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Preface

At the INL researchers and engineers routinely encounter multiphase, multi-component, and/or 
multi-material flows.  Some examples include: 

Reactor coolant flows 
Molten corium flows 
Dynamic compaction of metal powders 
Spray forming and thermal plasma spraying 
Plasma quench reactor 
Subsurface flows, particularly in the vadose zone 
Internal flows within fuel cells 
Black liquor atomization and combustion 
Wheat-chaff classification in combine harvesters 
Generation IV pebble bed, high temperature gas reactor 

The complexity of these flows dictates that they be examined in an averaged sense.  Typically 
one would begin with known (or at least postulated) microscopic flow relations that hold on the 
“small” scale.  These include continuum level conservation of mass, balance of species mass and 
momentum, conservation of energy, and a statement of the second law of thermodynamics often 
in the form of an entropy inequality (such as the Clausius-Duhem inequality).  The averaged or 
macroscopic conservation equations and entropy inequalities are then obtained from the 
microscopic equations through suitable averaging procedures.  At this stage a stronger form of 
the second law may also be postulated for the mixture of phases or materials.  To render the 
evolutionary material flow balance system unique, constitutive equations and phase or material 
interaction relations are introduced from experimental observation, or by postulation, through 
strict enforcement of the constraints or restrictions resulting from the averaged entropy 
inequalities.  These averaged equations form the governing equation system for the dynamic 
evolution of these mixture flows. 

Most commonly, the averaging technique utilized is either volume or time averaging or a 
combination of the two.  The flow restrictions required for volume and time averaging to be 
valid can be severe, and violations of these restrictions are often found.  A more general, less 
restrictive (and far less commonly used) type of averaging known as ensemble averaging can 
also be used to produce the governing equation systems.  In fact volume and time averaging can 
be viewed as special cases of ensemble averaging.  Ensemble averaging is beginning to gain 
some notice, for example the general-purpose multi-material flow simulation code CFDLib 
under continuing developed at the Los Alamos National Laboratory [Kashiwa and Rauenzahn 
1994] is based on an ensemble averaged formulation. 

The purpose of this short note is to give an introduction to the ensemble averaging methodology 
and to show how ensemble averaged balance equations and entropy inequality can be obtained 
from the microscopic balances.  It then details some seven-equation, two-pressure, two-velocity 
hyperbolic, well-posed models for two-phase flows.  Lastly, a simple example is presented of a 
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model in which the flow consists of two barotropic fluids with no phase change in which an 
equilibrium pressure equation is obtained in the spirit of pressure-based methods of 
computational fluid dynamics. 
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Chapter 1:  Ensemble Averaged Conservation Equations

Introduction

Many important “fluid” flows involve a combination of two or more materials having different 
properties.  The multiple phases or components often exhibit relative motion among the phases 
or material classes.  The microscopic motions of the individual constituents are complex and the 
solution to the micro-level evolutionary equations is difficult.  Characteristic of such flows of 
multi-component materials is an uncertainty in the exact locations of the particular constituents 
at any particular time.  For most practical purposes, it is not possible to exactly predict or 
measure the evolution of the details of such systems, nor is it even necessary or desirable.  
Instead, we are usually interested in more gross features of the motion, or the “average” behavior 
of the system.  Here we present descriptive equations that will predict the evolution of this 
averaged behavior.  Due to the complexities of interfaces and resultant discontinuities in fluid 
properties, as well as from physical scaling issues, it is essential to work with averaged quantities 
and parameters.  We begin by tightening up, or more rigorously defining, our concept of an 
average.  There are several types of averaging.  The published literature predominantly contains 
two types of averaging: volume averaging [Whitaker 1999, Dobran 1991] and time averaging
[Ishii 1975].  Occasionally combinations of the two are used.  However, we utilize a more 
general approach by adopting what is known as ensemble averaging.

When the physical system has a large amount of variability, a natural interpretation of the 
meaning of predictions is in terms of expected values and variances.  If there are many different 
events, or realizations, possible, then the expected value is naturally an “average” over all of 
these events, or the ensemble of realizations.  The ensemble then is the set of all experiments 
with the same boundary- and initial-conditions, with some properties that we would like to 
associate with the mean and distribution of the components and their velocities.  A realization of 
the flow is a possible motion that could have happened.  Implicit in this concept is the intuitive 
idea of a “more likely” and a “less likely” realization in the ensemble.  Therefore, as we shall see 
shortly each ensemble of realizations, corresponding to a given physical situation, has a 
probability measure on subsets of realizations.  The ensemble average is the generalization of the 
elementary idea of adding the values of the variable for each realization, and dividing by the 
number of observations.  The ensemble average then allows the interpretation of phenomena in 
terms of repeatability of multi-component flows. 

