
The INL is a U.S. Department of Energy National Laboratory 
operated by Battelle Energy Alliance 

INL/EXT-06-11057

Reactor Pressure Vessel 
Temperature Analysis 
For Prismatic And 
Pebble-Bed VHTR 
Designs

H. D. Gougar 
C. B. Davis 

April 2006 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71313189?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




INL/EXT-06-11057

 Reactor Pressure Vessel Temperature Analysis for 
Prismatic and Pebble-Bed VHTR Designs 

H. D. Gougar and C. B. Davis 

April 2006 

Idaho National Laboratory 

Idaho Falls, Idaho 83415 

Prepared for the 
U.S. Department of Energy 

Assistant Secretary for Nuclear Energy 
Under DOE Idaho Operations Office 

Contract DE-AC07-05ID14517



ii



iii

ABSTRACT 

Analyses were performed to determine maximum temperatures in the reactor pressure vessel for two 
potential Very-High Temperature Reactor (VHTR) designs during normal operation and during a 
depressurized conduction cooldown accident.  The purpose of the analyses was to aid in the determination 
of appropriate reactor vessel materials for the VHTR.  The designs evaluated utilized both prismatic and 
pebble-bed cores that generated 600 MW of thermal power.  Calculations were performed for fluid outlet 
temperatures of 900 and 950 °C, corresponding to the expected range for the VHTR.  The analyses were 
performed using the RELAP5-3D and PEBBED-THERMIX computer codes.  Results of the calculations 
were compared with preliminary temperature limits derived from the ASME pressure vessel code.   
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SUMMARY

The expected high operating temperatures of the Very High Temperature Reactor (VHTR) place 
significant constraints on the choice of materials for the reactor pressure vessel.  Current designs based on 
the Pebble Bed Modular Reactor (PBMR) propose using SA-508 steel for the reactor vessel while those 
based on the Gas-Turbine Modular Helium Reactor (GT-MHR) propose using SA-336 (9Cr-1Mo-V).  
SA-508 steel has been used for reactor vessels in light water reactors and is expected to be significantly 
cheaper than SA-336.

Analyses were performed to determine maximum temperatures in the reactor pressure vessel for two 
potential VHTR designs during normal operation and during a depressurized conduction cooldown 
accident.  The purpose of the analyses was to aid in the determination of appropriate reactor vessel 
materials for the VHTR.  The VHTR designs evaluated utilized both prismatic and pebble-bed cores.  The 
cores generated 600 MW of thermal power and had fluid outlet temperatures of either 900 or 950 °C.  The 
analyses of the prismatic design were performed using the RELAP5-3D computer code, while the 
analyses of the pebble-bed design were performed with the coupled PEBBED-THERMIX.   Because 
PEBBED-THERMIX has not been extensively validated, confirmatory calculations were also performed 
with RELAP5-3D for the pebble-bed design.  During normal operation, the predicted axial profiles in 
reactor vessel temperature were similar with both codes, but the maximum value predicted by PEBBED-
THERMIX was about 40 °C higher than the corresponding value predicted by RELAP5-3D.  The trends 
of the calculated vessel temperatures were similar during the depressurized conduction cooldown accident 
and the maximum calculated values were within 13 °C.  This agreement is considered reasonable based 
on the expected uncertainty in either calculation.

Table I summarizes the results of the calculations with preliminary temperature limits from the ASME 
pressure vessel code.   The temperature limits are considered preliminary because not all factors, such as 
reductions to account for welds and operating history, have been accounted for.  Calculated results for 
normal operation are presented in the second or third columns of Table I.  Calculated results for the 
depressurized conduction cooldown accident are presented in the last column.      

Table I shows that SA-508 is not a suitable material for the prismatic VHTR based on its current design.  
The maximum temperature during normal operation exceeds the value that allows unlimited operating 
time with SA-508 steel.  The calculations show that SA-336 steel is suitable for the prismatic design and 
allows 34 years of normal operation with considerable margin.  Additional work will be required to 
extend the design lifetime to the 40 to 60 years typically desired for nuclear plants.  A more detailed 
design of the lower head region is also required.  The current design provides a large margin to the 1000-h 
limit of 650 °C for SA-336 during the depressurized conduction cooldown accident.  In fact, the 
maximum calculated temperatures during the accident meet the 590-°C limit for normal operation.      

