
Model

Empirical Model
(Neural Networks)

Inputs Outputs
Σ

Empirical Model
(Neural Networks)

First Principles
Model

Inputs Outputs

(a) Parallel Combination (b) Series Combination

p

u y u y

Fig. 2: Block diagram of the two basic ways FP and EM models may be combined.

the objective function is the error of the FP model outputs. This, in general, constitutes a more difficult
optimization problem than the parallel combined models.

The reported research on combined models, despite their logical appeal and straightforward structure,
is surprisingly limited. In addition it falls significantly short for our purposes with respect to algorithmic
issues, both technical and theoretical, that are indispensable for a model-based control system to be capable
of general real-world applications. In our Phase II proposal we pointed out that research prior to our Phase
I efforts was unable to build combined models in the following situations:

1. Only partial FP model is available: For example, in a multi-input/multi-output process, the lack
of the FP model for even one input/output pair is enough to prevent prior research from building
a series combined model for the process that is appropriate for optimization and control, even if
representative measurements of all process inputs/outputs are available. In process industries, for
instance, the efforts to complete FP models in such cases are extremely expensive and often require
outside expertise, leaving the available FP information essentially unusable.

2. FP model only implicitly describes the relationship between inputs/states/parameters/outputs: Prior
research simply assumes that process outputs are always explicitly defined by the FP model, which
is generally only rarely the case. Building combined models with an implicit FP model presents
significant algorithmic and optimization challenges (see research issue #4 in this section), which is
nowhere addressed in prior research.

3. Higher-order fidelity of the combined model is needed: Often, accurate first and/or second order
derivatives of the process outputs with respect to the process inputs are highly critical in model-based
optimization/control applications. Available degrees of freedom in NN models may be exploited
to enforce desired first/second order derivative behavior in a combined model. Prior research is
completely silent on how these higher order constraints may be imposed during the training of a
combined model.

Yet, in almost all real-world scenarios of complex system modelling, one or more of these challenges
arise. This STTR project was indeed motivated by the need to enable combined modelling under such
challenging scenarios. Consequently, our research in the course of the STTR project has focused on
demonstrating the applicability of the PUNDA approach to complex system modelling and on document-
ing the challenges with constrained training of these models to the extent necessary for the development
of a commercial software for this purpose under realistic scenarios.

We conclude this background section with a brief mathematical description of the PUNDA models.

p. 6

2.2 - A Description of PUNDA models
Assume the following general discrete-domain description of a nonlinear dynamic process:{

xk = Fk

(
uk , xk−1 , ρk

)
yk = Gk

(
uk , xk−1 , ρk

) (1)

where xk ∈ R
Nx×1

is the state vector, uk ∈ R
Nu×1

is the input vector, yk ∈ R
Ny×1

is the output vector, and
ρk ∈ R

Np×1
is the physical parameter vector at time k. Note that, for clarity of the derivation, xk and yk are

defined as explicit functions of state/input/parameters.
A PUNDA model for the process is motivated by the Taylor series expansion of Eq. (1) around its

current operating point,
(
x

c
, u

c
, y

c
, ρ

c
)
:

xk = x
c
+ λx

(
δxk−1

)
+ λu

(
δuk

)
+ λ

ρ

(
δρk

)
+ λxx

(
δxk−1

) (
δxk−1

)
+ λuu

(
δuk

) (
δuk

)
+ λρρ

(
δρk

) (
δρk

)
+ λxu

(
δxk−1

) (
δuk

)
+ λux

(
δuk

) (
δxk−1

)
+ λρx

(
δρk

) (
δxk−1

)
+ λxρ

(
δxk−1

) (
δρk

)
+ λuρ

(
δuk

) (
δρk

)
+ λρu

(
δρk

) (
δuk

)
+ H.O.T

yk = y
ic
+ µx

(
δxk−1

)
+ µu

(
δuk

)
+ µ

ρ

(
δρk

)
+ µxx

(
δxk−1

) (
δxk−1

)
+ µuu

(
δuk

) (
δuk

)
+ µρρ

(
δρk

) (
δρk

)
+ µxu

(
δxk−1

) (
δuk

)
+ µux

(
δuk

) (
δxk−1

)
+ µρx

(
δρk

) (
δxk−1

)
+ µxρ

(
δxk−1

) (
δρk

)
+ µuρ

(
δuk

) (
δρk

)
+ µρu

(
δρk

) (
δuk

)
+ H.O.T

(2)

where the coefficients λx, λu, · · · and µx, µu, · · · are the coefficient matrices in the Taylor series expansion6,
and H.O.T refers to the higher order terms in the Taylor series expansion. Note that

(a) Using Eq. (2), the nonlinear process is described with a nonlinear Parametric MIMO Difference
Equation (PMDE).

(b) Around its current operating condition, one can approximate the nonlinear process in Eq. (1) with
any given degree of accuracy by simply including enough terms from its Taylor series expansion.

(c) The coefficients of the Taylor series expansion are essentially functions of process inputs7.

In Phase I, we proposed to build a PUNDA model for the process described by Eq. (1) as follows:

1. Use the PMDE description in Eq. (2), with an appropriate number of terms, as the PNM block in the
PUNDA model.

2. Treat the elements of the coefficient matrices λx, λu, · · · and µx, µu, · · · as the parameter vector P in
the PUNDA model8.

3. Use an empirical model (NN in particular) to capture the functional dependency of these parameters
on process inputs.

6Given FP model in Eq. (1), the coefficient matrices in Eq. (2) are well-defined analytical function. For example:

λx =
∂Fk

(∂xk−1) , λu =
∂Fk

(∂uk)
, λuu =

1
2

∂F
2

k

(∂uk)(∂uk)
, λux =

1
2

∂F
2

k

(∂uk)(∂xk−1) ,

µx =
∂Gk

(∂xk−1) , µu =
∂Gk

(∂uk)
, µuu =

1
2

∂G
2

k

(∂uk)(∂uk)
, µux =

1
2

∂G
2

k

(∂uk)(∂xk−1) ,

7Assuming that the process in Eq. (1) is asymptotically stable, the effect of the initial conditions on process behavior will
decay to zero and hence it is valid to consider coefficient matrices as functions of process inputs only.

8Note that due to the truncation of the PMDE model to a finite number of terms, the coefficient matrices could in general be
different from Taylor series coefficients.

p. 7

4. Given process data and constraints derived from FP process knowledge, solve a constrained opti-
mization problem to train the empirical model.

For Phase I of this STTR project, we focused on a case where the state vector, xk−1 , was fully con-
structed as a function of past process inputs/outputs. Assuming that xk−1 = S k−1

(
uk−1 , uk−2 , · · · , yk−1 , uk−2 , · · ·

)
,

the output equation in Eq. (1) may be expressed as:

yk = Gk

(
uk , S k−1

(
uk−1 , uk−2 , · · · , yk−1 , uk−2 , · · ·

)
, ρk

)
(3)

for which the Taylor series expansion reduces to:

yk = y
init
+

Ypast∑
i=1

Aiδyk−i +

Upast∑
i=0

Biδuk−i (4)

where Ypast /Upast are the number of past outputs/inputs required to fully construct the state vector, and Ai /Bi

are the coefficient matrices of appropriate dimension.
Our Phase I research demonstrated that (a) the input/output model of Eq. (4) is widely applicable, and

(b) a truncation of the PMDE model to only a few terms is sufficient to build accurate models for complex
nonlinear processes9. For Phase II, we applied the PUNDA modelling framework to a state-space model
of batch fermentation process in a bio-reactor using real process data. The results of this study, reported
in Section 3, demonstrate the applicability of the PUNDA models to the state space representation of the
complex nonlinear processes.

3 - Phase II STTR Research Results

In this section, we present the results of our research and development in the course of this Phase II
STTR project. The software development efforts that have enabled constrained training of the PUNDA
models are described in Section 3.1. The application of PUNDA models in the identification of varying
parameters of nonlinear dynamic systems is described in Section 3.2. The application of PUNDA models
in the modelling of transverse beam matrix given transverse beam size measurements are described in
Section 3.3. The results of the beam lifetime study in synchrotron light sources are presented in Section
3.4. The application of the PUNDA modelling framework to the state-space representation of a nonlinear
process is described in Section 3.5.

9In particular, we used the PMDE description of Eq. (4) with Ypast = 1 to build a PUNDA model for gas composition in a
real polymerization reactor with 11 inputs and 6 outputs (with correlated measured data and only partial FP information).

p. 8

3.1 - Software Development for Constrained Training of PUNDA Models
A modeling and optimization framework has been developed for the purpose of creating combined

models and implementing the constrained training techniques. The modeling component of the framework
is used to describe explicit, multi-input, multi-output mappings. The optimization component allows the
user to describe an optimization problem by identifying the variables, objectives, and constraints for the
optimization along with the computational model and the solver to be used. The optimization framework
addresses both the training of a model to determine its parameters as well as the use of the model in other
optimization settings.

3.1.1 - Modeling Component: The modeling framework has been developed to facilitate the con-
struction and usage of nonlinear models for use in a broad range of optimization and control applications.
The base component of the modeling framework is the Numeric Mapping, which is an abstract base class
for the various model types.10 The general mathematical representation of the Numeric Mapping is the
following multi-input, multi-output operator:

y = f (x)

where x is the vector of inputs, f is the operator, and y is the vector of outputs. Although the mapping
must behave as thought it has an explicit representation, models with implicit representations such as

f (x, y) = 0

can also be addressed. This requires that the method for computing the values of y as a function of x (such
as an iterative solver) be contained within the mapping itself. Focusing on explicit models helps improve
the computational efficiency since the outputs can be computed directly from the model inputs. Because
the implicit form requires an iterative solver to compute the model outputs, model evaluation times can
increase significantly. (Using the implicit form also complicates the usage of the model in the optimization
framework; however, there are ways to address this issue.)

The basic development concepts for the Numeric Mapping are the following:

1. Provide a base modeling component that handles the computational aspects of the model including
the output and gradient computations.

2. Serve as the model interface for the description of optimization problems that use gradient-based
solvers.

3. Compute gradients automatically using both sensitivity (forward) and adjoint (backward) computa-
tion.

(a) Allow arbitrary variable vectors for sensitivity calculations.

(b) Allow arbitrary function vectors for adjoint calculations.

Two implementations of the Numeric Mapping are the Expression Mapping, and the Multi-Layer
Perceptron (MLP) Mapping for Neural Networks.

10The terms “mapping” and “model” are interchangeable in this context.

p. 9

3.1.2 - Expression Mapping: The Expression Mapping is a Numeric Mapping that allows models
to be written using mathematical expressions. It employs a modeling language that allows the user to write
the models in ASCII text using a basic editor. The Expression Mapping was developed with the following
goals:

1. Allow well-defined mathematical models to be written in a clear, concise textual form.

2. Implement automatic differentiation for efficient gradient calculations.

3. Provide a framework for incorporating other models (especially MLP mappings) within the expres-
sions.

The Expression Mapping uses a declarative language that describes the computations that must be made in
order to compute the outputs from the given values of the inputs. In order to function within the modeling
framework, the Expression Mapping must be differentiable and thus the expressions must adhere to rather
strict modeling rules in order to maintain differentiability. The Expression Mapping has the following
features:

1. Employs a clear, concise modeling language (written using the parser generator tool ANTLR).

2. Allows the declaration of local variables to help improve model clarity.

3. Allows output and local variables to be used as inputs in other expressions:

y = f (x)
z = f (x, y)

4. Allows the user to write the expressions in any order (Expressions are sorted to determine the ap-
propriate computations sequence and detect algebraic loops).
(.)

