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EXUCUTIVE SUMMARY 

Research Objectives 

The Generation IV Supercritical Water Reactor (GEN IV SCWR) is being proposed as an 

advanced high efficiency thermal reactor for baseload electricity production.  One of the major unknowns 

with this reactor concept is the behavior of fuel cladding and structural components under the extremely 

aggressive SCWR environment.  The objective of this project was to evaluate candidate materials for 

SCWR application.  The path the project has taken is to first determine the most likely candidate 

materials by surveying the literature in three principle areas; existing supercritical water fossil plants 

(SCFP), commercial light-water reactors (LWR) and DOE research programs in liquid-metal-fast-breeder 

(LMFBR) and fusion reactors.  The work then entailed efforts to evaluate candidate alloys in terms of 

high temperature mechanical properties, corrosion and stress corrosion cracking, radiation stability.  As 

the diagram in Figure 1 below depicts, the qualification testing was designed to provide a better 

understanding of likely degradation processes, aiding in the development of potential mitigation 

strategies.  Two anticipated outcomes of the project are the production of information that can ultimately 

be used by SCWR system designers and guidance for future investigations involving in-reactor irradiation 

experiments. 

Identify candidate materials
from fossil, LWR, and LMFBR experience

Perform qualification testing on 
selected candidate materials

Develop understanding of 
life-limiting materials degradation 

processes

Investigate degradation 
mitigation strategies

Provide initial set of materials recommendations
and guidance for future in-reactor testing

Year 1

Year 2 & 3

Year 3

Identify candidate materials
from fossil, LWR, and LMFBR experience

Perform qualification testing on 
selected candidate materials

Develop understanding of 
life-limiting materials degradation 

processes

Investigate degradation 
mitigation strategies

Develop understanding of 
life-limiting materials degradation 

processes

Investigate degradation 
mitigation strategies

Provide initial set of materials recommendations
and guidance for future in-reactor testing

Year 1

Year 2 & 3

Year 3

Figure 1  Chart of project objectives and research progress. 
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Research Progress

Highlights of Literature Survey 

The literature survey was completed in the first half of year 1, and candidate materials were 

selected.  As part of this effort, the areas where particular information gaps existed were identified in 

order to guide selection of the qualification test matrix. 

Ferritic-martensitic (F-M) steels were chosen due to their extensive use in SCFP internals.  In 

addition, one of the early generation ferritic alloys (HT-9) was tested extensively in the US LMFBR 

program and was shown to have extremely high swelling resistance.  However, the creep strength of HT-9 

is too low for application under SCWR conditions and thus it was not selected as a primary candidate 

alloy, although it was used in testing to establish baseline behavior on an alloy with well known radiation 

performance.  F-M alloys were chosen as primary candidate alloys.  Alloy Grade 91 frequent referred to 

asT91 or modified 9Cr has a nominal composition Fe-9Cr-MoVNb and has seen wide use in non-nuclear 

applications.  Alloy HCM12A (Grade 122) sometimes referred to as T122 was developed for high creep 

resistance and has a nominal composition of 12Cr-MoVNbW, but has not yet seen extensive use in 

commercial SCFP.  Both of these alloys are being considered as SCWR fuel cladding material; however, 

there is little or no data on their radiation behavior.  Another alloy, NF616 (Grade 92), is a W modified 

version of grade 91 and also exhibits promising characteristics. 

Results from the survey indicate that conventional 304 and 316 austenitic stainless steels may be 

highly susceptible to both swelling and stress corrosion cracking over the temperature range present in the 

SCWR environment.  More advanced low-swelling alloys were developed for the LMFBR program.  

These alloys were optimized through the addition of stabilizing elements such as Ti and Nb in 

combination with thermomechanical treatments.  The low swelling variants of austenitic stainless steels 

should also be considered as promising candidate alloys. 

Superalloys have been developed for both thermal creep resistance and high corrosion resistance.  

Two of these alloys were selected as candidate alloys.  Alloy 690 is a Ni-base superalloy developed for 

chemical processing and high-temperature aerospace applications.  Alloy 800H is a high Ni and high Cr 

Fe-based alloy developed for chemical and petrochemical processing and is code qualified for nuclear 

applications.  The major concern with higher Ni alloys is that earlier studies indicate they may be 

susceptible to grain boundary embrittlement during irradiation. 

Although F-M alloys are highly resistant to radiation-induced swelling, one of their major 

limitations is low creep strength at temperatures above ~600°C.  This problem has been addressed by the 

addition of dispersions of hard oxide particles to the material through mechanical alloying.  The resulting 

oxide dispersion strengthened (ODS) material exhibits significantly higher creep strength than 

conventional ferritic alloys.  The ODS alloys may be ideally suited for cladding applications, although the 

alloys are still in the early stages of development.   

Highlights of Candidate Material Qualification Testing 

The qualifications tasks involved testing in several key areas where potential materials properties 

limitations may be encountered and were designed to understand the major challenges posed by the 

SCWR environment.  The major task areas included high temperature creep and tensile properties, 

corrosion and stress corrosion cracking behavior and radiation stability.  At the suggestion of the annual 

reviewers, rather than perform a detailed study on the weldability of candidate alloys as was initially 

proposed, it was decided to focus more on the performance of welded samples in the SCW environment.  

The project initially had an aggressively broad workscope, with plans to test a variety of alloys within 
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several alloy classes.  In order to complement GEN IV SCWR materials research activities and avoid 

duplication, the work scope was narrowed to focus primarily on ferritic-martensitic (F-M) alloys, while 

widening the range of qualification tests employed within the F-M alloy class.  The following sections are 

separated by task and highlight the specific activities conducted and important results obtained.  

High Temperature Tensile and Creep Behavior 

Mechanical properties studies were conducted to ensure the candidate materials maintain adequate 

strength under service and accident conditions.  The test focused on the F-M and ODS steels being 

considered for use as fuel cladding in the SCWR.  Fuel cladding will be subject to thermal transients in 

loss of cooling feedwater off-normal events.  The transient involves rapid heating and cooling from the 

operating temp to ~810-850°C.  Because the maximum transient temperature lies near or above the 

equilibrium austenite transformation temperature for many of these steels (Ae1 temperature), it has the 

potential to severely alter their microstructure and properties, either by formation of new untempered 

martensite or overtempering of the existing structure.  

In order to evaluate the effects of the projected transient on the microstructure and properties of F-

M steels, two representative alloys—modified 9Cr-1Mo-V (ASME Grade 91 steel) and HCM12A (ASME 

Grade 122 steel)—were subjected to the transient thermal cycle using a Gleeble thermal weld simulator, 

and the microstructures, tensile properties, and creep properties of the cycled alloys were assessed.  

Different combinations of maximum transient temperature and number of transient cycles were first 

evaluated and specimens were examined that had been cycled once, 5 times, and 10 times, to maximum 

temperatures of 810°C (reference transient temperature) and 845°C (limit transient temperature).  These 

short term cyclic transients did not appear to significantly affect properties.

To determine off-normal thermal cycle conditions that could cause an appreciable change in the 

microstructure of mod. 9Cr-1Mo (Grade 91) specimen, the effects of the maximum temperature in the 

cycle and the hold time at 840°C (10 to 30 min) on the microstructure and hardness was investigated.  

Marked increase in hardness was found when the maximum cycle temperature increased from 860 to 

870°C.  The hardness increased after 10 sec at 840°C. 

Thermal aging studies on commercially available 20 Cr oxide dispersion strengthened (ODS) 

alloys were also conducted.  These studies revealed substantial loss of ductility in the alloys following 

even short term exposure at temperatures relevant to the SCWR (400 – 500°C).  Because of the 

substantial embrittlement behavior of the commercial alloys, a small effort was initiated near the end of 

the project to fabricate and test experimental ODS alloys with better properties. 

Finally, as part of efforts to further establish high temperature behavior of the F-M alloys thermal 

properties for T91 (a 9% Cr alloy) and HCM12A (a 12% Cr alloy) were investigated.  Two methods 

available at Idaho National Laboratory’s (INL's) High Temperature Test Laboratory (HTTL) were applied 

to estimate thermal diffusivity, thermal conductivity, and specific heat capacity.  Results were compared 

with data in the literature and with data for other metals typically found in Light Water Reactor (LWR) 

vessels, SS304 and SA533B1. 

Corrosion and Stress-Corrosion Cracking  

The project has obtained substantial amount of corrosion and stress corrosion cracking (SCC) data.

Three separate supercritical water corrosion and two separate SCC facilities were utilized for evaluating 

and qualifying the candidate alloys.  As mentioned in the overview, the focus has been on testing 

candidate F-M alloys to complement corrosion studies being conducted as part of the GEN IV SCWR 

initiative investigating a broader range of alloys including Ni-based and austenitic stainless steels. 
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The corrosion tests were conducted in supercritical water in the temperature range 350 to 600°C in 

both deaerated and non-deaerated water having various oxygen levels up to ~3000 ppb.  Samples were 

also SCC tested following exposure to high energy protons to emulate radiation damage that will be 

encountered in service.  Overall, alloy HCM12A (12% Cr) oxidized less than T91 (9% Cr) in all 

environments.  However, both these alloys had much greater rates of oxidation than austenitic stainless 

steels and high Ni alloys.  F-M alloy samples exposed to 100 ppb oxygen had a lower rate of oxidation 

than in the deaerated case.  The reason for the lower oxidation rate in the higher oxygen content 

supercritical water is believed to be the formation of a hematite (Fe2O3) layer in addition to magnetite 

(Fe3O4) that promotes a dense less permeable surface oxide thereby reducing corrosion.  Tests conducted 

on the irradiated samples revealed the F-M alloys are highly resistant to SCC even following irradiation.  

The results of these experiments indicate that, as with currently operating light water reactors and fossil 

plants, controlling water chemistry can be critical to minimizing internals degradation due to corrosion 

and stress corrosion cracking. 

In another series of experiments, the corrosion and SCC susceptibility of alloys was tested 

following plasma source ion implantation.  Results obtained indicate that such surface modification can 

result in a lower rate of surface oxidation (as measured by weight gain) during long term exposure tests.  

Detailed analysis to elucidate the mechanism of such changes in corrosion behavior revealed changes in 

formation morphology of the oxide on surface of the implanted alloys vs. the un-implanted alloys.  Such 

changes were measured by examining the samples using electron backscatter diffraction (EBSD) in the 

scanning electron microscope to identify the spatial distribution of oxide phases forming on the surface of 

the alloys during exposure.   

Radiation Stability 

The potential impact of in-core radiation damage on candidate alloys was evaluated.  Alloys with a 

limited radiation damage database were selected for heavy-ion irradiation damage studies.  The 12 

chromium F-M alloy HCM12A and the austenitic alloy 800H were irradiated with heavy-ions (Ni++) at 

500°C to doses of 5 and 50 displacements per atom (dpa).  The microstructures of the alloys were 

examined with transmission electron microscopy (TEM) following irradiation.  Neither alloy exhibited 

void formation up to a dose of 50 dpa.  The radiation damage in the HCM12A alloy manifested itself as 

an increase in the density of network dislocations, while the radiation damage in the 800H alloy generated 

a high density of faulted dislocation loops.  At the higher dose, a population of extremely small 

precipitates also formed in alloy 800H and the dislocation loop structure was refined.  The refinement of 

the dislocation structure is thought to be associated with the small precipitates acting as sinks for the point 

defects generated from the displacement damage. 

F-M alloys T91 and HCM12A samples irradiated to 7 dpa using 2 MeV protons at 400°C were also 

characterized using transmission electron microscopy.  The microstructure of the irradiated alloy T91 

contained dislocation loops, black dot damage and precipitates, while, in addition to these features, alloy 

HCM12A contained a population of voids in the material.  In addition to the microstructural analysis, 

grain boundary chemistry measurements were conducted on alloy T91.  These measurements indicate 

strong enrichment of chromium and depletion of iron at the grain boundary. 

An ODS alloy irradiated with heavy-ions showed even stronger resistance to radiation damage than 

the F-M alloys as evidenced by lower swelling compared to a F-M alloy irradiated under the same 

conditions.
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Weldability/Joining

Ferritic-Martensitic (F-M) alloys Grade 91 and HCM12A plates were joined by GTAW (Gas-

Tungsten-Arc-Weld) at Idaho Nation laboratory.  To avoid cracking of the weld and to attain adequate 

strength and ductility, pre- and post-weld heat treatments were performed.  The plates were then 

machined across the weld into SCC bar and coupons.  The samples were then sent to the Universities of 

Wisconsin and Michigan for corrosion and SCC testing. 

Irradiation Testing Recommendations 

Existing irradiated materials such as those irradiated as part of the fusion and/or fast breeder reactor 

programs should be considered for testing in supercritical water as a first step in future testing campaigns.  

This will serve two purposes, 1) develop a methodology for testing of irradiated components in SC water 

and 2) provide some initial lower cost data to guide, more in depth testing campaigns.  In the absence of 

in-pile SCW testing capabilities, a variety of specimens including tensile, creep, fracture toughness and 

microstructure should be irradiated over the range of temperatures relevant to the SCWR (300-600°C) in 

one of the available test reactors such as ATR or HFIR.  Post-irradiation testing of the irradiated materials 

in SC water can then be conducted to ensure that irradiation under conditions relevant to the SCWR do 

not lead to excessive swelling, embrittlement or loss of high temperature creep strength.  In order to save 

cost, such irradiations can be joined with current irradiation testing programs planned for either the 

Advanced Fuel Cycle Initiative or combined with other GEN IV materials irradiation programs where 

irradiation conditions are compatible. 
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Developing and Evaluating Candidate Materials for 
Generation IV Supercritical Water Reactors 

1. Task 1 - Literature Survey 

Contributors: 

James Cole, Joy Rempe and Terry Totemeier, INL 

Todd Allen and Kumar Sridharan, U. W. 

Gary Was, U. M. 

Jinsung Jang, KAERI 

1.1 Task Summary 

In this phase of the project, a literature survey was conducted to identify the most promising 

candidate alloys for further testing and analysis.  Information resources that were evaluated include 

supercritical fossil plant and other non-nuclear experience and experience gained in various DOE 

nuclear breeder and fusion reactor programs.  The literature survey was conducted to ensure the 

selection of candidate alloys with the greatest potential and to minimize duplication of testing.  Nearly 

200 references were reviewed for the literature survey. 

1.2 Highlights of Literature Survey 

In the early stages of planning of the project, it was determined to limit the scope of the survey 

to specific issues that were perceived as the most critical for qualifying candidate materials.  These 

issues were determined as:. 

High temperature tensile and creep 

Corrosion and stress corrosion cracking  

Radiation stability 

Weldability/Joining 

In addition to the literature reviews conducted as part of this program, collaborators also 

considered literature reviews being conducted under the Generation IV SCWR R&D program.    

Table 1 lists potential candidate materials for SCWR reactor core internals for which 

qualification tests will be conducted.  Perceived advantages and disadvantages of each of the alloy 

classes are also cited.   

The excessive swelling and poor cracking resistance of commercial 304 stainless steels under 

high temperature irradiation essentially eliminates it from consideration for SCWR applications.  For 

a thermal reactor with components that receive lifetime doses less than ~50 dpa, cold worked 316 SS 

may be adequate from a swelling perspective.  However, early tests on conventional 316 SS indicate 

that it is susceptible to stress corrosion cracking under SC water conditions thus eliminating it from 

consideration in this testing program.  In applications where swelling resistance is paramount, the Ti-

modified stainless steel alloys have shown no significant swelling up to dose levels of 100 dpa.   

Research on radiation resistant SS for the DOE-NE NERI program indicate the IASCC resistance of 
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austenitic stainless steels is enhanced optimally with oversized Zr solute additions and grain boundary 

structure modifications.  Testing of this alloy under SC water conditions would further indicate the  

Table 1  Candidate alloy list. 
Alloy Class Alloy Advantages Limitations 
Ferritic-
Martensitic 

T91- 
Fe-9Cr-MoVNb 

Low swelling Corrosion, high temperature 
creep strength, low 
temperature radiation 
embrittlement 

HCM12A (T122)- 
Fe-12Cr-MoVNbW 

Low swelling Corrosion, high temperature 
creep strength, low 
temperature radiation 
embrittlement, neutronics 

Austenitic
Stainless 
Steels 

Alloy D-9- 
Ti–Modified Fe-15Cr-
15Ni-2.2Mo 

Corrosion 
resistance, High 
temperature creep 
strength. 

Low thermal conductivity, 
susceptibility to irradiation 
assisted stress corrosion 
cracking. 

High Ni 
alloys 

Alloy 690 
Ni-30Cr-10Fe 

High temperature 
creep and 
corrosion 
resistance 

Irradiation-induced grain 
boundary embrittlement. 

Alloy 800H 
Fe-32Ni-20Cr-TiAl 

High temperature 
creep and 
corrosion 
resistance 

Irradiation-induced grain 
boundary embrittlement. 

ODS 
MA957  
Fe-14Cr-Mo +0.25Y203

High temperature 
creep strength, 
swelling resistance 

Corrosion, low temperature 
radiation embrittlement. 

effectiveness of these modifications on improving alloy resistance to IASCC.  Although these alloys 

show promise, they are in the early stages of development and in order to limit the total number of 

alloys tested, weren’t evaluated in this project. 

Over 100 references were reviewed to investigate two alloy classes:  high-chromium ferritic-

martensitic (F-M) steels, and iron-based oxide dispersion strengthened (ODS) alloys.  In addition to 

basic high-temperature properties, information was gathered on other issues relevant to the application 

of these alloys in the SCWR, namely anisotropy, joining, irradiation embrittlement, and the effects of 

thermal transients during off-normal events.   

Alloys with strengths suitable for use in normal SCWR operating conditions are available in 

both classes.  With respect to off-normal conditions, no data on the properties of F-M  steels at 

temperatures above 700°C were found, while data on the ODS alloys were available for temperatures 

up to 1100°C.  Issues of concern identified for the F-M steels were the extremely poor strength 

expected at temperatures above 700°C and the potential weakening resulting from exposure to 

temperature transients greater than 800°C.  For the ODS alloys, the primary issues identified were the 

extreme anisotropy of properties in the annealed, coarse-grained condition (in particular the poor hoop 

strength of tubes), the lack of well-qualified joining techniques, and the potential for embrittlement 

due to alpha-prime precipitation during irradiation at temperatures less than 500°C.  
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Finally, the literature survey revealed that there are very little data on the irradiation and 

corrosion and stress corrosion cracking behavior of high-nickel superalloys in supercritical water.  

The limited data that are available suggest that high-nickel alloys may be susceptible to grain 

boundary embrittlement above 500°C when exposed to irradiation. 
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2. Task 2 - High Temperature Mechanical and Physical Properties 
of Candidate Alloys 

2.1 Task Summary 

Mechanical and physical properties were charted for the candidate alloys over a range of 

temperatures and test conditions to ensure the candidate materials maintain adequate properties under 

service and accident conditions.  These tests were conducted for relevant materials and test conditions 

where a lack of properties property data currently exists.   

In order to complement other work being conducted as part of the GEN IV SCWR program, 

this effort focused primarily on F-M alloys.  Commercially available F-M and Fe-based ODS alloys 

were examined.  Where possible, the same heats of materials were used across a series of tests.  

Compositions of the alloys used in the following studies are listed in Table 2 and Table 3 for the F-M 

and ODS alloys respectively. 

Table 2  Chemical Composition (wt%) of F-M alloys. 

Alloy  Fe  C  Cr  Mo V  Cu  W  Ni  Mn Si  Al  Nb  N  P  S  

Grade 91  

 Heat 1 

(Reference 

Cycles)  

 Heat 2 

(Varied

Cycles)  

Bal.  

Bal.  

0.10 

0.10 

8.34

8.70

0.90 

0.90

0.22 

0.21

0.17 

0.28

--  

--  

0.21 

0.18

0.45 

0.33

0.28 

0.27 

0.022  

0.005  

0.076  

0.074  

0.048 

0.042 

0.009 

0.012 

0.003 

0.004 

Grade 122  Bal.  0.11 10.83  0.30 0.19 1.02 1.89 0.39 0.64 0.27 0.001  0.054  0.063 0.016 0.002 

Table 3  Chemical compositions of MA956 and PM2000 alloy 

Chemical Composition(wt%) 
Alloy

Fe Cr Al Ti Y2O3 Others 

Processing

Condition

Size, mm/ 

Shape

Rod Bal. 19.4 4.8 0.4 0.5 0.015C 
1330 , 1h 

annealed, AC
25   Rod 

MA 

956 
Tube Bal. 19.8 4.7 0.4 0.5 0.018C 

Cold drawn and 

annealed 

44.5OD

 2.34t  Tube 

As-rolled

Plate
Bal. 20 5.5 0.5 0.5 - As-rolled 1.7t Plate 

As-forged

Bar 
-

81.8% Warm-

deformed 
162  Bar 

Forged and 

Recrystallized 

Bar 

-

93.07%, 97.5%, 

99.94% Warm-

deformed and 

recrystallized 

100

60

9  Bar 

PM

2000 

Extruded and 

Recrystallized 

Tube

-
Warm-deformed 

and recrystallized 

33.7

2t  Tube 
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2.2 High-Temperature Tensile Testing of HCM12A (T122) 

Contributors: 

Terry Totemeier, Joy Rempe, INL 

High-temperature tensile tests were performed on specimens of HCM12A (T122) ferritic-

martensitic steel to better predict material response under SCWR off-normal and accident conditions.  

The tensile strength and ductility of HCM12A (T122) as a function of test temperature are shown in 

Figure 2 and Figure 3.  Both the yield and ultimate tensile strength dramatically decrease between 600 

and 800°C.  Less decrease is observed above 800°C, although the magnitude of the strength is very 

low, less than 100 MPa.  Both ductility parameters generally increase with test temperature, although 

a slight reduction is observed at 1000°C relative to 900°C.   

The tensile behavior observed at room temperature and 600°C agree well with data reported in 

the literature for this alloy [2].  The dramatic decrease in strength with temperature above 600°C is 

expected, resulting from carbide coarsening and increased dislocation climb.  At the two highest test 

temperatures, the alloy is in the austenite phase field and only solid solution strengthening 

mechanisms are effective.  At all temperatures above 600°C, the strength will be very strain-rate 

dependent due to creep effects.  The strain rate chosen is typical for tensile tests.  Higher strengths 

would be obtained for higher strain rates, and vice versa for lower strain rates. 

The tensile strengths of HCM12A (T122) at very elevated temperature compare favorably with 

those of annealed 304 SS.  High-temperature tensile data (temperatures up to 1100°C) were reported 

by Korth, et al. [2].  304 maintains a slight strength advantage to ~850°C, but its tensile strength 

decreases to 82 MPa at 927°C and 40 MPa at 977°C, lower than HCM12A (T122).  The strengths of 

both steels, however, are considerably less than that of oxide-dispersion strengthened alloys.  The 

tensile strength of annealed MA956 at 800°C is approximately 150 MPa, decreasing to 120 MPa at 

1100°C.  The ductility of MA956 at these temperatures is relatively low with less than 10% tensile 

elongation [3]. 