For the pebble-bed design, the maximum vessel temperature during normal operation was 21 °C above 
the allowed value for unlimited operation of SA-508 based on the PEBBED-THERMIX calculation, but 
was 16 °C below the temperature limit based on the PEBBED-THERMIX calculation.  Design changes, 
such as the use of active cooling of the lower vessel, are required to reduce the maximum temperature 
below the allowed value and/or to increase the margin to the temperature limit during normal operation.  
The maximum calculated temperatures with both codes were significantly below the allowed values 
during the depressurized conduction cooldown accident. 
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Table I.  A comparison of temperature limits and maximum calculated reactor vessel temperatures.   
 Operation 
 Unlimited < 3x105 h < 3000 h < 1000 h 
     
Prismatic core:     
SA-336
(9Cr-1Mo-V)

T < 371 °C 371 < T < 590 °C  590 < T <  650°C 

  Tout = 900 °C   388 °C a  510 °C b

  Tout = 950 °C    421 °C a  517 °C b

     
Pebble bed:     
SA-508 T < 371 °C  371 < T < 427 °C 427 < T < 538 °C 
  Tout = 900 °C 374 / 342 °C a,c   450 / 463 °C b,c

  Tout = 950 °C 392 / 355 °C a,c   452 / 465 °C b,c

     
a. Calculated maximum wall-averaged temperature during normal operation. 
b. Calculated maximum wall-averaged temperature during the depressurized conduction cooldown 

accident.
c. Calculated with PEBBED-THERMIX / RELAP5-3D, respectively. 
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1. INTRODUCTION 

The expected high operating temperatures of the Very High Temperature Reactor (VHTR) place 
significant constraints on the choice of reactor pressure vessel materials.  The reactor design determines 
the maximum operating temperature of the reactor vessel.  The maximum operating temperature then 
determines the vessel materials that will allow an acceptable lifetime.  Some designs, such as the South 
African Pebble Bed Modular Reactor (PBMR), propose using SA-508 steel for the reactor vessel.  SA-
508 has been used for reactor vessels in light water reactors and requires a relatively low operating 
temperature.  The South Africans report a normal operating temperature of 280 °C for the PBMR reactor 
vessel.  This low temperature is achieved with a pressure vessel conditioning system that uses an 
independent coolant stream to keep the reactor pressure vessel at an acceptable temperature.  This is not 
designed as a safety system and thus is assumed to fail during a depressurized conduction cooldown.   
Other designs, such as the Gas-Turbine Modular Helium Reactor (GT-MHR) (General Atomics 1996) 
proposed operating at a higher vessel temperature of 485 °C that requires using SA-336 (9Cr-1Mo-V) 
steel.

Analyses were performed to determine maximum temperatures in the reactor pressure vessel of two 
potential VHTR designs during normal operation and during a depressurized conduction cooldown 
accident.  The purpose of the analyses was to aid in the determination of appropriate reactor vessel 
materials for the VHTR.  The designs evaluated utilized both prismatic and pebble-bed cores.  The 
prismatic design was based on the 600-MW (thermal) GT-MHR.  The pebble-bed design was based on 
the 400-MW PBMR, but the power was increased to 600 MW, the desired power level of the VHTR.  
Calculations were performed at vessel outlet fluid temperatures of 900 and 950 °C.      

The analyses of the prismatic design were performed using the RELAP5-3D computer code (RELAP5-3D 
Code Development Team 2005).  The analyses of the pebble-bed design were performed with the 
PEBBED-THERMIX computer code (Gougar et al. 2005).   Because PEBBED-THERMIX has not been 
extensively validated, confirmatory calculations were also performed with RELAP5-3D for the pebble-
bed design.  These thermal-hydraulic calculations were performed with best-estimate, rather than 
conservative assumptions.  Thus, the calculations were not intentionally biased to provide higher than 
expected estimates of the maximum vessel temperatures for licensing purposes.   

