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ABSTRACT 
Typical engineering systems in applications with high 

failure consequences such as nuclear reactor plants often 
employ redundancy and diversity of equipment in an effort to 
lower the probability of failure and therefore risk.  However, it 
has long been recognized that dependencies exist in these 
redundant and diverse systems.  Some dependencies, such as 
common sources of electrical power, are typically captured in 
the logic structure of the risk model.  Others, usually referred to 
as intercomponent dependencies, are treated implicitly by 
introducing one or more statistical parameters into the model.  
Such common-cause failure models have limitations in a 
simulation environment.  In addition, substantial subjectivity is 
associated with parameter estimation for these models.  This 
paper describes an approach in which system performance is 
simulated by drawing samples from the joint distributions of 
dependent variables.  The approach relies on the notion of a 
copula distribution, a notion which has been employed by the 
actuarial community for ten years or more, but which has seen 
only limited application in technological risk assessment.  The 
paper also illustrates how equipment failure data can be used in 
a Bayesian framework to estimate the parameter values in the 
copula model.  This approach avoids much of the subjectivity 
required to estimate parameters in traditional common-cause 
failure models.  Simulation examples are presented for failures 
in time.  The open-source software package R is used to 
perform the simulations.  The open-source software package 
WinBUGS is used to perform the Bayesian inference via 
Markov chain Monte Carlo sampling. 

INTRODUCTION 
Tools for risk assessment are becoming more sophisticated 

as computer hardware and software continue their rapid 
advancement.  Fault trees and event trees, while still prevalent, 
are quickly becoming the tools of the past.  They are being 
replaced with tools such as discrete event simulation, which can 
capture finer details of the problem at hand.  Consideration of 
uncertainty in the outputs of risk assessments is also important 
when these outputs are the inputs to decision-making.  In even 
simple problems, there are often dependencies among the 
variables in the risk assessment that must be accounted for if the 
analysis is to yield an accurate assessment of uncertainty. 

For example, typical engineering systems in applications 
with high failure consequences such as nuclear reactor plants 
often employ redundancy and diversity of equipment in an 
effort to lower the probability of failure and therefore risk.  
However, it has long been recognized that dependencies exist in 
these redundant and diverse systems.  Some dependencies, such 
as common sources of electrical power, are typically captured in 
the logic structure of the risk model.  Others, usually referred to 
as intercomponent dependencies, are treated implicitly by 
introducing one or more statistical parameters into the model.  
Such common-cause failure models have limitations, such as 
inability to model common-cause failure among diverse (as 
opposed to redundant and identical) components.  In addition, 
substantial subjectivity is associated with parameter estimation 
for these models. 

This paper describes an approach in which system 
performance is simulated by drawing samples from the joint 
distributions of dependent variables.  The approach  relies on 
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the notion of a copula distribution, a notion which has been 
employed by the actuarial community for ten years or more, but 
which has seen only limited application in technological risk 
assessment.  The paper also illustrates how equipment failure 
data can be used in a Bayesian framework to estimate the 
parameter values in the copula model.  This approach avoids 
much of the subjectivity required to estimate parameters in 
traditional common-cause failure models.  Simulation examples 
are presented for failures in time.  The open-source software 
package R (www.r-project.org) is used to perform the 
simulations.  The open-source software package WinBUGS 
(http://mathstat.helsinki.fi/openbugs/Home.html) is used to 
perform the Bayesian inference via Markov chain Monte Carlo 
sampling. 

NOMENCLATURE 

cdf :  cumulative distribution function 
C(u, v) :  bivariate copula distribution function 
F(•):  cumulative distribution function 
F-1(•):  inverse cumulative distribution function 
log(•) :  log to base e 
P(•) :  probability of an event 
u, v :  uniform(0, 1) random variables 

DEFINITION OF COPULA FUNCTION 
The basic problem to be examined in this paper is 

simulation of component failure times from a joint distribution 
in the general case in which the failure times are not 
independent.  The exposition begins with the simplest case in 
which there are two components arranged in parallel, and 
generalizes this later to the case of three or more components. 