The time at temperature prior to testing also plays a strong role in determining the behavior of 

HCM12A (T122), as the initial, heat-treated microstructure is unstable at elevated temperatures, 

especially 800°C and above.  Longer holds prior to testing will result in greater carbide coarsening 

and dissolution, and commensurately lower strength.  The duration chosen (15 minutes) represents a 

compromise between obtaining some degree of thermal equilibrium  

The elastic modulus (Figure 4) clearly decreases from 25°C to 800°C, as expected.  There is 

considerable scatter in the modulus data for 900 and 1000°C, likely resulting from the low loads and 

strains in the elastic region at these temperatures.  Given the scatter and the apparent increase in 

modulus, these data are not considered reliable.  A discontinuity in modulus might be expected, 

however, due to the transformation of the low-temperature ferrite structure to the high-temperature 

austenite structure. 
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Figure 2  HCM12A (T122) elevated temperature tensile strength.
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Figure 3  HCM12A (T122) elevated temperature tensile ductility.
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Figure 4  HCM12A (T122) Elevated temperature elastic modulus. 
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2.3 Effect of Thermal Cycling on Microstructure and Properties of
Ferritic-Martensitic Steels 

Contributors: 

Terry Totemeier, Joy Rempe, INL 

2.3.1 Overview 

Ferritic-martensitic steels are being considered for use as fuel cladding in the SCWR.  The fuel 

cladding will be subject to thermal transients in loss of cooling feedwater off-normal events.  The 

transient involves rapid heating and cooling from the operating temp to ~810-850°C; a plot of 

projected fuel cladding temperature during the transient is shown in Figure 5.  Because the maximum 

transient temperature lies near or above the equilibrium austenite transformation temperature for these 

steels (Ae1 temperature), it has the potential to severely alter their microstructure and properties, either 

by formation of new untempered martensite or overtempering of the existing structure.  Untempered 

martensite will form if transformation to austenite occurs during the transient, which will re-transform 

to martensite during the rapid cool-down following the transient.  Even if the transient temperature 

does not result in martensite formation, exposure of the existing tempered martensite structure to 

temperatures exceeding the normal tempering temperature (760°C) will result in overtempering and a 

resulting loss in creep strength.  Both austenite formation and overtempering are diffusion-limited 

processes, however, so the time scale of the transient will be critical in determining its effect.  The 

extremely short duration of the projected transient suggests that the effects may be minimal.   
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Figure 5  Projected fuel cladding temperature in a SCWR off-normal event. 

In order to evaluate the effects of the projected transient on the microstructure and properties of 

ferritic-martensitic steels, two representative alloys—modified 9Cr-1Mo-V (ASME Grade 91 steel) 

and HCM12A (ASME Grade 122 steel)—were subjected to the transient thermal cycle using a 

Gleeble thermal weld simulator, and the microstructures, tensile properties, and creep properties of 

the cycled alloys were assessed.   

2.3.2 Experimental Procedures 

2.3.2.1 Thermal Cycling and Test Procedure 

A Gleeble thermal simulator was used to subject the thermal transient cycle to cylindrical 

specimens 10 mm in diameter and 107 mm long.  Different combinations of maximum transient 
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temperature and number of transient cycles were first evaluated by microstructural analysis and 

hardness measurements; specimens were examined that had been cycled once, 5 times, and 10 times, 

to maximum temperatures of 810°C (reference transient temperature) and 845°C (limit transient 

temperature).  For creep-rupture testing, two cycle conditions were evaluated:  5 cycles at 810°C and 

5 cycles at 845°C.  Most creep-rupture tests were performed on specimens that had been cycled to 

810°C.

Room-temperature tensile tests were performed on baseline material and specimens that had 

received five thermal cycles to 810°C.  Creep-rupture tests were performed on thermally-cycled 

material over a wide range of conditions:  temperatures varying from 550°C to 650°C and stresses 

ranging from 100 to 300 MPa.  Creep-rupture tests were performed in air using standard lever-arm 

load frames with averaging, axial extensometers.  Test temperatures were controlled to within ±5°C.  

Nearly all creep-rupture tests were run to failure. 

In the second part of the study a wider range of thermal transient conditions were studied in 

order to identify transient parameters which resulted in significant microstructural changes for the 

Grade 91 steel.  Specimen blanks were subjected to a series of transient cycles with peak temperatures 

ranging from 860 to 960°C and a series of transient cycles with a temperature hold at 840°C which 

ranged from 10 to 1800 s.  In both series the transient heating and cooling rates were 24°C/s.  

Specimen blanks were only subjected to a single transient cycle in the second part of the study.  

2.3.2.2 Transformation Temperature Measurement  

Phase transformation temperatures in the two steels (Grade 91 heat 2) were measured using a 

Theta Industries (Port Washington, NY) vertical differential dilatometer.  Cylindrical specimens 12 

mm in length and 3 mm in diameter were heated to 1050 °C in rough vacuum; a Pt standard with the 

same dimensions was used as the reference.  Transformation temperatures were measured at a 

standard rate of 0.05 °C/s and a rapid rate of 0.8 °C/s.  The rapid rate was the closest simulation of the 

transient heating rate, the maximum available from the dilatometry equipment.  The ferrite-to-

austenite transformation temperature A
c1

 was determined from the dilation curves using the technique 

described in [1].  For Grade 91 steel the A
c1

 temperatures at the slow and fast heating rates were 827 

and 842 °C respectively while for Grade 122 steel, they were 811 and 841 °C.  

2.3.2.3 Microstructure and Mechanical Property Evaluation  

Microstructures after thermal transient cycling were evaluated using optical and scanning 

electron microscopy (SEM).  Metallographic cross-sections were prepared using standard techniques 

and immersion etched using either Vilella’s reagent or a solution of 30 ml ethanol, 3 g picric acid, 0.6 

ml nitric acid, and 1 ml hydrochloric acid.  The latter etch was used to reveal carbide precipitates in 

SEM examination.  Carbide size distributions were measured from SEM images of etched sections 

taken at high magnification (20 to 40 kX).  Figure 6 contains a typical image and a plot illustrating 

representative size distributions.  

Multiple Vickers microhardness measurements with a 500 g load were taken in the center of the 

heated zone and in an unaffected region of the blank to determine the effect of transient cycling on 

hardness.  Tensile tests were performed at room temperature and creep-rupture tests were performed 

at 550, 600, and 650 °C.  Creep-rupture tests were performed using standard lever-arm machines with 

averaging, rod-in-tube type extensometers; tests were generally performed to specimen failure.  

Broken specimens were optically examined for anomalous failure features; none were observed.  
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Figure 6  Typical SEM image of etched microstructure and resulting carbide size distribution. 

2.3.3 Results  

2.3.3.1 Effect of Cycling on Microstructure, Hardness, and Room-Temperature 
Tensile Properties 

Essentially no effect of the thermal cycle at either temperature was observed.  The structure of 

both alloys after cycling consisted of tempered martensite indistinguishable from the baseline 

structure.  No areas of untempered martensite were observed.  Figure 7 and Figure 8 are a comparison 

of typical baseline and cycled microstructures for T91 and HCM12A respectively.  Table 4 

summarizes the precipitate size distribution and microhardness results.  A small, but statistically 

significant, increase in mean carbide precipitate diameter was observed for 9Cr-1MoVNb after 

thermal cycling.  As expected, the mean diameter was higher for the 845°C transient temperature.  In 

contrast, no significant changes in mean carbide diameter were observed for HCM12A. 

Table 4  Effect of thermal transient on mean carbide diameter and microhardness. 

Condition Mean Carbide Diameter 

± 95% Confidence 

Interval 

Mean Microhardness 

± 95% Confidence 

Interval 

 (nm) (HV500)

9Cr-1MoVNb   

 Baseline 101 ± 6 225 ± 5 

 5 cycles @ 810°C 128 ± 6 222 ± 2 

 5 cycles @ 845°C 143 ± 8 228 ± 2 

HCM12A   

 Baseline 138 ± 8 247 ± 2 

 5 cycles @ 810°C 143 ± 10 241 ± 2 

 5 cycles @ 845°C 140 ± 8 238 ± 3 

The changes in hardness were also slight.  No statistically significant change was observed for 

9Cr-1MoVNb; but a small, barely significant decrease in microhardness was observed for HCM12A.  

The change in Rockwell C-scale macrohardness with cycling was evaluated for 9Cr-1MoVNb to 

provide a cross-check to the microhardness measurements; the hardness decreased a small amount 

(from a baseline of 20 HRC to 17.5 HRC) after cycling to 845°C.  Room temperature tensile test 

results are listed in.  Changes in tensile properties were somewhat more marked; 20-30 MPa decreases 

in yield and tensile strengths were observed for both alloys after cycling at 810°C.  No changes in 

ductility were observed.   
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The effects of varied maximum transient temperature and hold time at 840°C transient 

temperature on the microhardness of Grade 91 steel are shown in Figure 9a and Figure 9b,  

               (a)       (b)  

Figure 7  Optical microstructure of Grade 91 steel (heat 1):  (a) baseline prior to cycling, (b) after five 

transient cycles to 840 °C maximum temperature. 

 (a)      (b)  

Figure 8  Optical microstructure of Grade 122 steel:  (a) baseline prior to cycling, (b) after five 

transient cycles to 840 °C maximum temperature. 

Table 5  Effect of thermal transient on tensile properties. 

Condition Yield 

Strength 

Ultimate 

Tensile

Strength 

Ductility Reduction 

in Area 

 (MPa) (MPa) (%) (%) 

9Cr-1MoVNb     

 Baseline 581 735 27 70 

 5 cycles @ 

810°C 

562 727 27 70 

HCM12A     

 Baseline 644 808 25 58 

 5 cycles @ 

810°C 

610 780 24 60 
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    (a)       (b)  

 Figure 9  Variation of Grade 91 (heat 2) post-transient microhardness with (a) maximum transient 

temperature without hold, (b) hold time at 840 °C maximum transient temperature. 

respectively.  Also indicated are the pre-cycling baseline hardness values.  No change in 

microhardness was observed for maximum cycle temperatures of 860°C and below; for transient 

temperatures above 860°C the microhardness dramatically increased to a plateau level of 400 VHN500.

Hold periods at 840°C greater than 10 s resulted in microhardness that increased with hold duration; a 

maximum microhardness of 400 VHN500 was observed after 1800 s holding at 840°C.  Etched optical 

microstructures observed after cycling reflected the microhardness changes; significant fractions of 

untempered martensite were observed for maximum transient temperatures of 870°C and above and 

840 °C hold periods greater than 10 s.  Typical baseline and cycled structures are shown in Figure 10; 

lightly etched areas in the cycled microstructures are untempered martensite.    

 (a)       (b)   

(c)

 Figure 10  Optical microstructure of Grade 91 steel (heat 2):  (a) baseline prior to cycling, (b) 870°C 

maximum transient temperature, (c) 30 s hold time at 840°C maximum transient temperature. 
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2.3.3.2 Effect of Cycling on Creep-Rupture Properties 

Figure 11 shows a comparison of minimum creep rates and rupture lives for thermally-cycled 

Grade 91 steel to those obtained for the same alloy in a standard heat treatment condition.  Minimum 

creep rates and rupture lives are indistinguishable from baseline and literature data over a wide range 

of temperatures and stresses.  Specimens which were cycled to 870 °C maximum temperature or with 

a 30 s hold at 840°C show dramatically lowered creep strength, slightly greater than a factor of 10 in 

either minimum creep rate or rupture life at the condition tested, 600°C and 145 MPa.    

Figure 12 compares rupture life data for cycled Grade 122 steel with literature data—again 

there is apparently no effect of repeated transients at either 810 or 840°C.  Creep ductilities for both 

alloys (not shown) after thermal cycling are not different than in a standard heat treatment condition, 

with typical failure elongations of 25-30% for Grade 91 and 15-20% for Grade 122.  

            (a)               (b)  

Figure 11  Comparison of (a) minimum creep rate and (b) rupture life for transient-cycled Grade 91 

steel with baseline data. 

Figure 12  Comparison of rupture life for Grade 122 steel after transient cycling with lines 

representing baseline data from reference [4].
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2.3.4 Discussion of Transient Studies Results

The results obtained demonstrate that thermal cycling to either 810 or 845°C has a negligible 

effect on the microstructure and properties of 9Cr-1MoVNb and HCM12A steels.  The slight changes 

observed in mean carbide diameter, hardness, and room temperature tensile strength are consistent 

with a small degree of overtempering with no evidence for martensitic transformation, consistent with 

the short duration of the transient.  The overtempering has no detrimental effect on creep properties 

for the conditions of interest; in fact, an apparent improvement in creep strength was observed after 

cycling at 845°C.   

These observations are consistent with the maximum transient temperatures, the rapid heating 

and cooling rates, and the short transient durations.  The 810 and 840 °C maximum transient 

temperatures do not exceed the Ac1 temperatures measured for either steel at a heating rate of 0.8 °C/s, 

which were 842 and 841 °C for Grade 91 and Grade 122, respectively.  Since the transient heating 

rate is considerably greater at 24 °C/s, the transformation temperature during the transient will be 

even higher than those measured (Ac1 increases with heating rate [1]).  The observation of a dramatic 

increase in hardness for Grade 91 steel when the maximum transient temperature was increased from 

860 to 870 °C indicates that Ac1 for a heating rate of 24 °C/s lies between these two temperatures.  

Such an increase is consistent with that observed when the heating rate was increased from 0.05 °C/s 

to 0.8 °C/s.  In this case a 16 X increase in heating rate resulted in a 15 °C increase in Ac1.  The 30 X 

increase in heating rate from 0.8 to 24 °C/s appears to result in a 20 °C increase in Ac1.  Because the 

Ac1 temperature for ferritic-martensitic steels is roughly proportional to the logarithm of the heating 

rates [1], these relative increases are consistent.  

The very limited degree of overtempering observed due to the transient cycles at 810 and 

840°C is due to the very short time above the standard 760°C tempering temperature during the 

transient; approximately 4 s for the 810 °C transient and 7 s for the 840 °C transient.  Tempering is a 

diffusion-based process [5], and time at temperature is required—standard tempering times are greater 

than one hour, so it is not surprising that exposure times less than 10 s have little effect on a 

previously-tempered structure.  

Observation of significantly increased hardness and untempered martensite in the 

microstructure of Grade 91 steel held at 840 °C for times greater than 10 s is also consistent with the 

measured transformation characteristics.  Although Ac1 for continuous heating at 24 °C/s is 

considerably greater than 840 °C (860-870 °C as indicated by the maximum transient temperature 

tests), 840 °C is greater than the equilibrium transformation temperature Ae1.  The value of Ac1

measured at the slow heating rate of 0.05 °C/s, 827 °C, can be taken as a reasonable approximation of 

Ae1.  Therefore transformation to austenite will occur at 840 °C given sufficient holding time.  The 

kinetics of the transformation are evident in the increasing hardness with hold duration at 840 °C with 

the transformation apparently complete at 1800 s (a microhardness equivalent to the plateau level in 

the maximum temperature transient tests was obtained).  

In all cases the cooling rates to 100 °C following the transient were sufficient to produce fully 

martensitic structures in these air-hardening steels.  Very slow cooling below Ar1 (austenite-to-ferrite 

transformation temperature during cooling) and above the martensite start temperature would be 

required to produce ferritic rather than martensitic structures from austenite formed in the transient.  

Martensite start temperatures are between 350 and 400 °C for the two steels, so cooling to a reactor 

“warm standby” temperature of approximately 250 °C would result in the formation of untempered 

martensite [6].  

The results of these studies confirm that both the “reference” transient cycle and cycles at the 

“limit” transient temperature will not be damaging to fuel cladding using either ferritic-martensitic 

steel.  The safety margin is not great, however, as an increase of merely 20 °C above the current 

“limit” temperature would result in significant microstructural alteration and degradation of elevated 
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temperature strength, as will any small hold duration at the limit temperature (equivalently, 

“rounding” of the transient peak with significant time above Ae1 will also cause transformation).    

The limited creep-rupture tests performed on Grade 91 steel with microstructure altered by the 

transient show that the creep rate is increased and the rupture life decreased by an order of magnitude.  

These reductions were observed for the first transient conditions that caused an observable change—

further increases in maximum temperature or hold time above Ae1 may result in further strength 

reduction as the fraction of untempered martensite in the structure increases.  These reductions are 

consistent with other studies of off-normal microstructures in ferritic-martensitic steels [7]—the major 

problem is that the fine distribution of carbide and carbonitride precipitates essential to the strength of 

ferritic-martensitic steels [8] is disrupted.  The presence of untempered martensite is not only 

detrimental to elevated temperature creep strength but also low-temperature toughness [9], a 

characteristic that was not measured in this study.  

Transient conditions which do not result in microstructural transformation and loss of strength 

for other ferritic-martensitic steels (or other heats of the steels studied), will be dependent on the 

specific transformation characteristics for the steel in question.  In an ideal case, the maximum “off-

normal” transient temperature would lie reasonably below the Ae1 temperature for the cladding steel.  

An additional factor, which was not considered in this study, is the effect of radiation exposure on 

ferrite to austenite transformation kinetics of ferritic-martensitic steels.  Fuel cladding will experience 

a high radiation dose over its lifetime, and the altered chemistry and stored energy of lattice defects 

resulting from the irradiation may significantly affect transformation temperatures and kinetics.  
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2.4 Evaluation of Microstructure and Mechanical Properties of 
Commercial ODS Alloys  

Contributors: 

Jinsung Jang, KAERI 

S. Hong, KAIST 

2.4.1 Overview 

Two commercially available ODS alloys, MA956 and PM2000 alloys, were obtained.  The 

alloys are supplied by Special Metals(MA956) and Plansee GmbH(PM2000).  Their essential features 

are highly oxidation resistant and extremely creep resistant ferritic Fe-Cr-Al based alloys containing 

4.5~5.5%Al and 0.5%Y2O3.  The aluminum enhances corrosion and oxidation resistance.  The creep 

performance has been found to be optimum at Y2O3 content of approximately 0.5 wt%.  Chemical 

compositions and processing conditions of the alloys were presented previously in Table 3. 

2.4.2 Microstructure 

Microstructures of as-received MA956 and PM2000 are observed by optical microscopy after 

polishing and etching with 15HCl+5HNO3+80C2H5OH solution.  Their microstructures are shown in 

Figure 13.  MA956 rod has highly elongated recrystallized grain and its GAR(Grain Aspect Ratio) is 

over 100.  To compare grain boundary area between different samples, surface per unit volume(Sv, 

mm-1) are introduced.  Given the columnar grain structure, the surface per unit volume of 

recrystallized grain boundary is measured according to Bhadeshia et. al. [1].  Thus, the columnar 

grains are approximated as space filling hexagonal prisms of cross-sectional side length a and height 

c, where c>>a.  The recrystallized microstructure in MA ODS alloys are anisotropic because the grain 

growth rate is much higher along the extrusion direction, the final recrystallized grains can be also 

approximated as space filling hexagonal prisms.  Table 6 shows surface per unit volume and GAR for 

each specimen.  In recrystallized condition like MA956 rod, the grain shape tends to become more 

elongated; and surface per unit volume decrease. 

(a)         (b)    (c) 

Figure 13  Optical microstructure of as-received (a) MA956 rod, (b) tube and (c) PM2000 plate. 

From TEM micrographs shown in Figure 14, the size distributions of oxide particles in 

MA956 and PM2000 are analyzed as shown in Figure 15.  The size distributions of the two 

different alloys are very similar and average dispersoid size is measured 20nm.  

Recrystallized MA956 rod shows very low dislocation density within the grains.  But, in case 
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of PM2000 tube, it shows small grains with high dislocation density caused by heavy 

deformation.  

Table 6  Microstructure analysis of as-received MA956 and PM2000 alloy. 

 MA956 Rod MA956 Tube PM2000 Plate 

GAR > 100(Max.=44) ~10 ~10 

SV(mm-1) < 0.16 13 50 

                   
(a )                                                       (b) 

Figure 14  TEM micrograph of (a) MA956 rod and (b) PM2000 plate. 
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Figure 15  Oxide distribution of (a) MA956 rod and (b) PM2000 plate. 

Tensile properties of PM2000 alloy were measured at room temperature and high temperature 

by using ASTM E-8 subsize specimens.  Specimens were wire-cut in the longitudinal direction from 

as-received plate.  Tensile tests were performed at R.T., 500°C, 550 C, 600 C, 700°C, and 800°C 

with a crosshead speed of 0.5mm/min using Instron 4206 machine.  Specimens were kept 

isothermally at the testing temperature for at least 20mins before the test.   

86nm
860nm 
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Figure 16 shows engineering tensile properties of MA956 and PM2000 alloy at various 

temperatures.  Their tensile properties are very similar because their chemical compositions are nearly 

same.  Tensile properties vary significantly above 500°C.  Significant decrease of strength above 

500°C can be explained by large void formation through accelerated diffusion at high temperature.  
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Figure 16  Summary of tensile properties of MA956 and PM2000.PM2000 is in as-rolled condition 

containing small grains, which are not appropriate at high temperature. 

2.4.3 Creep Rupture Properties 

Creep rupture tests of MA956 and PM2000 alloy are conducted in the constant load creep tester 

equipped by an electrical furnace and LVDT.  Test conditions and results are summarized in Table 7.  

Figure 17 shows comparison between experimentally measured Larson-Miller parameters and 

reported values by manufacturer.  MA956 shows better creep rupture properties than PM2000 because 

PM2000 is in as-rolled condition containing small grains, which are not appropriate at high 

temperature. 

Table 7  Test conditions and results on the creep rupture properties of MA956 and PM2000 alloys. 

PM2000 MA956 

Temperature(°C) 
Stress (MPa) 

Life Time 

(hrs)
Stress (MPa) Life Time (hrs)

520 230 430.1 350 9 

210 11.64 300 5.5 
550 

180 751 250 33.5 

190 6.3 200 50 
600 

130 954 180 - 

150 17.52 150 738.5 
700 

120 300 - - 
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Figure 17  Larson-Miller parameters of MA956 and PM2000. 

Figure 18 is the typical creep rupture result of PM2000 alloy tested at 520°C and 230Mpa.  

Even though this curve shows creep behavior that deviated somewhat from the conventional case 

(primary, steady state, and tertiary stage) due to accelerated creep rupture test, the creep deformation 

is retarded due to dislocation pinning by dispersoids in coarse grained microstructure.  High 

temperature strengthening mechanism of ODS alloy is Orowan hardening induced by dislocation-

dispersoid interaction, and many interactions are observed in TEM micrograph.  
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Figure 18  Typical creep rupture curve of PM2000 tested at 520°C, 230MPa. 

2.4.4 475°C Embrittlement 

Hardening of Fe-Cr alloy during aging in the vicinity of 475°C causes an increase of yield 

stress and tensile strength, and also an increase of the ductile–brittle transition temperature[2].  The 

phenomenon in ODS alloys is similar to this so-called “475°C embrittlement” observed in duplex 

stainless steels and Fe–Cr based alloys.  

Tests to investigate the embrittlement behavior of the ODS alloys were conducted.  In all cases 

specimens are removed from the centre of the raw material.  Heat treatments are carried out in a box 

furnace in air.  Isothermal heat treatments at 475°C are performed from 0 to 500hrs.  Isochronal (100 
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h) aging treatments are also performed at 400, 475, 550°C.  The grain size and texture of the 

microstructures are not expected to change since the recrystallization temperature of these alloys is 

much higher.  Micro-vickers hardness test(Akashi HM-124) is performed for mounted and polished 

specimens at a cross section perpendicular to the longitudinal direction of the bar.  Indentations are 

made with 500gf load and 10 s dwell time.  At least 5 measurements are made on each sample. 

Figure 19 shows the hardness increase during isothermal heat treatments at 475°C for different 

materials.  In all cases, hardness increases very fast at the earlier stages of hardening.  As-extruded 

MA956 tube and PM2000 plate show higher hardness than recrystallized MA956 rod.  Hardness 

increase during isochronal heat treatments is shown in Figure 20.  Hardness increases from 400 to 

475°C and then decreases to very small values at 550°C.  In all cases, maximum hardening occurs at 

475°C, i.e.,  neither the processing route nor the texture or grain size affect the temperature at which 

maximum hardening occurs.  
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Figure 19  Hardness change of MA ODS alloys during isothermal heat treatment at 475°C. 
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Figure 20  Hardness change of MA ODS alloys during isochronal heat treatment(100hrs). 



45

Charpy impact tests for MA956 rod are performed on the specimens heat treated at 475°C for 

0~100hrs.  Schenck Trebel impact tester is used, and test conditions are 150J for hammer energy and 

5.42m/sec for hammer speed.  Charpy specimens with V-notch are machined in a perpendicular 

direction to the elongated grain.  Different from the hardness increase behavior, impact energy 

increases very sharply due to the high strain rate.  When the heat treatment time increases, the fracture 

mode changes to more brittle mode as shown in Figure 21.  Figure 22 shows representative fracture 

surface with both grain boundary facet and cleavage surface, which are typically shown in brittle 

fracture mode.   
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Figure 21  Hardness and absorbed impact energy change of MA956 alloy during isothermal heat 

treatment at 475°C. 