Preliminary temperature limits for SA-508 and SA-336 steels based on the current boiler and pressure 
vessel code from the American Society of Mechanical Engineers (ASME) (ASME 2001, ASME 2004) 
are presented in Table 1.  These limits are considered preliminary because they do not account for 
reductions due to welds and operating history.  The limits presented in Table 1 are compared with the 
calculated results obtained from this analysis to determine initial estimates of the suitability of the 
different materials for the proposed designs.  The limits for normal operation are based on the values 
given in the second column of Table 1 for SA-508 and the third column for SA-336.  The limits for the 
depressurized conduction cooldown accident are given in the fifth column.  Although the code allows 
operation of SA-336 up to 590 °C for 3x105 h, it is expected that the vessel temperature will eventually be 
limited to less than 425 °C during normal operation to avoid issues associated with creep.   

Table 1.  Temperature limits for SA-508 and SA-336 steels. 
Steel Operation 
 Unlimited < 3x105 h < 3000 h < 1000 h 
SA-508 T < 371 °C  371 < T < 427 °C 427 < T < 538 °C 
SA-336  T < 371 °C 371 < T < 590 °C  590 < T <  650°C 
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The RELAP5-3D and PEBBED-THERMIX computer codes are described in Section 2.  Results of the 
thermal-hydraulic analyses of the prismatic and pebble-bed designs are presented in Section 3.  
Conclusions are presented in Section 4.  References are presented in Section 5.   

2. CODE DESCRIPTIONS 

Brief descriptions of the RELAP5-3D and PEBBED-THERMIX computer codes are presented in 
Sections 2.1 and 2.2, respectively. 

2.1 RELAP5-3D 

RELAP5-3D (RELAP5-3D Code Development Team 2005) was developed for the thermal-hydraulic 
analysis of light water reactors and related experimental systems during loss-of-coolant accidents and 
operational transients.  The code originally contained a one-dimensional, nonhomogeneous, and 
nonequilbirum model for two-phase flow and a point model for reactor kinetics.  The code currently 
contains multi-dimensional models for flow and reactor kinetics, but one-dimensional models were used 
in this analysis.   

RELAP5-3D has the capability to simulate a wide variety of nuclear systems and working fluids.   The 
code currently simulates over twenty working fluids, including light and heavy water, helium, carbon 
dioxide, hydrogen, nitrogen, helium-xenon, lead-bismuth, sodium, lithium, potassium, sodium-potassium, 
ammonia, and several liquid salts.   

Recent assessments of RELAP5-3D that are applicable to the VHTR are described by Oh et al. (2006).     

A special version of the RELAP5-3D was created for the pebble-bed analysis described in Section 3.2.  
The special code version implemented correlations for heat transfer and wall friction coefficients 
applicable for pebble-bed reactors based on correlations given by Fenech (1981). 

2.2 PEBBED-THERMIX 

PEBBED is a three-dimensional core simulator code developed at the Idaho National Laboratory 
specifically for pebble-bed reactor design and analysis (Gougar et al. 2004).  It converges directly upon 
the asymptotic or equilibrium fuel cycle using an integrated neutron diffusion-depletion solver.  Core 
design optimization is performed using a genetic algorithm operating on core geometry and pebble flow 
parameters.  Core temperature profiles can be obtained using a one-dimensional embedded thermal-
hydraulic solver or with a coupled THERMIX calculation.  THERMIX is a two-dimensional (RZ) heat 
transfer and gas dynamics code developed for the German pebble-bed reactor program.  It is part of the 
VSOP PBR fuel cycle analysis system (Teuchert 1994) but the THERMIX module has been extracted 
recently for use with other codes. THERMIX contains material properties and correlations validated for 
PBR analysis under the German High Temperature Reactor program. The PBMR Corporation uses a 
modified version of VSOP (with THERMIX) for their reactor design and fuel cycle analyses.   

Burnup and temperature feedback are treated by iterating between PEBBED-THERMIX and COMBINE, 
the INL spectrum code (Yoon 1994). 
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3.0 RESULTS 

Results of the thermal-hydraulic analyses of the prismatic and pebble-bed versions of the VHTR are 
presented in Sections 3.1 and 3.2, respectively.   