One of the nice features of ensemble averaging, as opposed to volume averaging, is that 
ensemble averaging does not require that a control volume contain a large quantity of a particular 
component in any given realization.  Consider the following example, taken directly from Drew 
and Lahey (1993), where the average of a particle-fluid mixture is of interest.  Gas turbines are 
eroded by particulate matter suspended in the gas stream passing through the inlet and impacting 
on the various parts of the machine, e.g. the turbine blades.  The trajectories of individual 
particles moving through the gas turbine are very complicated, depending on where and when 
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the particles enter the inlet of the device.  Such predictions are, fortunately, seldom required.  A 
prediction, however, that is of interest to the designer is the average, or expected values, of the 
particle flux (or the concentration and velocities of particles) near parts in the device that are 
susceptible to erosion.   Since the local concentration of particles is proportional to the 
probability that particles will be at the various points in the device at various times, and the 
particle velocity field will be the mean velocity that the particles will have if they are at that 
position in the device, the design engineer will be able to use this information to assess the places 
where erosion due to particle impact may occur.  Notice it may be that there are no times for 
which there will be many particles in some representative control volume (or representative 
elementary volume, REV).  So, volume averaging, which depends on the concept of having 
many representative particles in the averaging volume at any instant, will fail.  The 
appropriateness of ensemble averaging is obvious. Here the ensemble is the set of motions of a 
single particle through the device, given that it started at a random point at the inlet at a random 
time during the transient flow through the device.  Clearly the solution for the average 
concentration and average velocity gives little information about the behavior of a single particle 
in the device; however, the information is very appropriate for assessing the probability of 
damage to the device.  Similar examples could be given where time averaging will fail, but 
where ensemble averaging is again appropriate. 

The ensemble average is the more fundamentally based than either time or volume averaging.  In 
fact, both time and volume averaging can be viewed as approximations to the ensemble average, 
which can be justified, respectively, for steady or homogeneous flow [Drew and Passman 1999]. 

Ensemble Averaging

A general method is presented here, based on the ensemble averaging concept [Kashiwa & 
Rauenzahn 1994, Lhuillier 1996, Brackbill et.al. 1997, Drew & Passman 1999], for developing 
averaged conservation equations for multiple materials, any one of which may be at point x , at a 
given instant t.  With this procedure, the most likely state at a point (the expected value) will be 
determined simultaneously with which material is most likely to be found at that point.  Imagine 
running an experiment many times and collecting data about the state of the flow at each point x
and time t.  This information could include which material or phase is present, material density, 
velocity, pressure, temperature, concentration, etc.  From this information, one can compute the 
ensemble average.  The ensemble average of a generic property 0Q  of a fluid or material in a 
process is an average over the realizations 

0 0
1

1 RN

,r
rR

Q x,t Q x,t ,
N

 (1) 

where RN  is the number of times the process or experiment is repeated, and is a large number.
Now imagine that many of the realizations are near duplicates, i.e. they are essentially the same 
state, with N  occurrences.  We can then rewrite the sum over the realizations as a sum over the 
number of states N
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0 0
1

0
1

0

1 N

R

N

R

all

Q x,t N x,t , Q
N

N x,t ,
Q

N

Q f x,t , d ,

 (2) 

where
R

N x,t ,
f x ,t ,

N
 is the probability of the state  in the ensemble.  Note that in the 

limit of an infinite number of repetitions of the experiment, with a sum over all of the states, we 
have replaced the summation with an integral form in the definition of the ensemble average.  
More correctly, because 1 0

all

f x ,t , d .  , we refer to f x ,t ,  as the probability density. 

The state is the full thermodynamic description of the matter at a point x  and time t.  For 
example, 

0 0 0 0 0
1 1 1 2 2 2
0 0 0 0 0 0

1 2

,u ,h ,p , ,

,u ,h , ,u ,h , ,
X ,X ,

 (3) 

where:

1
0

kX x,t phase or material indicator function : if material k is present
otherwise

0

0

0

0

0

0

0

0

s

s

s

phase or material density
u phase or material velocity
h phase or material specific enthalpy
p pressure

deviatoric stress
species partial density

u species velocity

h species partial enthalpy ,

with
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0 0

0 0 0 0

0 0 0 0

s

species

s s

species

s s

species

u u

h h .

Other properties may also appear in the above thermodynamic state such as the phase or material 
temperature 0 , the phase or material specific internal energy 0e , and the phase or material 
specific entropy 0s .