(a)

0hr                                               25hr                                           50hr 

75hr                                               100hr                                           500hr 

(b)

Figure 22  Fracture surface of Charpy impact tested MA956 rod. (a) side view(time increases from 

left to right) (b) top view. 
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Several mechanisms responsible for the 475°C aging embrittlement of Fe-12Cr steels have 

been suggested.  The mechanisms responsible for this decrease in toughness have The mechanisms 

responsible for this decrease in toughness have never been unequivocally explained, but it has been 

generally attributed to the precipitation of second phases and/or impurity segregation.  The first is the 

segregation of potent embrittling elements, such as Sn or P, to the prior austenitic grain boundaries in 

the conventional Fe-Cr material.  The segregation of impurities to the grain boundaries dramatically 

worsens the situation for the conventional material, consistent with reports of a synergistic 

relationship between the amount of segregants and hardness on the toughness of steels [3].  The 

second is the presence of alpha prime phase, which is well known embrittler for higher Cr-containing 

steels [4] and Ni-base alloys [5].  After isothermal aging at 475°C, Fe-Cr alloys contain large 

quantities of alpha prime phase (Cr-rich, bcc structure) in addition to Cr-rich M23C6 carbides and 

complex Cr-Fe-Mo-Ni-Si rich precipitates.  Although the role of the carbides and Ni silicides have not 

been fully understood, the decrease of the DBTT(Ductile Brittle Transition Temperature) with the 

deembrittling treatment coinciding with the disappearance of the alpha prime phase in the 

microstructure strongly infers that the alpha prime phase is playing a strong role. 

Hardness or strength level of the material is considered to be very important for susceptibility 

to aging embrittlement.  Fe-10Cr alloys developed for steam turbine applications have not reported 

significant increases of the DBTT upon isothermal aging at 475°C and above [6].  However, these 

materials possess a lower strength than Fe-Cr alloy with high Cr content; and thus, should be more 

tolerant to the formation of alpha prime phase.  At some point, there is a critical Cr content (or Cr 

equivalent) below which alpha prime will not form. 

2.4.5 Mechanical Properties of Fabricated Experimental ODS Alloys 

Having found that the commercial 20%Cr Fe-base ODS alloys were significantly subject to the 

thermal embrittlement at 475
o

C it was attempted to develop a series of experimental Fe-base ODS 

steels by MA(Mechanical alloying) and HiPPing (Hot Isostatic Pressing)/Hot Rolling processes; and 

the mechanical properties of the ODS alloys were evaluated.  Table 8 shows the tensile properties of 

the experimental Fe-base ODS alloys at room temperature and at 600
o

C.  Figure 23 shows the stress-

strain curves of the ODS alloys at 600
o

C.  There seems to be a large effect of the nitrogen addition on 

the strength by nitrogen addition.  

Table 8  Tensile test results of developed Fe-base ODS alloys at room temperature and at 600°C. 

RT 600oC

Alloys YS  UTS  El  YS  UTS  El  

(MPa)  (MPa)  (%)  (MPa)  (MPa)  (%)  

#1  544  785  24.6  334  401  27.2  

#2  584  790  16.8  355  431  29.7  

#3  1170  1802  3.5  539  686  19.9  

#4  1427  1933  5.2  519  668  22.6  
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Figure 23  Stress-strain curves of experimental Fe-base ODS alloys at 600°C. 
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2.5 Thermal Properties of SCWR Materials 

Contributors: 

Joy Rempe, Keith Condie, Darrel Knudson, INL 

2.5.1 Overview 

As part of efforts to evaluate candidate alloys for Super Critical Water Reactor (SCWR) 

applications, selected high temperature thermal properties for T91 (a 9% Cr alloy) and HCM12A (a 

12% Cr alloy) were investigated.  Two methods available at Idaho National Laboratory’s (INL's) 

High Temperature Test Laboratory (HTTL) were applied to estimate thermal diffusivity, thermal 

conductivity, and specific heat capacity.  Results are compared with data in the literature and with 

data for other metals typically found in Light Water Reactor (LWR) vessels, SS304 and SA533B1.  

2.5.2 Background  

Several American Society of Testing and Measurement (ASTM)-approved methods for 

measuring thermal conductivity exist, but each of these methods has limitations that hinder efficient 

measurement of materials at temperatures and conditions of interest.  INL's HTTL is investigating 

several methods for measuring thermal conductivity at high temperatures (up to 3000 K).  One of 

these methods is classified as a steady state method, and it relies on radial conduction techniques.  The 

remaining two methods are classified as transient state methods: one that relies on transient diffusivity 

techniques and one that relies on hot-wire techniques.  These transient methods require smaller sized 

samples for testing.  Because the amount of candidate SCWR materials available for testing was 

limited, only transient methods were considered.  This section describes the two transient techniques 

that were investigated and provides details related to applying each method.  

2.5.2.1 Transient Pulsed Diffusivity Methods  

This effort primarily relied upon pulsed Thermal Diffusivity Methods (TDMs) to obtain high 

temperature SCWR candidate material thermal properties.  TDMs are based on the material's thermal 

diffusivity, ; the thermophysical property that best determines the speed of heat propagation by 

conduction during changes of temperature with time.  The thermal diffusivity, , is defined by  

pc
k

    (1) 

where k represents the thermal conductivity, cp represents the specific heat capacity, and   represents 

the density.  As indicated in this definition, the thermal diffusivity affects any conductive transient 

heat transfer process within the medium.  The higher the thermal diffusivity, the faster the heat 

propagation.  

In this project, TDM data were obtained using an Anter Thermal Properties Analyzer (FL 5000) 

System that is installed at INL's HTTL (see Figure 24).  This system uniformly heats a small disk-

shaped sample (approximately 12 mm in diameter and 2 to 4 mm thick) over its front face with a very 

short pulse of energy from a laser in a temperature-controlled furnace.  The time-temperature history 

of the rear face of the sample is recorded through high-speed data acquisition from a solid-state 

optical sensor with very fast thermal response.  Thermal diffusivity is determined from the time 

interval after the flash for the rear face to increase in temperature (using the Clark and Taylor 

method[1]).  Specific heat capacity and thermal conductivity data were estimated using comparative 

techniques with software provided by Anter[2].  
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Figure 24  Laser Flash Thermal Property Analyzer installed at HTTL. 

2.5.2.2 Transient Hot Wire Method  

In addition to TDM data, INL also explored the use of Transient Hot Wire Method (THWM) 

techniques for obtaining SCWR thermal conductivity data.  The THWM, sometimes referred to as the 

line heat source method, is based on a linear heat source of infinite length and infinitesimal diameter.  

The method was first suggested by Schleirmacher[3].  Numerous references may be found in the 

literature describing applications of this method to measure the thermal conductivity of solids, fluids, 

and gases (e.g., see references [4-9]).  Today, several commercial vendors offer systems measuring 

thermal conductivity based on THWM techniques (e.g., see reference [10]).  

Figure 25 shows a sketch of the design initially proposed for investigating this method.  A 

heater is placed in the center of the sample that extends nearly the entire length of the sample.  The 

heater element is constructed similar to a thermocouple.  However, a single wire with high electrical 

resistivity (e.g., rhenium or molybdenum) is threaded through two-hole, high temperature electrical 

insulation material (e.g., hafnia); and its ends are connected to power leads at the top.  The threaded 

wires are placed in a high temperature sheath material (e.g., niobium alloy) and then swaged to form 

an integral heater.  For initial temperature measurements, commercially-available thermocouples were 

used (e.g., Type K chromel/alumnel).  However, higher-temperature, in-pile testing will require INL-

developed thermocouples composed of alloys of molybdenum and niobium thermocouples that resist 

transmutation [1]. 

Figure 25  Sketch and photo of sample with heater and thermocouple installed. 
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Several options are available for placing the heater and thermocouple in the sample.  At INL, 

the heater and thermocouples were inserted into holes that were drilled into the sample (as shown in 

Figure 25).  Contact resistance between the heater and the sample raises the heater temperature and 

extends the time to t1 (when the temperature rise becomes linear).  Likewise, any contact resistance 

between the thermocouple and the sample has a similar effect.  

Heater power is provided by a small DC power supply with the power determined by precise 

measurements of current and voltage.  Because the resistance of candidate materials for the heater 

element increases with temperature, it is necessary to continuously adjust the voltage to maintain a 

constant power level.  This control is provided automatically using a LabView program, which 

monitors the power and adjusts the voltage several times a second to keep the power constant.  

2.5.3 Approach  

Tests were completed to obtain high temperature thermal property data for candidate SCWR 

materials using the TDM and THWM described previously.  In addition, data were obtained for 

typical materials found in LWR vessels (SA533B1, which is used for most LWR vessels; and SS304, 

which is used for LWR piping and internal structures).  

Using an Anter FL5000, thermal diffusivity data were obtained using the Clark and Taylor 

approximation.  Comparison reference samples (Austenitic Stainless Steel and Iron) provided by 

Anter were used to estimate thermal conductivity and specific heat capacity for materials with this 

method.  The THWM approach was applied to directly obtain thermal conductivity data for these 

materials.  Note that this study was the first attempt by INL to apply THWM techniques.  

2.5.4 Results  

2.5.4.1 FL5000  

As noted in Section 2.5.2.1, TDM data were obtained in this project using an Anter FL5000 

system installed at the HTTL.  Test samples were approximately 12 mm in diameter and 2 to 4 mm 

thick.  Test samples were designated by a test number (e.g., 400 through 430), their thickness (e.g., 2 

to 4), a numeric letter (e.g., A through C to denote the first through third sample of a particular 

thickness), their coating (e.g, “C” for graphite sprayed, “BN” for boron nitride sprayed, or “GB” for 

grit blasted), and the voltage at which samples were tested (e.g., 1200 to 1500 V).  

Thermal diffusivity data were calculated using the Clark and Taylor method [1], which is 

encoded into software provided by Anter for the FL5000 system.  Specific heat capacity and thermal 

conductivity data were estimated using comparative techniques with software and reference samples 

provided by Anter.  However, peak temperatures for which specific heat capacity and thermal 

conductivity data could be estimated were constrained to peak test temperatures for these reference 

samples (due to concerns about variations in data if samples were subjected to temperatures at or 

above where they experience a phase transition).

2.5.4.1.1 Stainless Steel 

Thermal diffusivity data for stainless steel samples (SS304) are plotted in Figure 26.  As 

indicated by the legend in this figure, SS304 data were obtained from testing 13 samples with 

thicknesses varying from 2 to 4 mm, laser powers varying from 1000 to 1500 V, and various types of 

sample coatings (graphite, boron nitride, and grit blasted).  Data in this figure suggest that variations 

in test parameters did not produce any discernible trend in the test data.  Figure 27 compares the 

SS304 data with data obtained from the Anter reference stainless steel sample, Anter reference sample 

thermal diffusivity data, and the recommended diffusivity (based on Touloukian data) from Figure 28.  
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Figure 26  SS304 thermal diffusivity data. 

Figure 27  Comparison of SS304 and reference stainless steel thermal diffusivity data with values 

provided in the literature (literature curves extrapolated above 1000 °C). 

Figure 28  Comparison of selected reference information for stainless steel thermal diffusivity.
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Recommended values for stainless steel are extrapolated above 1000 °C.  As shown in Figure 27, the 

SS304 data agree fairly well with reference sample data.  Values for the SS304 and reference samples 

also agree fairly well with Figure 28, the recommended values at lower temperatures.  More scatter 

occurs in data obtained at higher temperatures.  However, high temperature data appear lower than the 

recommended Touloukian values at temperatures above 600 °C. 

Using software provided by Anter, the specific heat capacity and thermal conductivity of the 

SS304 samples were estimated using comparative techniques and data for a similar sample (in this 

case, the reference stainless steel sample provided by Anter).  Figure 29 and Figure 30 illustrate the 

data obtained using these techniques.  Recommended curves (which are based on Touloukian data) 

are also plotted in these figures.   

Curve fits from data estimated with the Anter comparative software are similar to the 

recommended values.  However, there is considerable scatter in the data.  More testing is needed to 

reduce the uncertainty in the specific heat capacity and the thermal conductivity of this material 

(especially at higher temperatures).   

Figure 29  Comparison of SS304 specific heat capacity data obtained with FL5000 and Touloukian 

data. 

Figure 30  Comparison of SS304 thermal conductivity data obtained with FL5000 and Touloukian 

data. 
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2.5.4.1.2 SA533B1  

Thermal diffusivity data for SA533B1 samples tested are plotted in Figure 31.  The SS304 data 

were obtained from testing 9 samples with thicknesses varying from 2 to 4 mm, laser powers varying 

from 1000 to 1500 V, and various types of coatings (graphite, boron nitride, and grit blasted).  Data 

suggest that variations in test parameters did not significantly affect test data.  As in SS304 tests, there 

is more scatter in higher temperature SA533B1 data.  However, a change in the behavior of the 

SA533B1 diffusivity occurs at temperature above 727 °C, which is the temperature where this 

material starts to experience a transformation (from ferritic to austenitic steel).  Data also indicate that 

the general behavior of thermal diffusivity for carbon steel is more similar to that of iron than the 

stainless steel reference data.  Figure 32 compares the SA533B1 data with data obtained for an Anter 

reference iron sample, Anter reference iron thermal diffusivity data, and the recommended diffusivity 

(based on MATPRO data).  As shown in Figure 32, the newly obtained iron data are consistent with 

data recommended by Anter.15 The new SA533B1 data is similar (but somewhat lower) than data 

recommended by MATPRO (MATPRO SA533B1 data are based on information from Spanner, et 

al.12).  More scatter occurs in data obtained at higher temperature.  Note the relatively flat behavior in 

the SA533B1 data at higher temperatures (although there is a slight peak at around 1100 °C).    

Using software provided by Anter, the specific heat capacity and thermal conductivity of the 

SA533B1 samples were estimated using comparative techniques and recommended material property 

data for reference iron.  Figure 33 and Figure 34 illustrate the data obtained using these techniques.  

Recommended curves from MATPRO information are also plotted in these figures.   

Curvefits from data estimated with the Anter comparative software yield similar values to the 

recommended values.  However, there is considerable scatter in the data.  More testing is needed to 

reduce the uncertainty in the specific heat capacity and the thermal conductivity of this material 

(especially at higher temperatures).  For temperatures above 500°C, new data suggest higher specific 

heat capacities and lower thermal conductivities for SA533B1 than currently documented in the 

literature..

2.5.4.1.3 T91  

Thermal diffusivity data for T91 samples tested at INL are plotted in Figure 35.  The T91 data 

were obtained from eight tests using samples with thicknesses varying from 2 to 4 mm, laser powers 

varying from 1000 to 1400 V, and various types of coatings (graphite, boron nitride, and grit blasted).  

As indicated in this figure, variations in these test parameters did not significantly affect test data.  

There is more scatter in higher temperature T91 data.  Test data suggest that a change in the behavior 

of the T91 diffusivity occurs at temperatures above 700 °C, such as might occur with a phase 

transformation.  Data also indicate that the thermal diffusivity for T91 is much more similar to that of 

reference iron than reference stainless steel sample data.   

Figure 36 compares the T91 data with recommended data obtained for the Anter reference iron 

sample (based on Touloukian data).  Note that the recommended curve is extrapolated for 

temperatures above 1000 °C.  The new T91 data appears much lower than iron at lower temperatures, 

but very similar at temperatures above 700 °C.   

Using software provided by Anter, the specific heat capacity and thermal conductivity of the 

T91 samples were estimated using comparative techniques and data for reference iron.  Figure 37 and 

34 illustrate the data obtained using these techniques.  A curve, based on ASM thermal conductivity 

data is also plotted in Figure 38.  A curvefit from data estimated with the Anter comparative software 

yields similar, but slightly higher, values to the recommended thermal conductivity values.  However, 

there is considerable scatter in the data.  More testing is needed to reduce the uncertainty in the 

specific heat capacity and the thermal conductivity of this material (especially at higher temperatures).   
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Figure 31  INL SA533B1 thermal diffusivity data. 

Figure 32  Comparison of INL SA533B1 thermal diffusivity data, reference iron data, and values 

provided in the literature. 

Figure 33  Comparison of INL SA533 specific heat capacity data and MATPRO data. 
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Figure 34  of INL SA533B1 thermal conductivity data and MATPRO data. 

Figure 35  INL T91 thermal diffusivity data. 

Figure 36  of INL T91 thermal diffusivity data and values provided in the literature. 
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Figure 37  Comparison of INL T91 specific heat capacity data and ASM data. 

Figure 38  Comparison of INL T91 thermal conductivity data and ASM data. 

2.5.4.1.4 HCM12A  

Thermal diffusivity data for HCM12A samples tested at INL are plotted in Figure 39.  The 

HCM12A data were obtained from seven tests using samples with thicknesses varying from 2 to 4 

mm, laser powers varying from 1000 to 1400 V, and various types of coatings (graphite, boron 

nitride, and grit blasted).  As indicated in this figure, variations in these test parameters did not 

significantly affect test data.  There is more scatter in higher temperature HCM12A data.  Test data 

suggest that a change in the HCM12A diffusivity occurs at temperatures near 700 °C, such as might 

occur with a phase transformation.  Data also indicate that the thermal diffusivity for HCM12A is 

more similar to that of reference iron than reference stainless steel sample data.    

Figure 40 compares the HCM12A data with data obtained for an Anter reference iron sample, 

Anter reference iron thermal diffusivity data, and the recommended diffusivity (based on ASM data).  

Note that literature curves are extrapolated for temperatures above 700 °C.  The new HCM12A data is 

similar (but somewhat higher) than the ASM data (for the lower temperatures where ASM data are 

available).   
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Figure 39  INL HCM12A thermal diffusivity data. 

Figure 40  Comparison of INL HCM12A thermal diffusivity data and values provided in the 

literature.
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Using software provided by Anter, the specific heat capacity and thermal conductivity of the 

HCM12A samples were estimated using comparative techniques and data for reference iron.  Figure 

41 and Figure 42 illustrate the data obtained using these techniques.  Curves based on ASM data are 

also plotted in these figures.   

Curvefits from data estimated with the Anter comparative software yield similar values to the 

recommended values.  However, there is considerable scatter in the data.  More testing is needed to 

reduce the uncertainty in the specific heat capacity and the thermal conductivity of this material 

(especially at higher temperatures).  New data suggest similar specific heat capacities and higher 

thermal conductivities for HCM12A for temperatures where comparative techniques are available. 

Figure 41  Comparison of INL HCM12A specific heat capacity data and ASM data. 

Figure 42  Comparison of INL HCM12A thermal conductivity data and ASM data. 
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2.5.4.1.5  Summary of FL5000 Results 

The FL5000 System was applied to obtain thermal diffusivity data for the SCWR materials for 

temperatures up to 1400°C.  Low temperature results (less than 1000 °C), as summarized in Table 9, 

indicate that the measured diffusivity data behavior is similar to data available in the literature for all 

of the materials tested (at least for those materials where data were available in the literature).  High 

temperature diffusivity data were obtained for all of these materials.  As discussed in this section, 

diffusivity values for the two SCWR materials and SA533B1 experienced a minimum at around 700 

°C, which corresponds to where a phase transition occurs in carbon steel.  It is interesting to also note 

that high temperature diffusivity data obtained for stainless steel differed from values reported in the 

literature (although it should be noted that literature values were extrapolated for temperatures above 

1000 °C).   

Software provided by Anter was employed to estimate sample thermal conductivity using 

comparative techniques.  However, these efforts were hindered by reference sample test temperature 

limits.  Values estimated with comparative techniques differed from values reported in the literature 

by up to 25% (see Table 9).   

Table 9  Comparison of FL5000 TDM results with available literature data. 

Thermal Diffusivity, cm2/s Thermal Conductivity, W/m2 °C
Material Data 

Source  
20 °C  600 °C  1000 °C 1200 °C 20 °C  600 °C  1000 °C  1200 °C 

SS304  Reference  0.037  0.055  0.065  0.072  15  24  29  33  

INL  0.037  0.052  0.056  0.058  20  25  27  28  

SA533B1  Reference  0.15  0.055  NA  NA  52  44  NA  NA  

INL  0.12  0.052  0.052  0.052  57  38  NA  NA  

T91  Reference  NA  NA  NA  NA  25  30  NA  NA  

INL  0.075  0.05  0.055  0.060  30  33  NA  NA  

Reference  0.06  0.04  NA  NA  21  NA  NA  NA  HCM12A  

INL  0.06  0.04  0.055  0.065  26  30  NA  NA  

2.5.4.2 Hot Wire Results  

As noted in Section 2.5.2.2, an initial attempt was also made to apply THWM techniques.  

Figure 25 illustrates the geometry of the sample proposed for testing with a linear heater and 

thermocouple installed in it.  Samples fabricated from SS304, SA533B1, and T91 were tested 

(HCM12A was not tested because of sample material limitations).  This initial effort was limited to 

room temperature tests.  Results from these efforts are summarized in this section.   

2.5.4.2.1  Hot Wire Test Data  

Two series of room temperature tests were completed for SS304, SA533B1, and T91 samples.  

Results from both series yielded similar values for thermal conductivity.  Data obtained from the first 

series of tests are plotted in Figure 43.  It is interesting to note that curves for carbon steel and 

stainless steel are similar.  Reference information suggests that the slope of the carbon steel curve 

should be considerably higher than the slope of the stainless steel curve.   
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Figure 43  Results from room temperature hot wire tests. 

2.5.4.3 Discussion of Hot Wire Results 

Equation (2) was applied to estimate the thermal conductivity of each material using values for 

t1, t2, T1, T2, and the average heater power in Figure 43.  Results, summarized in Table 10, indicate 

that estimated values for thermal conductivity using data from this setup are at least two orders of 

magnitude too small.  It should be noted that the obtained data were similar to data obtained for the 

second series of tests.  Hence, these data are repeatable.  It should also be noted that the data varied if 

the outer boundary heat transfer condition varied.  LWR material sample tests were repeated using 

highly insulated exterior boundary heat transfer conditions.  The slopes of the SA533 and SS304 

thermal response curves for these two materials were still similar, but considerably different than 

results from the uninsulated tests.    

Table 10  Calculated thermal conductivity from room temperature THWM data. 

a. Initial guess. However, subsequent guesses cannot give us the needed factor of 100 to get the reference thermal conduc-

tivity values.  

b. Room temperature reference values in Table 1.  

To better understand why there are such large differences between values for thermal 

conductivity from reference data and estimated with Figure 43 test data, it is useful to consider the 

recommended values for test geometries discussed in 2.5.2.  Table 11 summarizes results from 

calculations performed to verify the suitability of the initial test setup using criteria discussed in 

Section 2.2.   

Material availability and ease of insertion for future in-pile applications led to the initially-

selected geometry for test samples and testing.  This selection resulted in many of the Section 2.5.2.2 

suggested criteria not being met (as indicated by the red shading in Table 11).   
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Table 11  Evaluation of Section 2.2 criteria for room temperature THWM setup. 

For example, Criterion 1 was not met for any of the samples.  This criterion was not considered 

feasible.  A ratio of dsample/dheater of at least 60 would require that the heater diameter be less than 

0.001” (for a 0.5” diameter sample) or a 3.75” diameter sample (for the current 0.0625” diameter 

heater).  Such small heater sizes are not considered viable, and such large samples of SCWR materials 

were not available.  Criterion 3 was also not met for any of the samples tested.  This criterion, which 

was suggested to counter end effects, related the sample length, thermal diffusivity, and total test time, 

t2, using Equation (3).  Although the total test time could be increased by lowering the heater power, 

other requirements on the test time suggest that the heater power was adequate.  Hence, sample 

lengths between 48 and 87 cm would be required to satisfy this criterion (which was not possible 

because of limited material availability).  Criterion 5, which compared the total test time to the sample 

diameter and thermal diffusivity, was also not met.  To met this criterion, one would also need sample 

diameters that were between 15 and 25 inches, which was also not viable for these tests.   

Criterion 2, which was designed to minimize end effects, was met for all of the samples.  The 

ratio of the sample length to diameter was 45.6, which was within the recommended range of 31 to 

100.  Criterion 4, which was designed to ensure that the thermal front reaches the temperature sensor, 

relates the distance between the heater probe and temperature sensor and the sample material thermal 

diffusivity.   

In summary, initial efforts to apply THWM techniques appear to have yielded inaccurate values 

of thermal conductivity for the materials tested.  It is speculated that errors in measured values are due 

to the selected sample, sensor, and heater geometries.  Alternate geometries will be explored during 

the next year in other programs as INL continues its efforts to develop THWM techniques for in-pile 

applications.