3.1 Prismatic Design  

The evaluation of the VHTR containing prismatic blocks is based on the design of the GT-MHR (General 
Atomics 1996).  The GT-MHR was designed to operate at core inlet and outlet temperatures of 491/850 
°C.  The inside wall temperature of the reactor vessel was 485 °C, which was just slightly below the core 
inlet fluid temperature.  The reactor vessel was fabricated from 9Cr-1Mo-V ferritic steel.  The vessel 
design limits used by General Atomics were 495 °C for 4.6 x 105 h (normal operation) and 538 °C for 1.0 
x 103 h (transient conditions).  General Atomics reported a maximum reactor vessel (midwall) 
temperature of 490 °C versus an accident limit of 565 °C during a depressurized conduction cooldown 
accident.  Note that the temperature limits used by General Atomics predated the ASME code for 9Cr-
1Mo-V steel and were about 100 °C lower than the values given in Table 1.       

The VHTR is desired to operate at a higher outlet temperature than the GT-MHR to increase the 
efficiency of the electrical production cycle and/or to allow for efficient production of hydrogen.  
Although the VHTR has not yet been designed, current goals call for outlet temperatures in the range of 
900 to 950 °C.  Raising the GT-MHR inlet and outlet temperatures by 50 to 100 °C would achieve the 
desired temperature goal for efficiency, but would also increase the maximum reactor vessel temperature.   
Maintaining the inlet temperature at the GT-MHR value and reducing the core flow to achieve the desired 
outlet temperature would keep the vessel temperature relatively low but would cause concerns about flow 
starvation in the hot channels of the core.   

Reza et al. (2006) evaluated design modifications to the GT-MHR that routed the inlet flow through holes 
in the outer reflector rather than through channels between the core barrel and the reactor vessel.  This 
design prevented the inlet flow from contacting the reactor vessel, which enabled the inlet and outlet fluid 
temperatures to be increased while lowering the operating temperature of the reactor vessel.  Detailed 
simulations of the vessel lower head were not performed, but it was assumed that the lower head could be 
isolated from the inlet flow, such as by applying insulation or by using a distribution header to supply the 
flow holes in the outer reflector.   

This evaluation utilized the GT-MHR design as modified by Reza et al. (2006).  RELAP5-3D (RELAP5-
3D Code Development Team 2005) calculations were performed to determine the reactor vessel 
temperature during normal operation and a depressurized conduction cooldown accident.  The RELAP5-
3D input model was based on the model of Reza et al. (2006), which in turn was based on the model 
developed for the Next Generation Nuclear Plant by MacDonald et al. (2003).  The model of Reza et al. 
(2006) was modified to produce the desired core inlet/outlet temperature conditions for this evaluation.       

The RELAP5-3D model of the VHTR vessel is shown in Figure 1.  The active core (Components 152 
through 156) was modeled with three radial rings, corresponding to the three annular rings of prismatic 
fuel blocks in the design, and ten axial levels.  The upper and lower reflectors were each modeled with a 
single axial level.  Core bypass paths were simulated through the inner and outer reflectors (Components 
142 and 145, respectively).   In the original model developed by MacDonald et al. (2003), cold helium 
from the vessel inlet flowed upwards through an annular riser (Component 130) and into the core inlet 
plenum (Component 140).  In the revised model developed by Reza et al. (2006), the riser was modeled 
as a region of stagnant helium and the cold helium flowed upwards through flow holes in the outer 
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reflector (Component 132).  Conduction enclosure models were used to simulate the heat transfer 
between the three core rings and between the core and the reflectors.  Radiation enclosure models were 
used to simulate the heat transfer across the riser and between the reactor vessel and the containment wall.  
The outer surface of the containment wall was cooled by the reactor cavity cooling system (RCCS).  
Naturally-circulating air was the ultimate heat sink for the RCCS. 

Figure 1.  RELAP5-3D model of the prismatic VHTR reactor vessel (from Reza et al. 2006). 