With two components in a parallel arrangement, with a 1-
of-2 success criterion, failure is defined as the event in which 
neither component operates for the required period of time, 
denoted tm for mission time.  In terms of the joint cumulative 
distribution function, one can write 

)t,t(F)failure(P mm=    (1) 

Because the failure times are dependent, the joint 
distribution function cannot be factored as the product of the 
marginal distributions.  In a simulation environment, one 
randomly samples pairs of failure times from the joint 
distribution, and then estimates the probability of system failure 
as the fraction of samples in which both failure times are less 
than or equal to tm.  In general, the marginal distributions will 
not be Gaussian; typically they will be exponential, Weibull, 
gamma, lognormal, etc.  And they need not be identical.  This 
complicates the process of drawing Monte Carlo samples from 
the joint distribution. 

The notion of a copula function is extremely useful for 
simulation, as it avoids the need for assumptions of normality 
and, most importantly, allows the analyst to proceed in two 
separate stages:  1) model the one-dimensional marginal 

distributions, and 2) model the dependence structure (1).  This 
is in contrast to the frailty approach, another popular approach 
to dependence, in which the failure times are modeled as being 
conditionally independent, given a frailty variable.  A copula 
function can be viewed as generalizing to two or more 
dimensions the well known result that the cumulative 
distribution function (cdf) of a random variable X, denoted 
F(x), is uniformly distributed on the interval [0, 1].  This is the 
basis for simple Monte Carlo sampling routines that use the 
inverse cdf to obtain samples from a specified distribution. 

Two random variables T1 and T2 are joined by a copula 
function, C, if their joint cdf can be written as 

)]t(F),t(F[C)t,t(F 221121 =   (2) 

This result is known as Sklar’s Theorem.  As shown in (2), 
every bivariate distribution has a copula representation, which 
is unique if the variables are continuous, and given a copula 
function, along with marginal distributions F1 and F2, the 
function obtained by eq. 2 is the joint cdf.  Also, if the joint and 
marginal distributions are known, the copula function can be 
written as 

)]v(F),u(F[F)v,u(C 1
2

1
1

−−=   (3) 

In eq. 3, u and v are uniformly distributed on the interval 
[0, 1].  Thus, the copula function is a distribution function 
defined on the unit square, possessing uniform marginals. 

Many different copulas are available to express dependence 
between marginal distributions.  A partial list is shown in (2).  
This paper will illustrate two choices, beginning with the 
Marshall-Olkin copula, which is derived from the Marshall-
Olkin shock model.  The second is Frank’s copula, which is not 
based on a shock model, and has great flexibility along with a 
convenient closed functional form. 

MARSHALL-OLKIN COPULA 
As the first specific example, consider the bivariate 

Marshall-Olkin model, described in (3).  In this model there are 
three shocks.  Shock 1 occurs at time S1 and fails component 1.  
Shock 2 occurs at time S2 and fails component 2.  Shock 3 
occurs at time S12 and fails both components.  These three 
shocks are assumed to be independently distributed as follows: 

S1 ~ exp(λ11) 
S2 ~ exp(λ21) 
S12 ~ exp(λ12) 

The following result is easily obtained for the failure times 
of components 1 and 2: 

( )[ ]21122211112211 t,tmaxttexp)tT,tT(P λλλ −−−=>>
      (4) 

Thus, one has the following result for the failure time of 
each component. 
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)exp(~)S,Smin(T 12111211 λλ +=  (5) 

)exp(~)S,Smin(T 12211222 λλ +=  (6) 

One can use eq. 4 to find the joint cdf: 

122112121 −++= )t(F)t(F)t,t(F)t,t(F  (7) 

Because of Sklar’s Theorem, eq. 2, the bivariate 
exponential distribution defined in this way implies a 
corresponding (unique) bivariate copula function.  To obtain the 
copula function, let u = 1 – F1(t1) and v = 1 – F2(t2).  
Furthermore, let 

1211
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+
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=

Then, as is shown in (2), the copula function is given by 
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1

1

  (8) 

To generate pairs of failure times using eq. 8, one can use 
the following algorithm.  First, generate three independent, 
uniform(0, 1) random variables:  r, s, and z.  Then, generate t1

and t2 according to the following: 

( ) ( )[ ]
( ) ( )[ ]12212

12111

λλ

λλ

/zlog,/slogmint

/zlog,/rlogmint

−−=

−−=
 (9) 

One can then show that u and v, given by the following 
equations, are uniform(0, 1) random variables, whose joint 
distribution is the Marshall-Olkin copula defined by eq. 8. 