2.5.5 Thermal Properties Summary and Recommendations  

As part of efforts to evaluate candidate alloys for SCWR applications, selected high 

temperature thermal properties for T91 (a 9% Cr alloy) and HCM12A (a 12% Cr alloy) were 

investigated.  Two methods available at INL's HTTL were applied to estimate thermal diffusivity, 

thermal conductivity, and specific heat capacity.  Results are compared with data in the literature and 

with data for other metals typically found in LWR vessels, SS304 and SA533B1.  However, a review 

of data in the literature indicated that material property data for these materials are extrapolated for 

temperatures above 1000 °C (and many are extrapolated at temperatures above 700 °C).   

The FL5000 System was applied to obtain thermal diffusivity data for the SCWR materials for 

temperatures up to 1400 °C.  Low temperature results (less than 1000 °C) indicate that the measured 

diffusivity data behavior is similar to data available in the literature for all of the materials tested (at 

least for those materials where data were available in the literature).  Figure 44 compares curvefits for 

thermal diffusivity data obtained for these materials.  As shown in this figure, diffusivity values for 

the two SCWR materials and SA533B1 experienced a minimum at around 700 °C, which corresponds 

to where a phase transition occurs in these materials.  Values for the thermal diffusivity for these  
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Figure 44  Comparison of thermal diffusivity data for materials tested. 

materials at high temperatures (e.g., greater than 1000 °C) are similar (ranging from 0.05 to 0.065 

cm2/s).  It is interesting to also note that high temperature diffusivity data obtained for stainless steel 

differed from values reported in the literature (although it should be noted that literature values were 

extrapolated for temperatures above 1000 °C).   

Software provided by Anter was employed to estimate thermal conductivities using 

comparative techniques.  Data for SS304 could be obtained for temperatures higher than reported in 

the literature.  However, as indicated in Figure 45, candidate SCWR and SA533B1 tests were limited 

to lower temperatures because they rely upon comparisons with reference iron sample test data, and it 

was recommended that this iron sample not be tested above its phase transition temperature.  Lower 

temperature data in Figure 45 indicate that the two candidate materials have thermal conductivities 

that are lower than SA533B1, but higher than SS304.  Additional tests are needed to evaluate their 

thermal conductivity at higher temperatures.  Values estimated with these comparative techniques 

differed from values reported in the literature by up to 25%, which is consistent with scatter observed 

in thermal conductivity data reported in the literature.   

Figure 45  Comparison of thermal conductivity data for materials tested. 



63

As noted in Section 2.1, an initial attempt was also made to apply THWM techniques.  Figure 

25 illustrates the geometry of the sample proposed for testing with a linear heater and thermocouple 

installed in it.  Samples fabricated from SS304, SA533B1, and HCM12A were tested (T91 was not 

tested because of sample material limitations).  This initial effort was limited to room temperature 

tests.  Results indicate that estimated values for thermal conductivity are at least two orders of 

magnitude too small.  It should be noted that the obtained data were similar to data obtained for the 

second series of tests.  Hence, these data are repeatable.  It is speculated that the error in measured 

values are due to the selected sample, sensor, and heater geometries.  Alternate geometries will be 

explored during the next year as part of a different research project as INL continues its efforts to 

develop THWM techniques for in-pile testing.   
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3. Task 3 - Corrosion and Stress Corrosion Cracking Studies 

3.1 Task Summary 

Corrosion and stress corrosion cracking (SCC) resistance of candidate materials in supercritical 

water is another key property that must be evaluated.  The objective of this task is to chart the corrosion 

and stress corrosion cracking susceptibility of candidate materials in supercritical water under prototypic 

temperatures and water chemistries.  As part of this task, the feasibility of using surface modification 

techniques to improve corrosion and SCC response is being evaluated.  By conducting tests at multiple 

facilities, the impact of different experimental setups and techniques can be evaluated.  As with the rest of 

the tasks, the efforts in this task have focused on evaluation of F-M alloys with a few additional 

experiments on other alloy types for comparison purposes. 
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3.2 SCC and Oxidation Experiments on F-M Steels 

Contributors: 

G. S. Was, University of Michigan 

3.2.1 Design of the Stress Corrosion Cracking Test Facility  

Figure 46 shows a schematic of the multi-sample supercritical water, stress corrosion cracking 

(SCW-SCC) facility in the High Temperature Corrosion Laboratory (HTCL) at the University of 

Michigan.  Table 12 presents the summary of the specification for the main components of the facility.  

The test facility is composed of three main sub-systems: solution makeup system, solution feed & bleed 

system, and test vessel & load control system.  In the solution makeup system there are two glass 

columns; one is a main water column and the other is a mixing column.  Deionized water is filled in the 

mixing column and the makeup water is transferred to the main column.  The test solution in the mixing 

column is fed through a high-pressure pump.  To ensure high purity of the test water, a recirculation pump 

connected to the mixing column and ion-exchange resin runs continuously during a test.  The solution 

feed & bleed system is mainly composed of a water chemistry monitoring system, a high-pressure pump, 

a preheater, a cooler, a back pressure regulator, and a water purification system.  The specification of the 

high-pressure pump and water chemistry monitoring system is described in Table 12. 

Figure 46  Schematic of multi-sample SCW-SCC facility in HTCL. 
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Table 12  Summary of the specifications for the main components of the SCW-SCC facility in HTCL. 

Component Description Main Specification Comments 

Test Vessel Materials: Alloy 625 

Max. Pressure: 4,350 psi @ 600 
o
C

5” ID & 12.5” Depth 

Autoclave

mounted in 

inverted position

Stepper Motor & 

Controller 
Max. Load Capacity:  4,000 lbf

Max. Stroke Range: 4” 

Max. Stroke Rate: 2 in/min 

Min. Stroke Rate: 10
-38

 in/min 

Load Resolution: 0.1 lbf

Stroke Resolution: 0.0001” 

Waveform generator & Ramp generator 

High Pressure Pump Flow Range: 0.01-250 mL/min 

Max. Pressure: 5,000 psi across the flow range 

Pulsation: <3% @150 mL/min & 2,500 psi 

Materials: 316SS 

3-head design 

for high flow 

and low 

pulsation

Conductivity Meter Range: 0.02-600 S/cm

Cell Constant Accuracy: 1% of reading 

Max Pressure/Temp.: 250 psig@ 93 
o
C

Materials: Ti, PEEK 

Dissolved Oxygen Meter Operating Range: 0-10,000 ppb 

Accuracy: 1 ppb 

Flow Rate: 50-2,000 mL/min 

Temperature: 5-50 
o
C

Pressure: <45 psig 

Materials: 316SS, Polyacetal 

A test vessel made of alloy 625 was  installed in the inverted position (head at the bottom) on a 

load frame as represented in Figure 46.  An inverted geometry has the advantage that the high-pressure 

fittings and penetrations on the top of vessel cover can be maintained at relatively low temperature 

without an additional cooling system.  Another unique character of this vessel system is the fact that four 

SCC samples can be tested at the same time, which provides rapid sample throughput and reduces test-to-

test variability caused by water chemistry variation in different tests.  A stepper motor and controller with 

the load capacity of  4,000 lbf was used in this system.  By using the stepper motor and controller the 

strain rate can be decreased down to less than 10-8 s-1.  Figure 47 shows the photograph of the multi-

sample SCC test facility in SCW environments. 

3.2.2 Cross sectional analysis of F-M alloy gauge fractures 

The F-M alloy samples exhibited extensive necking that consumed a considerable fraction of the 

gage section. In order to analyze cracking in a consistent manner, the gage sections were divided into 

three areas; A, B and C, as shown in Figure 48. Area A was defined by the distance from the fracture 

surface to the point where the gage width was80% of the original value. Area B extended from 80% to 

90% and area C below the 90%point. Only cracks in areas B and C were recorded and included in the 

analysis. The total number of intergranular cracks of length greater than 3 m was counted over a 2 mm 

length in areas B and C in SEM to determine a linear crack density, and the crack depths were 

characterized from cross sections. 
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Figure 47  Photograph of the multi-sample SCW-SCC facility in HTCL. 

Area B

Area C

Area A

Un-necked region

<80%

80-90%

>90%

Figure 48  Areas A, B, and C defined on an HT-9 SCC sample tested in 500°C and 300ppb DO. 

Cross sections of SCC samples of HT-9 for IG crack analysis were prepared by mounting in epoxy 

resin and then polishing with SiC paper. The mounted specimens were etched in 25% HCl and 75% 

HNO3 in order to highlight the grain boundaries. Cracks were investigated in SEM in both secondary-

electron (SE) mode and back scattered-electron (BSE) mode. The oxide layers on specimens were clearly 

observed in BSE mode. Crack depth was determined with Scion Image© software by comparing the crack 

length measured from the outer oxide layer to the deepest point, to that on the scale bar.
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3.2.3 500°C SCC and Oxidation Rate Experiments in Deaerated and 100 ppb Dissolved 
Oxygen SCW 

Initially two tests were conducted in supercritical water to begin to assess the SCC and oxidation 

behaviors of alloys T91, HCM12A and HT-9.  Both tests were conducted at 500°C with the difference 

being the amount of oxygen in the water.  The initial test was conducted in deaerated SCW at 500°C in 

the multi-sample supercritical water (MSCW) system built for this project.  The CERT test was conducted 

on two T-91 samples, one HCM12A sample and one HT-9 sample at a strain rate of 3 10-7 s-1.  The 

second test was conducted on samples of T91 and HCM12A in 500°C supercritical water with the 

exception that the water contained approximately 100 ppb of oxygen.  Data from fossil plant operation 

has shown that the addition of oxygen to the water in the range of 50-150 ppb promotes the formation of 

hematite (Fe2O3) in addition to magnetite (Fe3O4) that aids in promoting a more dense and less permeable 

oxide to reduce the oxidation rate[1,2]. .  Additional baseline experiments were conducted in argon. 

The stress-strain plots for all of the samples tested are shown in Figure 49.  In the stress-strain plot, 

all samples showed similar work softening behavior.  The two T91 samples tested in deaerated SCW 

exhibited different stress-strain behavior.  The literature data for the mechanical properties of T91 [1-9] 

show a large amount of scatter such that the different stress-strain plots for the two T-91 samples fall 

within this scatter.  The behavior of T-91 in deaerated SCW, 100 ppb O2 in SCW and Ar gas, all at 500°C 

are shown in Figure 49 (b).  Only the sample in Ar has an atypical yield point.  Otherwise, the stress-

strain behaviors are similar, as are the strains at failure.  Argon tests were conducted to serve as reference 

data for the SCW tests. 

                   (a)                (b) 

Figure 49  Engineering stress-strain curves for (a) F/M steels tested in deaerated SCW and (b) T91 

compared with the results tested in 100 ppb DO SCW and pure Ar gas. 

The fracture surfaces of the failed samples are shown in Figure 50.  All display ductile fracture 

behavior.  The fracture surfaces of all samples except T91 #1 were exposed to SCW for about a day while 

waiting for T91 to fail.  Therefore, they contained more oxide and were not as clear as that of T91 #1.  

The HT-9 sample showed less necking than other samples.  The gage section surface cracks of HT-9 were 

deeper and wider than others, as shown in Figure 51.  Some surface cracks of HT-9 have appearance 

similar to IGSCC cracks.  Facture and side surfaces of T91 in 100 ppb DO were similar to those in  
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(a) HT-9                (b) HCM12A                   (c) T91 #1                  (d) T91 #2 

Figure 50  SEM images of the fracture surfaces of (a) HT-9, (b) HCM12A, (c) T91 #1, and (d) T91 #2. 

(a) HT-9               (b) HCM12A                  (c) T91 #1                  (d) T91 #2 

Figure 51  SEM images of the gage section surfaces of (a) HT-9, (b) HCM12A, (c) T91 #1, and (d) T91 

#2.

deaerated SCW except for the presence of continuous side cracks.  The reduction of area for T91 under 

SCW was lower than that under Ar gas. 

The corrosion coupon analysis of T91 and HCM12A in deaerated SCW was performed by SEM, EDS, 

XRD, and XPS.  Table 13 summarizes the oxidation results as measured by weight gain.  Note two 

features of these weight gain measurements.  First, HCM12A oxidizes less than does T91 in both 

environments.  Also, samples in SCW containing 100 ppb oxygen result in less oxidation than those in 

deaerated SCW.  

Table 13  Analysis of oxide weight gain and thickness after exposure to SCW at 500°C. 

Alloy T91-C-1 T91-C-2 HCM12A-C-1 HCM12A-C-2 

System  MSCW SCW MSCW SCW 

Exposure time (hr) 182.2 236 182.2 236 

Temperature (°C) 500 500 500 500 

O2 content <10 ppb 100-110 ppb <10 ppb 100-110 ppb 

Weight change 

(mg/dm2) 

137.30 165.00 119.94 143.00 

Weight change rate 

(mg/dm2/day) 

18.090 16.785 15.803 14.547 

Oxide thickness rate 

( m/day)* 

1.41304 1.12920 1.23485 1.02798 

Cross-sections from the samples were analyzed by conducting energy dispersive x-ray analysis to 

determine the composition profile of the oxides.  The images of the cross-sections show two distinct 

oxide layers from the metal substrate, Figure 52.  The results of the composition profile using EDS line 

scan show two distinct oxide/metal ratios.  The atomic percent ratio of O/Fe in outer oxide layer is 1.27 

for T91 and 1.30 for HCM12A.  These values are close to the ratio of O/Fe in Fe3O4 (1.33).  For the inner 

layer, the O/M ratio (M = (Fe, Cr)) are 1.46 for T91 and 1.37 for HCM12A.  These values are between 

O/M ratio of M2O3 (1.5) and M 3O4 (1.33). 
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           (a) T91 in deaerated                            

(a) T91 in deaerated SCW                                         (b) T91 in 100 ppb DO SCW 

 (a) HCM12A in deaerated SCW                      (b) HCM12A in 100 ppb DO SCW 

Figure 52  Chemical composition profiles on oxide layer cross-section by using EDS analysis.  
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The addition of 100 ppb oxygen to the water resulted in two changes to the oxide films on both T91 

and HCM12A.  First, the films were about 10% thinner than in the deaerated case.  Second, the 

stoichiometry was slightly more oxygen rich.  Both of these observations are consistent with the 

objectives of combined water chemistry control [1,2] in which the addition of small amounts of oxygen 

enhance the formation of hematite crystals between the magnetite grains and reduce the oxidation rate.  

However, XRD measurements were made only of the outer oxide and this was only magnetite. 

The glancing angle XRD technique was used in order to investigate the oxide phase on the 

corrosion coupons.  Results from XRD agrees with chemical composition profiles of the outer oxide layer 

by the EDS technique.  The diffraction patterns show that the outer layer is magnetite (Fe3O4), Figure 53.  

Because the penetration of X-rays from the surface ranges from 1-5 m and the outer layer is ~5 m, this 

phase pertains to the outer layer only.  Therefore, it can be concluded that the outer oxide structure is 

magnetite (Fe3O4).

A Perkin-Elmer model PHI 5400 XPS system was used for the XPS measurement to identify the 

oxide type.  The data suggests the oxide types observed on T91 and HCM12A in deaerated SCW are 

Fe2O3, Fe3O4 and FeOOH.  Since the analysis depth of XPS is from 0.5 nm to 100 nm from the surface, it 

is possible that there is a thin outer oxide film composed of hematite (Fe2O3) and The XPS analysis 

suggests that Fe2O3, Fe3O4 and FeOOH are present in a very thin surface layer.  The analysis depth of 

XPS is only a few to a hundred nanometers.  So it may be possible that a thin layer composed of hematite 

and FeOOH sits on top of the magnetite layer.  The estimated thickness of this film should be the same as 

penetration length for X-rays. 

In conclusion, results suggest the following oxide structure starting at the metal-oxide interface: 

metal -->(Fe,Cr)3O4 --> Fe3O4 + FeOOH? going from inside to outside..  The inner layer likely forms by a 

solid state oxidation process.  The middle layer probably forms by the re-precipitation of magnetite by re-

precipitation of the dissolve iron ions.  This picture is similar to oxidation of T91 under steam at 575-

650ºC [10]. 

3.2.4 400°C Tests in Deaerated SCW. 

Constant extension rate tensile (CERT) tests were performed in the Multi-sample supercritical 

water system at 400°C.  There were two types of samples in this test, (1) SCC bars: HT-9, HCM12A, 

T91, and T91-CSLE, and (2) corrosion coupons: HT-9, T91, and HCM12A.  The system was heated up to 

400oC for 20 hours before straining.  The total exposure time of 151.5 hours was determined by the time 

to failure of the last sample.  The SCC samples were strained at a strain rate of 3x10-7 s-1.  During 

exposure, the temperature inside autoclave was controlled to within  5oC of maintain 400oC.  The 

pressure was maintained at 3,655  15 psig.  High purity water was used as test solution and the dissolved 

oxygen (DO) content was maintained below 10 ppb at inlet and outlet lines by purging argon gas 

continuously.  The inlet conductivity was 0.06 S/cm, and the outlet conductivity was 0.075  0.005 

S/cm.   The flow rate was maintained at around 90 ml/min. 

3.2.4.1 SCC results 

The stress-stain curves of the experiment in 400oC in deaerated supercritical water are shown in 

Figure 54 and the results are summarized in Table 14.  All of samples exhibit similar work softening 

behavior, consistent with the experiments conducted at 500oC.  The HCM12A sample failed at a strain of 

10.0% and HT-9 failed at 10.6%.    Both of T91 and T91-CSLE had higher ductility with failure strains of 

11.2% and 12.8%, respectively.  
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Figure 53  Glancing angle XRD spectra of the outer oxide layer of T91, HCM12A and HT-9 tested in 

SCW at 400°C, 500°C deaerated SCW, and at 500°C +100 ppb DO and 500°C+300 ppb DO. Spectrum of 

T91 at 600°C deaerated was measured by theta-2theta Philips 

Figure 54  Stress-strain curves of HT-9, HCM12A, T91, and T91-CSLE tested in deaerated, 400°C SCW. 
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Table 14  Summary of the results obtained the CERT tests in 400°C deaerated SCW.

Alloys YS (MPa) UTS (MPa) Elongation 

(%)

RA (%) Fracture 

Surface

HCM12A 485 560 10.0 47.21 Ductile 

HT-9 520 600 10.6 45.69 Ductile, IG 

T91 380 425 11.2 68.47 Ductile 

T91-CSLE 400 450 12.8 67.40 Ductile 

* Because of the test facility characteristics, stress-strain curve to get real YS and UTS. 

HT-9 exhibited the highest values for both YS and UTS, followed by HCM12A, T91-CSLE, and 

T91, respectively.  The yield and ultimate strengths were greater than those measured in similar tests at 

500oC.  These results agree with YS values given in literatures [11-18].  As shown in Figure 55, the YS is 

relatively stable with temperature from 0 oC to around 400 oC, above which the YS begins to drop. 

SEM investigation of SCC fracture surfaces shows typical ductile fracture in all samples.  Cracking 

on the gage section surfaces of samples is shown in Figure 56 and the fracture surfaces of samples are 

shown in Figure 57.  SEM investigation shows that some surface cracks on HT-9 appear to be 

intergranular in nature, as shown in Figure 58.  

3.2.4.2 Corrosion coupons 

Exposure to deaerated, 400°C SCW for 151.5 hours resulted in the formation of oxide on corrosion 

coupons of HT-9, HCM12A, and T91.  Figure 59(a) presents the weight gain from this experiment.  The 

values are highest in HT-9, followed by T91, and HCM12A.  The weight gain rate in 400°C (151.5 hours 

exposure time) is much less than in 500°C (182.2 hours exposure time) as presented in Figure 59(b) 

Results form X-ray diffraction (XRD) analysis show that the oxide in the outer layer of the coupon 

is magnetite (Fe3O4).  In addition, a major peak (110) from the iron substrate was evident in the XRD 

patterns of each alloy.  The iron peak is more clearly seen in HCM12A and T91 than in HT-9, and implies 

that magnetite is the only oxide present in the film.  However, a cross section analysis will be performed 

to investigate the structure of the oxide layers in these samples. 

3.2.5 500oC test in 300 ppb dissolved oxygen SCW

Constant extension rate tensile (CERT) tests were performed in the Multi-sample supercritical 

water system.  The SCW experiment was controlled at a temperature of 500oC with a dissolved oxygen 

content of ~300 ppb.  High purity water was used as the feed stream and the dissolved oxygen (DO) 

content was maintained at 320  20 ppb at the autoclave inlet by bubbling argon gas containing 1.5% 

oxygen continuously through a water mixing column.  After obtaining a stable oxygen content, the system 

was heated up to 500oC for 30 hours before straining.  Tensile samples were strained at a strain rate of 

3x10-7 s-1.  Three corrosion coupons of alloys HT-9, T91, and HCM12A were loaded in this test.  The 

total exposure time of 182 hours was planned to meet the same time range of the test in 500oC deaerated 

SCW (182.2 hours).  During exposure, the temperature inside the autoclave was controlled within  5oC

of the target temperature of 500oC.  The pressure was maintained at 24.24  0.07 MPa for ~100 hours 

before a slightly dropped to 24.13  0.07 MPa due to a problem with the pump.  
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(a) HT-9 

(b) HCM12A 

(c) T91 

Figure 55  Comparison of YS at various temperatures from the literature and from our experiments. 



76

(a) HCM12A               (b) HT-9                          (c) T91        (d) T91-CSLE 

Figure 56  SEM images of the gage section surfaces of HCM12A, HT-9, T91, and T91-CSLE tested in 

400°C deaerated SCW.

 (a) 

HCM12A         (b) HT-9                       (c) T91   (d) T91-CSLE

Figure 57  SEM images of the fracture surfaces of HCM12A, HT-9, T91, and T91-CSLE tested in 400°C 

deaerated SCW. 

Figure 58  A crack on the HT-9 gage section surface has an intergranular appearance.
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Figure 59  Comparison of weight gain of F-M alloys in supercritical water (a) 3 alloys in deaerated 400°C 

supercritical water (b) T91 as a function of temperature and oxygen concentration. 

3.2.5.1 SCC results 

The stress-stain curves of the experiment in 500oC SCW containing 300 ppb dissolved oxygen are 

shown in Figure 60.  All of samples exhibit similar work softening behavior, consistent with the 

experiments conducted in 500oC deaerated SCW.  The HCM12A, T91 and HT-9 sample failed at a strain 

of 7.95%, 11.70%, and 14.33%, respectively.  T91-CSLE had the highest ductility with failure strains of 

15.15%.  

Figure 60  Stress-strain curves of HT-9, HCM12A, T91, and T91-CSLE tested in 500°C SCW containing 

300 ppb DO. 
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The summary of YS, the maximum stress, elongation, reduction of area, and fracture mode is 

presented in Table 15.  The results show that HT-9 exhibited the highest values for both YS and 

maximum stress, followed by T91, T91-CSLE, and HCM12A, respectively.  In terms of elongation, T91-

CSLE exhibits the highest percent elongation among the alloys.  Compared to the 500°C deaerated SCW 

test, the yield and maximum stress are lower.  

Table 15  Summary of the results obtained from CERT tests in 400°C deaerated SCW and at 500°C in 

deaerated SCW, 100 ppb DO, and 300 ppb DO SCW.
Test condition Materials YS 

(MPa) 

Maximum stress 

(MPa) 

Elongation 

(%)

RA 

(%)

Fracture Surface 

400oC HT-9 520 600 10.6 45.69 Ductile,IG 

Deaerated HCM12A 485 560 10.0 47.21 Ductile 

 T91 380 425 11.2 68.47 Ductile 

 T91 CSLE 400 450 12.8 67.40 Ductile 

500oC in Ar T91  435 470 15.0 84.8 Ductile 

500oC HT-9 471 482 10.9 61.6 Ductile,IG 

Deaerated HCM12A 397 424 12.8 74.9 Ductile 

 T91 #1 338 368 16.3 78.4 Ductile 

 T91 #2 373 392 12.3 79.6 Ductile 

500oC T91 319 341 12.8 73.2 Ductile 

100 ppb       

500oC HT-9 410 430 14.33 74.1 Ductile,IG 

300 ppb HCM12A 280 292 7.95 77.5 Ductile 

 T91 315 335 11.70 83.7 Ductile 

 T91 CSLE 317 333 15.15 74.3 Ductile  

The SEM investigation of SCC fracture surfaces shows typical ductile fracture in all samples.  The 

gauge section side surfaces near the fracture surface is shown in Figure 61 and the fracture surface images 

of samples are shown in Figure 62.  SEM investigation shows that some surface cracks on HT-9 are 

intergranular in nature, as shown in Figure 63 (left).  These cracks penetrate deep into alloy substrate and 

run at 45o to the load axis.  The crack length is ~100 m while HT-9 grain size is ~50 m as shown in 

Figure 63 (right).  However, since there is a thick oxide layer covering the surface, we could not confirm 

the intergranular nature of the cracking.  Therefore, careful observation of the fracture surface was 

performed with cross section of gage fracture and is reported in a later section. 

