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Abstract— This paper addresses the problem of counting
intruder activities within a monitored domain by a sensor
network. The deployed sensors are unreliable. We characterize
imperfect sensors with misdetection and false-alarm probabili-
ties. We model intruder activities with Markov Chains. A set of
Hidden Markov Models (HMM) models the imperfect sensors
and intruder activities to be monitored. A novel sequential
change detection/isolation algorithm is developed to detect and
isolate a change from an HMM representing no intruder
activity to another HMM representing some intruder activities.
Procedures for estimating the entry time and the trace of
intruder activities are developed. A domain monitoring example
is given to illustrate the presented concepts and computational
procedures.

I. INTRODUCTION

A sensor network consists of spatially distributed sensors
and associated signal processors. The design purpose of a
sensor network is to detect events of interest and estimate
parameters that characterize these events. Sensor network
solutions are under active development [1,3-5,8,11,12,19,
22,23] as the associated deliverables are playing important
roles in various application domains. Domain monitoring
for intrusion detection is a typical application of sensor
networks. In this application, sensors are deployed over a
region where intruder activities are to be monitored. For
instance, sensor nodes may be deployed over battlefields to
detect enemy activities. When the sensors detect an activity
event, the event needs to be reported to one of the base
stations in order to conduct further information processing
or issue appropriate actions.

The base stations receive sequence of reports/observations
from spatially distributed sensor devices. In practice, sensor
devices are not perfect; e.g., sensors may report false alarms
or misdetect activities. The sequence of observations may
be generated from real activities to be monitored or may
include false alarms from sensing devices. These sensor
information should be fused systematically to address the
following issues.

QI: How many intruder activities are occurring within the
monitored domain?
Q2: How did intruder activities progress?

Both issues are important in assessing damages, mitigating
risk, and allocating resources to cope with intruder activities.
Figure 1 depicts the situation to be addressed in this paper.
We find that many related intruder activity detection
problems and solutions are available from diverse disciplines
and application domains. Relevant works are listed below.

Sensor Information Fusion
Count activities
Estimate Traces

Unreliable Distributed Sensors

Intruder activity model

Fig. 1. Conceptual Diagram of Intruder Activity Analysis Architecture

« Victor Klee introduced the art gallery problem in 1973
in a discussion with Vasek Chvatal. The art gallery
problem and its variations [7,9, 14, 18] deal with setting
a minimal number of vertex guards in a gallery hall
of a complex polygonal shape to secure the visibility
of every point in the hall. The objective of these
approaches is to secure deterministic visual coverage
on areas of interest.

o The objective of intrusion-detection expert systems in
the context of [6] and its variations is to detect break-ins,
penetrations, and other forms of computer abuse. These
approaches mainly rely on building pattern models and
designing detection logics.

o Concepts of coverage and exposure in wireless sensor
networks [11,12] are measures of surveillance quality
provided by a given sensor network. In a similar frame-
work, [4] considers strategies of randomly throwing a
batch of sensors to a monitored field in order to achieve
a certain intruder exposure level.

e In [5], the authors present algorithms to control and
coordinate mobile sensor networks. Unlike art gallery
type optimization problems, with controlled mobility,
sensors can be located anywhere in a given polygon
environment. The main issue is to locate the mobile
sensors in order to give optimal coverage.

The remainder of this paper is organized as follows.

In Section II, we model multiple intruder activities with



imperfect sensors via Hidden Markov Models. Section III
describes a procedure for counting intruder activities with
a sequential detection and isolation procedure. The matrix-
CUSUM procedure [15] developed for i.i.d. case is modified
in order to accommodate sequential observation dependency
of HMMs. Section IV addresses the issues of estimating the
current intruder activity locations and the trace of intruder
activities. In Section V, we apply the developed methodology
to monitor an illustrative complex network. Section VI
concludes the paper with some remarks.

II. MODELING INTRUDER ACTIVITIES AND UNRELIABLE
SENSORS WITH HIDDEN MARKOV MODELS

We use a set of HMMs to model the intruder activities
that need to be monitored along with the deployed unreliable
sensors. Let us first describe a Markov Chain model for
intruder activity.