In a typical multiphase flow, the ensemble averages of interest may include 

k kMaterial k volume fraction : X

0k kˆMaterial k bulk average density : X

0k
k

k

X
Material k intrinsic average density :

0
s s
k kˆSpecies s in material k bulk average density : X

0
s

ks
k

k

X
Species s in material k intrinsic average density :

0 0 0 0k k
k

k k k

X u X u
Material k velocity : u

ˆ

0 0 0 0k k
k

k k k

X E X E
Material k total energy : E

ˆ

0 0 0 0k k
k

k k k

X s X s
Material k entropy : s

ˆ

0Mean mixture stress : T T

0k
k

k

X T
Mean k material stress : T

0Pressure single pressure model : p p

0k
k

k

X p
Pressure in k material : p .

From a physical viewpoint, the bulk average density of a phase represents a summation of all of 
the density values that occurred for that phase, divided by the total number of experiments run.  
The bulk average density corresponds intuitively to the idea of the mass of phase k  per unit 
volume of mixture, or the observed material density.  On the other hand, the intrinsic average 
density physically corresponds to a summation of all of the density values that occurred for that 
phase, dividing by the number of times in which that phase occurred in the experiments.  The 
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intrinsic average density corresponds intuitively to the idea of the mass of phase k  per unit 
volume of phase k , or the true material density.  Some researchers prefer to work with bulk 
average densities [e.g. Kashiwa and Rauenzahn 1994] while others prefer working with intrinsic 
densities [e.g. Drew and Passman 1999].  This is mostly an issue of convenience, since one can 
easily be converted to the other.  Here we will use intrinsic averages.  Henceforth, when we say 
average, we shall mean intrinsic average unless indicated otherwise. 

For a reasonably broad range of conditions (with common substances), the exact balance 
equations, valid inside each material, are 

0 0 0u Material mass conservation  (4) 

0 0 0 0 0 0 0
s s s s su u u r Species mass conservation  (5) 

0 0 0 0u T g Material momentum balance  (6) 

0 0 0 0 0 0 0 0 0E T u q g u Material energy conservation  (7) 

0 0 0
0 0

0 0

,qs Material entropy inequality  (8) 

For these microscopic balance laws the material derivative has been used, which is defined as 

0
0 0 0

QQ u Q Material derivative .
t

 (9) 

Let us assume that the total variation of f  in the phase space x,t ,  is [Kashiwa and 
Rauenzahn 1994]

0 0f f dfu f
t dt

 (10) 

where we are assuming that as we follow a material point through phase space its probability of 
occurrence remains constant.  Various moments of this equation can be formed, first by 
multiplying equation (10) by 0Q , and then averaging this result.  It can be shown [Kashiwa and 
Rauenzahn 1994, here corrected] that the resulting equation is 

0 0 0 0 0 0Q Q u Q Q u .
t

 (11) 

This result is called the moment evolution equation and the details of its derivation are given in 
the Appendix.  The averaged conservation equations are obtained by letting our generic 0Q  be 
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replaced by various “meaningful” functions and then by performing judicious manipulations on 
the equations to bring about physically useful forms of the equation. 

Mass Conservation

By letting 0 0kQ X  in equation (11) we get 

0
0 0 0 0 0 0

0 0 0 0

k
k k k k

k k

X
X u X X X u

t
X X u .

Introducing the pure material (microscopic) mass conservation equation and the definition of 
average results in 

0
k k

k k k ku X .
t

 (12) 

Since we are taking time- and spatial-derivatives of functions that are not smooth, this averaged 
mass conservation equation is to be interpreted in the sense of distributions, or generalized 
functions [Gelfand and Shilov 1964].   Let us examine the right hand side of this equation in 
more detail.  From the definition of a material derivative we know that 

0
k

k k
XX u X
t

in a generalized function sense.  On the other hand, letting intu  denote the velocity of an interface 
of phase or material k, the material derivative of kX  following the interface velocity vanishes 

0k
int k

X u X .
t

This result can be easily seen by first considering points not on the interface where either 0kX
or 1kX  and the partial derivatives both vanish, and thus the left side of this equation vanishes 
identically.  For points on the interface, which also move with the interface velocity, the function 

kX  is a jump that remains constant so their material derivatives following the interface vanish.  
Therefore we can write 
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0 0 0

0

0 0

k k
k k int k

int k

X XX u X u X
t t

u u X ,

 (13) 

and the averaged mass conservation equation becomes 

0 0
k k

k k k int k

mass
k

u u u X
t

.
 (14) 

We note that kX  has the sifting property of the Dirac delta function(al).  Thus the only 
contributors are the material interfaces.  kX  is aligned with the surface unit normal vector 
pointing to phase k  [Drew 1983, Kataoka and Serizawa 1988] 

k k intX n x x ,t .