Cracking in HT-9 was characterized in terms of the number of cracks on the gauge length and their 

depth.  The number of cracks on the gauge section was measured in regions of the gauge surfaces that fell 

into areas B and C.  Crack depth was determined from cross section images such as those shown in Figure 

64.  The maximum crack depth was recorded as this is most important in component failure and is the  

      (a) HCM12A            (b) HT-9                           (c) T91       (d) T91-CSLE 

Figure 61  SEM images of the gage section surfaces of HCM12A, HT-9, T91, and T91-CSLE tested in 

500°C SCW containing 300 ppb DO.

* Because of the test facility characteristics, ~ 100 MPa was added to these values to get real YS and maximum stress. 



79

        (a) HCM12A       (b) HT-9                      (c) T91      (d) T91-CSLE

Figure 62  SEM images of the fracture surface of HCM12A, HT-9, T91, and T91-CSLE tested in 500oC 

SCW containing 300 ppb DO.

                 

Figure 63  (left) A crack on the HT-9 gage surface (right) microstructure of HT-9. 

a)   b)       c) 

Figure 64  Intergranular cracks on HT-9 SCC sample  in a) 400°C deaerated,  b) 500°C deaerated, and  c) 

500°C and 300 ppb DO. 

more meaningful characterization of cracking in a small dataset.  Table 16 presents total number of cracks 

and maximum crack depth on one side of specimen. 

The number of cracks on the HT-9 specimen tested in 400°C deaerated SCW is very low (four 

cracks).  More cracks were observed on specimens from both tests at 500°C.  The number of cracks in 

500°C SCW + 300 ppb DO is greater than that in 500°C deaerated SCW.  As shown in Figure 64, 

cracking is generally intergranular, and the cracks away from the necked region appear as fairly tight 

cracks.  The greatest crack depth was in 500°C SCW + 300 ppb DO and reaches a value of 28 m, which 

is a about half the grain size.  Note that both the number and depth of cracks increased with temperature 

and also with the amount of dissolved oxygen in the water.  A summary of the SCC results in terms of 

crack density and depth is provided in Figure 65 
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Table 16  Crack analysis of unirradiated and irradiated HT-9 from CERT tests in all environments. 

Test condition Irradiation Number 

of cracks 
Maximum crack depth ( m) Note

Unirradiated     

400°C DW  4 3.85  

500°C DW  18 13.08  

500°C 300 ppb  35 28.07  

Irradiated     

400°C DW 7 dpa, 500C 7 

6.59

Irradiated 

side

400°C DW 7 dpa, 400C 11 12.7 Irradiated 

side

0

10

20

30

40

50

400C DW 500C in Ar 500C DW 500C 600C DW

Crack density
Maximum crack depth

cr
ac

k 
de

ns
ity

 (c
ra

ck
s/

m
m

2 )

m
axim

um
 crack depth (

m
)

300 ppb

Figure 65  Summary of cracking behavior of HT-9 in supercritical water. 

3.2.5.2 Corrosion coupons 

Exposure in supercritical water at 500oC with 300 ppb DO for 182 hours resulted in the formation 

of oxide on corrosion coupons of HT-9, HCM12A, and T91.  A summary of the exposure test results is 

listed in Table 17.  Figure 66(a) presents the weight gain from this experiment.  The weigh gain is highest 

in HT-9, followed by T91, and HCM12A.  Compared to the 500oC test in deaerated and the 500oC test in 

SCW containing 100 ppb DO condition, the weight gain rate is highest in the deaerated test (182.2 hours 

exposure time), followed by the 100 ppb DO test (236 hours), and then the 300 ppb DO test (182 hours) 

as presented in Figure 66(b).  

X-ray diffraction (XRD) analysis was performed with a glancing-angle (3 degree) X-ray 

diffractrometer to characterize oxide type on surface level.  Results from three types of alloys indicate 

that the oxide in the outer layer of the coupon is magnetite (Fe3O4).  None of these diffraction patterns 
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shows alloy substrate or hematite (Fe2O3) peaks.  However, the EDS cross section analysis of these 

corrosion coupons will be performed to investigate the structure of the oxide layers.

Table 17  Summary of exposure tests in 400oC deaerated and in 500oC deaerated SCW, containing 100 

ppb DO, and 300 ppb DO.

Temperature

DO

content  

(ppb) 

Exposure 

time  

(hours) 

Alloys 

Weight 

change

(mg/dm2)

Weight 

change rate 

(mg/dm2/hr) 

XRD  

result 

400 oC < 10 * 151.5 HT9 25.45 0.168 Fe3O4, Fe 

   HCM12A 24.20 0.160 Fe3O4, Fe 

   T91 24.97 0.165 Fe3O4, Fe 

500 oC < 10* 182.2 HCM12A 119.94 0.658 Fe3O4

   T91 137.30 0.754 Fe3O4

500 oC 100 236 HCM12A 143.00 0.606 Fe3O4

   T91 165.00 0.699 Fe3O4

500 oC 300 182 HT9 126.41 0.715 Fe3O4

   HCM12A 105.39 0.596 Fe3O4

   T91 115.13 0.651 Fe3O4

* deaerated condition 

(a)         (b) 

Figure 66  Comparison of weight gain of F-M alloys in supercritical water (a) 3 alloys in 300ppb 500°C 

supercritical water (b) as a function of temperature and oxygen concentration.

3.2.6 SCC of Proton Irradiated Candidate F-M Alloys  

Two CERT tests were conducted in 400°C deaerated SCW with proton-irradiated T91, HCM12A, 

and HT-9 samples.  Proton irradiations of the F-M alloys were performed at 2 MeV and at temperature of 

400°C and 500°C to doses of 3 and 7 dpa.  Irradiated tensile samples were tested in the MSCW system at 

a strain rate of 3x10-7 s-1.  The stress-strain curves show increases in yield strength and maximum strength 

of irradiated alloys over the unirradiated condition due to the irradiation hardening effect.  After the tests, 

cross sections of gauge fracture were carefully investigated.  Results from gauge section observation 

reveal cracks in HT-9 that appear to be intergranular in nature.  In addition, the effect of exposure time on 
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oxidation of F-M alloys was studied in same SCW experiments.   Information of alloy types with 

irradiation condition and results from stress-strain curves is shown in Table 18.  

Table 18  Summary of results from CERT test in 400°C deaerated SCW. 

Test Materials Irradiation 

condition

Result

  Temp 

(°C)

Dose

(dpa)

YS

(MPa)

Max.

stress

(MPa)

Elongation

(%)

RA

(%)

Fracture

surface

400
o
C

DW 

T91 500 3 385 450 12.4 72.9 Ductile 

 T91-CSLE 500 3 365 425 13.1 75.5 Ductile 

 T91 500 7 410 470 12.5 77.5 Ductile 

 HT-9 500 7 495 590 11.0 50.1 Ductile IG

400
o
C

DW 

T91 400 7 405 475 11 69.1 Ductile 

 T91-CSLE 400 7 470 545 10.7 73.6 Ductile 

 HCM12A 400 7 515 635 12.4 45.8 Ductile 

 HT-9 400 7 520 640 10.1 34.3 Ductile IG

The engineering stress-strain curves for irradiated F-M alloys from both CERT experiments are 

shown in Figure 67 a) and b).   All of alloys show similar work softening behavior.  For both irradiation 

temperatures, HT-9 exhibits the highest yield strength and maximum stress, followed by HCM12A (in the 

test of 400°C irradiation) and T91.   This trend is similar to results from unirradiated F-M alloys in 400°C 

and 500°C.  Note that total elongations are almost the same in all F-M alloys.  However HT-9 has slightly 

lower total elongation than that of HCM12A and T91.  

SEM observation of the gauge sections of each alloy shows that fracture occurs by ductile rupture 

with a relatively high reduction in area (Figure 68).  The reduction in area is the highest in T91 (~70-

75%) and lowest on HT9 (~34-50%) which is similar to results on 400°C CERT test of unirradiated 

alloys.  These high values of reduction in area imply an absence of stress corrosion cracking in these 

alloys.  However, the RA value of HT-9 irradiated at 400°C (34%) is significantly less than that of 

unirradiated HT-9 (45%).  This may be due to the presence of intergranular cracks on HT-9 that will be 

discussed next. 

For the proton irradiated samples both the irradiated and the unirradiated sides were analyzed.  

Both the irradiated samples have more cracks on the irradiated side as compared to the unirradiated side 

thus establishing the effect of irradiation on the cracking susceptibility of HT-9.  Also the sample 

irradiated at a lower temperature of 400°C has more cracks than the sample irradiated to the same dose at 

500°C.  The sample irradiated to a lower temperature of 400°C has deeper cracks as compared to the 

sample irradiated to the same dose at 500°C on the irradiated side.  The depth of cracks on the 

unirradiated side for the two samples is similar to each other and to the unirradiated sample, as expected.  

The enhanced cracking behavior of HT-9 samples irradiated at the lower temperature of 400°C as 

compared to 500°C might be explained by the increased hardening at the lower irradiation temperature 

which causes ductility degradation.  Figure 69 compares the cracking behavior in the irradiated versus 

unirradiated samples tested in SCW.  

+
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   a)       b) 

Figure 67  Engineering stress-strain curves of irradiated F-M alloys strained in 400°C deaerated SCW, 

samples irradiated in 500°C with 2 MeV protons  b) Engineering stress-strain curves of irradiated F-M 

alloys strained in 400°C deaerated SCW, samples irradiated in 400°C with 2 MeV protons. 

      a) T91 CSLE                   b) T91             c) HCM12A                    d) HT9 

Figure 68  SEM images of the fracture surfaces of F-M alloys irradiated to a dose of 7 dpa at 400°C tested 

in 400°C deaerated SCW. 
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Figure 69  IG cracking in HT-9 irradiated to 7 dpa at 400°C or 500°C and tested in 400°C SCW 

3.2.7 Oxide cross-sectional composition profile and surface oxide morphology 

The oxidation behavior of F-M alloys in SCW at temperatures of 400 and 500oC were studied by 

determining the weight gain, oxide crystal structure and oxide thickness, composition and morphology.  

Surface analysis was performed by scanning electron microscopy (SEM) and glancing angle X-ray 

diffraction (XRD).  The weight gain and XRD results were reported previously in project quarterly 

reports.  Surface morphology and cross-sectional analysis of corrosion coupons are reported here.  The 

results reported here are from tests conducted in SCW (i) at 400oC SCW and (ii) at 500oC in the deaerated 

condition, and at 500oC with dissolved oxygen concentrations of (iii) 100 ppb DO and (iv) 300 ppb DO.  

The summary of test environment and results is presented in Table 19. 

In order to characterize the oxide layers, corrosion coupons were cut into two pieces, one of which 

was mounted in conductive filler resin and polished down to 0.05 m with Al2O3 powder for SEM and 

energy dispersive spectroscopy (EDS) investigation of cross section of the oxide film.  The other half of 

the sample was used for investigation of surface oxide morphology and determination of the crystal 

structure of the surface oxide by glancing angle XRD.  

Planar images of oxides on the surfaces of exposure coupons reveal a rough and porous oxide 

morphology.  Appendix A at the end of the section shows the oxide surfaces of T91, HCM12A and HT-9 

following exposure to 400 and 500°C SCW.  The morphology of the oxide formed at 500oC is 

significantly different from that at 400oC.  The oxide formed at 400oC is granular in shape, while there is 

significant porosity in the oxide on specimens tested at 500oC.  Note that the porosity appears to be the 

least in HCM12A and the greatest in HT-9, consistent with the measured weight gains.  
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The cross-section images of T91, HCM12A and HT-9 coupons exposed to 400 and 500°C SCW 

are presented in Appendix B at the end of the section.  The SEM images show that the oxide films 

generally consisted of two layers, an outer oxide and an inner oxide.  A transition region beneath the inner 

oxide where the metal content increases to bulk values and the oxygen content decreases to nearly zero 

was noted.  The outer layer is characterized by a very rough outer surface and considerable porosity, in 

agreement with the planar images.  The inner layer appears to be much more dense with a relatively 

smooth interface with the underlying alloy.  The transition zone is difficult to image but appears in 

backscatter mode in the SEM as having a different morphology from that of the bulk metal or the inner 

layer.  Oxide composition was determined on cross-section samples using EDS.   

Line scans are shown with the SEM image for each alloy in Appendix B.   The composition 

profiles show the oxide/metal ratios that correspond to the two oxide layers.  The oxygen content is 

similar in both outer and inner oxide layers.  The outer oxide is predominantly iron oxide whereas the 

inner layer contains a significant amount of chromium.  The transition zone is characterized by a sharp 

drop in the oxygen content with distance from the inner oxide.  In T91, the Mo content in the inner layer 

is slightly higher than in the outer layer and is closer to the bulk metal value.  The same is true for Cu and 

W in HCM12A.   Sometimes, a peak in the Cr level can be observed at the interface between the inner 

and outer layers. 

Comparing cross-section images and composition profiles at the two temperatures reveals that the 

oxide layers are thinner at 400°C than at 500°C in any environment as reported in Table 1.  Also, the O/M 

ratio is in the range of 1.33 at 500°C, consistent with a spinel, M3O4, but it is significantly smaller at 

400°C, indicative of a high metal content in the oxide layers.  From XRD results [1-3], the outer oxide 

layer is determined to be purely magnetite (Fe3O4).  The O/M ratio is also slightly higher for the 500°C + 

100 ppb DO case.  Was and Allen [4] found that the oxide structure formed at 2000 ppb DO is similar to 

that at lower DO.  The only difference is that an additional thin layer of hematite (Fe2O3) formed at 2000 

ppb in addition to magnetite phase. 

In summary, oxides formed in a two-layer structure in which the outer layer consisted of magnetite 

and was very porous with a rough exterior surface.  The inner layer had a higher chromium content (metal 

content was approximately 2Fe:1Cr) and was much more dense than the outer layer.  The stoichiometry 

of both oxide layers was consistent with a spinel structure.  The inner layer thickness was slightly greater 

than the outer layer thickness and the ratio of the inner layer and outer layer thickness was greatest for 

HCM12A and least for HT-9, or in the same order of resistance to corrosion.  Beneath the inner layer was 

a transition zone in which the oxygen rapidly drops to near zero, and the thickness of the transition zone 

depended on the temperature and DO concentration in the SCW. 

3.2.8 Temperature dependence of oxidation 

Figure 70  shows that oxidation in all three alloys is highly dependent on temperature in which the 

oxidation rate increases sharply with temperature.  Figure 71 plots the log of the weight gain against 1/T 

to arrive at estimates for the activation energy for corrosion.  The values of activation energy span the 

range 172 to 189 kJ/mol.  In comparing these values with those for the diffusion of oxygen or iron ions 

through magnetite we find that they are more in line with measured activation energies for iron diffusion 

than for oxygen diffusion, but the measured values are still low.  It is interesting to note that the activation 

energies in SCW are similar to those measured in steam in a similar temperature range, indicating that the 

mechanism of oxidation is similar.  Also, the activation energies are close to those for grain boundary 

diffusion of oxygen in magnetite.  Taken together, these results suggest that oxidation likely occurs in the 

following way.  The outer layer forms by outward cation (iron) diffusion to the oxide-water interface.  

The inner layer forms by inward anion (oxygen) diffusion to the oxide-metal interface.  In both cases, 

diffusion is aided by either porosity (outer layer) or the grain boundaries (inner layer). 
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3.2.9 HT-9 test in Ar 

A constant extension rate tensile test of HT-9 was performed in Ar at 500°C in order to compare 

results with those obtained from tests in SCW at the same temperature.  The strain rate was 3x10-7 s-1 and 

the temperature was controlled at 500 ± 2°C.  The stress-strain curves from this test and other tests at 

500°C show similar work softening behavior, Figure 72. The sample tested in Ar exhibits the highest 

reduction of area (78.5%) and failed by ductile rupture, Figure 73.  The side surface shows a high density 

of cracks near the fracture, but there are only a few cracks in areas far from the fracture.  Only two cracks 

were observed in the area away from the fracture surface  with ~2 mm length, Figure 74.  The crack 

density is 0.5 crack/mm2 and maximum crack depth is 11.8 m.  In summary, the result shows that HT9 

exhibits susceptibility to intergranular cracking at 500°C in an inert environment.  However, the crack 

density is very small compared to that in SCW. [5] Therefore, the SCW environment contributes 

significantly to the susceptibility to intergranular cracking in HT9.  

3.2.10 Summary of F-M Oxidation Behavior 

Oxidation of F-M alloys in deaerated supercritical water  is rapid and follows an Arrhenius 

behavior characterized by activation energies for corrosion of the order 172-189 kJ/mol.  Addition of 

oxygen up to 300 ppm causes a slight decrease in the weight gain.  Alloy HCM12A shows the lowest 

weight gain, followed by T91 and then by HT-9.  In constant extension rate tensile tests, HCM12A and 

T91 consistently failed by ductile rupture at all temperatures.  Only HT-9 exhibited IGSCC, but IG 

cracking was noted in all tests.  The cracking is relatively shallow (<40 m), and increased with 

temperature an with oxygen content of the SCW.  Irradiation of the alloys to 7 dpa resulted in hardening 

and a dislocation loop microstructure.  Tests in 400°C and 500°C SCW resulted in no IGSCC in either 

T91 or HCM12A.  However, HT-9 exhibited IG cracking in deaerated SCW.  Cracking was worse (as 

characterized by crack depth and crack density) for irradiations at 400°C vs. those at 500°C (and tested in 

400°C water in both cases) and the difference is likely due to the greater amount of hardening at 400°C.  
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Figure 72  Stress-strain plot of HT-9 tested at 500°C in Ar and SCW. 

Figure 73  Gage fracture image shows ductile rupture and high reduction of area. 

Figure 74  Cross-sectional images of gage fracture show intergranular cracks with crack length 11.6 m

and 8.3 m. 
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Appendix A: Surface oxide morphology

Morphology of oxide on T91, HCM12A, and HT-9 corrosion coupon exposed in 400
o
C

deaerated for 151.5 hours 

Morphology of oxide on T91 and HCM12A corrosion coupon exposed in 500
o
C deaerated for 

182.2 hours 

Morphology of oxide on T91, HCM12A, and HT-9 corrosion coupon exposed in 500
o
C 100 ppb 

DO for 236 hours 

Morphology of oxide on T91, HCM12A, and HT-9 corrosion coupon exposed in 500
o
C 300 ppb 

DO for 182 hours 

T91

T91

T91

T91

HCM12A

HCM12A

HCM12A

HCM12A

HT-9

HT-9
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Appendix B : Corrosion coupon cross sectional analysis 

I. Test in 400
o
C deaerated 

Corrosion coupon cross-section BSE image and composition profile of T91 tested in 400
o
C

deaerated SCW, 151.5 hours. 

Corrosion coupon cross-section BSE image and composition profile of HCM12A tested in 400
o
C

deaerated SCW, 151.5 hours. 

Corrosion coupon cross-section BSE image and composition profile of HT-9 tested in 400
o
C

deaerated SCW, 151.5 hours. 

1.40  0.89  m

1.10  0.85  m

1.08   0.64  m
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II. Test in 500
o
C deaerated 

(left) Corrosion coupon cross-section image (T91 in 500
o
C deaerated SCW, 182.2 hours) shows 

two different oxide layers. (right) Composition profile from EDS line scan. 

Corrosion coupon cross-section image and composition profile of HCM12A tested in 500
o
C

deaerated SCW, 182.2 hours. 

6.33 4.25 m

6.26               4.40 m
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III. Test in 500
o
C 100 ppb 

                 
Corrosion coupon cross-section image and composition profile of T91 tested in 500

o
C and 100 

ppb SCW, 236 hours. 

Corrosion coupon cross-section image and composition profile of HCM12A tested in 500
o
C and 

100 ppb SCW, 236 hours. 

7.34                   4.40

6.03              4.38             m



95

IV. Test in 500
o
C 300 ppb 

Corrosion coupon cross-section image and composition profile of T91 tested in 500
o
C and 300 

ppb SCW, 182 hours. 

Corrosion coupon cross-section image and composition profile of HCM12A tested in 500
o
C and 

300 ppb SCW, 182 hours. 

Corrosion coupon cross-section image and composition profile of HT-9 tested in 500
o
C and 300 

ppb SCW, 182 hours. 

4.63         3.67    m

4.60        3.55    m

5.00       4.00   m
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3.3 Corrosion and SCC Studies on F-M and Ni-based Alloys 

Contributor: 

Jinsung Jang, KAERI 

3.3.1  Supercritical Water Corrosion Test of High Cr Steels  

3.3.1.1 Corrosion Oxide Characterization 

Commercial grade modified 9Cr-MoVNb steel (T91) and 12CrMoVNbWCu steel HCM12A 

(T122)) samples were corrosion tested under SCW conditions. Chemical compositions of the specimens 

are  the same as those listed in Table 2.  After 200 hours of testing, the specimen surfaces were analyzed 

with XRD (X-ray Diffractometer), Grazing Incidence XRD (with 2 degree of incidence angle), and SEM 

(Scanning Electron Microscope) equipped with EDS (Energy Dispersive Spectrometer). Cross sections of 

the specimens were also investigated with SEM/EDS. Elemental mapping and line profiles were acquired 

from SEM/EDS and the oxide layers were investigated.  Figure 75 shows SEM micrographs of the 

surface of T91 and HCM12A (T122) after SCW corrosion test and XRD result for the surfaces. After 

corrosion testing the T91 specimen, a completely different set of peaks (from oxide layer) are shown 

without any from matrix phase. In the case of HCM12A (T122), however, peaks from oxide layer as well 

as from matrix phase are shown together.  Therefore the oxide layer on HCM12A (T122) specimen is 

assumed thin enough (at most 10 microns or less) for the x-ray information of the matrix phase to be 

collected together with those of the oxide layer.  

.

(a)            (b) 

Figure 75  Specimen surface of (a) T91 and (b) HCM12A (T122) after SCW corrosion test at 627 C (900 

K), 25 MPa for 200 hours.

Figure 76 compares the XRD result of the oxide layer of the T91 specimen with spectra from 

JCPDS data of FeCr2O4 and Fe3O4.  As shown in this figure, x-ray spectra of FeCr2O4and Fe3O4 are

undistinguishable.  From the x-ray spectra of the oxide layer on the T91 specimen it is postulated that the 

oxide layer on the T91 specimen was grown in a preferential orientation because there are several missing 

peaks and the relative intensities do not match well with those of the theoretical spectra for random 

powder samples. 

To investigate the oxide layer in more detail the T91 specimen was investigated with Grazing 

Incidence XRD.  The incidence angle was fixed at 2 degrees.  Peaks of (220) and (422) were revealed 
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more clearly in the Grazing Incidence XRD and the relative intensities between two x-ray analyses were 

different probably due to the preferential growth of the oxide layer. 
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Figure 76  XRD spectra of FeCr2O4 from JCPDS data, of T91 after SCW corrosion test, and of Fe3O4 

from JCPDS data. 

Figure 77 shows the surface morphology of T91 specimen after corrosion test along with EDS 

result.  The atomic ratio of Fe to O is nearly 3:4, suggesting that the surface is covered with Fe3O4.

Figure 78 shows the SEM micrograph of HCM12A (T122) surface after corrosion test and reveals that the 

corrosion on HCM12A (T122) at the test temperature occurred with a nodular type of oxide formation.  