( )[ ]
( )[ ]21221

11211

texpv

texpu

λλ

λλ

+−=

+−=
   (10) 

Being a shock model, the bivariate Marshall-Olkin 
distribution has a singular component.  In terms of simulation, 
this means that one can expect to find t1 = t2 in a proportion of 
the samples generated from this distribution.  One can show that 
this proportion is given by 

( )
122111

12

λλλ

λ

αββα

αββα

++
=

−+
== vuP (11) 

The figure below shows a plot of 500 values from a 
Marshall-Olkin copula with α = 0.5 and β = 0.75.  The singular 
component (where t1 = t2) is clearly visible. 

Fig. 1  Plot of 500 samples from Marshall-Olkin copula 
illustrating singular component 

FRANK’S COPULA 
In some situations, the shock model may not be 

appropriate.  For example, the failure mechanism may be 
gradual in nature, so that dependence between the failure times 
arises more from shared conditions than from a common shock.  
In these cases, the Marshall-Olkin model is inappropriate.  
However, other copula functions exist which are absolutely 
continuous and thus may be appropriate models.  One such 
model that is extremely flexible is Frank’s copula.  As described 
in (1, 2), Frank’s copula is in the family of so-called 
Archimedean copulas, and is defined by one parameter, denoted 
θ.  It has a closed functional form, which is convenient for 
simulation, and the copula parameter, θ, can be related to 
various popular measures of bivariate dependence, such as 
Spearman’s rank correlation coefficient, ρr.  Fig. 2 below shows 
how Spearman’s rank correlation coefficient varies with 
increasing values of θ.  This relation is symmetric for negative 
values of θ, with ρr being negative in that case. 
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Fig. 2  Plot of Spearman rank correlation coefficient 
vs. parameter of Frank’s copula 

The functional form of Frank’s copula is given by 

( ) ( )( )
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In eq. 12, u = F1(t1) and v = F2(t2). 
Because Frank’s copula is absolutely continuous, one can 

write the bivariate copula density as 

( ) ( )

( ) ( )

( )( )[ ]2

2

111

1
vu

vu

eee
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  (13) 

In the limit as θ → 0, the failure times are independent and 
the copula reduces to the independent copula, C(u, v) = uv.  For 
θ > 0, the failure times exhibit positive quadrant dependence 
(3), with ρr > 0.  For θ < 0, the failure times exhibit negative 
quadrant dependence (3) and ρr < 0.  The following figures 
illustrate the copula density function for selected values of θ. 

Fig. 3  Density function of Frank’s copula with θθθθ = 0 
(independence) 

Fig. 4  Density function of Frank’s copula with θθθθ = -2 
(negative quadrant dependence, ρρρρr < 0) 
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Fig. 5  Density function of Frank’s copula with θθθθ = 2 
(positive quadrant dependence, ρρρρr > 0) 

To generate failure times from a bivariate Frank’s copula, 
one can use the following algorithm, adapted from (4).  First 
generate u1 and u2 from independent uniform(0, 1) distributions.  
Then, set t1 = F1

-1(u1).  Calculate t2 as the solution to the 
following equation. 
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That is, t2 = Fx
-1(u*2) where u*2 is given by 
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θθ

  (15) 

To illustrate the use of copulas for simulation, consider the 
following example.  Assume a portion of a system contains two 
redundant components, both of which have a marginal failure 
time distribution that is exponential with rate 2 × 10-4 per hour.  
Assume that the mission time is 1000 hours.  Failure of the 
system is given by the joint cdf, evaluated at the mission time of 
1000 hours.  If the components were independent, this would 
just be the product of the marginal cdfs.  However, in the case 
of dependence, the joint cdf cannot be factored into the product 
of the marginals.  Assume that the dependence can be 
represented by Frank’s copula with exponential marginals and θ
= 10.  Using the relationship between θ and ρr illustrated in fig. 
2 and specified in (2) in terms of numerical integrals known as 
Debye functions, one can show that this corresponds to a rank 
correlation between the failure times of 0.86. 