Steady-state calculations were performed with vessel outlet fluid temperatures of 900 and 950 °C.  
Results are presented in Table 2.  The table contains two vessel temperatures, one at the inner wall and 
the other at the radial center of the inner and outer walls.  Both maximum temperatures generally occurred 
at the same axial location in the vessel.  The midwall temperature is appropriate for comparison with the 
temperature limits given in Table 1 because the ASME code (2004) specifies the use of the wall-averaged 
temperature.  The higher temperature at the inner wall is an indication of the heat conduction through the 
wall and the subsequent heat transfer to the RCCS.      
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Table 2.  Calculated thermal-hydraulic conditions during normal operation for the prismatic VHTR.   

Parameter Tout = 900 °C Tout = 950 °C 
   
Power, MW 600 600 
Pressure, MPa 7.00 7.00 
Differential pressure, MPa 0.0764 0.0802 
Inlet temperature, °C 540 590 
Outlet temperature, °C 900 950 
Flow rate, kg/s 325.0 325.1 
Core bypass, % 9.59 9.53 
Maximum vessel temperature (inner wall), °C 410 447 
Maximum vessel temperature (midwall), °C 388 421 
Maximum fuel temperature, °C 1064 1112 
RCCS power, MW 1.83 2.13 

The steady-state reactor vessel temperature was far less than the limit of 590 °C for normal operation with 
SA-336 steel given in Table 1.  The calculated results are expected to be reasonably accurate because the 
original RELAP5-3D model developed by MacDonald et al. (2003) was benchmarked against results 
calculated by General Atomics for the GT-MHR.  The benchmarking showed that the maximum reactor 
vessel temperatures predicted by RELAP5-3D during normal operation and during the depressurized 
conduction cooldown accident were within 5 and 13 °C, respectively, of the values reported by General 
Atomics.   

The calculated response of the maximum midwall temperature of the reactor vessel during a 
depressurized conduction cooldown accident is shown in Figure 2.  During normal operation, heat transfer 
due to convection to the fluid in the gaps between reflector blocks and the coolant channels in the outer 
reflector was much greater than the heat transfer due to conduction through the reflector.  Conduction 
became the dominant heat transfer mechanism after the scram and the depressurization.  The temperatures 
of the core barrel and the reactor vessel initially decreased during the accident due to the decrease in 
convective heat transfer combined with the long thermal response time of the outer reflector.  Eventually 
the temperature gradients due to conduction worked their way through the outer reflector and the vessel 
temperature increased because of the mismatch between the core decay power and the heat removed by 
the RCCS (see Figure 3).  The reactor vessel temperature peaked near the time when the power removed 
by the RCCS exceeded the decay heat.   
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Figure 2.  Maximum reactor vessel temperatures during a depressurized conduction cooldown accident 
with the prismatic design. 
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Figure 3.  A comparison of RCCS heat removal and core decay power during a depressurized conduction 
cooldown accident with the prismatic design. 

Table 3 presents maximum calculated temperatures during the conduction cooldown event.  The 
maximum predicted midwall temperatures remained well below the accident limit of 650 °C given in 
Table 1.  A comparison of Tables 2 and 3 reveals that a 50 °C increase in outlet temperature caused the 
maximum midwall temperature to increase by 33 °C at steady state, but by only 7 °C during the accident.    

Table 3.  Maximum temperatures during the depressurized conduction cooldown accident in the prismatic 
VHTR.

Parameter Tout = 900 °C Tout = 950 °C 
   
Maximum vessel temperature (inner wall), °C 553 562 
Maximum vessel temperature (midwall), °C 510 517 
Maximum fuel temperature, °C 1501 1526 
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Figure 4 shows the axial temperature profiles at the inner surface of the reactor vessel at two times, 0.0 h 
which corresponds to normal, full-power operation and 83.3 h which is near the time of the peak 
temperature during the depressurized conduction cooldown accident.  The reactor vessel temperature 
during normal operation is nearly independent of elevation in the region between the bottom of the active 
fuel (BAF) and the top of the active fuel (TAF).  The wall temperature decreased above the active fuel 
because of the presence of a thermal shield.  The calculated temperature below the active core decreased 
because the model assumed that the inlet and outlet fluids did not contact the vessel and that the only 
source of heat transfer to the lower head was due to radiation from adjacent heat structures.  A more 
detailed evaluation of this potentially limiting region will be required once the design is completed.   
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Figure 4.  Reactor vessel axial temperature profile for the prismatic design with an outlet fluid 
temperature of 950 °C. 