A. Markov Chain Intruder Activity Model

We model the network of concern as a strongly connected
directed graph G = (V, F) where

V ={v,ve,...,vm}and ECV x V.

The objective of an intruder is to infiltrate and travel the
network and conduct some activities of negative conse-
quences within the network. At regularly-spaced discrete
times, the intruder makes transition (possibly back to the
same state) according to a set of probabilities associated
with the current state. The actual location of the intruder
at time { is denoted by X;. In this paper, we assume a first-
order Markov stochastic traveling strategy for the intruder in
the sense that the next vertex to reach only depends on the
current vertex where the intruder resides. That is, V¢ € N,

‘p(XHx = ’U;"Xt = L’j,Xt,1 = Uk, - )
= p(Xty1 = vi| Xy = vj).

Further we assume that the transition probability is station-
ary. That is, V¢, ¢’ € N,

P(Xer1 = vil Xy = vj) = p(Xp1 = vi| Xv = vj).

We denote the state transition probability distribution by A =
{@u, v, } where

Ay, ;= p( X1 = vi| Xe =v5), 1,7 €{1,...,m}.
We denote the initial state probability distribution by
my = {m(vi) %y
where mi(v;) = p(X; = v;), fori € {1,...,m}.
B. Sensor Model

We assume that sensors may reside at the set of vertexes
Vs = {vs,, Vs, .-, 05, } €V, with n being the number of
deployed sensors that may generate detection events.! As
we consider unreliable sensors, we associate each sensor

'"We do not consider the issue of optimizing sensor deployment in this
paper. Related efforts regarding the optimization of sensor deployment can
be found in [22].

with detection and false-alarm probabilities. The detection
decision at time ¢ of a sensor located at vertex vs, € Vj is
denoted by d(vs,,t) € {0,1}. The detection decision associ-
ated with each sensor is assumed to be mutually independent.
The associated detection and false alarm probabilities are
respectively given by:

palvs,) = pd(ve,, 1) = 11X, = va,),
ps(vs,) = p(d(vs,, 8) = 1|X, # vs,).

Figure 2 shows an example of graph and sensor models
with Vy = {2,3}.

pqa(3) =0.9
pr(3) =0.2

1

pa(2) = 0.7
pf(2) =10.1

Fig. 2. Intruder activity model with imperfect sensors

Let D(Vi,t) = (d(v,,t),....d(vs, .t)) and d =
(ds,,dsy, ..., ds,) € {0,1}". We denote the observation
symbol probability distribution by B = {b,, (d)} where, for
Uj € ‘/.S"

by, (d) := p(D(V, 1) = d] X; = v;)

= Hi’(d(“s“t) =ds | Xt = vy)

k=1
s pd(’l)j)d_i(l — pd('Uj))
H pf(vs’\‘ )dSk (1 - pf(vsk ))l—dﬁk )
U-“ke‘/-ivsk?éj
and, for v; & V;,

bl,J((Z) = H pf([ySk>d.«k(l;1)1(_(‘“8’\4))1—'(1_,“.
€V,

1—d;

C. Hidden Markov Model Hypotheses
Let us denote the set of hypotheses as below:

Hy @ no intruder activity presents
Iy :  an intruder activity presents

Hpys @ M intruder activities present

2For brevity of exposition, we assume that sensors are always operational
and stationary. It is possible to extend the developed methodology of this
paper to sensors with mobilities and/or sleep modes assuming that the
locations and the modes of sensors are available for sensor data fusion. Also
assumed is that a correct positive detection decision from a sensor occurs
only if the intruder is co-located with the sensor. Relaxing this assumption is
conceivable by considering the detection range of sensors (e.g., accounting
the neighbor vertexes within the detection range) and assigning appropriate
probabilities of detection and false alarm.



Given the sensor models, we can build an HMM hypothesis
for an intruder activity case as follows.