Thus the mass
k  represents the flux of mass to phase k  from the other phases via the interface, 

usually just referred to as phase change.  With no storage of mass at an interface the mass 
conservation further requires 

1

0
no.of phases

mass
k

k

.  (15) 

At this point, it is convenient to introduce for later use, the concept of interfacial area density of 
component k .  Defined as

k k kˆA n X ,

where kn̂  is the unit external normal to component k , it is the expected value of the ratio of the 
interfacial area (in a small volume) to the (small) volume, in the limit as that volume approaches 
zero.
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Generic Conservation Equation

To more expeditiously derive the other conservation equations, let us first derive the averaged 
balance equation resulting from a generic, microscopic balance equation. Consider the generic, 
microscopic balance equation 

0 0
0 0 0 0 0 0u J g ,

t
 (16) 

or

0 0
0 0 0 0 0 0 0 0

d
u J g .

dt
 (17) 

Equation (16) and (17) hold at each point where sufficient smoothness occurs for the derivatives 
to be taken, as does its generic jump condition 

0 0 0 0int ˆu u J n m  (18) 

where 0  is the conserved quantity, 0J  is a molecular or diffusive flux, 0g  is a source density, 
and m is the interfacial source of 0 .  The symbol  here denotes the jump in the enclosed 
quantity across an interface.  Obviously, these quantities must be added to our state space, e.g. 

0 0 0 0

1 2

,u , ,J ,
.

X , X ,
 (19) 

Let us also define averages of these quantities as 

0 0k
k

k k

X

0k
k

k

X J
J

0 0k
k

k k

X g
g .

By letting 0 0 0kQ X  in equation (11) we get 
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0 0 0 0
0 0 0 0 0 0

0 0
0 0 0 0 0

0 0
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

k k
k k

k k k

k k

k k k

k k k k

k k int k k

X d X
X u X u

t dt

d
X X X u

dt

d
X X u

dt

X X J X g

X J J X X X g

X J J X u u X X g

0 0 0 0 0 0 0k k int kX J X g u u J X .

Introducing the fluctuating velocity 

0k ku u u

into this expression finally results in 

0 0 0 0 0 0

0 0 0 0 0 0

k k k
k k k k k k k k k k k int k

k k k k k k k int k k

Fluct mass int
k k k k k k k k k k

u J X u g u u J X
t

J X u g u u X J X

J J g ,
  (20) 

where 0 0Fluct k k
k

k

X u
J  is the flux of  due to fluctuations in the phase k  velocity, int

k  is 

the effective value of  that is transferred to phase k  from the other phases due to mass 
transfer, or phase change, and k  is a flux of  to phase k  not due to bulk mass transfer from 
the other phases.  This is our generic, averaged balance equation.  To obtain balance at the 
interface, our generic jump balance equation requires the constraint 

1

no.of phases
mass int
k k k

k
M ,  (21) 

where M m  is the expected net effect of all the interfacial -source terms. 
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Species Mass Conservation

The microscopic species mass balance equation can be written as 

0
0 0

s
s s su r ,

t
 (22) 

where 0
s  is the species partial density, 0

su  is the species bulk velocity, and sr  is the generation 
or source of the species due to chemical reactions.  The species mass balance equation is not 
usually written this way because we usually don’t know much about individual species 
velocities.  Instead, it is usually cast as 

0
0 0 0 0 0

s
s s s su u u r

t
 (23) 

because we have (to a certain extent) acquired empirical knowledge of the behavior of the first 
term on the right hand side of this equation, as we shall see shortly.  Let us now recast this 
equation as 

0 0 0
0 0 0 0 0 0 0

0 0 0 0

s s s s
s ru u u ,

t
 (24) 

which is in the form of our generic, averaged balance equation (20) with the assignments of 

0 0
0 0 0 0 0 0

0 0 0

s s s
s rJ u u g .

Thus the averaged species mass balance equation is 

0 0 0 0 0 0 0 0 0 0 0
s s s s s s s s

k k k k int kX X u X u u X r u u u u X .
t

Again introducing the fluctuating velocity and the definitions of averaged quantities, our final 
form of the averaged species mass balance equation is 

0 0 0

0

0 0

0 0 0

s
s s sk k

k k k k

s
k k

s
int k

s s
k

s
k

u X u u relative species flux
t

X u fluctuational diffusion

u u X phase change

u u X mass exchange

R chemical reactions

 (25) 
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where we have defined the average generation rate in phase k  due to chemical reactions as 
s

ks
k

k

X r
R  . 

Momentum Balance

The averaged momentum balance equation results from the generic, averaged balance equation 
(20) with the assignment of 

0 0 0 0 0 0u J T g g

to give 

Fluct mom int massk k k
k k k k k k k k k k k k k

u u u T T g u ,
t

 (26) 

where the fluctuating stress Fluct
kT  and the interfacial momentum source mom

k  are given by 

0
0

k k kFluct mom
k k k

k

X u u
T T X .

The averaged interfacial momentum balance constraint (jump condition) is 

1

no.of phases
mom int mass
k k k surface tension

k
u M ,  (27) 

where surface tensionM  is the interfacial momentum source, i.e. surface tension source. 