5. Allows the declaration and usage of variables with arbitrary number of dimensions.

6. Allows explicit indexing over variables and index arithmetic.

7. Allows indexing operations over sets:

(a) Indexing for set functions (summation).

(b) Indexing over expressions (for each notation).

8. Includes basic mathematic operators (+, -, *, /, ^).

9. Includes numerous built-in functions (trigonometric, log, exp, etc.). (Allows new functions to be
added rather easily.)

10. Allows user-defined functions.

(a) Used to describe multi-input, single-output mappings.

(b) Called as a function within an expression.

(c) Uses argument position for input assignment.

11. Allows other Numeric Mappings to be used within the expressions.

p. 10

(a) Used to describe multi-input, multi-output models.

(b) Called as a stand-alone statement.

(c) Uses labels for the association of variables to the inputs and outputs.

12. Allows the creation of composite models consisting of multiple Numeric Mappings within the Ex-
pression Mapping.

13. Employs error checking and provides error messages to assist in writing and debugging models.

The Expression Mapping is configured as a XML document that contains all of the information about
the model in a loosely structured format. The elements of the XML document are the set declarations, in-
put declarations, output declarations, parameter declarations, and the expression text. The set declarations
define indexed sets that are used for the dimensions of the variables and for performing indexing opera-
tions. The input and output declarations are used to define the variables that can be connected to other
mappings. The parameters are values that can be used be the mapping, but can not be wired to an external
source. The expression text contains the statements that describe that mathematical representation of the
model. The basic statement types that are used within the expression are the following:

1. Set declaration: The sets that will be used in the expression along with the definition of the elements
of the set.

2. Variable declaration: The local variables that will be used in the expressions along with their dimen-
sionality.

3. Function declaration: The user-defined functions.

4. Expression assignment: The actual expressions that indicate the mathematical computations to be
performed.

5. Mapping assignment: Statements for using a mapping within the expressions.

Several examples of some basic mathematical entities and their corresponding modeling language repre-
sentation are described in Table 1. A full XML document of an Expression Mapping is shown in Figure 3.

Table 1: Modeling language representation of mathematical constructs.
Mathematical Representation Modeling Language Representation
I = {1 . . . 5} set I = |1:5|;
J = {1 . . . 10} set J = |1:10|;
x ∈ R5×10 real x[I,J];
y ∈ R5 real y[I];
z ∈ R5, v ∈ R real z[I], v;
yi =

∑
j∈J

xi j ∀i ∈ I y[i] = sum(j in J | x[i,j]) foreach i in I;

zi = log
(

1
1+ciy2

i

)
∀i ∈ I z[i] = log(1/(1+c[i]*y[i]^2)) foreach i in I;

v =
∑
i∈I

zi
yi

v = sum(i in I| z[i]/y[i]);

y = g(x,w) g(in1:x, in2:w; out1:y);

p. 11

<mapping>
<set name=’I’>
<elements type=’range’ start=’0’ stop=’9’/>

</set>
<set name=’J’>
<elements type=’range’ start=’0’ stop=’1’/>
</set>
<set name=’K’>
<elements type=’range’ start=’0’ stop=’2’/>

</set>
<input name=’x1’ isScalar=’false’>
<dimension type=’ID’ set=’I’/>

</input>
<input name=’x2’ isScalar=’false’>
<dimension type=’size’ size=’10’/>

</input>
<input name=’x3’ isScalar=’false’>
<dimension type=’size’ size=’2’/>
<dimension type=’size’ size=’2’/>
<dimension type=’size’ size=’3’/>

</input>
<input name=’x4’ isScalar=’false’>
<dimension type=’size’ size=’3’/>
<dimension type=’size’ size=’4’/>

</input>
<output name=’y1’ isScalar=’false’>
<dimension type=’ID’ set=’I’/>

</output>
<output name=’y2’ isScalar=’false’>
<dimension type=’ID’ set=’I’/>

</output>
<output name=’y3’ isScalar=’false’>
<dimension type=’ID’ set=’J’/>
<dimension type=’ID’ set=’J’/>
<dimension type=’ID’ set=’K’/>

</output>
<output name=’y4’ isScalar=’false’>
<dimension type=’ID’ set=’K’/>

</output>
<output name=’y5’/>
<output name=’y6’ isScalar=’false’>
<dimension type=’ID’ set=’I’/>

</output>
<parameter name=’d’ isScalar=’false’>
<dimension type=’ID’ set=’I’/>
<values>[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]</values>

</parameter>
<expressions>
set L = |0:3|;
real v[I];
y1[i] = x1[i]+x2[i] forall i in I;
y2[i] = x1[i]*x2[i] forall i in I;
y3[i,j,k] = 2*x3[i,j,k] forall i in J, j in J, k in K;
y4[k] = sum(l in L | x4[k,l]) forall k in K;
y5 = sum(k in K | y4[k] * sum(i in J| sum(j in J| y3[i,j,k])));
v[i] = (d[i] - x1[i])^2 forall i in I;
y6[i] = v[i] forall i in I;

</expressions>
</mapping>

Figure 3: XML document containing an Expression Mapping.

p. 12

Dynamic modeling is currently addressed by treating the dynamic dimension as an algebraic dimension
and using the index arithmetic to compute values of a variable at an index position as a function of the
values at other (previous) index positions. This is suitable for modeling purposes where the index positions
are fixed and absolute. However, this would not work for using the model online where the time dimension
is relative and constantly changing.

Some of the future work for the Expression Mapping include (a) implementation of matrix/vector
notation, (b) implementation of true dynamics, and (c) implementation of gain computations.

3.1.3 - Multi-Layer Perceptron (MLP) Mapping: The MLP Mapping provides a way to describe
neural network models in a clear, concise format without having to describe the specific mathematical
formulation representing the neural network. The MLP Mapping consists of layers, connections, inputs,
outputs, gains. The MLP is configured as an XML document, and the elements of the document are the
following:

Layer A layer in an MLP consists of an array of nodes and is configured by its name, type, size, and
whether it has a bias. The name is an identifying string that is used by the connections to identify
the layers used in the connection. The type of layer indicates the function to be used in each node
within the layer. (All nodes within a layer must have the same function type.) The available function
types are identity, linear, quadratic, sigmoid, tanh, gaussian, and logcosh. The size of
the layer is an integer that indicates how many nodes are in the layer. Each layer also indicates
whether or not the nodes have a bias by using a boolean flag. (The identity type is the same as linear
with no bias.) The value information included with the layer holds the values for the bias for each
node in the layer in the order of the nodes. Example:

<layer name="layer0" type="identity" size="3"/>
<layer name="layer1" type="tanh" bias="true" size="5">
5.4, 4.3, 3.2, 2.1, 1.0

</layer>
<layer name="layer2" type="linear" bias="true" size="2">
1.2, 2.3

</layer>

Connection A connection indicates the connectivity of the layers and is configured by identifying the
names of the source (srcName) and destination (dstName) layers. The value information included in
the connections contain the weights from the nodes in the source layer to the nodes in the destination
layer. Example:

<connection srcName="layer0" dstName="layer1">
1.1, 1.2, 1.3, 1.4, 1.5,
2.1, 2.2, 2.3, 2.4, 2.5,
3.1, 3.2, 3.3, 3.4, 3.5

</connection>
<connection srcName="layer1" dstName="layer2">
1.1, 1.2,
2.1, 2.2,
3.1, 3.2,
4.1, 4.2,
5.1, 5.2,

</connection>

p. 13

Input The input identifies a particular node in a layer as being a input to the MLP. It is configured by
identifying the name of the input, the layer that contains the node, the index of the node, as well
as the scale and bias for the input. Example:

<input name="x1" layer="layer0" scale="1.750" bias="0.03"/>
<input name="x2" layer="layer0" scale="327.1" bias="65.7"/>
<input name="x3" layer="layer0" scale="29.48" bias="-3.2"/>

Output The output identifies a particular node in a layer as being an output of the MLP. It is configured
in the same way as the input. Example:

<output name="y1" layer="layer2" scale="273.1" bias="37.6"/>
<output name="y2" layer="layer2" scale="2.38" bias="0.19"/>

Gain The gain element informs the MLP that it needs to compute a gain within the MLP as an output. It
is configured by indicating the order of the gain (either 1, 2 or 3), the name of the output, dy, and
depending on the order of the gain, the inputs, da, db, dc. Given this information, the MLP will
compute a gain that corresponds to dy

da if the order is 1, d2y
dadb if the order is 2, and d3y

dadbdc if the order is
3.

The gain configuration can also specify a type as either local (default), lower, or upper. The
local computes the value of the gain, while the lower and upper type computes the lower and
upper bounds on the gain through the MLP. This type only works with the first order gains. Example:

<gain name="dy1dx1" dy="y1" da="x1"/>
<gain name="dy1dx2" dy="y1" da="x2"/>
<gain name="d2y1dx12" order="2" dy="y1" da="x1" db="x1"/>
<gain name="d2y1dx1dx2" order="2" dy="y1" da="x1" db="x2"/>

The implementation of the MLP Mapping has placed particular attention to computational efficiency
in both output and gradient computation.

3.1.4 - Optimization Component: The optimization framework is used to describe and solve non-
linear optimization problems. The framework is based on gradient-based nonlinear programming al-
gorithms such as Sequential Quadratic Programming (SQP) and Generalized Reduced Gradient (GRG)
methods. An optimization formulation consists of the problem description, the model used for the opti-
mization, and the solver used to solve the problem. The optimization problem is described by identifying
the model inputs that are the variables along with their bounds, the model outputs that are constraints along
with their bounds, and the model output that is the objective. The model that is used in the optimization
is any Numeric Mapping representation and may correspond to a broad range of optimization problems
including training problems, model identification, set-point computations, and control problems.

The optimization problem is the component that describes how the optimization model is to be used
in the optimization problem. It specifies the variables, objectives, and constraints for the optimization
formulation:

• Objective value

• Solution Status: optimal, infeasible, not solved, etc.

• Solver name: which solver was used to obtain solution.

p. 14

• Variables: inputs of the optimization model that are to be used as variables along with their upper
and lower bounds

– values

– lower and upper bounds

– states

– Lagrange multipliers

– reduced gradients.

• Objectives: outputs of the optimization model that are to be used as objectives along with their linear
weighting coefficients

– values

– linear coefficients

• Constraints: outputs of the optimization model that are to be used as constraints along with their
upper and lower bounds

– values

– lower and upper bounds

– states

– Lagrange multipliers

The optimization model is a Numeric Mapping. Some of the inputs to the Numeric Mapping are used
as decision variables, some of the outputs are used as objectives, and some of the outputs are used as
constraints. The optimization model serves as the computational engine that computes the values and
gradients of the objectives and constraints as functions of the decision variables.