The R package was used to generate 100 samples from the 
bivariate exponential distribution (via Frank’s copula) in this 
case, resulting in the figure below. 

Fig. 6  Scatterplot of 100 failure times from Frank’s 
copula with θθθθ = 10 illustrating dependence between 

failure times and lack of singular component (no pairs 
of times are equal) 

Expanding the lower region of this figure shows the cases 
in which both simulated failure times were less than the mission 
time of 1000 hours, indicating failure. 

Fig. 7  Magnified region showing 14 failure times less 
than 1000 hours 

Thus, the estimated joint failure probability would be 0.14.  
Of course, 100 samples are not sufficient to estimate the failure 
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probability with high accuracy.  A run of 100,000 samples 
resulted in an estimated failure probability of 0.12.  This can be 
compared to a probability of about 0.03 when the failure times 
are independent. 

BAYESIAN ESTIMATION OF COPULA PARAMETERS 
The inverse of this problem is also important.  In this case, 

one is presented with pairs of failure times and the problem is to 
estimate the bivariate distribution, capturing any dependence 
exhibited by the failure times.  The Bayesian approach to this 
problem is illustrated here, for both the Marshall-Olkin shock 
model and the absolutely continuous Frank’s copula.  The 
WinBUGS package is used to carry out  the analysis via 
Markov chain Monte Carlo sampling. 

A key strength of the copula approach is that it allows the 
estimation to proceed in two stages.  First, the marginal 
distributions are estimated, assuming the failure times are 
independent.  Second, the dependence structure is estimated, 
which corresponds to estimating the parameter(s) of the copula 
function. 

Assuming that the failure times have marginal exponential 
distributions, one first specifies a prior distribution for each of 
the failure rates, and then uses the observed failure times to 
update these rates.  This is a straightforward process, as 
described for example in (5).  Jeffreys noninformative priors 
were used for each of the failure rates. 

With the posterior distributions for the failure rates in hand, 
the next step is to find the posterior distribution for the copula 
parameter.  For Frank’s copula, a reasonable prior belief for a 
system with redundant components is that θ > 0, representing 
positive quadrant dependence between the failure times.  A 
value of 50 for θ corresponds to ρr of 0.99, very near the 
maximum value of 1.  Therefore, a uniform distribution 
between 0 and 50 was used as a minimally informative prior for 
θ.  The joint density for the failure times, which is the 
likelihood function for Bayesian inference, can be written as 

[ ])t(F),t(Fc)t(f)t(f)t,t(f 2211221121 =  (16) 

In eq. 16, one has fi(ti) = λiexp(-λiti) and c is the copula 
density, given by eq. 13.  The “zeros trick” described in the 
WinBUGS user manual is used to encode this likelihood 
function into WinBUGS.  This trick entails assigning a Poisson 
distribution to a vector of zeros, with parameter (Poisson mean) 
equal to the negative of the logarithm of the likelihood function.  
The WinBUGS script is shown in the table below. 

model { 
#Estimate parameters of marginal distributions 
for(i in 1:N)  { 
  t.1[i] ~ dexp(lambda.11) 
  t.2[i] ~ dexp(lambda.21) 
  } 
#Set up "zeros trick" 

for(i in 1:N) { 
  zeros[i] <- 0 
  zeros[i] ~ dpois(phi[i]) 
#Following lines calculate likelihood with exponential 
marginals 
  u[i] <- 1 - exp(-lambda.11*t.1[i]) 
  v[i] <- 1 - exp(-lambda.21*t.2[i]) 
  phi[i] <- -log(lambda.11) - log(lambda.21)  + lambda.11*t.1[i] 
+ lambda.21*t.2[i] - log(theta) - log(1 - exp(-theta)) + 
theta*(u[i] + v[i]) + 2*log(1 - exp(-theta) - (1 - exp(-
theta*u[i]))*(1 - exp(-theta*v[i])))  
  } 
theta ~ dunif(0,50) #Uniform prior on copula parameter 
lambda.11 ~ dgamma(0.0001, 0.0001) #Jeffreys prior on 
marginal parameters 
lambda.21 ~ dgamma(0.0001, 0.0001) 
Tab. 1  WinBUGS script for estimating parameters of joint 
distribution of failure times using Frank’s copula to model 
dependence 