Energy Conservation

The assignment of 

0 0 0 0 0 0 0 0 0 0 0 0 0
1
2

E e u u J T u q g g u

to the variables of the generic, averaged balance equation (20) gives the averaged energy 
conservation equation
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1 1
2 2

1
2

Fluct Fluct Fluct
k k k k k k k k k k k k k k k k k

Fluct
k k k k k k k k

energy mom int
k k k

mass int int int
k k k k

e u u e u e u u e T T u
t

q q g u

u

e u u ,

  (28) 

where

01
2

k k kFluct
k

k k

X u u
e fluctuation kinetic energy

0 00 1
2

k k k k k kk k kFluct
k

k k k

fluctution internal energy flux fluctuation shear working fluctuation kinetic energy flux

X T u X u u uX u e
q fluctuation energy flux

0 0k
k

k k

X
energy source

0
energy
k kq X interfacial heat source

0 0
mom int
k k ku T u X interfacial work .

The averaged interfacial energy balance constraint (jump condition) is 

1

1
2

no.of phases
energy mom int mass int int int
k k k k k k k

k
u e u u ,  (29) 

where  is the interfacial energy source. 

The kinetic energy associated with the velocity fluctuations, Fluct
ke  , is a type of “turbulent” 

kinetic energy.  Sometimes the sum Fluct
k ke e  is interpreted as the effective internal energy per 

unit mass of phase k .

It is sometimes useful to have an expression for the balance of fluctuation kinetic energy, Fluct
ke .

Its evolutionary description is derived by introducing the partition 0k ku u u  into the 
microscopic pure phase momentum balance, taking the dot product of this equation with k kX u ,



16

then performing the statistical average over configurations (keeping in mind that 0kX u
vanishes) to obtain [details are left to the reader, see e.g. Nigmatulin 1990] 

0
0 0 0

:

2

Fluct
Fluct Fluctk

k k k k k k k k k

k k k k
k k

e u e T u
t

X u u u
X u T g

 (30) 

This equation bares some similarity to the equation of evolution of the fluctuational kinetic 
energy in a single-phase turbulent fluid [Wilcox 1998].  The first term on the right side describes 
the influence of the gradient of ku  on the development of Fluct

ke , the second term is expected to 
diffuse Fluct

ke , and the last term represents the power developed by the stresses and external 
forces [Lhuillier 1996]. 

For most multiphase flows, including some very (conceptually) simple flows such as gas flow 
through a packed bed or through a pebble-bed nuclear reactor, the nature of Fluct

ke  is somewhat 
different than that of a turbulent single-phase flow.  Contrary to a one-phase fluid in which the 
fluctuations disappear for slow flows, these fluctuations for a multiphase flow exist however 
slow the flow.  For this reason, Fluct

ke that is produced by hydrodynamic interactions between the 
phases is sometimes called pseudo-turbulence [Lhuillier 1996]. 

Entropy Inequality

The local form of the entropy inequality (8), sometimes called the “Second Law of 
Thermodynamics,” is used to place restrictions on the constitutive relations used to give unique 
phase or material behaviors.  With the assignment of 

0 0
0 0 0 0

0 0

qs J g

to the variables of the generic, averaged balance relationship (20) the averaged entropy 
inequality results, 

Fluct entropy mass intk k k
k k k k k k k k k k k k k

s s u S s
t

 (30) 

where

0

0
k

k
k

qX
entropy flux
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0k k kFluct
k

k

X s u
fluctuation entropy flux

0 0

0
k

k
k k

X
S entropy source

0

0

.entropy
k k

q X interfacial entropy source

This entropy inequality corresponds to what Drew and Passman (1999) call the microscopic 
entropy inequality.  A macroscopic entropy inequality can be obtained by summing inequalities 
(30) over all of the phases or materials present in the mixture [Truesdell 1984 and the other 
authors contained therein].  The macroscopic entropy inequality is useful for placing restrictions 
on the phasic or material interaction constitutive relations. The averaged interfacial entropy 
inequality (jump condition) is 

.

1
0 .

no of phases
entropy mass int
k k k

k
s  (31) 
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Appendix:  Moment Evolution Equation

It is critical that special attention be given to functional dependencies in deriving the moment 
evolution equation.  Let us begin first by defining the ensemble average of some property 0Q  as 

0 0 0 0 0Q x,t Q f x,t , d ,  (A.1) 

where, for example, 0 0 0 0 1 2,u ,e ,X ,X , .  Note that, while 0Q  depends explicitly upon the 

state 0 , its average value 0Q  depends upon position x  and time t , which it acquired from the 

probability function 0f x ,t , .  In fact, 0Q  loses its explicit dependence upon 0  by its very 
definition as an integral over all possible states 0 .