The Optimization Solver identifies the solver to be used along with its specific set of parameters (e.g.
tolerances, algorithm parameters, iteration limits, algorithm modes). The solvers that are currently imple-
mented are SNOPT, LSGRG, and SQP.

The mathematical form of the Optimization Formulation is

optimize
u∈U

cT z

subject to uL ≤ u ≤ uU

zL ≤ z ≤ zU

z = Ψ(u)

Ψ(u) Numeric Mapping (may have other inputs/outputs)
u variables
z objectives and constraints
c objective linear coefficient

uL,uU variable lower and upper bounds

zL, zU constraint lower and upper bounds

The components of the optimization formulation are described in Figure 4.

p. 15

Optimization Formulation

Numeric Mapping

NLP Problem

NLP Solver

Objective
Terms

Constraint
Terms

zu
z = Ψ(u)

Variable
Terms

zc,L ≤ zc ≤ zc,Uuv,L ≤ uv ≤ uv,U czo

up

uv

zu

zo

zc

optimize cTzo

subject to zc,L ≤ zc ≤ zc,U

uv,L ≤ uv ≤ uv,U

Figure 4: The block diagram for the optimization problem that is used in the constrained training of a PUNDA
model. u

v
is the decision vector determined by the nonlinear solver (NLP solver).

3.1.5 - Training: A training problem is an optimization problem that determines the parameters of
a model such that the outputs of the model for a given set of input data closely match the corresponding
output data. A training problem is formulated in the optimization framework by creating a harness around
the model to be trained where the input data is provided to the model and the corresponding outputs are
computed one data point at a time. The model outputs are then used along with the corresponding output
data to compute the metrics for the training problem. This creates a nonlinear mapping between the model
parameters (weights) and the metrics for the training that establish the quality of the model for given values
of the parameters. These metrics typically consist of the sum-square-error objective and any constraints
imposed on the training problem.

The optimization model for the training problem is depicted in Figure 4. The modeling framework
provides flexibility in the description of the training problem:

1. MLP weights, first-principle model parameters, or both can be determined.

2. Constraints can be written as functions of the data, model outputs, and model parameters.

3. Constraints can have any mathematical form.

4. Constraints can be written over any subset of the data.

5. The training model can be described in a variety of ways.

The data set used for the training is contained within the nonlinear mapping, and the accumula-
tion functions over the data set are explicitly written as functions over that set. The model and objec-
tive/constraint expressions are all within the single set of expressions.

p. 16

ExpressionMapping:Trainer

MlpMapping:Model

data

MLP Network

y = f(x,w)

xk

w yk

Expressions

obj = Σ(yk-yk)
2

c1 = g1(xk,yk)

c2 = g2(xk,yk)

yk

^

^

^

^

obj

c1

c2

^

Figure 5: The block diagram for the training of a NN model y = f (x,w) where x is the input vector to the NN model
and y is the NN output vector.

ExpressionMapping:Trainer

ExpressionMapping:Model

MlpMapping:mlp Expressions

obj = Σ(yk-yk)
2

c1 = g1(xk,yk)

c2 = g2(xk,yk)

^

^

data

xk

yk

p = f(x,w)

MLP Network

w
p

y = f(x,p)

Expressions

yk

obj

c1

c2
^

^

Figure 6: The block diagram for the model used for training of a combined model.

Figure 5 shows the case for the training of a neural network model. Note that in Figure 5, MLP refers
to Multi-Layer Perceptron where w is the vector of NN weights and biases to be determined by the NLP
solver. Figure 6 shows when the parameters of a parametric nonlinear model, p, are modeled by a NN
block in a PUNDA structure (as described in the previous section). Note that in Figure 6:

1. The NN model is defined as p = f (x,w) where x is the input to the NN block, w is the vector of
weights and biases for the NN model, and p is the varying parameter of the nonlinear parametric
model y = f (x, p).

2. The optimizer does not directly onfluence the output of the NN model, i.e. p. Instead, only the
output of the parametric nonlinear model, y, is directly measured.

3. The error function the optimization problem will attempt to minimize is formed based on the output
of the parametric nonlinear model, y − ŷ.

4. Appropriate constraints are imposed to ensure the combined model trained by the optimizer is phys-
ically meaningful.

p. 17

3.2 - Nonlinear Dynamic Model Identification using PUNDA Models
To fully investigate the challenges involved in successful training of PUNDA models, for the first year

of this project we focused on synthetic data for a set of first and second order dynamic systems with
varying dynamics. Furthermore, we only focused on input/output description of the nonlinear dynamic
systems, leaving the investigation of state-space models to the second year of this project. We studied the
identification problem for both continuous and discrete domain representations of the nonlinear system
and developed interesting insight into the complexity of the identification problem.

In what follows we present representative results from our experimentations and highlight the versatil-
ity of the proposed PUNDA framework for nonlinear system identification.

3.2.1 - Continuous Domain Representation - First Order Model: We considered the following
dynamic system for our study:

τ(·)
dy(t)

dt
+ y(t) = K(·)u(t) (5)

where parameters τ(·) and K(·) vary as a function of process input u(·):

τ(u) = 5 tanh(u(t)) + 0.5 (6)

K(u) = 5 tanh
(
u(t)
4

)
+ 5 (7)

The nonlinear system in Eq.(5) was simulated in Matlab where system response to variations in input
signal u(t) was recorded.

To identify the varying parameters of this nonlinear model, the following PUNDA structure was con-
structed:

1. The SNM block in Figure 26 is a neural network block with u(·) as input, and the parameters τ(·)
and k(·) as its outputs.

2. The differential equation described by Eq. (5) constitutes the PNM block in Figure 26. In addition
to system input u(·), the PNM block receives varying parameters τ(·) and k(·) from the NN block,
and produces y(·) as its output.

Typical results for the training of the PUNDA model are shown in Figures 7 and 8. Note that the richness of
the input signal (and the absence of noise in measurements) has resulted in perfect identification of varying
parameters and accurate predication capability for the PUNDA model. Nevertheless, this underscores the
versatility of the PUNDA structure for the identification of varying parameters in a nonlinear dynamic
system.

3.2.2 - Continuous Domain Representation - Second Order Model: We considered the following
dynamic system for our study of second order parametric models:

(τ1(·)τ2(·))
d

2
y(t)

dt2 + (τ1(·) + τ2(·))
dy(t)

dt
+ y(t) = K(·)u(t) (8)

where parameters τ1(·), τ2(·), and K(·) vary as a function of process input u(·):

τ1(u) = 5 tanh(u(t)) + 0.5 (9)
τ2(u) = 8 tanh(exp(−u(t))) (10)

K(u) = 5 tanh
(
u(t)
4

)
(11)

p. 18

Figure 7: Parameter and output prediction with a PUNDA model for a first order overdamped system of Eq. (5).

Figure 8: A closeup look at the output prediction with the identified model of Figure 7.

p. 19

The nonlinear system in Eq.(8) was simulated in Matlab where system response to variations in input
signal u(t) was recorded.

To identify the varying parameters of this nonlinear model, the following PUNDA structure was con-
structed:

1. The SNM block in Figure 26 is a neural network block with u(·) as input, and the parameters τ1(·),
τ2(·), and k(·) as its outputs.

2. The differential equation described by Eq. (8) constitutes the PNM block in Figure 26. In addition
to system input u(·), the PNM block receives varying parameters τ1(·), τ2(·), and k(·) from the NN
block, and produces y(·) as its output.

Typical results for the training of the PUNDA model are shown in Figures 9 and 10. Note that not only
has the PUNDA model been able to reproduce process output y(·), it has been able to correctly identify
variations in gain and process residence times. A closer look at parameter identification is provided in
Figure 10 where the predicted values for τ1(·) is compared against the actual value.

3.2.3 - Discrete Domain Representation - Second Order Model: In this section a typical result
for the identification of varying parameters in a discrete domain representation of a dynamic system is
presented. The discrete model for a second order system may be described as:

y(k) = −a1(·)y(k − 1) − a2(·)y(k − 2) + b1(·)u(k − 1 − D) + b2(·)u(k − 2 − D) (12)

where D is the delay and varying parameters a1,2/b1,2 are related to the continuous domain parameters of
Eq. (8) as follows:

a1(·) = −
(
e−

T
τ1 + e−

T
τ2

)
(13)

a2(·) = +
(
e−

(
T
τ1
+ T
τ2

))
(14)

b1(·) = +
(
A

(
1 − e−

T
τ1

)
+ B

(
1 − e−

T
τ2

))
(15)

b2(·) = −
(
Ae−

T
τ2

(
1 − e−

T
τ1

)
+ Be−

T
τ1

(
1 − e−

T
τ2

))
(16)

where A = k τ1
τ1−τ2

and B = k −τ2
τ1−τ2

.
For this example, the continuous domain parameters of the dynamic system are assumed to vary as

follows:

τ1(u) = 5 tanh(u(t)) + 0.5 (17)
τ2(u) = −8 tanh(u2(t) − 2u(t)) + 8.5 (18)

K(u) = 5 tanh
(
u(t)
4

)
(19)

Typical results are shown in Figures 11 and 12. As Figure 11 indicates, the PUNDA modelling framework
offers the ability to identify a1,2/b1,2 with acceptable accuracy. The stability of the discrete model is used
as a constraint for the training of the discrete model. There is a good agreement between the identified and
actual values for a1,2/b1,2 , with system output perfectly modelled.

Parameter identification for the discrete model proves to be the most challenging in the examples we
have tested. Therefore, it offers a more challenging platform to examine the effect of the measurement

p. 20

Figure 9: Parameter and output prediction with a PUNDA model for the second order overdamped system of Eq. (8).

noise in parameter identification. Figure 13 demonstrates that the presence of measurement noise results
in increased error in the identified parameters, even though overall quality of parameter ID is extremely
desirable. Figure 14 highlights the fact that an increase in the noise level will result in reduced accuracy of
the parameter ID. Nevertheless, even with a noise with three times the standard deviation of the measured
output signal the parameter ID is still acceptable. We plan to study the methodologies by which the effect
of noisy measurement signals may be mitigated.

p. 21

Figure 10: A closeup look at the identified τ1(·) in Figure 9 by the NN block in the PUNDA structure.

Figure 11: Parameter and output prediction with a PUNDA model for the second order overdamped system of
Eq. (12).

p. 22

Figure 12: A closeup look at the output prediction in Figure 11 by the NN block in the PUNDA structure.

Figure 13: Parameter and output prediction with a PUNDA model for the second order overdamped system of
Eq. (12) when the output measurement was subject to measurement noise. The noise in this case was
0.1 times the standard deviation of the output signal.

p. 23

Figure 14: Parameter and output prediction with a PUNDA model for the second order overdamped system of
Eq. (12) when the output measurement was subject to measurement noise. The noise in this case was
3.0 times the standard deviation of the output signal.

p. 24

3.3 - Beam Matrix Identification using PUNDA Models
The Linac Coherent Light Source (LCLS) at SLAC requires the RF photoinjector to consistently pro-

duce a high-brightness electron beam (i.e. an electron beam with high current and low emittance). Free
Electron Laser (FEL) applications have been the primary driving force behind this requirement. To achieve
the desired beam quality, there have been systematic studies of both the transverse and longitudinal beam
properties from the RF photocathode gun at SLAC Gun Test Facility (GTF) [13, 14]. One main objective
of these studies has been to identify the factors affecting beam quality and to establish systematic method-
ologies for minimizing beam emittance. At the moment however, reliable models that are suitable for
emittance minimization are not fully developed [15, 13].