The R package was used to generate 50 pairs of failure 
times from Frank’s copula with θ = 10, corresponding to ρr = 
0.86.  The marginal distributions were both exponential with 
rate 2 × 10-4 per hour.  These simulated failure times were used
to test the WinBUGS script.  Two Markov chains were used and 
were run until convergence was achieved, after 2,000 iterations.  
Another 20,000 iterations were used to estimate the marginal 
failure rates and the copula parameter, θ.  The two marginal 
failure rates both had a posterior mean of 1.7 × 10-4, with a 90% 
interval of (1.4, 2.0) × 10-4.  The posterior mean of θ was found 
to be 9.3, with a 90% interval of (6.97, 11.79).  The posterior 
distribution of θ was approximately Gaussian, with a standard 
deviation of 1.5. 

As a second test, a set of 50 independent failure times (ρr = 
-0.003) was generated, each from an exponential distribution 
with rate 2 × 10-4 per hour.  The posterior mean of θ was found 
to be 0.63, with a 90% interval of (0.05, 1.57).  Recall that 
variables joined by Frank’s copula are independent in the limit 
θ → 0, so estimated values of θ near zero are suggestive of 
independence.. 

Turning now to Bayesian estimation for the bivariate 
Marshall-Olkin distribution, there are again three parameters to 
estimate:  the failure rates of the marginal exponential 
distributions, denoted here as λ11 and λ21, and the rate of the 
common shock, denoted λ12.  Jeffreys noninformative priors 
were used for each of these rates.  The likelihood function has 
three pieces, corresponding to cases where t1 > t2, t1 < t2, and t1

= t2.  The WinBUGS script is shown in the table below.  The 
“zeros trick” is again used to encode the likelihood function. 

model { 
for(i in 1:N) { 
 zeros[i] <- 0 
 zeros[i] ~ dpois(phi[i]) 
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 logL.1[i] <- log(lambda.21*(lambda.11 + 
lambda.12))*step(t.1[i] - t.2[i]) - log(lambda.21*(lambda.11 + 
lambda.12))*equals(t.1[i], t.2[i]) + log(lambda.11*(lambda.21 
+ lambda.12))*step(t.2[i] - t.1[i]) - log(lambda.11*(lambda.21 + 
lambda.12))*equals(t.2[i], t.1[i]) 
 logL.2[i] <- - lambda.11*t.1[i] - lambda.21*t.2[i] - 
lambda.12*t.1[i]*step(t.1[i] - t.2[i]) + 
lambda.12*t.1[i]*equals(t.1[i], t.2[i]) - 
lambda.12*t.2[i]*step(t.2[i] - t.1[i]) + 
lambda.12*t.2[i]*equals(t.2[i], t.1[i]) 
 logL.3[i] <- log(lambda.12)*equals(t.1[i], t.2[i]) - 
lambda.12 *t.1[i]*equals(t.1[i], t.2[i]) 
 logL[i] <- logL.1[i] + logL.2[i] + logL.3[i] 
 phi[i] <- -logL[i] 
 } 
#Priors 
lambda.11 ~ dgamma(0.0001, 0.0001) #Diffuse priors 
lambda.21 ~ dgamma(0.0001, 0.0001) 
lambda.12 ~ dgamma(0.0001, 0.0001) 
#Parameters of Marshall-Olkin copula 
alpha <- lambda.12/(lambda.11 + lambda.12) 
beta <- lambda.12/(lambda.21 + lambda.12) 
} 
Tab. 2  WinBUGS script for estimating parameters of
bivariate Marshall-Olkin joint distribution of failure times  

The R package was used to generate 50 pairs of failure 
times from a bivariate Marshall-Olkin distribution with λ11 = λ21

= 2 × 10-4 per hour and λ12 = 5 × 10-5 per hour.  These 
simulated failure times were used to test the WinBUGS script.  
One thousand WinBUGS iterations were run for convergence, 
followed by 20,000 iterations to estimate the parameters.  The 
posterior mean of λ11 and λ21 was 2.0 × 10-4 with a 90% interval 
of (1.5, 2.6) × 10-4.  The posterior mean of λ12 was 4.8 × 10-5

with a 90% interval of (2.1, 8.4) × 10-5.  The posterior means 
and 90% intervals for the parameters of the Marshall-Olkin 
copula (α and β) were as follows. 