The variation of the probability is 

0
0

f f fdf dt dx d ,
t x

so the time variation of the probability can be written 
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0 0
0

df f fu f .
dt t

 (A.2) 

If we now multiply this equation by 0 0Q  and integrate over 0 -space we get 

0 0 0 0 0 0 0 0 0 0
0

df f fQ d Q d Q u f d Q d .
dt t

 (A.3) 

Let us now further examine each term of this expression.  Since 0Q  does not depend explicitly 
on time, t ,

0
0 0 0 0

0 0

0

Q ffQ d d
t t

Q f d
t

Q x,t .
t

Similarly, since 0Q  is independent of x  , we have 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

Q u f d Q f u d

Q u f d Q f u d

Q u f d Q u f d

Q u x,t Q u x,t .

We also know that the 0  are independent of 0  , so 
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0

0 0 0 0 0 0
0 0

0 0
0 0 0

0 0

0
0 0 0 0limit of 

0

0
0

0

0 0

0

0
0

0

f fQ d Q d

Q f Qd f d

QQ f f d

Q

Q d
dt

dQ Q x,t .
dt

As long as the 0Q  are physically conserved quantities we also have 

0 0 0dfQ d .
dt

Putting all these expressions back into the integral equation above gives the moment evolution 
equation (11) 

0
0 0 0 0 0

Q
Q u Q Q u .

t

Notice:  By comparison with Equation (1.1) of [Kashiwa and Rauenzahn 
1994],

0 0
0 0 0 0 0

0

Q Q DfQ u Q d ,
t Dt

theirs should read 

0 0
0 0 0 0 0 0 0

0

0 0 0 0 0

Q Q DfQ u Q u Q d
t Dt

DfQ Q u Q d
Dt

to be correct.
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Chapter 2:  Seven Equation, Two-Pressure, Two-Velocity 
Hyperbolic, Well-Posed Models for Two-Phase Flows 

Prior to 1981 there had been attempts to remove the ill-posed nature from the full, two-phase 
flow equations, e.g. [Ransom and Scofield, 1976], [Stuhmiller, 1977], [Rousseau and Ferch, 
1979], [Banerjee and Chan, 1980], [Hancox et.al., 1980], as well as others.  All of these 
researchers were trying to gain closure of this equation system (the classical 6-equations system) 
through algebraic means – and were meeting some limited success.  But they all seemed to be 
missing some key ingredient. 

In 1981 [Nguyen, 1981] presented a paper identifying the missing ingredient in compressible 
two-phase flow.  {Note: the author’s paper drew considerable “fire” at the time, and the paper 
received little attention subsequently (in fact I don’t believe I’ve ever seen it referenced).
However, upon closer examination, this paper contains a key point that was developed 
independently (later) by other researchers, who now seem to have received credit for its 
invention.}  In this paper Nguyen utilized the entropy production for each phase to perform an 
Onsager-type analysis wherein a bilinear form in the thermodynamic fluxes and their conjugate 
forces was obtained.  From this he arrived at the so-called phenomenological laws, one of which, 
in first approximation is: 

k k
k i k kp p L w

t z
 (1) 

where the notation is standard, with kw  denoting the z -component of phase k  velocity and kL
denoting a phenomenological coefficient, possibly to be “obtained from the flow structure.”  To 
complete the set of closure equations, Nguyen proposed to define the interface pressure ip  as 

2

1 2
1

1 ,
2i k k k k

k
p p w w  (2) 

where k  was to be defined consistently with the physical situation of interest.  Nguyen 
furthermore deemed it reasonable to assume that the phenomenological coefficients were equal 
or

1 2L L L  . 

With these assumptions Nguyen then obtained a 7-equation model with real characteristics which 
was hyperbolic and which could be formulated as a well-posed initial-value problem. 
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However, what Nguyen did not do (at least in that paper) was the following useful manipulation.  
Adding his equations (49) and (50) to eliminate ip  gives 

1 2 1 2

2 2
w w p p

t z L
 . 

While we are enhancing the equations of Nguyen’s paper, let us also do the following:  Let us 
assume that the phenomenological coefficients are not equal.  It is easily obtained that 

1 1 2 2 1 2

1 2 1 2

L w L w p p
t L L z L L

 . (3) 

Now, if 2 1L L  and 1w  is of the same order as 2w  then the above relationship is approximately 

1 2
2

2

p pw
t z L

 . 

These relationships are appealing because now the volume fraction change is governed by a 
dynamical relationship in which the pressure difference between the two phases drove the phase 
change.  If the phases had the same pressure there would be no change in volume fraction.  The 
denominators on the right hand side, i.e. combinations of the phenomenological coefficients for 
the two phases would determine how “fast” pressure equilibrium was attained.  The phasic 
advection equation, or volume fraction propagation equation, also exhibited an advection 
velocity that was a weighted combination of phasic velocities (weighted with the 
phenomenological coefficients). 