The axial temperature profile shifted significantly during the depressurized conduction cooldown 
accident.  At the time of the peak temperature, the maximum vessel temperature occurred near the axial 
center of the core, which was the peak power location in this analysis.   

3.2 Pebble-Bed Design 

The evaluation of the pebble-bed VHTR was based on PEBBED-THERMIX and RELAP5-3D models 
developed specifically for this task.   

The PBMR has a rated thermal power of 400 MW and thus its basic design had to be modified to 
accommodate the higher power of the VHTR.  A genetic algorithm was employed to automatically search 
for a core geometry that would yield a vessel comparable in size to other 600 MW high temperature 
reactor designs and achieve passive safety, i.e. the fuel temperature will remain under 1600 °C during a 
depressurized conduction cooldown accident.  Using the PBMR-400 design as a starting point, various 
perturbations to the core and reflector dimensions were explored and analyzed using PEBBED-
THERMIX.  Once a promising candidate was identified, final iterations with COMBINE were executed 
to generate a self-consistent physical model.  PEBBED was also used to design a 600 MW pebble-bed 
VHTR in a previous study (MacDonald et al. 2003) but without detailed THERMIX analysis and 
temperature feedback in the cross sections.  The reactor obtained in this current work is thus a more 
realistic model.  The basic reactor dimensions are shown in Table 4. 
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Table 4. Dimensions of 600 MW pebble-bed VHTR obtained using a genetic algorithm search. 
Dimension Value (m) 
Height of active core 10.96 
Radius of inner reflector 1.582 
Outer radius of fuel annulus 2.464 
Outer radius of outer reflector 3.072 

The thicknesses of the top and bottom axial reflectors (1.86 m and 4.36 m) were not changed from the 
values used in the PBMR-400 Coupled-Code Benchmark model (OECD 2005).  Control rods (B4C) were 
assumed to be partially inserted into the outer reflector to allow for xenon override.  A complete 
description of the THERMIX model is shown in Figure 5. 

Figure 5: PEBBED-THERMIX model of the 600 MW pebble-bed VHTR. 
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The active core is represented by composition 1.  The cold He inlet is composition 14 and the coolant 
ascends through a riser (composition 15).  It then passes through the upper plenum (composition 16), 
through the core and porous bottom reflector (composition 17) and out through the lower plenum 
(composition 18).  Parts of the inner and outer radial reflectors are treated as porous to allow for bypass 
flow (composition 22).  The pressure drops across these channels were adjusted to yield an overall bypass 
flow of 10%.   

The upper and lower boundaries (compositions 20 and 21) are fixed as adiabatic so that heat transfer out 
of the vessel is through the radial boundary.  This boundary is set at a constant temperature of 20 °C to 
simulate a working RCCS.  The reactor pressure vessel is represented by composition 12. 

The corresponding RELAP5-3D input model is shown in Figure 6.  The heat source term was obtained 
from the PEBBED calculation and assumed that all fission power was deposited locally.  The primary 
components are the riser (Component 120), gas plenum (Component 140), core (Components 151 through 
155), and the outlet plenum (Component 180).  The active core was modeled with five radial rings and 
eleven axial levels.  Core bypass paths were simulated through the inner and outer reflectors (Components 
142 and 145, respectively).  The flow areas of these paths were adjusted to achieve a total bypass flow 
near 10%.  The stagnant helium gaps between the outer reflector and the core barrel and the core barrel 
and the reactor vessel were modeled with Components 182 and 184.  Conduction enclosure models were 
used to simulate the heat transfer between the various core rings and between the core and the reflectors.  
Radiation enclosure models were used to simulate the heat transfer across the stagnant gaps and between 
the reactor vessel and the containment wall.  As with the THERMIX model, the outer surface of the 
containment wall was held at 20 °C, simulating a water-cooled RCCS.  The outer surfaces of the top and 
bottom barrel plates, which are located above the gas plenum and below the outlet plenum, respectively, 
were modeled adiabatically.            
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Figure 6.  RELAP5-3D model of the pebble-bed VHTR. 