EDS results show that the nodular type corrosion product (area 2 and 3) matches well with the corrosion 

surface of T91, i.e. Fe3O4.  The remaining area on HCM12A (T122) surface (e.g. area 1 and 4) seems to 

be covered with a relatively thin oxide layer. Therefore the EDS results from those areas seem to reflect 

the matrix phase underneath the thin oxide layer and show some amount of Cr, Mn and W. 

Figure 79 shows the SEM micrographs (SEI: Secondary Electron Image and BEI: Backscattered 

Electron Image) of the cross section of the oxide layer of T91. Under the outermost 30 micron thick 

porous oxide layer, about 20 micron thick dense oxide layer is revealed, followed by another thinner 

(about 10 micron) oxide layer next to the matrix phase.  Figure 80 illustrates the line profile of Fe, Cr, and 

O across the layers. The profile of the outermost porous oxide layer corresponds to that of Fe3O4, the 

profile across the underneath phase to (Fe, Cr)3O4, and the thinnest layer next to the matrix to (Fe, Cr)O.  

Figure 81 shows the SEM micrographs (SEI: Secondary Electron Image and BEI: Backscattered Electron 

Image) of the cross section of the oxide layer of HCM12A (T122). BEI shows more clearly that one 

micron or thinner oxide layer formed on the surface. A line profile across the layer (Figure 82) shows that 

it is composed of one phase and corresponds to Fe3O4matching with the (Grazing Incidence) XRD results. 
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     [at%] 

area Fe Cr Mn W O 

1 43.03 - 0.20 - 56.77 

Figure 77  SEM micrograph and EDS result of T91 specimen after corrosion test.

     [at %] 

area Fe Cr Mn W O 

1 51.06 10.59 2.64 0.43 35.27 

2 43.62 0.39 0.45 0.05 55.48 

3 41.74 0.40 0.42 0.08 57.36 

4 49.36 10.67 2.85 0.47 36.65 

Figure 78  SEM micrograph and EDS result of HCM12A (T122) specimen after corrosion test. 
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(a)     (b) 

Figure 79  SEM micrographs of the cross section of T91 specimen after corrosion test (a) SEI (Secondary 

Electron Image)  (b) BEI (Backscattered Electron Image).

Figure 80  Line profiles of Fe, Cr, and O across the oxide layers on T91 specimen. 

(a)     (b) 

Figure 81  SEM micrographs of the cross section of HCM12A (T122) specimen after corrosion test (a) 

SEI (Secondary Electron Image)  (b) BEI (Backscattered Electron Image).
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Figure 82  Line profile of Fe, Cr, and O across the oxide layers on HCM12A (T122) specimen. 

3.3.1.2 Comparison of Corrosion Behavior of F-M and ODS alloys 

Four commercial grade F-M steel specimens and one ODS alloy were corrosion tested in SCW.  

Test temperatures were 400, 450, 500, 550 and 627°C.  Two specimens each with the size of 10*10*0.2 

mm were corrosion tested in non-deaerated water (D.O about 8 ppm) for 100, 200, and 500 hr 

respectively and the results were averaged.  Also a preliminary corrosion test was done in a deaerated 

SCW at 550°C for 217 hr.  During the experiments pure nitrogen gas was purged into the water and the 

D.O. (dissolved oxygen) level was kept as low as 5 ppb or less.  Two heats of T 91 (modified 9Cr1MoV 

steel) from two different manufacturers, one heat of T92, one heat of HCM12A, and one Fe-base ODS 

alloy (MA956) are among five specimens. 

The corrosion behavior of the three 9% Cr steel specimens (two T91 and one T92) seems to be 

very similar.  Figure 83 shows the corrosion test results of F-M steels and ODS alloy specimens in SCW. 

In general weight gains were increasing with the corrosion test time and the corrosion resistance was kept 

relatively low through all the test time up to 500 °C. But the corrosion resistance of 9% Cr steel 

specimens decreased at 550°C, and more severely at 627°C. Also the differences of corrosion behavior 

among three 9Cr steels seem to be clear and consistent and are attributed to the small variations of Cr 

contents, although the difference seems to be not very significant in extent. HCM12A showed clearly 

better corrosion resistance than 9Cr steels. However, the fluctuation of the test results is inferred due to 

the unstable corrosion product in this test condition. Fe-base ODS alloy containing 20% Cr (MA956) 

showed very high corrosion resistance in this test condition compared with other specimens. 

Figure 84 shows SEM micrographs of a cross section of T91 specimen after corrosion test at 627°C 

for 500C hours. Three distinctive corrosion layers are distinctively revealed. The outermost layer with 

about 35 m thickness has a coarse and columnar structure.  The next layer of about 15 m thickness is 

revealed to consist of an agglomerate of fine particles.  And the innermost layer (next to the matrix) is the 

internally oxidized layer.  Figure 85 (a) shows a cross sectional TEM micrograph of the outermost and the 

inner next corrosion layers. Structure analyses of SAD patterns and EDS results revealed that the 

outermost layer is a magnetite type Fe3O4, and the inner layer is composed of fine oxide particles of 

Fe3O4.
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Figure 83  SCW Corrosion Test Result; High Cr Steels (T91, T92, HCM12A & MA 956). 

The cross sectional TEM micrograph of the internal oxidation zone (Figure 85(b)) shows that the 

oxygen atoms preferentially diffused along the prior austenite boundaries and the lath boundaries and 

formed Fe2O3 and/or Fe3O4 phases.  The internal oxidation zone was about 10 m thick, and a thin 

carbide-free (precipitate-free) zone was also observed along the interface between the internal oxidation 

zone and the matrix phase.  This is attributed to the Cr-depletion in the matrix adjacent to the internal 

oxidation zone and it is confirmed by the EDS analysis (no. 1 region in the Figure 85(b)). 

Figure 86 show the cross section of HCM12A after the SCW corrosion test at 627°C for 500 hr. 

The analyses of the corrosion product by SAD and EDS revealed a magnetite type Fe3O4 has formed, 

rather than chromia phase (Cr2O3) that is known to form in the alloys containing more than 11% Cr.  

Also, the corrosion layer is observed to form locally (not uniformly) on the surface of HCM12A 

specimen.   

3.3.1.3 Ni-base Alloys 

Figure 87 shows the corrosion test results of three high Ni alloy specimens.  The corrosion 

resistance of the three Ni-base alloys seems to be much higher, by more than one order of magnitude, than 

F-M steel specimens. Alloy 690 appears more corrosion resistant than the other two alloys under these 

test conditions.
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Figure 84  SEM of T91 Cross Section after SCW Corrosion Test (627 °C / 200hr). 

200 nm200 nm200 nm
   

(a)              (b) 

Figure 85  (a) XTEM of Oxide Layers of T91 after 200 hr at 627 °C / 25MPa. (b) XTEM of Internal 

Oxidation Zone of T91 after 200 hr at 627 °C / 25MPa . 

Figure 86  XTEM of Oxide Layers of HCM12A after 200 hr at 627 oC / 25MPa. 
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Figure 87  SCW Corrosion Test Result; high Ni Alloys (I 625, 800H, & 690). 

The corrosion layers of alloy 625 and alloy 800H were revealed to be mixtures of a magnetite type 

(Fe,Cr)3O4 and chromia (Cr2O3) by grazing incidence XRD.  On the other hand the corrosion layer of 

alloy 690 is revealed to be chromia phase without magnetite type phase, and this seems to the reason of 

the better and more stable corrosion behavior. 

3.3.1.4 Corrosion Tests in Deaerated water 

Corrosion tests with 10 by 20 by 2 mm sized coupons were carried out simultaneously with slow 

strain-rate tests (SSRT) or fatigue crack growth rate test in deaerated SCW at different temperatures. Inlet 

dissolved oxygen (D.O.) levels were maintained below 10 ppb and the conductivity levels were less than 

0.1 microS.  Corrosion rate normalized by test durations (mdd: mg/dm2/day) are illustrated in Figure 88. 

Three high Ni alloys (alloy 625, 690, and 800H) show much higher resistance to the corrosion at all 

conditions compared with F/M steels. As test temperature increase the corrosion rate increase 

(400°C/200hr vs. 500°C/200hr). And the corrosion rates in general decrease as the test times 

increase(500°C/200hr vs. 500°C/430hr); Corrosion rate usually tends to saturate at some extent as the 

corrosion duration lasts.

T91 a
T91 b T92 T122

MA956 I 625 I 690
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0

5

10

15

C
or

ro
si

on
 R

at
e 

 [m
dd

]

 370 C/200hr, 7th
 400 C/200hr, 5th
 500 C/200hr, 6th
 500 C/430hr, 8th

Figure 88  Corrosion test results in deaerated SCW. 
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However, at the sub-critical temperature (370°C just below the supercritical temperature of 374°C) 

the corrosion rate become negative, in other words, the specimen loses weight instead of gaining weight. 

The corrosion mechanism seems to have changed across this temperature range. This could be an 

important issue since the cladding temperature of SCWR is supposed to vary from 280 to 620 C. 

3.3.2 Evaluation of SCW SCC (Stress Corrosion Cracking) of F/M Steels 

One set of SCW SCC test facility was fabricated and installed at KAERI.  The SCC test vessel was 

fabricated from Hastelloy C-276 alloy, and the design temperature and pressure are 650°C and 35 MPa 

respectively and the maximum flow rate is 70 cc/min.  Figure 89 illustrates the schematic diagram of the 

facility that is composed of four parts; SCW loop, SCC test unit, control and data acquisition unit of SCW 

loop, and control and data acquisition unit of SCC test.  Figure 90 contains photographs of the installed 

SCW SCC test facility under operation.  One SSRT (slow strain rate test) specimen and sixteen U-bend 

specimens can be simultaneously tested in an experiment.  Figure 91 shows an example of T91 steel 

specimen of which the SSRT test at 600°C was accidentally interrupted after 200 hr.  Any evidence of 

SCC (e.g cracks on the specimen side surface) at the test condition of strain rate: 3x10-7/sec and D.O <5 

ppb was not observed.   

Figure 89  Schematic Diagram of SSRT Facility. 

Figure 90  SCW SCC Test Loop at KAERI (1). 
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Figure 91  Feature of the T 91 tested. 

SCC tests have been conducted on alloy T91 in supercritical water over a range of temperatures.  The 

experimental details are listed in Table 20, while plots of the stress-strain curves are provided in Figure 

92.

3.3.2.1 SSRT Test of T92 in SCW 

A specimen tube of F-M alloy T92 tube underwent a SSRT test at a strain rate of 1.5 x 10-7/sec

with D.O < 10 ppb.  The fracture and side surfaces of the failed sample are  being investigated, but SCC 

does not seem to have occurred in T92 steel in the test conditions. (UTS: 398MPa; YS: 353MPa; 

Elongation: 21%). 

3.3.2.2 Corrosion in Subcritical Water 

The corrosion rate of F-M steels at 350oC (subcrtical condition) was higher than at 550oC as 

indicated in Figure 93.  The  weight change of 9Cr F/M steels in the deaerated SCW was about one half of 

those in the aerated SCW water. Corrosion products formed on T91 in the deaerated SCW at 500°C was 

similar with that in the aerated SCW at 627°C.  They were composed of three layers; but the outer 

columnar structure contained Fe2O rather than Fe3O4 in the aerated SWC an agglomerate of fine (about 10 

nm in diameter) particles of (Fe,Cr)2O, (Fe,Cr)3O4, and the same IOZ along the prior austenite grain and 

the lath boundaries.   The corrosion products forming on high Ni alloy specimens in SCW at 500°C were 

composed of just one Cr oxide layer approximately 160nm in thickness.  Compared with the total 

elongation of T92 at 10 ppb of dissolved oxygen level, those of T92 at 100 & 500 ppb of D.O may exhibit 

some stress corrosion cracking behavior, however, the fractographs did not exhibit the phenomena 

strongly.  Stress strain curves for these tests are shown in Figure 94. 

3.3.3 Corrosion Fatigue Test in Supercritical Water 

Corrosion fatigue test on T91 in SCW has been conducted. Using samples with a width of 30 mm 

and a thickness of 6 mm, fatigue tests were performed in air and water environments according to ASTM 

E-657-00.  Table 21 summarizes the mechanical loading conditions of the fatigue tests.  Corrosion fatigue 

tests were performed in a SCW loop system with a C-276 vessel, where deionized water was circulating.  

The concentration of dissolved oxygen in the water was controlled to below 10 ppb by bubbling pure 

nitrogen.  The electrical conductivity was held to below 0.1 micro S/cm. Test temperatures in water were 

370 C and 500 C and the pressure was maintained at 25 ± 1 MPa.  To prevent samples from being 

galvanically coupled with other metallic parts, alumina insulators were secured between the samples and 

the grips. 
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Table 20  Summary of SCC test results on alloy T91.

Test No. 

Test

Duration

(hr)
Temp. ( )

Strain rate 

(sec-1)
DO (ppb)

Outlet

Conductivity 

( /cm) 

pH
Flow rate 

(cc/min) 

1 255 600 3.0*10-7 < 5 30 – 140 5.3 < 5 

2 217 550 3.0*10-7 < 10 90 – 170 6.5 20 – 35 

3 313 500 1.5*10-7 < 10 10 – 40 6.5 30 – 35 

4 430 500 1.5*10-7 < 10 10 - 20 6.5 30 - 40 
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Figure 92  Four SSRT’s (Slow Strain Rate Test) of T91 steel samples, one of F/M steels in deaerated 

SCW at 500, 550, and 600°C showed no evidence of SCC (Stress Corrosion Cracking) in the test 

conditions.

Figure 93  SCW corrosion results comparison at 350 and 550°C.
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Figure 94  SCC Test Results of T92 in SCW at 500°C with Different D.O Level.Table 

Table 21  Fatigue loading conditions in air and water.

Environment air Water 

Frequency [Hz] 1 0.004 – 0.0045 

R-tratio 0.1 0.12 

Initial delta K [MPa m1/2] 23-24 25 

Figure 95 shows the optical micrographs of the fracture surfaces of the samples tested in air at 

600°C and in supercritical water at 500°C.  Using the micrographs, the fatigue crack growth rates 

(FCGRs) were determined.  Crack lengths at five locations for each sample were measured and averaged.  

Figure 96, the resulting crack growth rates of T91 at 320, 370, 500, and 600°C, respectively in air were 

plotted as a function of stress intensity factor range ( K) along with those of 9Cr-1Mo steels from a 

literature [1].  The figure shows that the FCGRs of T91 measured in this study are comparable to the 

previous data.  During the tests in air, the crack length was monitored using a DCPD (Direct current potential 

drop) technique.  The results showed that there was no significant change in the FCGRs with the small K change 

during the tests. 

Figure 95  Optical micrographs of fracture surfaces of the samples tested in (a) air at 600°C and (b) the 

supercritical water at 500°C.
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Figure 96  Comparison of fatigue crack growth rates of T91 with those of 9Cr steel from a literature.

In the water environment, corrosion fatigue tests were performed at 370°C and 500°C.  It has been 

known that, at a temperature condition just below the critical point, corrosion rates of materials are the 

highest.  For this reason, besides an SCW condition (500°C), 370°C was selected.  During the tests, an 

abnormal loading, had happened several times.  The plots of load versus time showed that during the 

cyclic loading the actual load had been held at the maximum value for several hours which might cause a 

pure stress corrosion cracking (SCC) condition.  Therefore, the FCGRs were calculated for two cases; i) 

assuming that the CGRs of the corrosion fatigue and SCC are in the same range and ii) assuming that a 

crack did not grow by the pure SCC condition.  By this, the maximum (by the latter assumption) and 

minimum (by the former assumption) FCGRs could be determined.   

Figure 97 shows the FCGRs estimated for the two cases.  In this figure, the FCGRs were plotted as 

a function of 1/T and compared with those in air.  The FCGRs between air and water could not be 

quantitatively compared due to the loading problem mentioned above.  However, it is evident that the 

FCGR of T91 increased significantly in the water conditions.  As summarized by Klueh [1], a cyclic 

strain rate in fatigue tests has a very small effect on the fatigue behaviors of 9Cr steels below 550°C.  This 

draws a conclusion that the increase in the FCGR in the SCW condition is due to corrosion.  
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Figure 97  The Arrenius plot of da/dN vs. the reciprocal of temperature 1/T.

3.3.4 References 

1.  R.L. Klueh, et al., J. of Nucl. Mat., 132, 1985, p. 27-31 



110

3.4 Supercritical Water Corrosion and Surface Modification Studies  

Contributors: 

Kumar Sridharan, Todd Allen, Michael Corradini, University of Wisconsin, Madison

3.4.1 Objectives 

The goals of the University of Wisconsin part of the INERI project were to (i) investigate the 

effects of surface treatments on corrosion of candidate ferritic steels intended for use in Generation IV 

supercritical water (SCW) based nuclear reactors, by performing corrosion tests at SCW temperatures for 

various exposure times (ii) perform surface treatments of stress corrosion cracking (SCC) samples for 

constant extension rate tests to be performed at University of Michigan and (iii) perform materials 

characterization studies to understand the evolution, structure, and compositional make-up of the oxide 

corrosion products that form on the surface of the control and surface modified steels as a result of the 

SCW exposures. 

3.4.2 Steels Tested and Test Conditions 

The materials tested in this study were, HT9, T91, HCM12A, NF616, and ODS (oxide dispersion 

strengthened) ferritic steels.  Compositions of these steels are listed in Table 22. Tests were performed at 

500°C for exposure times of up to 3 weeks and at 600°C for exposure times of up to 6 weeks in SCW.  

The SCW pressure was 3650 psi and its dissolved oxygen content was 25 parts per billion (ppb). 

Table 22  Composition of the ferritic steels investigated in this study. 

Alloy Chemical Composition Wt% 
 C Mn Fe S Si Cu Ni Cr Al Ti Mo Nb V W P B O N

NF616 .109 .45 Bal. .0032 .102 .174 8.82 .005 .468 .064 .194 1.87 .012 .0017 .0042

T91 .1 .45 Bal. .003 .28 .17 .21 8.37 .022 .9 .076 .216  .009  .048

HT9 .2 .6 Bal.  .4 .5 12 1  .25 0.5 

HCM12A .11 .6 Bal.  .1 1  12 .4 .05 .2 2  .003  .06 

ODS
*
 .14 .05 Bal. .003 .048 .06 8.60  .23  1.95 <.005  .14 .017

*Y2O3 0.28% 

3.4.2.1 Surface Treatments 

Two types surface treatment approaches were used to induce compositional and structural changes 

in the near-surface regions of the steels, (i) plasma immersion ion implantation (PIII) and (ii) sputter 

deposition.

3.4.2.1.1 Plasma Immersion Ion Implantation (PIII) 

Plasma Immersion Ion Implantation (PIII), a technique developed at the University of Wisconsin is 

a non-line-of-site technique for implanting foreign elements into the near-surface regions of a material. In

the PIII process, the part to be treated is immersed in a plasma in a vacuum chamber and pulse-biased to a 
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high negative potential.  As a result of this negative voltage pulse bias, the electrons in the plasma are 

repelled away from the part, leaving behind a conformal ion-rich sheath around the sample surface.  The 

ions are accelerated across this sheath at high velocities, normal towards the surface of the part.  At high 

voltage biases and low pressures (~0.5mTorr), the ions acquire enough energy to get implanted into the 

near-surface regions of the material.  The depth of the implanted region is quite shallow, typically 0.2 m.  

However, the dramatic changes in the near-surface chemistry and structure resulting from ion 

implantation have been shown to improve wear and corrosion resistance of materials.  While this research 

was performed on flat test samples and SCC samples, the PIII process is inherently non-line-of-sight in 

nature and allows for uniform ion implantation of three-dimensional parts as well as simultaneous surface 

treatment of a number of parts.  Figure 98 schematically illustrates the PIII process.  All implantations for 

this study were carried out at about 40 kV to a dose of 3 x 1017 ions/cm2 at room temperature.  Figure 99 

shows an example of on-line diagnostic display that shows instantaneous voltage, instantaneous current, 

and integrated current during a single pulse, taken during a surface modification run for this project. O+

species was selected as the implant species, based on promising results from initial studies. 

Figure 98  Schematic illustration of the plasma immersion ion implantation (PIII) process used at the 

University of Wisconsin for surface modification of steels.

Figure 99  Typical instantaneous voltage and current and integrated current during a single pulse taken 

during the oxygen ion implantation run of ferritic steels. 
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3.4.2.1.2 Sputter Deposition:  

In addition to the above implantations, sputter deposition of a thin film of oxidation resistant 

material was also investigated as a method for changing the near-surface chemistry of the steels.  Sputter 

deposition was carried out in a commercial Denton sputter system and the thickness of the films deposited 

was about 1 m.  Yttrium was selected as film material of choice based upon its ability to form a stable, 

tenacious oxide on the surface.  In addition, a combination of sputter deposition and ion bombardment 

was also investigated.  Here sputter deposited films were subjected to a separate ion bombardment step 

with Xe+ ions using the PIII process.  The objective of this bombardment step was to induce mixing 

between the film and the underlying substrate in order to improve film adhesion and, if possible, achieve 

alloying between the yttrium film and the underlying alloy substrate.  The expectation here was that 

immediately upon exposure to elevated temperatures, yttrium would form its own stable protective oxide, 

which would be eventually incorporated into the growing Fe-Cr oxide during longer exposures.  Both 

these effects are expected to be beneficial to oxidation resistance.  

3.4.2.2 Supercritical Water Testing:   

Supercritical water testing was performed in two facilities at the University of Wisconsin.  During 

the first phase (500°C tests) of this INERI project, tests were performed in the SCW corrosion loop with a 

supercritical water maximum velocity of about 1m/s.  Since this facility was also used for thermal 

hydraulics and heat transfer research, a separate SCW corrosion test cell dedicated to materials and 

corrosion research was built.  The second phase of testing (600°C tests) was performed in this corrosion 

cell.  Both systems are equipped for continuous on-line monitoring of temperature, pressure, conductivity, 

and oxygen content during the supercritical water tests.  Figure 100 shows a photograph of the SCW 

corrosion test facility used for the second phase of this project.  Figure 101 shows the fixturing of the 

samples in the Inconel 625 holder with the test steel samples.   

Figure 100  Supercritical water corrosion cell at the University of Wisconsin, used for the 600oC SCW 

corrosion tests. 
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Figure 101  Inconel 625 holder used for fixturing the samples in the SCW corrosion cell.  The test 

samples were 1.25” in length, 0.5” in width, and about 0.02” in thickness. 

Figure 102, Figure 103, Figure 104, and Figure 105 show the typical output for temperature, 

oxygen content, pressure, and conductivity taken during the 192 hours test carried out at 500°C.  The 

exposure time was taken as the time of residence at the operating temperature and pressure. 
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Figure 102  Temperature profile during the 192 hours supercritical water corrosion test at 500°C.
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Figure 103  Dissolved oxygen content during the 192 hours supercritical water corrosion test at 500°C. 
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Figure 104  Test section pressure during supercritical water corrosion test at 500°C. The loop was 

operating with room temperature water at about 2600 psi to pump through the oxygen control system to 

condition the water prior to heating. The dip in the curve at about 50 hours corresponds to the start of heat 

up and the increase in pressure due to the density change. 
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Figure 105  Test section conductivity during the 192 hours during supercritical water corrosion test at 

500°C.

3.4.3 Materials Preparation and Characterization:   

All test samples were rectangular in shape, 1.25” long and 0.5” wide and about 0.02” in thickness.  

Surface modification was performed on both sides of the samples, in order to enhance the resolution in 

weight change measurements after corrosion tests.  The samples were progressively ground on both sides 

with silicon-carbide paper with grit sizes ranging from 320 grit to 1200 grit sizes, and final polished with 

a 1 m diamond paste to achieve a mirror-like surface finish.   The samples were ultrasonically cleaned 

with acetone and ethanol prior to both surface treatments as well as prior to supercritical water corrosion 

tests.

Post corrosion, materials characterization was performed using the following techniques: 

(i) weight change measurements were performed using a sensitive balance (0.1mg resolution) to 

evaluate weight change due to the growth of the oxide corrosion product (as expressed per 

unit area of the sample exposed).  
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(ii) scanning electron microscopy both in plan view and cross-section were used to examine the 

morphology and thickness of the oxide. 