α:  0.19 (0.08, 0.33) 
β:  0.18 (0.08, 0.31) 

MODELING STATE-OF-KNOWLEDGE DEPENDENCE 
As first discussed in (6), Monte Carlo sampling for

propagation of uncertainties in a risk model should account for 
state-of-knowledge dependencies among parameters in the 
model.  For example, in a system with redundant, nominally 
identical components, a single probability distribution typically 
is developed to represent epistemic uncertainty in a desired 
parameter value (e.g., failure rate), and this distribution is 
applied to each of the redundant components.  This represents 
complete state-of-knowledge dependence between the 
redundant components, and is reflected in the Monte Carlo 
uncertainty propagation by sampling a single value from this 

distribution at each iteration of the Monte Carlo sampling and 
applying this single value to each of the redundant components.  
This is the opposite extreme from independence, in which 
separate values would be sampled for each component at each 
iteration. 

There are cases where an intermediate level of state-of-
knowledge dependence is desired.  For example, a system may 
have redundant, but nonidentical components, for which 
separate probability distributions are developed to represent 
parameter uncertainty.  However, state-of-knowledge
independence may not be justifiable.  Fragilities of components 
in seismic analysis are one example.  In these cases, copulas 
provide an easy means to carry out the Monte Carlo sampling.  
Frank’s copula is attractive for this application because the 
copula parameter can be related to Spearman’s rank correlation 
coefficient, which is a useful means of expressing the state-of-
knowledge dependence, as shown below. 

One way to attach a meaning to Spearman’s rank 
correlation, ρr, is to use the following nonparametric regression 
expression. 

E[F(X|y)] = ρr[G(y) – 0.5] + 0.5   (17) 

In this equation, G(y) is the cdf of Y, and F(X|y) is the cdf 
of X, conditional upon a value of y.  So the equation relates the 
expected percentile of X, given y, to the unconditional 
percentile of y.  Assume that a value of y is sampled, and it is at 
the 80th percentile, so G(y) = 0.8.  If ρr = 0.5, this means we 
would expect to sample a value of X corresponding to the 65th

percentile.  If ρr = 1, the we get E[F(X|y)] = G(y), as expected 
(the two values are equal).  This explains why the distributions 
representing epistemic uncertainty have to be identical if there 
is complete correlation.  If ρr = 0, corresponding to 
independence, we get E[F(X|y)] = 0.5, which is what we expect, 
because in this case F(X|y) = F(X), which has a uniform(0, 1) 
distribution and an expected value of 0.5. 

As an example, consider an AND gate in a fault tree with 
two inputs, each of which represents failure of a redundant 
component to start on demand.  Assume that the epistemic 
uncertainty distribution for the failure-to-start probability, p, is 
beta(0.957, 190).  If no state-of-knowledge correlation exists 
between the two components, then the mean probability from 
the AND gate is 2.3 × 10-5.  With complete dependence, the 
probability increases to 4.7 × 10-5.  Using a two-dimensional 
Frank’s copula with beta(0.957, 190) marginal distributions to 
represent intermediate dependence, we ran 100,000 Monte 
Carlo samples to obtain the plot below, which shows how the 
AND gate probability varies with Spearman’s rank correlation, 
ρr. 
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Fig. 8  Plot showing how mean probability of failure of 
two redundant components increases with increasing 

state-of-knowledge dependence 

MULTIVARIATE EXTENSION 
As shown in (2), Frank’s copula can be extended to n 

dimensions in a straightforward manner for θ > 0.  For n 
dimensions, the copula function becomes 
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The n-dimensional copula is still specified by the single 
parameter, θ, which determines the correlation between each 
pair of variables.  As there is only one parameter, each pair of 
variables has the same correlation coefficient, so that the 
correlation matrix has a 1 for each diagonal entry, and ρr for 
each off-diagonal entry. 