The schematic diagram for longitudinal and transverse beam measurements at SLAC GTF11 is shown
in Figure 15. The measurement technique, known as phase/quadrupole scans [14], measures the energy
spectra/size of the beam at the exit of the linac section as a function of linac phase. The purpose of the
analysis is to identify the longitudinal/transverse beam matrix at the exit of the linac. It is noted that these
are not the same as those at the gun exit, because of continued evolution of the bunch as it drifts from the
gun to the linac [13, 16].

One objective of this Phase II STTR project is to develop accurate and computationally efficient models
for electron beam such that systematic optimization of beam properties (e.g. beam emittance) is feasible.
Our first year effort has focused on building PUNDA models for transverse properties of the beam and to
examine the applicability of PUNDA modelling framework for systematic optimization scenarios.

3.3.1 - GTF Transport Matrix from Linac Exit to Spectrometer: In this section, the transport
matrix for transverse motion of the beam from the exit of Linac to spectrometer is provided briefly, as we
have used the transport matrix between Linac exit and spectrometer as the first-principles model for the
training of the PUNDA models12. A detailed description of the transport matrices for various components
in a beamline may be found in [17].

1. The transport matrix for the first quadrupole magnet (vertical quad) is defined as follows:

T1 =

[
cosh (k1le f f)

1
k1

sinh (k1le f f)
k1 sinh (k1le f f) cosh (k1le f f)

]
(20)

where k1 = 1.27 (m(−1)) is the strength of the magnetic field for the vertical quad (which is kept
constant for all measurements), and le f f = 0.077 (m) is the effective length of the quad.

2. The transport matrix for the drift space between two quads is defined as follows:

T2 =

[
1 lqtq

0 1

]
(21)

where lqtq = 0.110(m) is the effective length between the two quads.

3. The transport matrix for the second quadrupole magnet (horizontal quad) is defined as follows:

T3 =

[
cos (k2le f f)

1
k2

sin (k2le f f)
−k2 sin (k2le f f) cos (k2le f f)

]
(22)

where k2(I2) =
(

167.23I2+43.17
30.50

)0.5
(m(−1)) is the strength of the magnetic field described as a nonlinear

function of quad current, and le f f = 0.077 (m) is the effective length of the quad.

11The SLAC GTF beamline consists of a 1.6 cell S-band gun of the BNL/SLAC/UCLA design followed by a 3 meter linac
section. The drive laser is a Nd:Glass CPA laser with a regenerative amplifier that provides 2 ps (fwhm) gaussian UV pulses to
the cathode with an approximately uniform, 2 mm transverse profile.

12The transport matrices and the parameters for these matrices were provided by Dr. J. Schmerge.

p. 25

4. The transport matrix for the drift space between the second quad and the spectrometer is as follows:

T4 =

[
1 ld1

0 1

]
(23)

where ld1 = 1.835(m) is the effective drift length between the quad and the spectrometer section.

5. The transport matrix for the spectrometer section is:

T5 =

[
Aspec Bspec

Cspec Dspec

]
(24)

where:

Aspec = 1 − (α + ∆α) tan(ψent) (25)

Bspec = ρ
Eslice

Epro j
(α + ∆α) (26)

Cspec =
1

ρ Eslice
Epro j

(α+∆α)tan(ψent)(tan(ψexit)+∆α)−tan(ψent)− tan(ψexit)−∆α (27)

Dspec = 1−(α+∆α)(tan(ψexit)+∆α) (28)

and α = π
3 , ρ = 0.400 (m), ψent = 2.53 × π

180 , ψexit = 13.49 × π
180 , Eslice = 30.50 (Mev), Epro j =

30.50 (Mev), and ∆α = α
(

Eslice
Epro j
− 1

)
.

6. The transport matrix for the drift space from spectrometer bend to the screen is as follows:

T6 =

[
1 ld2

0 1

]
(29)

where ld2 = 0.419(m).

With the transport matrices for various components of the beam line well defined, the overall transport
matrix between the exit of the linac section and the spectrometer screen may be defined as follows:

1. The transfer matrix for the quad section is as follows:

Tquad =

[
Aquad Bquad

Cquad Dquad

]
= T3 × T2 × T1 (30)

2. With the transfer matrix for the quad section well defined the overall transfer matrix between the
linac exit and the spectrometer screen may be defined as follows:

T =
[

AT BT

CT DT

]
(31)

where

AT = Aspec

[
Aquad + ld1Cquad

]
+ BspecCquad + · · ·

ld2Cspec

[
Aquad + ld1Cquad

]
+ ld2DspecCquad (32)

BT = Aspec

[
Bquad + ld1Dquad

]
+ BspecDquad + · · ·

ld2Cspec

[
Bquad + ld1Dquad

]
+ ld2DspecDquad (33)

CT = Cspec

[
Aquad + ld1Cquad

]
+ DspecCquad (34)

DT = Cspec

[
Bquad + ld1Dquad

]
+ DspecDquad (35)

p. 26

σe
11 σe

12 σe
22 Objective Function

Known AT &BT 2.62035 1.55237 1.40828 9.8272985503E+01
Identified AT &BT 2.699999E+00 1.400000E+00 1.600000E+00 8.5382085177E+00
Identified α&β 3.484610E+00 1.857201E+00 1.473184E+00 9.8027962242E+01

Table 2: Optimization results for different scenarios.

With the AT matrix in hand, the beam matrix at the exit of the linac section may be related to the
beam matrix at the spectrometer screen as follows:[

σs
11 σs

12
σs

21 σs
22

]
=

[
AT BT

CT DT

] [
σe

11 σe
12

σe
21 σe

22

] [
AT BT

CT DT

](T)

(36)

where the superscript ’s’ indicates the beam matrix parameters at the spectrometer screen while the
superscript ’e’ indicates the beam matrix parameters at the exit of the linac.

3.3.2 - Identifying Beam Matrix Using PUNDA Model13: For the results presented here, we
applied the PUNDA models shown in Figures 16-18. Representative experimentations carried out during
first year of this STTR project may be summarized as follows:

1. For our first test, we used the first principles models of Eqs. (32)-(35) for the “F.P. for Transport
Matrix" block in Figure 16. The constrained optimization problem sought the optimal value of
the beam matrix, i.e. σe

11, σe
12, and σe

22 given the measurements of the horizontal beam size at
spectrometer screen, (∆X)2. The xml file developed for this optimization problem is provided in
Appendix 1. The beam matrix parameters and the sum-squared error in predicting the beam size at
the spectrometer screen are reflected in Table 2. Figure 19 shows the measured beam size versus the
modelled beam size. Our results are consistent with the results reported in [18] by SLAC scientists.

2. For the second test, we used a NN model to estimate AT and BT as functions of quad current I2, at
the same time that we identified the beam matrix at the exit of the linac (see Figure 17). Note that
the first principles model relates the beam size at the spectrometer screen to the beam size at the exit
of the linac as follows (see Eq. (36) for full mapping of the beam matrix):

(∆X)2 = A2
Tσ

e
11 + 2AT BTσ

e
12 + B2

Tσ
e
22 (37)

The beam matrix parameters and the sum-squared error in predicting the beam size at the spec-
trometer screen are reflected in the second row in Table 2. Figure 20 compares the PUNDA model
prediction of beam size against the measured beam size. Figures 21 and 22 compare the identified
AT and BT elements of the transport matrix to those computed from first principles models. It is
important to point out that:

(a) The results presented here are obtained using the following constraints, for I2 ∈ [0, · · · , 3.9],
extracted from FP model for beam matrix:

∂AT

∂I2
≤ 0 (38)

∂BT

∂I2
≤ 0 (39)

and no other information from FP model is used for the training14.
13The details of data acquisition for the data used in this section is outlined in [18].
14We will investigate the role of more FP information in model quality during second year of the project.

p. 27

(b) Only 14 data points were available for the training of the PUNDA model. We anticipate more
data will improve the quality of the model.

(c) This PUNDA model has produced a better fit to the beam size measurements compared to that
in Figure 19.

3. For the third test, we used the first principles models of Eqs. (32)-(35) for the “F.P. for Transport
Matrix" block in Figure 18, and we used the constrained optimization to identify the parameters of
the I2 to K2 mapping at the same time that we identified the parameters of the beam matrix. We
assumed (based on input from SLAC scientists), the following relationship between I2 − k2:

k2(I2) =
(
αI2 + β

30.50

)0.5

(40)

The xml file for this optimization problem is provided in Appendix C. The optimization yields
α = 147.230 and β = 63.17015 with the optimal value for beam matrix and the error function
reflected in Table 2. Figures 23-25 demonstrate the results of the optimization for this case.

(a) With only 14 data points available further improvements in PUNDA model quality could only
be achieved if the optimization problem is properly constrained with more FP information.

(b) This example demonstrates the possibility of using a PUNDA structure to identify un-
known/uncertain parameters in a FP model at the same time that beam matrix parameters are
determined given beam size measurements.

4. We also attempted to model I2 − K2 mapping with a NN. This is an example of using PUNDA
models to identify an unknown nonlinear mapping in the FP models (the potential hysteresis effect
in this case). The available data, however, was not sufficient to simultaneously produce a meaningful
model for I2 − K2 mapping (i.e. identify NN weights and biases for this mapping)and identify beam
matrix parameters. We plan to obtain more data from SLAC for this purpose.

We would like to conclude this section with two main observations regarding the applicability of the
PUNDA models in GTF applications:

1. PUNDA structure offers a framework in which both beam data and first principles models may be
used to complement one another. Furthermore, the measured data may be used to fine tune the FP
model.

2. A trained PUNDA model may be systematically used to find optimal operation conditions for the
GTF. For our first test case, for example, the PUNDA model may be used to find the optimal quad
current for which a desired (∆X,∆X′) may be achieved. The xml file for doing so is provided in
Appendix D.

15In the original first principles model provided by SLAC scientists α = 167.23 and β = 43.17.

p. 28

Gun 3m linac

(vary φlinac)

Quad
Doublet Spectrometer

Energy Screen

Fig. 15: The block diagram for longitudinal and transverse beam measurements at SLAC GTF. A full description of the
beamline is provided in [18].

BT

AT

CTFirst Principles
Model

for
 Transport Matrix

First Principles
Model for

Beam Matrix
Transport from

linac exit to
Spectrometer Screen

I2

σ12

σ11

σ22

DT

(∆x')2

(∆x)2 AT σ11 + 2ATBTσ12 + BTσ22

e

e

e

e e e

CT σ11 + 2CTDTσ12 + DTσ22
e e e=

Fig. 16: Block diagram representation of the PUNDA model that is used for beam matrix identification with full FP model
available.