(iii) SEM-EDS (Energy Dispersive Spectroscopy) analysis of the oxide layer in cross-section was 

used to determine compositional gradients in the growing oxide layer. 

(iv) Electron Back Scattered Diffraction (EBSD) was used to evaluate the various oxide phases 

(in combination with high magnification imaging) across the oxide layer.  

(v) X-ray Diffraction (XRD) was used to identify the phases in the oxide and the crystallographic 

orientation of the growing oxide. 

(vi) X-ray Photoelectron Spectroscopy (XPS) was used for determining the near-surface 

composition and phases in the as-surface modified and oxidized samples   

A sample of the supercritical water was siphoned from one of the SCW runs for analysis of 

elements (particularly Fe, Ni, and Cr) at the University of Wisconsin’s Water Chemistry Laboratory.  

However, the concentrations of the elements were below the detection limits of the spectrometer. 

3.4.4 Materials Evaluation 

First phase of the tests were performed on HT9, HCM12A, and T91 ferritic steels in the as-

received and O+ ion implanted conditions, in 500°C SCW with oxygen content of 25ppb, for exposure 

periods 1, 2, and 3 weeks.   In the second phase, tests were performed in 600°C SCW with oxygen 

content of 25ppb, for exposure periods 2, 4, and 6 weeks.  Samples tested in the second phase were 

NF616, HCM12A, and ODS steel in the as-received, O+ ion implanted, and yttrium surface treated 

conditions.  Post-supercritical water test evaluations were performed by the techniques discussed in the 

previous section.  All samples tested developed a well-defined oxide layer (ranging from 4 to 70 m in 

thickness depending upon the steel, surface treatment and test conditions) on the surface due to corrosion 

after exposure to supercritical water.  Furthermore, for all alloys, SEM cross-sectional analysis 

examination showed the oxide corrosion product layer to be made of two regions with distinct 

morphologies.  The outer layer was generally porous whereas the inner layer closer to the substrate steel 

was denser.  EDS analysis showed the outer porous layer to be largely pure Fe-oxide, magnetite.  The 

inner dense layer contained appreciable amounts of Cr and has been identified as a Fe-Cr spinel 

(FeCr2O4) compound. 

3.4.4.1  500°C SCW Tests 

3.4.4.1.1 HT9 steel 

The results of weight gain measurements of HT9 steel in the as-received and oxygen ion implanted 

conditions are shown in Figure 106.  For comparison. weight gain measurements of corrosion-resistant 

Ni-containing alloys D9 and IN 625 are also shown.  It may be observed in Figure 106 that while the 

initial (1 week) weight gain is higher for the oxygen ion implanted samples, its weight gain is lower after 

3 weeks of exposure compared to the untreated HT9 samples.  It is speculated that this may be due to the 

formation of a higher density of oxide particulates (as shown in SEM images in Figure 107) during the 

initial stages of exposure, which may contribute to making the oxide more impervious to ion-transport 

processes during the later stages.   



116

Weight Gain per Unit Area vs. Time For Different Alloys
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Figure 106  Weight gain measurements of HT9 steel in the as-received and oxygen ion implanted 

conditions after exposure to supercritical water at 500°C for periods of 1, 2, and 3 weeks.  For comparison 

similar measurements of Ni-bearing, high Cr alloys, D9 and Inconel 625 are also shown.

                              (a)                              (b) 
Figure 107  SEM surface plan view of the HT9 steel showing corrosion due to oxide particulate formation 

after exposure to supercritical water at 500°C for 1 week (a) as-received condition and (b) oxygen ion 

implanted condition.  Higher density of oxide particulates is observed in the surface modified alloy. 

Figure 108 shows the SEM images of the surface (in plan and cross-sectional view) of the oxide 

layer formed on HT9 steel after exposure to supercritical water at 500°C for 3 weeks.  As 

evidenced by the plan views, both untreated and oxygen ion implanted samples exhibit a 

granular and porous structure with a grain size of about 2 to 4 m.  The cross-sectional views of 

the oxide layer show a slightly lower thickness for the oxygen ion implanted sample. 

To ascertain the phases present in the oxide layer a relatively new technique, Electron Backscatter 

Diffraction (EBSD) was performed using LEO 1530 Field Emission Scanning Electron Microscope.  The 

technique allows for the identification of phases in the oxide layer while imaging the surface morphology 

of the oxide at high magnifications.  Analogous to the TEM, this technique uses using electron diffraction 

for phase analysis; however this can be performed on the entire cross-section of the oxide, with no sample 

thinning requirements.  Figure 109 shows the phase distribution across the oxide scale for the untreated 

and oxygen ion implanted samples, as determined using the Electron Backscattered Diffraction (EBSD) 
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technique.  The outer region (in green) of the oxide was identified to be magnetite phase.  The inner layer 

(red/yellow shade) between the outer oxide layer and the alloy substrate could not be identified in its 

entirety because it was composed largely of very fine grains.  However, EBSD of selected grains 

(indicated in yellow) and EDS cross-sectional analysis indicate that this inner layer is predominantly a Fe-

Cr spinel oxide compound.  It may again be noted here that the total oxide layer thickness is lower for the 

oxygen ion implanted condition compared to the untreated condition, consistent with lower weight gain 

values for the oxygen ion implanted samples. 

3.4.4.1.2 T91 Steel 

Figure 110 shows the weight gain measurements for T91 steel in the as-received and oxygen ion 

implanted conditions after exposure to supercritical water at 500°C for 1, 2, and 3 weeks.  For comparison 

purposes, the weight gain for untreated T91 exposed to SCW at the same temperature, but with 2ppm 

dissolved oxygen content (from a companion experiment) is also shown.  The general trend for T91 is 

similar to that of HT9, in that the weight gain is similar for lower duration exposures; but after the 3 

weeks exposure, the oxygen ion implanted steel samples exhibit a lower weight gain.  The limited data set 

indicates the exponent of time dependence of corrosion ‘n’ is about 0.3 approaching a cubic growth law 

for oxygen ion implanted samples, whereas it exhibits a behavior in between cubic and parabolic (n=0.4) 

growth rates for the untreated samples.  Cross-sectional SEM image of T91 alloy after exposure to 

supercritical water at 500°C for 3 weeks is shown in Figure 111.  The accompanying EDS analysis clearly 

shows that the oxide layer is made up of two chemically distinct regions, pure Fe-oxide outer region and 

an inner region that is enriched in Cr.

In order to investigate the crystallographic orientation of the oxide layer on the surface, x-ray 

diffraction (CuK  radiation) was performed on the oxide layer that formed on the unimplanted and 

oxygen ion implanted T91 samples (Figure 112).  It may be noted from the relative intensities of the 

peaks that for the 1 and 2 weeks exposure surface modification by oxygen ion implantation changes the 

growth orientation of the oxide on the surface.  For the 3 weeks exposure, the relative intensities of the 

peaks appear more similar for the surface modified and as-received samples.  This leads to the interesting 

conclusion that oxide particulate density and oxide growth crystallography crystallography can be 

affected by the pre-implantation treatment. 

To further our understanding of the near-surface structural changes resulting from oxygen ion 

implantation, the surfaces of the T-91 steels were examined after oxygen ion implantation at 40 kV and a 

dose of 3x1017 ions/cm2, prior to SCW exposure.  Examination of the surface structure was made using an 

advanced JEOL-SEM, which provided a view of the structure on a nanometer size scale level that until 

recently was possible using only the TEM.  Figure 113 shows the presence of extremely fine-grained 

nano-crystallites, which formed during ion implantation.  In addition, presence of fine craters, few tens of 

nanometers in size, is observed and this forms as a result of differential sputtering (atom removal as a 

result of ion bombardment) between the matrix and islands of compositional segregation a few 

nanometers in size.  More importantly, these micrographs show fine particulates of oxide, less than 10nm 

in size that formed as a result of ion implantation.  It is these particulates that set the stage for the 

nucleation of the oxide layer upon exposure to high temperature supercritical water.      
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                            (a)                                (b) 

                              (c)                                 (d) 

Figure 108  SEM images of the oxide corrosion product formed on steel HT9 after exposure to SCW at 

500°C for 3 weeks, (a) untreated plan view, (b) O+ ion implanted plan view, (c) untreated cross-sectional 

view, and (d) O+ ion implanted cross-sectional view, and (d) O+ ion implanted cross-sectional view.   
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               (a)                 (b) 

Figure 109  Electron Back Scattered Diffraction (EBSD) images of the cross-section of the oxide formed 

on HT9 steel after exposure to SCW at 500°C for 3 weeks, (a) as-received and (b) O+ implanted. Layer 

indicated by green is magnetite, whereas the inner yellow/red layer was identified to be a Fe-Cr spinel 

compound.    
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Figure 110  Weight gain measurements of T91 alloy in the as-received and oxygen ion implanted 

conditions after exposure to supercritical water at 500°C (25 ppb oxygen) for periods of 1, 2, and 3 

weeks.  For comparison results of weight gain for exposure in supercritical water at 500°C (2ppm 

oxygen) is also shown. 

(a)

(b)

Figure 111  SEM cross-sectional image and corresponding EDS analysis of the oxide layer formed on 

T91 steel after exposure to supercritical water at 500°C for 3 weeks. (a) as-received and (b) O+ ion 

implanted conditions.
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         (a)                        (b) 

Figure 112  X-ray diffraction patterns for T91 steel after exposure to supercritical water at 500oC for 1, 2, 

and 3 weeks (a) as-received and (b) after surface modification by oxygen ion implantation. 

(a) (b) 

Figure 113  (a) Evolution of fine-grained nano-crystallites and sputter craters in T-91 ferritic steel that 

formed as a result of oxygen ion implantation and (b) very fine oxide particulates, less than 20nm in size 

on the surface of this steel as a result of oxygen ion implantation.

To verify the formation of nanometer sized oxide particulates due to oxygen ion implantation and 

the modified depth, x-ray photoelectron spectroscopy (XPS) was performed.  Analysis was performed 

both at the surface and after sputtering incrementally to various depths.  The elemental chemical states of 

the oxygen ion implanted T91 as a function of depth below the surface of the samples were analyzed 

using XPS multiplex scans combined with Ar+ sputtering.  The results of this analysis for Fe 2p and Cr 2p 
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core levels are shown in Figure 114.  The results reveal that after ion implantation the samples’ surface 

was covered by an oxide film approximately 150nm in thickness.  The sputter time in these figures is 

proportional to the depth below the surface at which the analysis was performed.  Only oxidized Fe is 

observed at the surface and its characteristic peaks are located at ~710 eV for 2p3/2 and ~723.6 eV for 

2p1/2, indicating Fe is present as FeO and Fe2O3.  These Fe-oxides persist up to depths of about 30 nm and 

no Cr is observed in this region.  Between depths of 30 nm and 60 nm from the surface, Cr is observed as 

evidenced by the presence of the characteristic peaks located at ~577 eV, which corresponds to Cr in the 

3+ oxidation state.  After 55 min sputtering (about 165 nm depth), both Fe and Cr are present as metallic 

Fe and Cr, indicative of the unmodified substrate steel. 

(a) Fe 2p (b) Cr 2p 

Figure 114  Fe 2p and Cr 2p core level XPS spectra of the oxygen ion implanted T91 as a function of 

depth below the surface.  Sputter time is proportional to the depth below the surface at which the analysis 

was performed.  Sputter rate was 3nm/minute. 

3.4.4.1.3 HCM12A Steel 

Figure 115 shows the weight gain measurements for HCM12A steel after exposure to supercritical 

water at 500°C for 1, 2, and 3 weeks. 

SEM examination of the oxide surface by imaging the plan view did not show any significant 

difference in oxide morphology between the untreated and oxygen ion implanted samples.  However 

cross-sectional SEM of the oxide (Figure 116) did reveal a slightly lower thickness for the oxide layer, 

however, there were no appreciable differences in the composition of the oxide across its thickness for the 

two conditions,

3.4.4.2 Summary of the 500°C, 3 week run for HT9, T91, and HCM12A steels 
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Figure 117 summarizes the weight gains for the three steels in the untreated and oxygen ion 

implanted conditions after exposure to SCW at 500°C for 3 weeks.  The performance rating (based on 

weight gain per unit area), in the order of decreasing performance was   

Figure 115  Weight gain for various exposure times for steel HCM12A after exposure to supercritical 

water at 500oC for 1, 2, and 3 weeks. Some data for the effects of surface roughness and oxygen content 

of supercritical water from companion experiments are also shown.
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Figure 116  Cross-section of the oxide layer developed on HCM12A steel in the untreated and oxygen ion 

implanted conditions after exposure to SCW at 500oC for 3 weeks and corresponding EDS line scan 

compositional analysis across the oxide layer. 
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Figure 117  Results of weight gain measurements (per unit area) of the as-received and oxygen ion 

implanted steels after 3 weeks exposure to supercritical water at 500°C. 

HT9 > T122 > T91. Oxygen ion implantation resulted in a slightly higher initial weight gain, but 

exhibited lower weight gain for longer exposures.

3.4.4.3 600°C SCW Tests 

HCM12A and NF616 ferritic steel in the as-received (control), oxygen ion implanted and yttrium-

surface treated conditions were exposed to supercritical water at 600°C (25 ppb dissolved oxygen) for 

exposure durations of 2, 4, and 6 weeks.  In addition, samples of ODS steel in the untreated (control) and 

oxygen ion implanted conditions were also tested under these conditions.  Weight gain measurements 

(expressed as weight gain per unit area) for each of these samples after exposure for 2, 4, and 6 weeks are 

shown in Figure 118, Figure 119 and Figure 120, respectively.     
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Figure 118  Results of weight gain measurements of ferrtic steel samples in various surface conditions 

after exposure to SCW at 600°C and with an oxygen content of 25ppb for 2 weeks.
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Figure 119  Results of weight gain measurements of ferrtic steel samples in various surface conditions 

after exposure to SCW at 600°C and with an oxygen content of 25ppb for 4weeks. 
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Figure 120  Results of weight gain measurements of ferrtic steel samples in various surface conditions 

after exposure to SCW at 600°C and with an oxygen content of 25ppb for 6 weeks.

As may be seen in Figure 118, Figure 119 and Figure 120 the oxygen ion implantation surface 

treatment results in a slight but consistently higher weight gain compared to the control samples, for steels 

HCM12A and NF616 for all exposure times.  For the ODS steel, the oxygen ion implantation surface 

treatment results in no significant difference compared to the control sample.  This is in contrast to the 

500°C, where oxygen ion implantation surface treatment resulted in a lower weight gain for the three 

ferritic steels studied.  
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However, the yttrium surface treatment resulted in a significant improvement in oxidation 

resistance (i.e., lower weight gain) compared to untreated control samples after exposure to SCW at 

600°C, for steels HCM12A and NF616.  Figure 121, Figure 122 and Figure 123 show the oxide growth 

kinetics for the three steels in the oxygen ion implanted and yttrium surface treated conditions.  All 

samples exhibit a parabolic oxide growth rate, however, time dependence exponent of oxidation, ‘n’, is 

lower for the yttrium surface treated samples, which is desirable from the stand-point of long-term 

oxidation resistance. 

Figure 121  Results of weight gain measurements of ferrtic steel NF616 in various surface treated 

conditions after exposure to SCW at 600°C and with an oxygen content of 25ppb as a function of 

exposure time. 

Figure 122  Results of weight gain measurements of ferrtic steel HCM12A in various surface treated 

conditions after exposure to SCW at 600°C and with an oxygen content of 25ppb as a function of 

exposure time.
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Figure 123  Results of weight gain measurements of ODS ferritic steel in various surface treated 

conditions after exposure to SCW at 600oC and with an oxygen content of 25ppb as a function of 

exposure time.

Results of SEM imaging (plan and cross-sectional view) and EDS compositional analysis of the 

oxide formed on HCM12A after exposure to SCW at 600°C for 6 weeks are shown in Figure 124.  As in 

the case of the 500°C exposure, the oxide layer generally exhibits two distinct regions, an outer porous 

layer and a dense inner layer.  This is particularly the case for the as-received and oxygen ion implanted 

steels.  However, for the yttrium surface treated samples, both the overall oxide thickness and the extent 

of the porous layer are lower than the other two surface conditions.   Figure 125 shows a SEM cross-

sectional image of the oxide layer that developed on HCM12A after exposure to SCW at 600°C for 2 

weeks and EDS compositional analysis taken at the band in the center of the oxide layer.  The EDS 

analysis validates the presence of yttrium in oxide layer indicating that the original yttrium film oxidized 

and got incorporated in the growing oxide of the steel.           

SEM examination both in plan and cross-sectional view were performed of the oxide layer that 

formed on steel NF616 in various surface treated conditions after exposure to super critical water at 

600°C for 2, 4, and 6 weeks. As in the case of previous steels the plan view of the oxide revealed the 

oxide to be of a polyhedral, granular morphology.  One observation rather unique to NF616 was the 

sporadic presence of intergranular cracks in the oxide and this was observed for all surface conditions.  

Figure 126 shows plan view images of the oxide layer developed on NF616 steel after exposure to SCW 

at 600°C for 2 weeks and 6 weeks.  The grain size is about 2 m for the 2 weeks exposure and grows to 

about 5 m between 4 and 6 weeks exposure.  Figure 127 shows the SEM images of the cross-sections of 

the oxide layer after exposure to supercritical water at 600°C for 6 weeks and the corresponding EDS line 

scan compositional analysis.  As in the case of HCM12A, NF616 exhibits an oxide layer composed of 

two distinct regions, an outer porous layer and an inner dense layer.  As may be observed in Figure 127, 

this is the case for the as-received NF616 and oxygen ion implanted NF616 samples.  The yttrium surface 

treated samples however show a much more uniform overall oxide layer, with very little porous layer 

visible.  The oxide thickness for the yttrium surface treated sample is substantially lower compared to 

either the untreated or the oxygen ion implanted samples.      
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(a)

(b)

(c)

Figure 124  SEM images of the oxide formed on steel HCM12A in various surface conditions after 

exposure to SCW at 600°C for 6 weeks and the corresponding compositional line-scan across the oxide 

layer (a) as-received, control, (b) oxygen ion implanted, and (c) yttrium surface treated conditions. 
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Figure 125  SEM image of the oxide formed on yttrium surface treated steel HCM12A after exposure to 

SCW at 600°C for 2 weeks and the EDS compositional spectrum (at region marked 1in the photograph) 

validating the presence of yttrium in the oxide layer. 
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(a)

(b)

(c)

                                2 weeks                                   6 weeks 

Figure 126  Plan view images of the surface of the oxide layer formed on NF616 steel showing a 

polyhedral, granular morphology after exposure to SCW at 600°C for 2 weeks and 6 weeks, (a) as-

received, (b) oxygen ion implanted, and (c) yttrium surface treated.   
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(a)

(b)

(c)

Figure 127  Oxide cross-sectional SEM images of the oxide layer formed on NF616 steel after exposure 

to SCW at 600°C for 6 weeks and corresponding EDS line scan compositional analysis , (a) as-received, 

(b) oxygen ion implanted, and (c) yttrium surface treated.

3.4.5 Surface Modification of SCC (stress corrosion cracking) Samples for Testing at 
University of Michigan SCW Facility 

Nine SCC samples, three each of HT9, HCM12A, and T91 ferrtic steels, supplied to us by the 

University of Michigan were oxygen ion implanted on one side (with two other side receiving 

implantation dose as well, but the back side facing the stage was not implanted) and sent back to 

University of Michigan for stress corrosion cracking tests. At the University of Michigan they will be 

tested using the constant extension rate tests in order to evaluate the effect of oxygen ion implantation on 

crack initiation and growth.  It is anticipated that three physical effects of oxygen ion implantation may 

affect SCC performance, (i) formation of a high concentration of nanometer sized oxide particles in the 
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near surface regions of the steels, (ii) compressive stresses at the surface that may delay crack initiation, 

and (iii) the ballistics of the ion implantation process may alter the microstructure at the surface through 

homogenization effects.  Figure 128 shows the SCC samples of the three steels just after removing from 

the plasma immersion ion implantation chamber after oxygen ion implantation.  Oxygen ion implantation 

was performed at an energy of 40kV to a dose of 3x1017 ions/cm2.

Figure 128  SCC samples of the three steels, HT9, HCM12A and T91 steels just after removing from the 

plasma immersion ion implantation chamber after oxygen ion implantation.

3.4.6 Conclusions 

Five candidate ferritic steels HT9, HCM12A, T91, NF616, and ODS steel were tested for corrosion 

resistance in supercritical water at 3650 psi and 25 ppb dissolved oxygen content.  Steels HT9, HCM12A, 

and T91 in the untreated and oxygen ion implanted conditions were tested at 500°C for exposure 

durations of up to 3 weeks.  Steels HCM12A, NF616 in the untreated as well as oxygen ion implanted and 

yttrium surface treated conditions were tested at 600°C for exposure durations of up to 6 weeks.  ODS 

steel in the untreated and oxygen ion implanted conditions were also tested at 600°C for exposure 

durations of up to 6 weeks. 

For the base steels (not surface treated) tested at 500°C (up to 3 weeks), the rating of the steels in 

the decreasing order of oxidation resistance was as follows: HT9 > HCM12A > T91. For the base steels 

(not surface treated) tested at 600°C (up to 6 weeks), the rating of the steels in the decreasing order of 
oxidation resistance was as follows: ODS > HCM12A > NF616.  For all base steels the oxide layer 

exhibited two distinct regions, an outer porous region which was identified to be Fe-oxide, magnetite and 

an inner dense region that was enriched in Cr (up to about 20% Cr) and identified to be a spinel 

compound.  For the range of steels and test conditions studied, the thickness of the oxide scale ranged 

from about 4 m to about 70 m. 

Surface modification was noted to have an effect of the total oxide thickness, oxide growth 

kinetics, and the morphology of the oxide layer.  Oxygen ion implantation of the steels led to a lower 

oxide thickness and growth rate when exposed to SCW at 500°C for up to 3 weeks.  It was demonstrated 

by electron microscopy (and confirmed by XPS) that the oxygen ion implantation results in a fine (~ 

10nm) distribution of spherical oxide precipitates in the near-surface regions of the steels.  It is speculated 

that these oxide particles, increase the nucleation and particulate density of the thermal oxide that forms 
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during initial stages of exposure to SCW, thereby making it more impervious during later stages of 

growth.  X-ray diffraction of the oxidized surface also showed that the texture of the oxide (its growth 

direction) is altered by the oxygen ion implantation. 

For steels tested at 600°C SCW, oxygen ion implantation had no effect on the oxidation of ODS 

and in fact had a slight deleterious effect on the oxidation of steels NF616 and HCM12A.  However, 

yttrium surface treatment had a pronounced beneficial effect on steels NF616 and HCM12A for the 

600°C.  HCM12A steel exhibited about 40% and NF616 steel exhibited about 25% less weight gain after 

exposure to SCW at 600°C for 6 weeks, compared to their respective untreated counterparts.  Yttrium 

surface treatment also influenced the oxidation characteristics of these two steels in two practically 

beneficial ways, (i) the growth kinetics of the oxide was lowered by the incorporation of yttrium in the 

growing oxide layer and (ii) the oxide layer is rendered markedly more dense which is desirable from the 

standpoints of the long term mechanical stability of the oxide, in addition to making it more impervious to 

ion transport. 

Figure 129 summarizes the key results of this study and shows that hierarchy in the performance 
rating of the steels can be altered by surface modification.  Nine SCC (stress corrosion cracking) samples, 

three each of HT9, HCM12A, and T91 ferrtic steels have been oxygen ion implanted at an energy of 

40kV to a dose of 3x1017 ions/cm2 and sent the University of Michigan for SCC evaluation at 500°C.          

Figure 129  Performance of various steels and surface treatments in SCW at 500°C and 600°C (25 ppb 

oxygen).  Note that performance rating of the steels can be altered by surface modification.
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4. Task 4 - Radiation Stability Studies 

4.1 Task Summary 

Swelling, bubble formation, precipitation, segregation, and hardening can all occur under 

irradiation in the temperature and dose range proposed for the supercritical water reactor.  Alloys are 

required that are either resistant to these processes or can accommodate these processes without 

compromising their structural integrity.  Proton and heavy-ion irradiation in the dose range 5 - 50 dpa and 

in the temperature range 400-500°C were conducted to evaluate the susceptibility of the candidate alloys 

to these potentially life-limiting processes.  Three different irradiation studies were conducted in the task.  