For Hy,, p € {1,..., M}, we define a directed graph G =
(Vp, Ep) where
Vo=V x..xV and ECV, xV,.
P
Let vF = (v, ..., vi,) € Vp and v¥ := (vjy,...,v5,) €V

where v;, € V and v, € V represent the locations of the
Eth activity. Assuming statistical independence between the
moving strategies of intruder activities, we have the state
transition probability distribution for /), denoted by A, =
{au{’,u;’} where

P
. = e P Py e
au U" = p( Yt+1 - Ui ]Xt - bj) = H amk.wjk -
k=1
The initial distribution is

P
= H '/Tl(Uik)~
k=1

The observation symbol probability distribution is B =
{byr(d)} where

bur (d) = p(D(Va, t) = dIX} = 7)

|| 9;\1"

For the above equation, if 3q € {1....

Il

=y, | X2 = 'u;.’).

P} Stovj, =g,
p(d(vs, t) = d, |XT = vf) = pa(vs, )"+
Otherwise,

pld(vs, 1) = ds, | XE = 0F) = pr(vs, )"

In our model, we assumed that having multiple intruder
activities at the same location does not increase the detection
probability of the associated sensor. This can be defined
differently. For instance, if sensors are likely to detect
intruder activities better when there are more activities at the
same location at the same time, then we may want to consider
the following alternative approach: let r be the number of v,

components in v;-’ = (Vg0 Vggy + v s U5, )s If 2 1, then
PZ(UM) =1—(1—pa(vs

pd(vs, ,t) = ds | X{ = v ) = pj(vs, )0

When r = 0, we have
p(d(vs ) = d'?k[Xt =5 ) = pf(”sx) e

Let us recall the model in Fig. 2. To illustrate the above
hypothesis construction procedure, we build H, from the
model in Fig. 2, which is depicted in Fig. 3. In Fig. 3,
for the sake of readability, we drew only some part of
the model. Darkened squares represent the pairs of intruder
activity vertexes where sensors are deployed at least one
of the vertexes. To illustrate, we compute the conditional

)" and

(1=pg(vs, ))l_d”

(1_pd(vsk))l_dﬁk .

(1=, ) %

(1_pf(USk ))l~d3k .

0.014

Fig. 3. Markov model of two intruder activities

observation probabilities when two intruder activities are
present at (1, 2) pair below. Time index is omitted for brevity.

p(D({2,3}) = (0,0)[(1,2)) = (1 = pa(2))(1 — pf(3)) = .24
p(D({2,3}) = (0 D[(1,2)) = (1 = pa(2))ps(3) = .06
p(D({2,3}) = (1.0)|(1,2)) = pa(2 )(1“Pf(3)) = .56
p(D({2,3}) = (1,1)[(1,2)) = pa(2)ps(3) =

I1I. SEQUENTIAL CHANGE DETECTION AND ISOLATION

Having sequential data collected from sensors, we are
interested in counting intruder activities in a sequential man-
ner. Consider a sequence of independent random variables
Y1,Ys,....LetYy, Ys, ..., Y, 1 beani.i.d. sequence. Wald’s
Sequential Probability Ratio Test (SPRT) [21] has been used
widely in festing which of two hypothesis probability density
functions, say fo and fi, better explains the sequential data.
For two hypotheses to test, SPRT is an optimal sequential
hypothesis test satisfying given probability detection and
false alarm constraints.

Hypothesis testing approaches assume that the true hy-
pothesis is given and does not change. When a sensor net-
work is deployed initially, the domain to be monitored may
have no on-going intruder activity. Later, intruders may enter
to the domain to be monitored where the sensor network is
deployed and operating. Therefore, intruder activity counting
problem can be paraphrased into detecting the change of the
true hypothesis from the hypothesis representing no intruder
activity to some hypothesis representing some intruder ac-
tivities.

Page’s CUSUM algorithm [16] provides an optimal proce-
dure for sequential change detection problem [10] between
two hypotheses as SPRT for sequential hypothesis testing
for i.i.d. sample sequences. Let us recall CUSUM algo-
rithm. Consider a sequence of independent random variables
Y7,Yo,....LetY:1.Ys, ..., Y,_1 beii.d. sequence with prob-
ability density fp, and Y, Y41, ... be i.i.d. sequence with
probability density [,. Time of change v is not known.