BT

ATNeural Network First Principles
Model for

Beam Matrix
Transport from

linac exit to
Spectrometer Screen

I2

σ12

σ11

σ22

(∆x')2

(∆x)2 AT σ11 + 2ATBTσ12 + BTσ22

e

e

e

e e e

CT σ11 + 2CTDTσ12 + DTσ22
e e e=

Fig. 17: Block diagram representation of the PUNDA model that is used for simultaneous identification of beam matrix and
transport matrix elements AT and BT . Note that we have used a NN model to capture the nonlinear mapping between I2 and the
transport matrix parameters.

p. 29

BT

AT

CTFirst Principles
Model

for
 Transport Matrix

First Principles
Model for

Beam Matrix
Transport from

linac exit to
Spectrometer Screen

I2

σ12

σ11

σ22

DT

(∆x')2

(∆x)2 AT σ11 + 2ATBTσ12 + BTσ22

e

e

e

e e e

CT σ11 + 2CTDTσ12 + DTσ22
e e e=

Neural Network

β

α

Fig. 18: Block diagram representation of the PUNDA model that is used for simultaneous identification of beam matrix and
the I2 − K2 mapping parameters α&β. Note that for the results reported in case 3, Figures 23-25, the NN block in this figure is
a fixed identity mapping.

Fig. 19: Comparison of measured beam size vs. the beam size predicted by the PUNDA model.

p. 30

Fig. 20: Comparison of measured beam size vs. the beam size predicted by the PUNDA model.

Fig. 21: Comparison of identified values for AT vs. the AT values generated by the FP model.

p. 31

Fig. 22: Comparison of identified values for BT vs. the BT values generated by the FP model.

Fig. 23: Comparison of measured beam size vs. the beam size predicted by the PUNDA model for the case where beam
matrix parameters and α and β in I2 − K2 mapping are identified simultaneously.

p. 32

Fig. 24: Comparison of identified values for AT vs. the AT values generated by the FP model for the case discussed in
Figure 23.

Fig. 25: Comparison of identified values for BT vs. the BT values generated by the FP model for the case discussed in
Figure 23.

p. 33

3.4 - Beam Lifetime Study using PUNDA Models
Synchrotron light is used for a wide variety of scientific disciplines ranging from physical chemistry to

molecular biology and industrial applications. The synchrotron light is radiated from a relativistic electron
beam circulating in a storage ring particle accelerator [19, 20, 21]. As the electron beam circulates, random
single-particle collisional processes lead to decay of the beam current in time. As the electron beam
decays, so does the intensity of the synchrotron light resulting in detuned optics in the photon transport
lines (e.g. mirrors, gratings, slits), changes in material properties of the experimental sample, degradation
of detector performance and uncertainties in data reduction. Hence, at all synchrotrons, a premium is
placed on delivering constant photon beam intensity to the photon beam lines [22].

Efforts to systematically model the electron beam loss in synchrotron light sources have therefore been
of primary interest. At SPEAR3, for example, every two weeks, up to 48 hrs of beam time is allocated for
machine development studies, including programs to measure, characterize, and mitigate electron beam
loss. In this section a framework for the systematic modeling of electron beam loss is presented. This
framework, known as Parametric Universal Nonlinear Dynamics Approximator (PUNDA), consists of a
series connection of a Nonlinear Empirical Model (NEM) block and a Parametric First-principles Model
(PFM) block (see Figure 26). The parameters, ~P, in the PFM block may vary as a function of process
inputs, ~u. For the beam loss model of interest in this study, the instantaneous electron beam current,
Eq. (41), constitutes the PFM block, where the characteristic beam decay time constant is the varying
parameter. A neural network (NN) model forms the NEM block. This NN model is trained to capture
the variation in the characteristic beam decay time constant as a function of variation in vertical scraper
position (Ys), RF voltage (Vrf), initial beam current (I0), and total number of bunches (Mb).

The ultimate goal of this study is to build accurate and computationally efficient models that quantify
beam loss from electron-gas scattering (elastic and inelastic) and intrabeam scattering (electron-electron).
Once such models are constructed, an optimization-based approach may be adopted to: (a) minimize beam
loss in standard modes of operation, (b) optimize synchrotron performance based on forecasts of beam
loss, (c) provide design guidelines for performance at high beam current and top-up mode of operation,
and (d) provide design guidelines for installation of future small-gap undulators.

y = f(u, p)

Parametric
First-Principles

Model

Nonlinear
Empirical

Model
p = g(u, w)w

u
p yModel Inputs

Intermediate
Parameters

Model
Outputs

Model
Parameters

Figure 26: Block diagram of a PUNDA model. The PUNDA model is formed by the series connection of a Nonlin-
ear Empirical Model (NEM) block and a Parametric First-principles Model (PFM) block.

One objective of this Phase II STTR project is to develop accurate and computationally efficient models
for electron beam such that systematic optimization of beam properties (e.g. beam emittance) is feasible.
Our first year effort has focused on building PUNDA models for transverse properties of the beam and to
examine the applicability of PUNDA modelling framework for systematic optimization scenarios.

3.4.1 - Physics of Electron Beam Loss: The physics behind electron beam loss is conceptually
straight-forward but nevertheless a highly non-linear process. In principle, the electron beam current
decays in time due to (a) elastic electron-gas collisions (Coulomb scattering) (b) inelastic electron-gas
collisions (Bremsstrahlung scattering), and (c) intrabeam electron-electron collisions [23, 24, 25, 26]. In
this section, global models for electron beam loss are briefly described.

p. 34

At any given time t, the instantaneous electron beam current may be written as:

It(t) = I0e
−t
τ (41)

where I0 is the initial beam current, and τ is the characteristic beam decay time constant. Due to the
uncorrelated nature of the collisional processes, the characteristic decay time depends on the individual
contributions from Coulomb, Bremsstrahlung, and Intrabeam sources for scattering. Given that we can
only measure the net beam decay time, (τ), the gas and intrabeam components must be inferred from an
array of measurements under different experimental conditions. For the simulation study in this paper, τ is
assumed to be a non-linear function of vertical scraper position (ys), RF voltage (Vr f), initial beam current
(I0), and total number of bunches (Mb).

Over longer time periods of time, electron beam loss deviates from pure exponential and is governed
by a more general rate equation:

dNe

dt
=

∑
i

Ai Ne Ni σi (42)

where Ne is the number of electrons, Ni is the number of scattering centers, σi is the scattering cross
section for each type of collision, and Ai are characteristic proportionality constants. The cross sections
σi quantify the probability of particle loss for each collision process. Note that integration of the rate
equation, dN

dt = −αN
2 , yields a beam decay profile in time:

N(t) =
N0

1 + N0 α t
∼ N0e

− t
τ (43)

for short times t. The long-term decay curve is more complicated than the exponential expression for in-
stantaneous decay because the density of scattering centers is reduced roughly in proportion to circulating
beam current.

The objective of the current study is to build PUNDA models that accurately predict the electron beam
decay as a function of electron beam parameters and synchrotron operating parameters. The training of
the NN block in the PUNDA model will be constrained by first-principles models (i.e. particle collision
physics) for each scattering mechanism, and hence the trained model will be physically meaningful.

3.4.2 - Simulation Results: For the simulation study in this paper the following first-principles
model is used to describe the electron beam loss:

It(t) =
I0e
−bt

1 +
(

a
b

)
I0

(
1 − e−bt) (44)

where I0 is the initial beam current, and a and b are parameters of the parametric model for electron beam
loss that are functions of the beam operating conditions.

The parameter a = aT + aB + aC , is affected by Touschek (aT), Bremsstrahlung (aB), and Coulomb
(aC) effects on beam loss [27] which in turn depend on gap voltage (Vrf), vertical scraper position (Ys),
dynamic vacuum pressure (Pdyn) and number of bunches (Mb). The parameter b = bB + bC is affected by
Bremsstrahlung (bB) and Coulomb (bC) collisions due to the base pressure.

For the simulation results shown in this section, four major parameters, i.e. Ys , Vrf , Mb , and I0 are
varied over an operation range consistent with that at SPEAR3. Electron beam loss is simulated using
Eq. (44). Random noise is added to the simulated electron beam current to reflect imperfect current mea-
surements. The noisy electron beam current is then used to construct a PUNDA model where Eq. (44)

p. 35

Figure 27: Prediction of electron beam decay using PUNDA model. The beam decay is accurately predicted while
acceptable estimates of the decay model parameters are obtained. The actual parameter values used in
the FP model of Eq. (44) are aFP = 1.8992e − 005 and bFP = 0.00018964.

constitutes the Parametric First Principles Model block, and a NN constitutes the Nonlinear Empirical
Model block. The combined PUNDA model is trained via constrained optimization, identifying appro-
priate parameter values for the FP model (i.e. a and b), at the same time that the decay in electron beam
current is modeled. Figure 27-30 capture typical simulation results.

PUNDA structure offers a framework in which both beam data and first principles models may be used
to complement one another. The nonlinear empirical model block may be used to capture the less known
aspects of the beam decay that is reflected in the operation data but is not fully explained by first-principles
information. Once a PUNDA model is verified to capture the beam loss in a particle accelerator, the model
can be used to identify potential sources of beam loss in real-time.

p. 36

Figure 28: Prediction of electron beam decay using PUNDA model. The beam decay is accurately predicted while
acceptable estimates of the decay model parameters are obtained. The actual parameter values used in
the FP model of Eq. (44) are aFP = 1.882e − 005 and bFP = 0.0001905.

p. 37

Figure 29: Prediction of electron beam decay using PUNDA model. The beam decay is accurately predicted while
acceptable estimates of the decay model parameters are obtained. The actual parameter values used in
the FP model of Eq. (44) are aFP = 1.9058e − 005 and bFP = 0.00018842.

p. 38

Figure 30: Prediction of electron beam decay using PUNDA model. The beam decay is accurately predicted while
acceptable estimates of the decay model parameters are obtained. The actual parameter values used in
the FP model of Eq. (44) are aFP = 2.4925e − 007 and bFP = 2.437e − 006.

p. 39

3.5 - State-Space Representation of Bio-Reaction using PUNDA Models
In this section we will briefly describe the application of the PUNDA modeling framework to a bio-

fermentation process in pharmaceutical industry. Using real process data, we will show that the PUNDA
modeling framework provides an environment in which measured process data and fundamental process
knowledge are optimally utilized to build accurate and computationally efficient models.

3.5.1 - Detailed Analysis of Fermentation Operating Data: Biochemical reactors are used to
produce a large number of intermediate and final products of mass consumption in industries such as
pharmaceuticals, food, and biofuels [28]. In its simplest form, a reaction in a biochemical reactor involves
two components: biomass and substrate. The biomass consists of cells that consume the substrate. In a
fermentation process for example, the cells consume sugar and produce alcohol. Modeling equations for
bio reaction are obtained by writing out the material balances for different components participating in the
bioreaction. In particular,

1. The biomass material balance can be written as:

rate of accumulation = in by flow − out by flow + biomass generation (45)

where biomass generation can be modeled as biomass concentration, x1 , multiplied by a production
rate for the biomass, µb .

2. The substrate material balance can be written as:

rate of accumulation = in by flow − out by flow − substrate consumption (46)

where substrate consumption can be modeled as substrate concentration, x2 , multiplied by a con-
sumption rate for the substrate16, µs .