As an example, consider a portion of a system containing 
three components arranged in parallel.  Assume that two of 
these components are redundant (i.e., identical) and the other is 
diverse.  Assume that the redundant components are 
exponentially distributed with a failure rate of 5 × 10-5 per hour, 
while the diverse component has a failure rate that increases 
with operating time.  Assume that the mean time to failure for 
this diverse component is 5,000 hours and that the failure time 
distribution is gamma with a shape parameter of 2, giving the 
desired increase in failure rate with time.  Assume that the 
dependence between each pair of components is moderate, 
expressed by a rank correlation of about 0.3, which corresponds 
to a parameter of about 2 for Frank’s copula.  With a mission 
time of 1,000 hours, the joint failure probability for this group 
of three parallel components is estimated to be 6.4 × 10-4, based 

on 106 samples from a Frank’s copula with the specified 
marginals and θ = 2.  This is compared with a joint failure 
probability assuming independence of 1.5 × 10-4. 

One can also use dependence trees, as described in (1, 7), 
to specify a more complex bivariate dependence structure, in 
which the pair-wise correlations are not identical.  In this 
approach, the user can specify rank correlations between each 
pair of nodes in the dependence tree, and then bivariate copulas 
are used to sample each pair of nodes in a conditional fashion. 

As an example, consider the dependence tree shown in the 
figure below.  In this example, there are again three 
components, each of which has the marginal distributions for 
time to failure listed above.  However, the rank correlations are 
not identical.  Rank correlation coefficients are specified 
between t1 and t2 (the redundant components) and between t1

and t3, where component 3 is the diverse component.  The 
sampling proceeds as follows, assuming that a bivariate Frank’s 
copula joins each of these pairs. 

First, generate a uniform random variable u1 and set 
t1 = F1

-1(u1).  Next sample u2, conditional on u1, from 
Frank’s copula with uniform marginals and rank correlation 0.6 
(θ ≈ 5) and set t2 = F2

-1(u2).  Generate t3 similarly using the 
appropriate rank correlation between t1 and t3.  The UNICORN 
package, described in (1) is very handy for this type of analysis, 
although such analysis can also be programmed with the R 
package. 

If failure is defined as all three components running for less 
than 1,000 hours, we find an estimated failure probability, based 
on 106 samples, of about 1.2 × 10-3.  This can be compared with 
the joint failure probability of 1.5 × 10-4 in the case of mutual 
independence.  Note that in both of the cases just illustrated, as 
the rank correlation goes to unity, the joint failure probability 
approaches the minimum of the marginal failure probabilities, 
as a consequence of the Frechét-Hoeffding upper bound (2).  In 
this case this limit is about 0.05, the marginal failure probability 
for either of the redundant, exponentially distributed 
components. 

Fig. 9  Dependence tree for three exponential times to 
failure illustrating pair-wise rank correlations 

t1

t2 t3

ρ13 = 0.3 ρ12 = 0.6 
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CONCLUSIONS 
This paper has illustrated the use of copulas for generating 

values from joint distributions of dependent random variables.  
Both shock and non-shock failure time models have been 
illustrated.  The bivariate Marshall-Olkin distribution was used 
to illustrate a shock model.  The corresponding copula has a 
singular component, producing samples in which the two failure 
times are equal.  For non-shock models, the absolutely 
continuous Frank’s copula was employed.  Bayesian inference 
for the copula parameters was illustrated for both cases.  In the 
case of Frank’s copula, a connection was illustrated between the 
copula parameter and the rank correlation, which is a commonly 
used measure of dependence.  Guidance for eliciting this 
correlation from domain experts can be found in (8).  It is also 
possible to use other measures of dependence, as discussed in 
(9). 

Examples were provided illustrating the use of these 
copulas in a simulation setting, where the desired parameter is 
the joint failure probability of two or more redundant or diverse 
components.  The examples provided were in terms of a 
continuous random variable (time to failure); however, the same 
approach can be applied to failures on demand.  The use of 
copulas in this fashion extends the common-cause failure 
models of risk assessment to diverse (i.e., non-identical) 
components arranged in parallel, and has the potential to 
replace models of common-cause failure currently in use. 
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