Many sequential analysis techniques, including CUSUM,
involve the following summation of log-likelihood ratio of



probability densities:
% fl(Yn)
s = log | —— ] .
! ; : (fO(Yk)
=j
In particular, CUSUM involves finding the summation of log-

likelihood ratio of probability densities that prefers density
Jf1 over fo most; i.e.,

Qi = max Gj.
1<j<i

Given a threshold i > 0, the decision logic of CUSUM is
simply to determine if

Qi > h.
The recursive form of this test is
fl(y'i))
;i =max(Q;_1 +log | =———= 1,0
Q (Qi1 g <f0(Yi) )

with @y = 0.
The stopping time of N of CUSUM is the first time when
Q,i > h. That is,

N=inf{i >1:Q; > h}.

The stopping time N is asymptotically optimal in the fol-
lowing sense [10]:

h
Eo(N) > e" and 71 (N) = E;(N) ~ 5o h — oo.

where Fo(N) denotes the mean time before a false alarm,
T1(INV) denotes the mean detection delay of a change, and p
is the Kullback-Leibler distance between the two probability
densities, that is,

= 1 () - M('I
n~/nm1%<mm>u

For multiple alternatives, consider a sequence of inde-
pendent random variables Y3, Y5,.... Let Y1, Ys, ... Y,
be ii.d. sequence with probability density fp, and
Yy, Yyt .- . be i.i.d. sequence with probability density f, €
{f1,.-., far}. Time of change v to one of the alternative
hypotheses is not known and we are interested in detecting
and isolating the change from fj to f, in a sequential manner.
Nikiforov’s treatments in [13] generalize CUSUM procedure
to accommodate multiple alternatives and show asymptotic
optimality of the algorithm in minimizing the worst mean
detection/isolation delay for a given mean time before a
false alarm or a false isolation. A drawback of Nikiforov’s
procedure is that the proposed algorithm is not recursive.
Subsequent developments in this line of research include
[15], where Matrix-CUSUM provides a recursive procedure
while preserving asymptotic optimality of Nikiforov’s pro-
cedure.

Developments in [13,15] only deal with i.i.d. sequences.
Work presented in [2] deals with CUSUM procedure with the
two HMM hypotheses where observation sequences are not
independent. Combining the developments in [15] and [2],
we develop our recursive algorithm for counting activities.

Before we proceed to present Matrix-CUSUM for multiple
HMM hypotheses, we need the following preliminary com-
putation. Consider the observation sequence {d,}’_; where

d_:? = (dq,l, dqyg, B -dq.n) = {0 l}n

The below shows a typical observation sequence with three
Sensors.

o\" 0\" 0o\"
1 0 0
([1 (IQ (it

Given the observation sequence {d:z}};:l, we are interested
in computing the probability of observing {d;}z:l under
HMM hypothesis H, denoted by p({d_;}Z:1|Hp).

For the null hypothesis Hy,

P({CE;}Z:HHD) = H

1<q<t, 1<i<n

Py (i) (1 — py(u;))t ot

For hypotheses other than Hp, we can use the forward al-
gorithm [17] to compute conditional observation probability
effectively. For the sake of completeness, we describe the
forward algorithm in Appendix VIII-A.

Now we give our activity counting algorithm: Given h >
0, the pair (V) is defined by

N =min{N! N% ... NM} and p = arg min N?
1<p<M

where

NP =inf{i > 1: min max G(p, k) > h}

0<k#Ap<M 1<;<i

" (AN
i pUdqto=;|Hp )
Gi(p, k) =1 —_— .