Due to the strict confidentiality agreements between Pavilion Technologies, Inc. and its pharmaceu-
tical customer, the details of the bio-fermentation process from which the data for PUNDA modeling is
obtained will not be discussed in this report. The fermentation process is a lengthy process currently re-
quiring more than a few days for each run. Each batch undergoes several operating phases based on cell
growth. Batch kinetics varies during various stages of the batch, and an appropriate model must account
for these variations. Process inputs (e.g. feed, air, coolant, and valve openings) are manipulated (based on
a predetermined recipe or under closed loop control) such that appropriate growth of biomass is ensured
in the course of the bio-fermentation process. The goal of our study is to develop enough of an insight into
the bio-fermentation process such that a strategy for the improved operation of the batch can be devised.
In this report we will briefly present the results of the simulation study and demonstrate that the PUNDA
models are correctly predicting the progress of the fermentation process.

3.5.2 - Model Development: During model development process, the customer provided Pavilion
with a brief description of the process, along with the measurements for several runs of the batch process.
The model development process is composed of the follwoing steps:

(a) The analysis of the data and correlating the data to the process description provided by the
customer.

(b) Developing a candidate parameterized FP model, for the FP model block in PUNDA structure.
16The consumption rate is sometimes modeled as the ratio of the production rate to the yield of the bioreaction [28]. For this

study however we adopted a more direct approach identifying the consumption rate directly from measured fermentation data.

p. 40

(c) Developing a candidate nonlinear model that constitutes the empirical model block in the
PUNDA structure.

(d) Training the PUNDA model using a nonlinear optimization algorithm that searches for the
optimal values of the parameters in the empirical modeling block given measured process data
and known operation/FP model constraints.

Biomass growth and glucose concentration were modelled as a function of batch initial-conditions and
inputs. The ultimate goal of the modeling exercise was to predict the amount of harvestable active material
at each point during the batch.

Figure 31 demonstrates a typical dataset over approximately 5 batches. To identify which inputs are
most relevant to the desired outputs (i.e. biomass growth, glucose concentration, and titre (amount of
harvestable active material), nonlinear correlations in the data was examined. A typical correlation plot is
shown in Fig. 32.

As Fig. 32 indicates, the maximum correlation of the measured input data to Titre is 0.415 which is
not high. Our modeling exercise revealed that building a model based on direct process measurements
produces poor quality models for Titre.

Fig. 33 shows the PUNDA model for the prediction of the bio-reaction. In this PUNDA model, several
parameters of a candidate FP model are modelled as static nonlinear functions of process inputs. The
block diagram in Fig. 34 then uses the PUNDA model for bio-reaction as a component of a larger PUNDA
model that produces accurate predictions of Titre.

Fig. 35 shows the prediction quality of the PUNDA models against the actual measured data. Fig. 36
shows the predictions of process response with an alternative inout (feed) profile. Predictions demonstrate
that the batch length could be shortened with a more stable feed profile.

p. 41

Fig. 31: Typical Batch data for the bio-fermentation process. Variable ranges are masked due to the proprietary nature of the
Pavilion’s customer data.

p. 42

Fig. 32: plot demonstrating the result of Mutual Information analysis for Titre model. The nonlinear correlation of the various
process inputs to the Titre measurements is ranked and plotted in this screen capture. The highly correlated variables are total
feed, intCPR, mixing, mass, aeration, DO, motoramp, and glucose.

p. 43

Fig. 33: Block diagram of the PUNDA model for the prediction of biomass growth, total mass accumulation, and glucose
concentration.

Fig. 34: Block diagram of the PUNDA model for the prediction of Titre. Note that in addition of direct process measurements,
the PUNDA model for the bio-reaction process is also used to predict Titre.

p. 44

Fig. 35: Prediction Results for the bio-reaction in the fermenter as well as the total titre.

p. 45

Fig. 36: Prediction Results for the bio-reaction in the fermenter as well as the total titre with an alternative feed profile.

p. 46

References

[1] J. Rawlings, “Tutorial Overview of Model Predictive Control,” IEEE Control Systems Magazine,
vol. 20, pp. 38–52, June 2000.

[2] W. Dunbar and R. Murray, “Model Predictive Control of Coordinated Multi-Vehicle Formations,”
Conference on Decision and Control, 2002.

[3] G. Erdem, S. Abel, M. Morari, M. Mazzotti, and M. Morbidelli, “Online Optimization Based Feed-
back Control of Simulated Moving Bed Chromatographic Units,” Chemical and Biochemical Engineering
Quarterly, vol. 18, pp. 319–328, 2004.

[4] E. Martinoni, C. Pfister, K. Stadler, P. Schumacher, D. Leibundgut, T. Bouillon, T. Böhlen, and
A. Zbinden, “Model-Based Control of Mechanical Ventilation: Design and Clinical Validation,” British
Journal of Anaesthesia, vol. 92, pp. 800–807, 2004.

[5] S. Qin and T. Badgwell, “A Survey of industrial model predictive control technology,” Control En-
gineering Practice, April 2002.

[6] R. Murray, J. Hauser, A. Jadbabaie, M. Milam, W. Dunbar, and R. Franz, Online Control Customiza-
tion via Optimization Based Control. John Wiley and Sons: Software Enabled Control: Information
Technologies for Dynamical Systems, G. Balas and T. Samad, editors, 2002.

[7] B. Sayyar-Rodsari, E. Plumer, E. Hartman, K. Liano, and C. Axelrud, “Parametric Universal Non-
linear Dynamics Approximator and Use,” Pending Patent Application, 2004.

[8] L. Ljung, System Identification, Theory for the User. Englewood Cliffs, NJ: Prentice-Hall, 1987.

[9] M. Jordan and D. Rumelhart, “Forward Models: Supervised Learning with a Distal Teacher,,” Cog-
nitive Sci., vol. 16, p. 307, 1992.

[10] F. Cubillos and E. Lima, “Identification and Optimizing Control of a Rougher Flotation Circuit using
an Adaptable Hybrid Neural Model,” Minerals Eng., vol. 10, p. 707, 1997.

[11] M. Thompson and M. Kramer, “Modeling Chemical Processes Using Prior Knowledge and Neural
Networks,” AIChE Journal, vol. 40, p. 1328, 1994.

[12] D. Psichogios and L. Ungar, “A Hybrid Neural Network-First Principles Approach to Process Mod-
eling,” AIChE Journal, vol. 38, p. 1499, 1992.

[13] D. Dowell, P. Bolton, J. Clendenin, P. Emma, S. Gierman, C. Limborg, B. Murphy, and J. Schmerge,
“Longitudinal Measurements at the SLAC Gun Test Facility,” SLAC-PUB-9541, September 2002.

[14] D. Dowell, P. Bolton, J. Clendenin, S. Gierman, C. Limborg, B. Murphy, and J. Schmerge, “Analysis
of Slice Emittance Measurements For the SLAC Gun Test Facility,” SLAC-PUB-10727, May 2003.

[15] J. Schmerge, J. Castro, J. Clendenin, D. Dowell, S. Gierman, and R. Hettel, “Emittance and Quantum
Efficiency Measurements from a 1.6 cell S-Band Photocathode RF Gun with Mg Cathode,” SLAC-PUB-
10763, September 2004.

[16] J. Schmerge, P. Bolton, J. Clendenin, D. Dowell, S. Gierman, C. Limborg, and B. Murphy, “6D Phase
Space Measurements at the SLAC Gun Test Facility,” SLAC-PUB-9681, March 2003.

[17] K. Brown, F. Rothacker, D. Carey, and C. Iselin, “TRANSPORT: A Computer Program for Designing
Charged Particle Beam Transport Systems,” SLAC-91, Rev 2, May 1977.

[18] J. Schmerge, J. Clendenin, D. Dowell, and S. Gierman, “GTF Transverse and Longitudinal Emittance
Data Analysis Technique,” LCLS-TN-05-19, July 2005.

p. 47

[19] J. Jackson, Classical Electrodynamics. New York: John Wiley and Sons, 1975.

[20] K. Kim, “Characteristics of Synchrotron Radiation,” Physics of Particle Accelerators, Eds. M. Month
and M. Dienes, AIP Conf. Proc., p. 184, 1989.

[21] A. Hofmann, The Physics of Synchrotron Radiation. Cambridge University Press, 2004.

[22] M. Cornacchia, “Requirements and Limitations on Beam Quality in Synchrotron Radiation Sources,”
CERN 90-03, 1990.

[23] C. Bocchetta, “Lifetime and Beam Quality,” Invited Lectures at the CERN Accelerator School on
Synchrotron Radiation and Free Electron Lasers, June 1997.

[24] H. Bruck, Accelateurs Circulaires de Particules. Paris: Presses Universitaires de France, 1969.

[25] H. Wiedemann, Particle Accelerator Physics II. Berlin: Springer Verlag, 1996.

[26] A. Sorensen, “Introduction to Intrabeam Scattering,” CERN Accelerator School, CERN 87-10, 1987.

[27] J. Corbett and et al, “Electron Beam Lifetime in SPEAR3: Measurement and Simulation,” these
proceedings.

[28] B. Bequette, Process Dynamics - Modeling, Analysis, and Simulation. New Jersey: Prentice Hall,
1998.

p. 48

Appendix A

The xml file for the optimization problem to find beam matrix parameters at the exit of the linac
section given horizontal beam size measurements at the screen, with the assumption of full knowledge of
the transport matrix for each quad current is as follows:

<formulation>
<problem classname=’com.pav.pdas.optimization.common.NLPProblem’ direction=’minimize’>
<variable label=’s11’ modelVariable=’s11’ lower=’0’ upper=’10’

useRandomInitial=’true’ randomSeed=’11’
randomLower=’0’ randomUpper=’10’/>

<variable label=’s12’ modelVariable=’s12’ lower=’0’ upper=’10’
useRandomInitial=’true’ randomSeed=’12’
randomLower=’0’ randomUpper=’10’/>

<variable label=’s22’ modelVariable=’s22’ lower=’0’ upper=’10’
useRandomInitial=’true’ randomSeed=’21’
randomLower=’0’ randomUpper=’10’/>

<objective label=’obj’ modelVariable=’obj’/>
</problem>

<mapping classname="com.pav.pdas.model.expression.ExpressionMapping">
<data name=’d’

file=’fitdata.csv’
rowCount=’14’ columnCount=’23’ />

<input name=’s11’/>
<input name=’s12’/>
<input name=’s22’/>
<output name=’obj’/>
<output name=’dx_model’>
<dimension set=’K’/>

</output>
<expressions>
set K = |1:14|;
set J = |1:23|;

real data[K,J] = d;

real A[K];
real B[K];

real dx_measured[K];
real sdx_measured[K];
real dx2_model[K];

real error_linear[K];
real error_linear_ns[K];
real error_nonlinear[K];
real error_nonlinear_ns[K];

real s11_s, s12_s, s22_s;