In March 1983 Stephen Passman and Jace Nunziato at Sandia and E.K. Walsh at U. of Florida 
published a report, later to become Appendix 5C [Passman, Nunziato, and Walsh 1983] of 
Clifford Truesdell’s classical work [Truesdell, 1984].  In their elegant work, in addition to the 
traditional axioms of balance, an additional balance axiom was postulated which describes 
changes in volume fraction.  They utilized the idea of workless constraints to describe a method 
of accounting, in the entropy inequality for the mixture, for the constraint requiring that the 
mixture be saturated.  This resulted in a volume fraction propagation equation, which they called 
balance of equilibrated force, which accounts for the fact that the constituent volume fractions 
can change without affecting the gross motion.  As they point out, this equation, in a sense, 
models the microstructural force systems operative in multiphase mixtures. 

{Note: This approach has not seen much acceptance in the two-phase fluid flow community, 
probably because the equation derivation was postulational [Truesdell, 1984] (as opposed to 
using some type of averaging) and because of the lack of physical familiarity with the 
terminology.  However, some years later Flavio Dobran at New York University published a 
monograph [Dobran, 1991] in which rigorous volume averaging is utilized, along with a basic 
material deformation postulate, to derive additional transport equations for multiphase mixtures 
that are very similar.} 
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In December 1983 Mel Baer and Jace Nunziato of Sandia released a two-phase mixture theory 
describing the deflagration-to-detonation transition (DDT) in reactive granular materials [Baer 
and Nuziato, 1983].  In this work the entropy inequality for the two-phase mixture was utilized to 
directly establish a constitutive volume fraction propagation equation, which (in the context of 
their application) they called the compaction equation (with phase change) 

s gs s s
s s g s

c s

cv p p
t z

 (4) 

where s  is a configuration pressure which resists changes in the packing of the bed or 
compaction and the coefficient c  is a compaction viscosity (again in their application context) 
which controls the rate at which pressure equilibrium is reached.  Though derived in a different 
manner, this equation can also be viewed as a simpler, special case of Passman et.al.’s balance of 
equilibrated force equation, mentioned above.  This 7-equation compressible two-phase model of 
Baer and Nunziato was hyperbolic and well-posed.  They also constructed apparently successful 
numerical solution algorithms for this equation set.  While the motivating applications for this 
model are far different from those of the two-phase fluid dynamics community, the foundational 
principles are very similar.  Notice the similarities between their volume fraction propagation 
equation and that of Nguyen over two years earlier. 

{Note added later: This research was published later in the open literature [Baer and Nunziato, 
1986].  However, perhaps this time because of the application context and because of its 
postulational derivation, this method received little attention from the two-phase fluid dynamics 
community.}

Baer and Nunziato’s volume fraction evolutionary equation can be more generally stated as 

,

a ja a a
a a a j j

j j a a

cv p p
t z

 (5) 

where a  are configuration pressures and exchange coefficients ,j a  reflect interactions between 
the phases.  These rate equations, which provide closure of the mixture model, are force balances 
involving the configurational pressures, phase pressures, and a viscous-like stress associated with 
rate-dependent volume fraction changes.  The relaxation coefficients, ,j a  , have the units of 
viscosity.  Moreover, like Nguyen’s (but unlike Passman et.al.’s), these equations are 
constitutive equations, not field equations.  As pointed out in [Baer, 1997], they reflect boundary 
conditions at the microscale.  [Saurel et.al.] recast the volume fraction evolution equation as a 
microscopic mass density evolution equation {see notes}.  [Kashiwa and Gaffney 2003] derive a 
mass density evolution equation having a somewhat different character. 

To more easily see the need for a dynamic volume fraction evolution equation let us consider a 
cell mixture-intuitive physics model for two-phase flow.  Consider a fixed volume V  with two 
immiscible constituents present (e.g. the two constituents may have been advected into a fixed 



25

cell volume).  They have masses 1m  and 2m  occupying volumes 1V  and 2V  , respectively, such 
that

1 2V V V  . 

Each constituent phase has material density 1  and 2  , so 

1 2

1 2

1 2

V V V
m m

or
1 2

1 2

1 2

1 2

1 V V
V V

m m
V V

where 1
1

V
V

 and 2
2

V
V

 are volume fractions of each phase.  For each constituent 

1 2
1 2

1 2

m mand
V V

 (6) 

and

1 1 1 1

1
1 1

1

,

,

p f I

mf I
V

 (7) 

2 2 2 2

2
2 2

2

,

,

p f I

mf I
V

 . (8) 

Now if 1V  and 2V  are adjusted (subject to the 1 2V V V  constraint) until the phase pressures are 
equal to 

1 2
1 1 2 2

1 2

, ,m mp f I f I
V V

 (9) 
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with the equilibrium (or equilibration) pressure, p  .  At this equilibrium pressure the 
corresponding phase volumes yield the equilibrium volume fractions 

1
1
e V

V
2

2
e V

V
 . 