J(p : o (P({dq}i]:lek)

Note that CUSUM statistics of p'"* hypothesis against ‘"
hypothesis given by
Qi(p, k) = ggg;Cﬁ(p,k)
is recursively computable. Therefore, the minimum CUSUM
statistics of p'” hypothesis against other hypotheses,

Qi(p’ k),

min

0<k#p<M
is also recursively computable. The stopping time N is the
instance when the minimum CUSUM statistics of one of
hypotheses, say H;, becomes higher than the given threshold
h. This is the moment when the procedure declares that the
true hypothesis has changed from H to H;. Obviously, the
threshold h affects the performance of the developed sequen-
tial decision process. For i.i.d. cases, roughly, with increasing
h, expected time to reach the false detection and isolation
decision increases exponentially while expected time to reach
a correct detection and isolation decision increases linearly.
See [13,15] for more details. We conjecture that a similar
argument should hold for our case as well.



IV. TRACKING LOCATION AND ESTIMATING TRACE

An estimate of the locations of p activities at time ¢,
denoted by ©¢, is computed as follows.

a(vf)

Xg): f J t: = ===,
p( v I{ q}q 1) p({dq}f]:”Hp)

P .= arg max p(XP? = vP|{d,}t_,).
Ut guf’e\)/(,,p( t T q}th)

Note that the forward algorithm in Appendix VIII-A com-
putes the forward variable a;(vY) and the observation se-
quence probability p({ Jq}zzl |H,) recursively. Therefore, 0!
can be recursively estimated on the fly.

Having the above Matrix-CUSUM procedure for multiple
alternative HMM hypotheses, we use the following value as
the estimate of the instance of hypothesis change:

t := arg max G]N(ﬁ, 0) (1)
1<5<N

with 0 indicating that no intruder activity is present. Intu-
itively, NV is the instance when Matrix-CUSUM for multiple
alterative HMM hypotheses finalizes the isolation to the
hypothesis Hj;. The value [ means the beginning instance
of observation subsequence that supports the change of
hypothesis from Hy to Hp best.

Given the estimate of the instance of hypothesis change,
we are interested in finding the most probable trace of
activities:

5y K oy N VN TN
{or}2; = arg max p({XT}1; = {v}}Lil{da} s Hp):
ve b ;

The Viterbi algorithm [20] finds the most probable sequence
of hidden states that results in a sequence of observed
events. For the sake of completeness, the Viterbi algorithm
is described in Appendix VIII-B.

V. ILLUSTRATIVE EXAMPLE
Consider a graph G = (V, E) depicted in Fig. 4. This

i 2 5 9 14 2027 121 118 137 135 149
119
"
3 8 413 ¢19 [26034 12Q97 |8 117
ﬂ 3|71
62 15 134 148
6 7 |12 |18 33]41 4 73ls7199181 l6agr 11 136
10 111 117 124 |32 6
1 124 123
15416 123 g3t 39 lssls1 53 ‘l.ﬁg‘éal&? 100
59 66 75 891 76 Loz |78 L4 122
21 30 |38 [44 |s0|56 65 _qu_e_1 121110491 (77193 [113
12142129 {111 |92
$28 120 437 443 {40 1 70 183 4104129139143 {130 4112114132
14Q151153 |144 (130133146
ﬁ‘:_.ﬂﬁ_hz_dl 54 84 [104126141/15P155 154 11431471150 138

Fig. 4. Domain to be monitored

Fig. 5.

graph G includes 155 vertexes and 536 directed edges; all
edges in Fig. 4 are bidirectional. That is,

V={1,2,...,155}and E = {(1,2),(2,1),...,(154,155)}.

There are 52 stationary sensors (filled circles) in Fig. 4.
Following the notation in the main presentation, we denote
the sensor set by

Vei={3i—2:i=1,...,52} = {1,4,7,...,154}.

Regarding false alarm and detection probabilities, for all
v € Vi, we assume that

ps(v) = 0.01 and py(v) = 0.95.