A[k] = data[k, 9] foreach k in K;
B[k] = data[k,10] foreach k in K;

dx_measured[k] = data[k,15] foreach k in K;
sdx_measured[k] = data[k,16] foreach k in K;

s11_s = s11/1e8;
s12_s = s12/1e8;
s22_s = s22/1e8;

dx2_model[k] = A[k]^2*s11_s + 2*A[k]*B[k]*s12_s + B[k]^2*s22_s foreach k in K;
dx_model[k] = 1e6*sqrt(dx2_model[k]) foreach k in K;

foreach k in K
{
error_linear[k] = (dx_model[k]^2 - dx_measured[k]^2)/(2*dx_measured[k]*sdx_measured[k]);
error_linear_ns[k] = (dx_model[k]^2 - dx_measured[k]^2);
error_nonlinear[k] = (dx_model[k] - dx_measured[k])/(sdx_measured[k]);
error_nonlinear_ns[k] = (dx_model[k] - dx_measured[k]);

p. 49

}

obj = sum(k in K | error_linear[k]^2);
</expressions>

</mapping>

<solver classname=’com.pav.pdas.optimization.snopt.SnoptDirect’>
<parameter name=’major feasibility tolerance’ value=’1e-6’ />
<parameter name=’major optimality tolerance’ value=’1e-6’ />
<parameter name=’major print level’ value=’1’ />
<parameter name=’print file’ value=’6’ />
<parameter name=’solution’ value=’true’ />
<parameter name=’solution file’ value=’6’ />

</solver>

</formulation>

p. 50

Appendix B

The xml file for the optimization problem to find beam matrix parameters at the exit of the linac
section along with the transport matrix elements given horizontal beam size measurements at the screen is
as follows:

<formulation>
<problem classname=’com.pav.pdas.optimization.common.NLPProblem’ direction=’minimize’>
<variable label=’s11’ modelVariable=’s11’ lower=’2.0’ upper=’3.0’ useRandomInitial=’true’ randomSeed=’11’

randomLower=’2.63’ randomUpper=’2.64’/>
<variable label=’s12’ modelVariable=’s12’ lower=’1.0’ upper=’2.0’ useRandomInitial=’true’ randomSeed=’12’

randomLower=’1.57’ randomUpper=’1.58’/>
<variable label=’s22’ modelVariable=’s22’ lower=’1.0’ upper=’2.0’ useRandomInitial=’true’ randomSeed=’21’

randomLower=’1.43’ randomUpper=’1.44’/>
<variable label=’weights’ modelVariable=’weights’ lower=’-10’ upper=’10’ useRandomInitial=’true’ randomSeed=’31’

randomLower=’-0.01’ randomUpper=’0.01’/>
<constraint label=’maxdAdc’ modelVariable=’maxdAdc’ upper=’0’ />
<constraint label=’maxdBdc’ modelVariable=’maxdBdc’ upper=’0’ />

<objective label=’obj’ modelVariable=’obj’/>
</problem>

<mapping classname="com.pav.pdas.model.expression.ExpressionMapping">
<data name=’d’ file=’fitdata.csv’

rowCount=’14’
columnCount=’23’ />

<mapping classname=’com.pav.pdas.model.mlp.MlpMapping’ name=’mlp’>
<input name=’c’ layer=’layer0’ node=’0’ scale=’1’/>
<output name=’A’ layer=’layer2’ node=’0’ scale=’1’/>
<output name=’B’ layer=’layer2’ node=’1’ scale=’1’/>
<gain name=’dAdc’ order=’1’ type=’local’ dy=’A’ da=’c’ />
<gain name=’dBdc’ order=’1’ type=’local’ dy=’B’ da=’c’ />
<layer name=’layer0’ size=’1’ type=’identity’/>
<layer name=’layer1’ size=’5’ type=’tanh’/>
<layer name=’layer2’ size=’2’ type=’linear’/>
<connection srcName=’layer0’ dstName=’layer1’/>
<connection srcName=’layer1’ dstName=’layer2’/>

</mapping>

<input name=’weights’> <dimension set=’I’/> </input>
<input name=’s11’/>
<input name=’s12’/>
<input name=’s22’/>
<output name=’obj’/>
<output name=’dx_model’> <dimension set=’K’/> </output>
<output name=’A’> <dimension set=’K’/> </output>
<output name=’B’> <dimension set=’K’/> </output>
<output name=’dAdc’> <dimension set=’K’/> </output>
<output name=’dBdc’> <dimension set=’K’/> </output>
<output name=’maxdAdc’ />
<output name=’maxdBdc’ />

<expressions>
set K = |1:14|;
set J = |1:23|;
set I = |0:21|;

real data[K,J] = d;

real current[K];
real sdAdc[K];
real sdBdc[K];

real dx_measured[K];
real sdx_measured[K];
real dx2_model[K];

real error_linear[K];
real error_linear_ns[K];
real error_nonlinear[K];

p. 51

real error_nonlinear_ns[K];

real s11_s, s12_s, s22_s;

current[k] = data[k, 1] foreach k in K;

dx_measured[k] = data[k,15] foreach k in K;
sdx_measured[k] = data[k,16] foreach k in K;

s11_s = s11/1e8;
s12_s = s12/1e8;
s22_s = s22/1e8;

mlp(weights[i] = weights[i] foreach i in I; c=current[k] ::
A[k]=A; B[k]=B; dAdc[k]=dAdc; dBdc[k]=dBdc) foreach k

in K;

sdAdc[k] = dAdc[k] * 1.2 foreach k in K;
sdBdc[k] = dBdc[k] * 5.4 foreach k in K;

dx2_model[k] = A[k]^2*s11_s + 2*A[k]*B[k]*s12_s + B[k]^2*s22_s foreach k in K;
dx_model[k] = 1e6*sqrt(dx2_model[k]) foreach k in K;

foreach k in K
{
error_linear[k] = (dx_model[k]^2 - dx_measured[k]^2)/(2*dx_measured[k]*sdx_measured[k]);
error_linear_ns[k] = (dx_model[k]^2 - dx_measured[k]^2) ;
error_nonlinear[k] = (dx_model[k] - dx_measured[k])/(sdx_measured[k]);
error_nonlinear_ns[k] = (dx_model[k] - dx_measured[k]);

}

obj = sum(k in K | error_linear[k]^2);

maxdAdc = sum(k in K | max(sdAdc[k]+1e-2, 0)^2);
maxdBdc = sum(k in K | max(sdBdc[k]+1e-2, 0)^2);

</expressions>
</mapping>

<solver classname=’com.pav.pdas.optimization.snopt.SnoptDirect’>
<parameter name=’major feasibility tolerance’ value=’1e-6’ />
<parameter name=’major optimality tolerance’ value=’1e-6’ />
<parameter name=’major step limit’ value=’0.75’ />
<parameter name=’major print level’ value=’1’ />
<parameter name=’print file’ value=’6’ />
<parameter name=’solution’ value=’true’ />
<parameter name=’solution file’ value=’6’ />

</solver>

</formulation>

p. 52

Appendix C

The xml file for the optimization problem to find beam matrix parameters at the exit of the linac section
along with α and β in I2−K2 mapping, given horizontal beam size measurements at the screen is as follows:
<formulation>
<problem classname=’com.pav.pdas.optimization.common.NLPProblem’ direction=’minimize’>
<variable label=’s_11’ modelVariable=’s_11’ lower=’0.0’ upper=’10000’

useRandomInitial=’true’ randomSeed=’11’ randomLower=’0.0’ randomUpper=’10’/>
<variable label=’s_12’ modelVariable=’s_12’ lower=’0.0’ upper=’10000’

useRandomInitial=’true’ randomSeed=’12’ randomLower=’0.0’ randomUpper=’10’/>
<variable label=’s_22’ modelVariable=’s_22’ lower=’0.0’ upper=’10000’

useRandomInitial=’true’ randomSeed=’21’ randomLower=’0.0’ randomUpper=’10’/>
<variable label=’slope_q3’ modelVariable=’slope_q3’ lower=’160.87’ upper=’160.87’

useRandomInitial=’true’ randomSeed=’31’ randomLower=’0.0’ randomUpper=’500’/>
<variable label=’int_q3’ modelVariable=’int_q3’ lower=’49.0’ upper=’49.0’

useRandomInitial=’true’ randomSeed=’32’ randomLower=’0’ randomUpper=’100’/>
<variable label=’slope_q4’ modelVariable=’slope_q4’ lower=’147.23’ upper=’187.23’

useRandomInitial=’true’ randomSeed=’41’ randomLower=’167.23’ randomUpper=’167.23’/>
<variable label=’int_q4’ modelVariable=’int_q4’ lower=’23.17’ upper=’63.17’

useRandomInitial=’true’ randomSeed=’42’ randomLower=’43.17’ randomUpper=’43.17’/>
<objective label=’obj’ modelVariable=’obj’/>

</problem>

<mapping classname=’com.pav.pdas.model.expression.ExpressionMapping’ name=’trainer’>
<data name=’d’ file=’fitdata.csv’ rowCount=’14’ columnCount=’23’ />

<mapping classname=’com.pav.pdas.model.expression.ExpressionMapping’ name=’Transfer’>
<input name=’I_2’/>
<input name=’s_11’/>
<input name=’s_12’/>
<input name=’s_22’/>
<input name=’slope_q3’/>
<input name=’int_q3’/>
<input name=’slope_q4’/>
<input name=’int_q4’/>
<output name=’A_T’/>
<output name=’B_T’/>
<output name=’C_T’/>
<output name=’D_T’/>
<output name=’dx’/>
<output name=’dxp’/>

<mapping classname=’com.pav.pdas.model.expression.ExpressionMapping’ name=’QuadTransfer’>
<input name=’I_2’/>
<input name=’slope_q3’/>
<input name=’int_q3’/>
<input name=’slope_q4’/>
<input name=’int_q4’/>
<output name=’A_T’/>
<output name=’B_T’/>
<output name=’C_T’/>
<output name=’D_T’/>
<parameter name=’E_slice’ value=’30.50’/>
<parameter name=’A_spec’ value=’0.953728998305’/>
<parameter name=’B_spec’ value=’0.418879020479’/>
<parameter name=’C_spec’ value=’-0.682448955752’/>
<parameter name=’D_spec’ value=’0.748783408240’/>
<parameter name=’l_eff’ value=’0.07677’/>
<parameter name=’I_Qy’ value=’0’/>

<expressions>

real l_qtq;
real l_drift1, l_drift2;
real K_1, K_2;
real A_quad, B_quad, C_quad, D_quad;

l_drift1 = 1.873-l_eff/2;
l_drift2 = 0.4191;
l_qtq = (4.36-4.173)-l_eff;

p. 53

K_1 = sqrt((slope_q3*I_Qy + int_q3)/E_slice);
K_2 = sqrt((slope_q4*I_2 + int_q4)/E_slice);

A_quad = cos(K_2*l_eff)*(cosh(K_1*l_eff) + l_qtq*K_1*sinh(K_1*l_eff))
+ K_1/K_2*sin(K_2*l_eff)* sinh(K_1*l_eff);

B_quad = cos(K_2*l_eff)*(sinh(K_1*l_eff)/K_1 + l_qtq* cosh(K_1*l_eff))
+ 1/K_2*sin(K_2*l_eff)* cosh(K_1*l_eff);

C_quad = -K_2*sin(K_2*l_eff)*(cosh(K_1*l_eff) + l_qtq*K_1*sinh(K_1*l_eff))
+ K_1*cos(K_2*l_eff)* sinh(K_1*l_eff);