Steady-state calculations were performed with outlet temperatures of 900 and 950 °C.  Results are 
presented in Table 5. 

Table 5.  RELAP5-3D and THERMIX calculated thermal-hydraulic conditions during normal operation 
for the pebble-bed VHTR.   
Parameter Tout = 900 °C Tout = 950 °C 
 RELAP5-3D THERMIX RELAP5-3D THERMIX
Power, MW 600 600 600 600 
Pressure, MPa 9.00 9.00 9.00 9.00 
Differential pressure, MPa 0.290 0.216 0.238 0.181 
Inlet temperature, °C 482 482 482 482 
Outlet temperature, °C 900 899 950 948 
Flow rate, kg/s 275 276 246 247 
Core bypass, % 9.8 10.1 10.0 9.9 
Maximum vessel temperature (inner wall), °C 354 396 368 410 
Maximum vessel temperature (midwall), °C 342 374 356 393 
Maximum fuel temperature, °C 1072 1043 1141 1096 
RCCS power, MW 1.43  1.46  
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The steady states calculated with both codes were generally in reasonable agreement.  However, the 
calculations of maximum vessel wall temperature were about 40 °C higher with THERMIX.  The 
differential pressure drop across the vessel was about 30% larger with RELAP5-3D, with the difference 
primarily occurring in the riser component. The maximum fuel temperatures were also somewhat higher 
with RELAP5-3D, probably because it explicitly accounted for the temperature rise between the surface 
and the center of a representative pebble in each core ring.    

Several differences were noted between the steady states obtained for the pebble bed and those obtained 
previously with the prismatic core.  First, the assumed inlet fluid temperature was lower with the pebble 
bed, which resulted in a larger temperature rise across the vessel and a lower mass flow rate.  Second, 
even though the mass flow was reduced, the pressure drop across the vessel was larger because of the 
increased friction associated with the porous media compared to the open flow channels in the prismatic 
design.  Third, the maximum vessel temperature was about 80 °C lower with the pebble bed, primarily 
because of the reduced sink temperature associated with the water-cooled RCCS versus the air-cooled 
design used with the prismatic core.  Finally, the maximum fuel temperature in the pebble bed was about 
30 °C higher than in the prismatic design.  This result was unexpected because of the increased heat 
transfer coefficient from the pebbles compared to that from the coolant channels in the prismatic design.  
The cause of the higher fuel temperature was an increased maximum radial power peaking factor, 1.20 
from the PEBBED-THERMIX calculations versus 1.12 from the power profile assumed by MacDonald et 
al. (2003) for the prismatic core.    

The response of the pebble-bed VHTR as calculated by RELAP5-3D and THERMIX during a 
depressurized conduction cooldown accident is shown in the next several figures.  Figure 7 shows the 
THERMIX-computed axial temperature profile at the inner surface of the reactor vessel at various times 
during the accident.  As was observed with the prismatic core, the maximum temperature initially 
decreased following the reactor scram and the decrease in convective heat transfer following the 
depressurization (see Figure 8).  The maximum vessel temperature eventually increased because of the 
mismatch between the core decay power and the heat removed by the RCCS (see Figure 9).  The sharp 
change in slope near ten hours occurred as the location of the maximum temperature switched from near 
the bottom of the vessel to near the axial center of the core.  The maximum temperature occurred about 80 
h after the start of the accident and remained far below the accident limit of 538 °C for SA-508 steel. 
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Figure 7.  Reactor pressure vessel inner wall temperature profile during a depressurized conduction 
cooldown accident (950 °C outlet fluid temperature). 
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Figure 8.  RELAP5-3D calculated maximum reactor vessel midwall temperatures during a depressurized 
conduction cooldown accident with the pebble-bed design. 
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Figure 9.  A comparison of RELAP5-3D calculated RCCS heat removal and core decay power during a 
depressurized conduction cooldown accident with the pebble-bed design. 