We assume that intruders enter to the network from any
vertex and travel within the graph G with independent
Markov transition strategies. We also assume equally-likely
entry probability among all vertexes. Therefore, for vertex
veV,

1 1

m() = — = —.
1(v) V| ~ 155
For activity transition, we assume that, if (v;, ;) € F,

ik
" number of outgoing edges from v;’

Ay, U

i.e.,, all outgoing paths are equally probable. Otherwise,
y, v, = 0. For example, ay o = 1/2 and a4 = 1/4.
We consider the following intruder activity hypotheses:

Hy @ no activity presents
H; : single activity presents
Hy : 2 activities present

Let us suppose that an activity enters the domain to be
monitored at the 10*" sample step. The progress of the
activity is depicted with the thick lines in Fig. 5(a); activity
enters the monitored domain at vertex 1 and travels within
the network following the thick lines. With this activity

il

A

1 1

(b) The most probable activity trace

(a) Actual activity trace

Actual and inferred (via Viterbi algorithm) intruder activity traces
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@ : correct activity detection X : false alarm

Fig. 6. Observation snap shots

sample path, sequential observations are generated with the
given false alarm and detection probabilities. Figure 6 gives
the snapshots of the sequential observations from the steps
10 to 13. Equipped with the sequential observations of the

—%—Q(10)

== Q12)
- o -Q21)
x  Q(20)

Activity entry time
CUSUM threshold

Fig. 7.

Matrix-CUSUM progress

distributed sensors, we get the progress of Matrix-CUSUM
depicted in Fig. 7. The threshold & of Matrix-CUSUM is set
to 5. The value min(Q35(1,0), @35(1,2))) goes over 5 at
the 36" step while min(Q35(2,0), Q35(2,1))) stays below
5; this is the instance when Matrix-CUSUM for multiple
alternative HMMs detects and isolates the change of true
hypothesis from H; to H;. With (1), we get the estimated
activity entry time f = 10. Given this value, we run the
Viterbi algorithm computing the most probable activity path,
which is depicted in Fig. 5(b) with the thick lines.

VI. FINAL REMARKS

The methodology presented in this paper is capable of
detecting and isolating the change of the true hypothesis

once. The problem of tracking the true hypothesis subsumes
the problem addressed in this paper. We believe that the
developed methodology should serve as a building block
for hypothesis tracking problem, which is under current
investigation.

The presented procedure of building model for multiple
activities suffers with state space explosion as the number
of activities increases. Compounded upon this, the forward
and the Viterbi algorithms present square (of |V}, |) computa-
tional complexities per each recursion step. To handle large-
size problems, our current research efforts also include the
developments of algorithmic procedures and methodologies
for alleviating this computational difficulty.
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VIII. APPENDIX
A. Forward Algorithm

Consider the forward variable
ar1(v) = p({dg}e2h, XT_, = vF|Hy).

The following recursion computes the forward variable
i (v) effectively:

e Initial condition: for v¥ € V},

”1(1’_7) = ﬂ'l("j)) . buf’(’ﬂ)

e Induction: for 'uj-’ eV,

Py =
(Yt(l’j) =

Z (”11(”‘;}) : a"UJ""UfJ ’ bvf (dt)

I v
ul.EV,,

e Observation sequence probability:

p({daYoiHp) = > ag(vh)

»
viEV;

The computational complexity of the forward algorithm of
each recursion is O(|V,|?) for H,.

B. Viterbi Algorithm

Given the estimated entry time t of p activities, we can
apply the Viterbi algorithm in order to compute the most
probable activity path that best explains the sequence of
observations from ¢. The Viterbi algorithm is similar to the
forward algorithm presented above. Instead of summing over
transitions from incoming states, the associated recursion
computes the maximum from incoming states as below. The
term o}(v;’ ) below implies the probability of the partial best
path to v¥ at time ¢.

o Initial condition: for v¥ € V;

0(vf) = m(v]) - bys(dp)

e Induction: for vf eVs

(5t(’U}-’) = | max (5{._1(1)5) g (IU;} WP | b”i’(dt)
/ VWP EV; EA J
'z/;t(uf) = |arg max dt_l(-uf) TGP

PV
v €V

e Termination:

>

~

oF. = arg max 04 (vF)
N p
v; EVy

e Read out path:
{){’: ﬂ’t+1(f’f+1)- f = N- 1,{

The computational complexity of the Viterbi algorithm is
O(|V3|* - (N — 1)) for Hyp.
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