D_quad = -K_2*sin(K_2*l_eff)*(sinh(K_1*l_eff)/K_1 + l_qtq* cosh(K_1*l_eff))
+ cos(K_2*l_eff)* cosh(K_1*l_eff);

A_T = A_spec*(A_quad + l_drift1*C_quad) + B_spec*C_quad
+ l_drift2*C_spec*(A_quad + l_drift1*C_quad) + l_drift2*D_spec*C_quad;

B_T = A_spec*(B_quad + l_drift1*D_quad) + B_spec*D_quad
+ l_drift2*C_spec*(B_quad + l_drift1*D_quad) + l_drift2*D_spec*D_quad;

C_T = C_spec*(A_quad + l_drift1*C_quad) + D_spec*C_quad;
D_T = C_spec*(B_quad + l_drift1*D_quad) + D_spec*D_quad;

</expressions>
</mapping>

<mapping classname=’com.pav.pdas.model.expression.ExpressionMapping’ name=’BeamTransfer’>
<input name=’A_T’/>
<input name=’B_T’/>
<input name=’C_T’/>
<input name=’D_T’/>
<input name=’s_11’/>
<input name=’s_12’/>
<input name=’s_22’/>
<output name=’dx’/>
<output name=’dxp’/>
<expressions>
real dx2, dxp2;

dx2 = A_T^2*s_11 + 2*A_T*B_T*s_12 + B_T^2*s_22;
dxp2 = C_T^2*s_11 + 2*C_T*D_T*s_12 + D_T^2*s_22;

dx = 1e2*sqrt(dx2);
dxp = 1e2*sqrt(dxp2);

</expressions>
</mapping>

<expressions>

QuadTransfer(I_2 = I_2;
slope_q3=slope_q3; int_q3=int_q3;
slope_q4=slope_q4; int_q4=int_q4
::
A_T = A_T; B_T = B_T; C_T = C_T; D_T = D_T);

BeamTransfer(A_T = A_T; B_T = B_T; C_T = C_T; D_T = D_T;
s_11 = s_11; s_12 = s_12; s_22 = s_22
::
dx = dx; dxp = dxp);

</expressions>
</mapping>

<input name=’s_11’/>
<input name=’s_12’/>
<input name=’s_22’/>
<input name=’slope_q3’ value=’160.87’/>
<input name=’int_q3’ value=’49.0’/>
<input name=’slope_q4’ value=’167.23’/>
<input name=’int_q4’ value=’43.17’/>
<output name=’obj’/>
<!-- These are listed as outputs to see their values at the solution. -->
<output name=’dx_model’>
<dimension set=’K’/>

</output>
<output name=’dxp_model’>
<dimension set=’K’/>

</output>
<output name=’A_T’>

p. 54

<dimension set=’K’/>
</output>
<output name=’B_T’>
<dimension set=’K’/>

</output>
<output name=’C_T’>
<dimension set=’K’/>

</output>
<output name=’D_T’>
<dimension set=’K’/>

</output>
<expressions>
set K = |1:14|;
set J = |1:23|;

real data[K,J] = d;

real I_2[K];
real dx_measured[K];
real sdx_measured[K];
real error_linear[K];
real error_linear_ns[K];
real error_nonlinear[K];
real error_nonlinear_ns[K];

I_2[k] = data[k, 1] foreach k in K;
dx_measured[k] = data[k,15] foreach k in K;
sdx_measured[k] = data[k,16] foreach k in K;

Transfer(s_11 = s_11;
s_12 = s_12;
s_22 = s_22;
slope_q3=slope_q3; int_q3=int_q3;
slope_q4=slope_q4; int_q4=int_q4;
I_2 = I_2[k]
::
A_T[k] = A_T;
B_T[k] = B_T;
C_T[k] = C_T;
D_T[k] = D_T;
dx_model[k] = dx;
dxp_model[k] = dxp

) foreach k in K;

foreach k in K
{
error_linear[k] = (dx_model[k]^2 - dx_measured[k]^2)/(2*dx_measured[k]*sdx_measured[k]);
error_linear_ns[k] = (dx_model[k]^2 - dx_measured[k]^2);
error_nonlinear[k] = (dx_model[k] - dx_measured[k])/(sdx_measured[k]);
error_nonlinear_ns[k] = (dx_model[k] - dx_measured[k]);

}

obj = sum(k in K | error_nonlinear[k]^2);

</expressions>
</mapping>

<solver classname=’com.pav.pdas.optimization.snopt.SnoptDirect’>
<parameter name=’major feasibility tolerance’ value=’1e-6’ />
<parameter name=’major optimality tolerance’ value=’1e-6’ />
<parameter name=’major step limit’ value=’0.1’ />
<parameter name=’major print level’ value=’1’ />
<parameter name=’print file’ value=’6’ />
<parameter name=’solution’ value=’true’ />
<parameter name=’solution file’ value=’6’ />
<parameter name=’scale option’ value=’2’ />

</solver>

</formulation>

p. 55

Appendix D

The xml file for the optimization problem to find optimal quad setting given a desired operating con-
dition for the beam

(
∆Xdes ,∆X′

des

)
:

<formulation>
<problem classname=’com.pav.pdas.optimization.common.NLPProblem’ direction=’minimize’>
<variable label=’I_2’ modelVariable=’I_2’ lower=’0’ upper=’10’ useRandomInitial=’true’ randomSeed=’11’

randomLower=’0’ randomUpper=’10’/>
<objective label=’obj’ modelVariable=’obj’/>

</problem>

<mapping classname=’com.pav.pdas.model.expression.ExpressionMapping’ name=’setpoint’>
<mapping classname=’com.pav.pdas.model.expression.ExpressionMapping’ name=’Transfer’>
<input name=’I_2’/>
<input name="s_11" value="2.6367971055566173" />
<input name="s_12" value="1.5738242270790272" />
<input name="s_22" value="1.435441121463094" />
<output name=’A_T’/>
<output name=’B_T’/>
<output name=’C_T’/>
<output name=’D_T’/>
<output name=’dx’/>
<output name=’dxp’/>

<mapping classname=’com.pav.pdas.model.expression.ExpressionMapping’ name=’QuadTransfer’>
<input name=’I_2’/>
<output name=’A_T’/>
<output name=’B_T’/>
<output name=’C_T’/>
<output name=’D_T’/>
<parameter name=’E_slice’ value=’30.50’/>
<parameter name=’slope_q3’ value=’160.87’/>
<parameter name=’int_q3’ value=’49.0’/>
<parameter name=’slope_q4’ value=’167.23’/>
<parameter name=’int_q4’ value=’43.17’/>
<parameter name=’A_spec’ value=’0.953728998305’/>
<parameter name=’B_spec’ value=’0.418879020479’/>
<parameter name=’C_spec’ value=’-0.682448955752’/>
<parameter name=’D_spec’ value=’0.748783408240’/>
<parameter name=’l_eff’ value=’0.07677’/>
<parameter name=’I_Qy’ value=’0’/>

<expressions>

real l_qtq;
real l_drift1, l_drift2;
real K_1, K_2;
real A_quad, B_quad, C_quad, D_quad;

l_drift1 = 1.873-l_eff/2;
l_drift2 = 0.4191;

l_qtq = (4.36-4.173)-l_eff;

K_1 = sqrt((slope_q3*I_Qy + int_q3)/E_slice);
K_2 = sqrt((slope_q4*I_2 + int_q4)/E_slice);

A_quad = cos(K_2*l_eff)*(cosh(K_1*l_eff) + l_qtq*K_1*sinh(K_1*l_eff))
+ K_1/K_2*sin(K_2*l_eff)* sinh(K_1*l_eff);

B_quad = cos(K_2*l_eff)*(sinh(K_1*l_eff)/K_1 + l_qtq* cosh(K_1*l_eff))
+ 1/K_2*sin(K_2*l_eff)* cosh(K_1*l_eff);

C_quad = -K_2*sin(K_2*l_eff)*(cosh(K_1*l_eff) + l_qtq*K_1*sinh(K_1*l_eff))
+ K_1*cos(K_2*l_eff)* sinh(K_1*l_eff);

D_quad = -K_2*sin(K_2*l_eff)*(sinh(K_1*l_eff)/K_1 + l_qtq* cosh(K_1*l_eff))
+ cos(K_2*l_eff)* cosh(K_1*l_eff);

p. 56

A_T = A_spec*(A_quad + l_drift1*C_quad) + B_spec*C_quad
+ l_drift2*C_spec*(A_quad + l_drift1*C_quad) + l_drift2*D_spec*C_quad;

B_T = A_spec*(B_quad + l_drift1*D_quad) + B_spec*D_quad
+ l_drift2*C_spec*(B_quad + l_drift1*D_quad) + l_drift2*D_spec*D_quad;

C_T = C_spec*(A_quad + l_drift1*C_quad) + D_spec*C_quad;

D_T = C_spec*(B_quad + l_drift1*D_quad) + D_spec*D_quad;

</expressions>
</mapping>

<mapping classname=’com.pav.pdas.model.expression.ExpressionMapping’ name=’BeamTransfer’>
<input name=’A_T’/>
<input name=’B_T’/>
<input name=’C_T’/>
<input name=’D_T’/>
<input name=’s_11’/>
<input name=’s_12’/>
<input name=’s_22’/>
<output name=’dx’/>
<output name=’dxp’/>
<expressions>
real s_11s, s_12s, s_22s;

s_11s = s_11/1e8;
s_12s = s_12/1e8;
s_22s = s_22/1e8;

real dx2, dxp2;

dx2 = A_T^2*s_11s + 2*A_T*B_T*s_12s + B_T^2*s_22s;
dxp2 = C_T^2*s_11s + 2*C_T*D_T*s_12s + D_T^2*s_22s;

dx = 1e6*sqrt(dx2);
dxp = 1e6*sqrt(dxp2);

</expressions>
</mapping>

<expressions>

QuadTransfer(I_2 = I_2 :: A_T = A_T; B_T = B_T; C_T = C_T; D_T = D_T);
BeamTransfer(A_T = A_T; B_T = B_T; C_T = C_T; D_T = D_T;

s_11 = s_11; s_12 = s_12; s_22 = s_22
::
dx = dx; dxp = dxp);

</expressions>
</mapping>

<input name=’I_2’/>
<input name=’dx_desired’ value=’200’/>
<input name=’dxp_desired’ value=’140’/>
<output name=’dx_model’/>
<output name=’dxp_model’/>
<output name=’obj’/>
<expressions>
Transfer(I_2 = I_2 :: dx_model = dx; dxp_model = dxp);
obj = (dx_desired - dx_model)^2 + (dxp_desired - dxp_model)^2;

</expressions>
</mapping>

<solver classname=’com.pav.pdas.optimization.snopt.SnoptDirect’>
<parameter name=’major feasibility tolerance’ value=’1e-6’ />
<parameter name=’major optimality tolerance’ value=’1e-6’ />
<parameter name=’major step limit’ value=’0.1’ />
<parameter name=’major print level’ value=’1’ />
<parameter name=’print file’ value=’6’ />
<parameter name=’solution’ value=’true’ />
<parameter name=’solution file’ value=’6’ />

</solver>

p. 57

</formulation>

p. 58