Figure 10 shows axial temperature profiles at the inner surface of the reactor vessel at 0.0 and 83.3 h after 
the start of the accident.  RELAP5-3D results are shown with symbols while the THERMIX results are 
shown with solid lines.  The calculated temperature profiles were similar with both codes.  At steady 
state, the temperature between the BAF and TAF was nearly independent of the elevation.  The maximum 
temperature occurred below the outlet plenum, which was heated by the outlet flow but not cooled by 
flow through the riser and bypass flow paths as occurred at higher elevations.  The maximum temperature 
obtained from THERMIX was about 40 °C higher than the value obtained from RELAP5-3D, perhaps 
because of the more detailed nodalization used in the THERMIX model.  The calculated trends were 
similar with both codes during the conduction cooldown accident.  In particular, the maximum 
temperature during the conduction cooldown accident occurred near the elevation of the peak power 
location in the core, which was slightly above the core centerline for this analysis.  The maximum 
calculated values were within about 10 °C during the accident.   
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Figure 10.  Reactor vessel axial temperature profiles for the pebble-bed design with an outlet fluid 
temperature of 950 °C. 
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The maximum temperatures calculated during the conduction cooldown event are given in Table 6.  The 
50 °C variation in initial outlet temperature had only a small effect on the maximum temperatures during 
the accident.

Table 6.  Maximum temperatures during the depressurized conduction cooldown accident for the pebble-
bed VHTR.
Parameter Tout = 900 °C Tout = 950 °C 
 RELAP5-3D THERMIX RELAP5-3D THERMIX 
Maximum vessel temperature (inner wall), °C 492 480 494 482 
Maximum vessel temperature (midwall), °C 463 451 465 452 
Maximum fuel temperature, °C 1486 1550 1493 1554 

For the 950 °C outlet temperature case, the THERMIX calculation was allowed to run until the reactor 
pressure vessel temperature dropped below 371 °C, about 540 hours after shutdown (the control rods 
were assumed fully inserted to prevent re-criticality).  The pressure vessel thus can be expected to remain 
at an elevated temperature for about 22 days assuming no active measures are taken to cool it.  According 
to Table 1, SA-508 steel can withstand elevated temperatures for at least 40 days.   

4. CONCLUSIONS 

Current designs for the VHTR with a prismatic core do not allow the use of SA-508 steel for the reactor 
vessel.  Best-estimate calculations of the maximum reactor vessel temperature during normal operation 
exceeded the value allowed for SA-508, but were at least 170 °C below the 590 °C limit for SA-336 when 
the design improvements described by Reza et al. (2006) were modeled.  The maximum temperature 
during normal operation was just slightly below the 425 °C value where creep is expected to become an 
issue and further design improvements may be required to provide additional margin.  Note that the 
design of the important lower head region has yet to be completed with the prismatic core.   

For the pebble-bed design, the maximum vessel wall temperature during normal operation was 16 °C 
below the allowed value for unlimited operation of SA-508 based on the RELAP5-3D calculations, but 
was 21 °C above the allowed value based on the PEBBED-THERMIX calculations.  These calculations 
indicate that some design changes, such as the use of active vessel cooling, are required to limit the vessel 
temperature during normal operation.  Even though the values calculated with RELAP5-3D were lower 
than the temperature limit, the margin to the limit was probably inadequate based on the uncertainty in the 
calculation.

The maximum vessel temperatures increased significantly during a depressurized conduction cooldown 
accident.  However, the temperatures remained at least 70 °C below the accident limits allowed by the 
ASME code for 1000 h of operation with both designs.  

The PEBBED-THERMIX calculations of the pebble-bed VHTR were generally confirmed by the 
RELAP5-3D calculations.  During normal operation, the predicted axial profiles in reactor vessel 
temperature were similar with both codes, but the maximum predicted temperature was about 40 °C 
higher with PEBBED-THERMIX.  The trends of the calculated vessel temperatures and the maximum 
values were similar during the depressurized conduction cooldown accident.  This agreement is 
considered reasonable based on the expected uncertainty in either calculation.      
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