In the first study, Ni ion irradiation up to 50 dpa was used to evaluate the radiation response of 12 Cr F-M 

HCM12A and high Ni 800H alloys.  In the second study, microstructures of proton-irradiated samples 

irradiated up to 7 dpa were examined.  The same samples were used in the previously described SCC 

tests.  Finally, hardness and cross-section microscopy measurements were used to compare the relative 

radiation response of F-M and ODS alloys irradiated with heavy-ions. 
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4.2 Heavy Ni-Ion Irradiations of Alloys HCM12A and 800H 

Contributors:

James Cole, Jian Gan, INL 

4.2.1 Material 

The composition for alloy HCM12A is listed in Table 2, while 800H is listed in Table 23.  Both 

alloys are commercial grade and used in the as-received condition.  No thermal mechanical treatment was 

given.  The manufacturer of the alloy 800H specified a final heat treatment at temperature of 1177ºC for 

2.25 hours.  The supplier of HCM12A specified a final heat treatment of normalization at 1050ºC + air 

cool and tempered at 770ºC + air cool. 

Table 23 The Composition for alloy 800H. 

Alloy Fe C Mn P S Si Ni Cr Mo Other 

800H Bal. 0.069 0.76 0.014 0.001 0.13 31.59 20.42 Not

measured 

Ti_0.57, Cu_0.42

Al_0.50

4.2.2 Alloy HCM12A 

In addition to this INERI project, another DOE-NE project, NERI project 02-110, has a shared 

interest in understanding the potential impact of long term radiation effects in high temperature alloys 

previously not considered for radiation service.  As a result two alloys of common interest were selected 

for conducting a joint transmission electron microscopy (TEM) study of two samples that were Ni-ion 

irradiated at the accelerator facility at PNNL. 

Alloy HCM12A was irradiated with 5 MeV Ni ion to 5 and 50 dpa at a temperature of 500ºC with a 

damage rate of 5dpa/hr.  The irradiated microstructure was characterized at a depth of 0.5 m from the 

irradiated surface.  The microstructure of unirradiated HCM12A mainly consisted of precipitates that 

distributed both at grain boundaries and in the matrix.  The dislocation density is not uniform from grain 

to grain.  The diffraction pattern and EDS analysis of the precipitates revealed nearly all the precipitates 

in the unirradiated case are M23C6 with a FCC lattice parameter of 1.06 nm and a typical composition of 

approximately (in wt%) 65%Cr, 30%Fe, 3%W, 1.5%Mo in addition to carbon.  Dislocation density varied 

dramatically, ranging from dislocation free to the dense areas with tangled and complex dislocation 

configuration.   The general views of unirradiated microstructure and the detail arrangement of 

dislocations are shown in Figure 130 and Figure 131.    

For the sample irradiated to 5 dpa, there is no significant change in microstructure photos, shown in 

Figure 130(b) and Figure 131(b).  No cavities were found and no dislocation loops were identified.  The 

precipitates examined were still dominated by M23C6, but few vanadium-niobium precipitates identified 

from EDS analysis, with a typical composition of approximately 50%V, 17%Cr, 17%, 12%Nb.  Figure 

132 shows various precipitates suspended on a film formed accidentally during jet-polishing, giving an 

opportunity for improved measurement for precipitate composition than EDS of precipitates in the matrix.  

Among the precipitates in the picture, those marked p04, p08 and p11 are V-Nb precipitates and the rest 

are mostly M23C6 precipitates.  The inserts in Figure 132shows the EDS spectrum of M23C6 and V-Nb  
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Figure 130  Low magnification overview of microstructure for alloy HCM12A irradiated with Ni ion at 

500ºC to (a) unirradiated, (b) 5 dpa and (c) 50 dpa. 

          

Figure 131  Dislocation microstructure for alloy HCM12A irradiated with Ni ion at 500ºC to (a) 

unirradiated, (b) 5 dpa and (c) 50 dpa. 

precipitates.  The overall dislocation density appeared slightly increased as shown in Figure 130 and 

Figure 131.  No quantitative measurement on dislocation density was attempted due to its non-uniform 

distribution and extremely high density in the dense dislocation areas.  The presence of V-Nb precipitates 

and the increase in dislocation density may be responsible for the radiation hardening in alloy HCM12A. 

The microstructure of HCM12A irradiated to 50 dpa is similar to that at 5 dpa as demonstrated in 

Figure 131 (c) and Figure 131 (c).  Again, no voids were found in this condition.  However some 

dislocation loops were found in the dense dislocation areas, no significant changes in dislocation 

configuration although the overall dislocation density appeared further increased comparing to the case of 

5 dpa.  The microstructure at 50 dpa is still dominated by dense dislocation network and M23C6

precipitates.

4.2.3 Alloy 800H 

The unirradiated microstructure of alloy 800H is shown in Figure 133.  The picture showed a 

relatively high dislocation density (~ 4x1013 m-2) for the alloy heat treated at 1177ºC for 2.25 hours.  

There are no precipitates found in the unirradiated condition.  It was found that the sample was slightly 

magnetized as the electron beam in the microscope drifted slightly during the sample tilting.    

(a) (b) (c)

 (a)  (b)  (c) 
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Figure 132 in HCM12A irradiated with Ni ions at 500ºC to 5 dpa.  Those marked p04, p08 and p11 are V-

Nb precipitates.  The rest are mostly M23C6 type precipitates. 

For the 800H irradiated with Ni ion at 500ºC to dose of 5 dpa, the microstructure was altered by the 

formation of faulted dislocation loops.  No voids were found at 5 dpa.  The irradiated microstructure is 

dominated by the dislocation loops shown in Figure 134.  The average size of the faulted loops is 12.5 nm 

with a loop density of 1.2x1016 cm-3.   Although no radiation-induced precipitates were found in the 

matrix, precipitates were found in a piece of suspension film attached around the edge of the perforation.  

This suspension film was formed accidentally during the jet-polishing and provides an opportunity to 

reveal the possible precipitates in the materials.  Figure 135 shows precipitates caught on the suspension 

film and the EDS spectrum comparison between the matrix and the precipitates on the film.  These 

precipitates have an average size of approximately 9 nm.  The EDS spectrum shows that these precipitates 

are rich in Cr (40~56%), Si (4~14%), Al (5~10%) and Ti (1.5~2.5%).  The crystal structure of the 

precipitates could not be determined due to the small size and the presence of multiple types of 

precipitates. Since a 5 dpa irradiation only took 60 min to complete, it is difficult to believe all these 

precipitates were formed due to irradiation.  It appears that most of these precipitates were existed in the 

unirradiated materials but at a very low density, therefore difficult to detect.  

For the 800H irradiated to 50 dpa at 500ºC, the irradiated microstructure is dominated by the 

faulted loops and the small precipitates uniformly distributed through out the sample.  No cavities were 

detected under this irradiation condition.  The bright field image (g=200) and the rel-rod dark filed image 

of the faulted loops are shown in Figure 136.  The average size of faulted loops is 8.4 nm with a loop 

density of 2.3x1016 cm-3.  While an increase by nearly a factor of 2 in loop density is expected when 

comparing to a 5 dpa sample, the decrease in loop size was a surprise.  The decrease in loop size may be 

due to the presence of finely distributed small precipitates developed at high dose.  The finely distributed 

precipitates, shown in Figure 137, were not seen in 5 dpa and the unirradiated samples.  The average size 

of these precipitates is 5.9 nm, about 50% smaller than the precipitates observed in 5 dpa sample shown in 

Figure 137.  Since the dark filed image of the precipitates in Figure 137 was taken using the diffraction 

from the precipitates, not all the precipitates were present in the picture.  The estimated precipitate 

number density is greater than 9.1x1015 cm-3, at least more than two orders of magnitude higher than the 

precipitates in 5 dpa sample.  Both composition analysis and the crystal structure determination for these 

small precipitates were not successful due to their small sizes.  These uniformly distributed small 

precipitates are expected to play an important role in material mechanical properties.  Once formed, these 

precipitates will act as extensive sinks for point defects, alter the microstructural evolution under  
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Figure 133  Unirradiated microstructure of alloy 800H (imaged with g=200 diffraction) reveals 

dislocations in low magnification (left) and high magnification (rght).  The alloy has a relatively high 

dislocation density considering it was heat-treated at 1177ºC for 2.25 hours. 

Figure 134  Microstructure in alloy 800H irradiated with Ni ion at 500ºC to dose of 5 dpa.  Bright filed 

image (left) showing dislocation loops under g=200 and the rel-rod dark filed image (right) showing ¼ of 

the faulted dislocation loops. 

Figure 135  Precipitates caught on a suspension film near the edge of the perforation (left) in 800H 

irradiated at 500ºC to 5 dpa.  The EDS comparison between the matrix and precipitates on film showing 

the precipitates are rich in Cr, Si, Al and Ti. 
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Figure 136  Dark file image of finely distributed precipitates in 800H irradiated with Ni ions at 500ºC to 

50 dpa.  The image was taken using the diffraction from the precipitates. 

Figure 137  Dark file image of finely distributed precipitates in 800H irradiated with Ni ions at 500ºC to 

50 dpa.  The image was taken using the diffraction from the precipitates. 

irradiation such as loop formation and growth.  It is believed the presence of finely distributed precipitates 

may be responsible for the decrease in loop size at high dose comparing to 5 dpa sample.      
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4.3 Proton irradiation Studies of F-M Alloys 

Contributor: 

Gary Was, University of Michigan 

Proton irradiation of F-M samples was conducted with 2.0 MeV protons at Michigan Ion Beam 

Laboratory.  The protons beam was started up with stage current 30 A then gradually increased to 50 

A.  The dose rate was about 0.039 dpa/hr and the total dose of 7 dpa was reached in about 180 hr.  

During irradiation the temperature was controlled at 500±10oC by a combination of heating and cooling.  

It was found that irradiation temperature was maintained within the specified 10°C window about the 

target temperature.  The average temperature over all eight samples is 500.6±4.28oC.

The hardness of TEM samples was measured by Vickers hardness indentation before and after 

irradiation.  After irradiation the hardness of all samples is increased due to irradiation hardening.  The 

hardness following irradiation is highest in HT9 (289.19 kg/mm2), followed by HCM12A (246.85 

kg/mm2, average from 2 samples), and T91 (249.78 kg/mm2).  For the change in hardness, T91 has the 

largest increase, followed by HT9 and HCM12A.  The hardness measurement and changes in hardness 

are shown in Figure 138. 

(a)      (b)     

Figure 138  (a) Hardness of unirradiated and 7 dpa irradiated sample (b) Hardness changes in samples 

irradiated to 7 dpa. 

Figure 139 and Figure 140 illustrate the microstructures of these samples following irradiation.  

The microstructure of the irradiated alloy 591 contained dislocation loops, black dot damage and 

precipitates, while, in addition to these features alloy HCM12A contained a population of voids 

in the material.  In addition to the microstructural analysis, grain boundary chemistry 

measurements were conducted on alloy T91.  These measurements indicate strong enrichment of 

chromium and depletion of iron at the grain boundary as indicated in Figure 141. 
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Figure 139  Dislocation and precipitate structure in proton irradiated alloy T91.

Figure 140  Dislocation and void and precipitates in proton irradiated HCM12A. 
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Figure 141  Grain boundary chemistry profiles of alloy T91 irradiated with protons. 
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4.4 Irradiation Damage of F-M and ODS Alloys 

Contributors: 

Jinsung Jang, KAERI 

Soon Hyung, KAIST 

4.4.1 Overview 

For the simulation of irradiation effect, high energy ion irradiation experiments were performed on 

samples of recrystallized MA956, T91 and T92.  

4.4.2 Hardness of Irradiated Commercial ODS Alloys 

Alloy samples with dimension of 10 10 2 mm were prepared for irradiation and their surfaces 

were mirror-polished by diamond paste for further evaluation.  Ion accelerator(Tandem Van de Graaff 

Accelerator, NEC 5SDH-2) was used.  8MeV Fe4+ ions made by SNICS ion source were used to irradiate 

the specimens.  The MA956 and T91 samples were irradiated at room temperature with fluence of 

7.6 1016/cm2 and 7.1 1016/cm2 for each and a total dose of 1.0dpa. 

To know the dependence of hardness on indentation load, nanoindentation experiments with 

various loads were performed.  Figure 142(a) shows the loading-unloading curves during indentation in 

MA956 specimen.  As the indentation load increases the depth increases and constant hardness is 

obtained at load over 2000 N as shown in Figure 142(b).  Therefore, the load for hardness measurement 

is determined to be 3000 N. Figure 143(a) shows the hardness results measured at irradiated and 

unirradiated area in MA956 specimen. Irradiated area has higher hardness and less depth than 

unirradiated area at the same load. This means that irradiated area has been damaged by high energy ion 

so that many defects such as vacancy, dislocation and void are formed.  Microstructure observation is 

scheduled for further research.  Figure 143(b) is the hardness result of T91 alloy and shows the same 

results. The hardness increase of MA956 is more or less higher than T91. Generally, it is known that ODS 

alloy has better irradiation resistance than conventional alloy due to stable dispersoid. This result doesn’t 

show any better irradiation resistance of ODS alloy. However, irradiation resistance highly depends on 

temperature. If irradiation is performed at high temperature, where ODS alloy shows better high 

temperature stability, it is predicted that better irradiation resistance of ODS alloy will be evident. 
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Figure 142  (a) Loading-unloading curve during indentation and (b) hardness-load relationship at various 

indentation loads in MA956 alloy. 
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Figure 143 (a) Hardness of irradiated and unirridated MA956 alloy (b) hardness of irradiated an 

unirridated T91 alloy. 

In another experiment, alloys T92 and MA956 specimens were irradiated with 122 MeV Ne ions 

alloy. The irradiation temperatures were 440 and 575°C, and the doses were 1, 2 and 10 dpa.  The damage 

profile estimated using SRiM 96 code is illustrated in Figure 144, and the peak damage range was found 

to be at around 30 micron.  One optical cross sectional micrograph (Figure 145) shows that some cavities 

are produced along the depth of 31 micron, exactly at the predicted peak damage range.  As the center 

region of the irradiated area is approached the cavity size increases and a bulge was observed.  In contrast 

to T92, ODS alloy MA956 specimens did not show any cavities.  In this study the peak damage range 

estimated using the code has been found to be quite accurate and ODS alloys were again confirmed to be 

more resistant to the beam irradiation than F-M steel.  

Figure 144  Damage profile of Fe-9Cr steel when irradiated with 122 MeV Ne ions; peak damage range at 

about 32 micron.
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Figure 145  Optical micrograph of T92, irradiated with 4.5 dpa of 122 MeV Ne ions at 520°C. 
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5. Task 5 – Weld Behavior 

5.1 Task Summary 

Cladding and core internal components will have to be joined.  The behavior of the weld 

microstructure may be an issue in materials exposed to the environment of the supercritical water reactor.

The weld behavior study involved the production of welds in F-M alloys T-91 and HCM12A in order to 

evaluate the response of samples exposed to the SCWR environment.  This task was modified from the 

original work scope to only include investigation evaluation of weld response rather than a more detailed 

study on alloy weldability.  The modification was made based on comments from reviewers at the annual 

project presentations. 
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5.2 Preparation and welding of Grade 91 and HCM12A F-M alloys for 
corrosion and SCC study 

Contributors: 

James Cole, Jan-Fong Jue, INL 

5.2.1 Welding Details 

Ferritic-Martensitic (F-M) alloys Grade 91 and HCM12A plates were joined by GTAW (Gas-

Tungsten-Arc-Weld) at Idaho Nation laboratory.  According to the literature, the welding F-M alloys 

requires several cautions such as preheating the work pieces, selection of the proper filler and post-

welding heat treatment.  To avoid hydrogen cracking, the steel plates were first pre-heated to 250oC then 

the GTAW was performed with filler.  The filler used was Blue Max LNT 9CR(P91).  The composition 

of the filler is Fe - 8.7Cr – 0.9Ni - 0.7Mo - 0.7C - 0.7Mn– 0.4Si – 0.2V – 0.04Nb – 0.005N.  After 

welding, the joined pieces were air-cooled.  A post welding treatment was conducted at 750oC for 3 hours 

in air followed by furnace cooling.  The post weld treatment is necessary to obtain the proper weld 

structure and adequate toughness.  An oxide layer was developed after post-welding annealing.  The 

surface oxidation layer was removed by machining the top face of the plate flat before they were shipped 

to the Shular Tool in Tennessee and EDM machined into SCC bars and coupons as shown in Figure 146.

The finished corrosion coupons were shipped to the University of Wisconsin, while the SCC bars were 

sent to the University of Michigan.  Testing of the samples will be completed under the GEN IV SCWR 

program.  Some cross sections were cut from the welded plates and polished to a 0.05μm surface finish 

using a colloidal silica solution.  The polished surfaces were then etched using a Nital solution (2%HNO3

and 98% methanol). 

Figure 146  Images of weld samples.  Area between dashed lines indicate the approximate location and 

width of the weld zone. 

5.2.2 Weld Microstructures 

Figure 147 contains optical micrographs from the T91 welded plate containing 9% Cr.  Figures 

Figure 147  (a)-(c) show the microstructure of the weld-zone, the heat affected zone (HAZ) and the matrix 

respectively.  .  As shown in Figure 147 (d), the interface between weld and the base metal is very good.  
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Figure 148 provieds optical micrographs from the welded HCM12A plate containing 12 % Cr.  Figure 

148 (a) – (c) to 9 are grain structure of the weld-zone the HAZ and the matrix, respectively.  Figure 148 

(d) again shows a good interface between the weld and the base metal.  The HAZ in the 9%Cr containing 

plate exhibits larger grain size than the plate containing 12%Cr.  The weld zone of the 9% Cr containing 

plate also exhibits a slightly coarser microstructure.   

(a)            (b) 

(c)            (d) 

Figure 147  Optical images of weld and base metal in alloy T91:  (a) Weld Zone, (b) HAZ, (c) Base Metal 

and (d) Interface between zones. 
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(a)            (b) 

(c)            (d) 

Figure 148  Optical images of weld and base metal in alloy HCM12A:  (a) Weld Zone, (b) HAZ, (c) Base 

Metal and (d) Interface between zones. 
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6. Task 6 - Irradiation Test Plan 

Contributors: 

James Cole, Joy Rempe and Terry Totemeier, INL 

Todd Allen and Kumar Sridharan, U. W. 

Gary Was, U. M. 

Jinsung Jang, KAERI 

6.1 Task Summary 

Qualification of materials for SCWR systems will ultimately require irradiation testing.  Based on 

the results of this project, recommendations are made for candidate materials and sample types to be 

irradiated to understand irradiation performance of core materials.  This collaborators in this project have 

coordinated these activities with the larger GEN IV research program. 

6.2 Summary of Materials and Irradiation Testing Recommendations 

6.2.1 Overview 

This brief summary is intended as a preliminary set of materials and irradiation testing 

recommendations based on qualification data collected as part of INERI project 2003-008-K, 

“Developing and Evaluating Candidate Materials for GEN IV Supercritical Water Reactors”.  Because 

similar and more extensive irradiation test plans are being assembled by the GEN IV National Technical 

Directors, the recommendations in this section should be viewed in context of the broader effort to 

develop candidate materials for the SCWR. 

6.2.2 Materials Recommendations 

Table 24 provides a summary of the materials recommendations for future irradiation testing 

campaigns.  It is very much in line with the initial literature search conducted as part of the project.  

However, several additional limitations were identified in the qualification testing phase of the project.   

Initial ion-irradiation studies indicate that the Fe-based ferritic-martensitic (F-M) alloys will have 

high resistance to swelling, which is a desired quality for components which will reside in core for longer 

periods of time.  However, the advanced candidate F-M alloys, which were selected because of their 

widespread use in fossil supercritical water plants, were shown to have significant general corrosion when 

exposed to SC water over a range of temperatures and water chemistry conditions.  In a fossil plant, 

where most components have thick cross-sections and can be routinely replaced, such general corrosion 

may not be an issue.  For thin walled components such as fuel cladding, corrosion through a significant 

fraction of the wall thickness is unacceptable.  Thus current advanced F-M alloys may not be suitable for 

cladding applications.   

Because of the high rate of oxidation of the F-M alloys, it may be necessary to consider swelling 

resistant austenitic stainless such as alloy D9 for cladding applications.  Such steels were developed for 

the fast breeder reactor program, and additional evaluation of these materials in terms of irradiation-
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assisted-stress-corrosion-cracking and swelling under SCWR relevant irradiation conditions should be 

performed.  The high Ni and Cr Fe-based Alloy 800H and Ni based alloys, such as alloy 690 should also 

be considered, however, previous and somewhat limited experience with helium embrittlement of 

irradiated alloys containing higher levels of nickel must be evaluated over the range of irradiation 

conditions relevant to the SCWR.   

Although the scope of this project did not permit extensive examination of oxide dispersion 

strengthened (ODS) alloys, recent research in Japan has shown that ODS alloys can be tailored to 

specifically address some of the limitations of the F-M alloys such as excessive corrosion.  These 

Japanese studies also indicate that ODS alloys have better high temperature creep strength.  ODS alloys  

Table 24  List of candidate alloys recommended for further irradiation testing. 
Alloy Class Alloy Potential 

Components
Issues

Ferritic-
Martensitic 

   

T92 (NF616)- 
Fe-9Cr-MoVNb 

Thick section 
components where 
greater general 
corrosion rates can be 
accommodated. 

General corrosion limits use in thin 
section components.  Low 
temperature irradiation 
embrittlement needs to be 
evaluated. 

T122 (HCM12A)- 
Fe-12Cr-MoVNbW 

Thick section 
components where 
greater general 
corrosion rate can be 
accommodated 

General corrosion limits use in thin 
section components.  Low 
temperature irradiation 
embrittlement needs to be 
evaluated. 

Austenitic
Stainless Steels 

   

Alloy D-9- 
Ti–Modified Fe-15Cr-15Ni 2.2Mo 

Potential use for 
cladding and other 
components where 
higher corrosion 
resistance is needed. 

Low thermal conductivity.  
Potential susceptibility to irradiation 
assisted stress corrosion cracking.  
Evaluation of swelling behavior 
over SCWR temperature range 
needs to be evaluated. 

High Ni alloys    

Alloy 690 
Ni-30Cr-10Fe 

Potential use for 
cladding and other 
components where 
higher corrosion 
resistance needed..  
Components where 
high temperature creep 
strength needed. 

Potential susceptibility to IASCC. 
Irradiation-induced grain boundary 
embrittlement needs to be 
evaluated.. 

Alloy 800H 
Fe-32Ni-20Cr-TiAl 

Potential use for 
cladding and other 
components where 
higher corrosion 
resistance needed.. 

Potential susceptibility to IASCC. 
Irradiation-induced grain boundary 
embrittlement needs to be 
evaluated. 

ODS    

Developmental 9-14 Cr ODS alloy Cladding Corrosion and  low temperature 
irradiation embrittlement behavior 
need to be evaluated.  Fabrication 
costs. 
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are in the early stages of development and are expensive to fabricate.  As a result, they will require a more 

extensive R&D effort than commercially available alloys.  However, because of there potential, this R&D 

effort should be seriously considered. 

6.2.3 Irradiation Testing Recommendations 

As a first cut, existing irradiated materials such as those irradiated as part of the fusion and/or fast 

breeder reactor programs should be considered for testing in supercritical water.  This will serve two 

purposes, 1) develop a methodology for testing of irradiated components in SC water and 2) provide some 

initial lower cost data to guide future, more in depth testing campaigns.  In the absence of in-pile testing  

capabilities, a variety of specimens including tensile, creep, fracture toughness and microstructure should 

be irradiated over the range of temperatures relevant to the SCWR (300-600°C).  Post-irradiation testing 

of the irradiated materials in SC water can then be conducted to ensure that irradiation under conditions 

relevant to the SCWR do not lead to excessive swelling, embrittlement or loss of high temperature creep 

strength.  In order to save costs, such irradiations can be piggy-backed onto current irradiation testing 

programs planned for either the Advanced Fuel Cycle Initiative or combined with other GEN IV materials 

irradiation programs where irradiation conditions overlap.  
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