This can be accomplished more generally in a dynamical fashion as follows.  First, note that 

1 1 1 1

1
1 1

1

,

,

p f I

mf I
V

2 2 2 2

2
2 2

2

,

,

p f I

mf I
V

and also that 

1 2d d
dt dt

2 2
1 2

2 2

d d
dt dt

.

Intuitively, we now consider the dynamical equation 

1 1 2d p p
dt

 . (10) 

If 1  is compressed too much 1 2p p  then 1  will increase with time (relax) letting 1p
reduce while 2  decreases letting 2p  increase.  This process ends when 1 2p p p  and thus 

1 0d
dt

 .  The relaxation rate,  , controls the rate at which the phases (pressures) equilibrate. 

More generally yet, we could even write 

2
1 1

2

d dmicroinertia compaction viscosity microstructural forces
dt dt

F
 (11) 
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The microstructural force F  is a relaxation term that is intended to model the driving force or 
“resistance” exhibited by the mixture to changes in its configuration.  For example, if we were 
compacting a gas-solid particle bed, 

0

0
s g s g s s s

s g g s s

p p for p
F

p for p
 (12) 

in accordance with the view of compaction as an irreversible process.  s  is the “configuration 
pressure” of the bed. 

If we set the “microinertial” and the “configuration pressure” to zero we are left with 

1
1 2 1 2

d p p
dt

or
1 2 1 21 p pd

dt
 (13) 

Note the multiplicative coefficient 1 2  in the driving force F  .  This term is included for a 

couple of reasons:  (1) 1 2  is roughly proportional to the interfacial area per unit volume, iA
V

 . 

and (2) better behavior results in the limit of single phase occurring due to disappearance of the 
other phase, i.e. 1 20 1  or 2 10 1  . 

In LANL’s CFDLib code, [Kashiwa and Rauenzahn, 1994] take a different approach to the 
calculation of equilibration pressure.  By enforcing that the saturation constraint is met: 

 1 0k
k

or

1 , 0k
k k

k

m v p T
V

or

0

11 0
,

k

k k k

m
V p T

or, for two phases 
1 2

0 0
1 1 2 2

1 11 0
, ,

m m
V p T V p T

 (14) 
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they seek a p  (equilibration pressure) which will satisfy this equation.  Material equations of 
state are used for 0 ,k kp T .  Additional terms are then added to account for differences between 
the individual phasic pressures and the equilibration pressure.  A simple example of this 
approach will be given in the next section. 

Recently, some French researchers, who originally had used Baer and Nunziato’s model with 
some slight reformulation for similar applications, began to generalize it and apply it to other 
multiphase mixtures of interest in a fluid dynamics context.  In 1998, Richard Saurel and Remi 
Abgrall [Saurel and Abgrall, 1999] published their 7-equation compressible 
multifluid/multiphase flow model (assuming no mass transfer between phases),

0k
k ku

t
 (15) 

k k
k k k k I k m k

u u u p p u u
t

 (16) 

k k
k k k k k I I k m k I k m I

E E u p u p u u u u p p p
t

 (17) 

k
I k k mu p p

t
 (18) 

where k , k k k , ku , k k kp p , and kE  represent the fluid phase k  “volume fraction”, 
mass density, velocity, pressure, and total energy, respectively.  These equations, which 
represent the balance of mass, momentum, and total energy, and volume fraction evolution, 
respectively, with specific interphase transfer terms placed on the right-hand sides.  In these 
equations, (for a two-phase flow) 1,2k  and correspond respectively with 2,1m ; Ip  and Iu
represent the interfacial pressure and velocity.  In the Baer-Nunziato model, these variables are 
chosen as 2Ip p  and 1Iu u , while the Saurel model utilized the following interfacial values: 

1,2

1,2
1,2

k k k
k

I I k k
kk k

k

u
u and p p  (19) 

This model contains relaxation parameters  and  that determine the rates at which the 
velocities and pressures of the two phases reach equilibrium.  These equations are closed by two 
equations of state, the saturation constraint for the volume fractions and the stiffened gas 
equation of state (which holds approximately for a broad range of gases and liquids) 

1 2 1 (20) 
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1k k k k k kp e  (21) 

where ke is the internal energy and k and k are constants, specific for each phase k .
Their model is unconditionally hyperbolic and well-posed, and seems to be able to solve physical 
situations for which other models fail.  In the original Baer and Nunziato model, which is now 
more popular in the literature and even has become known as the BN-model, iu  is taken equal to 
the velocity of the less compressible phase and ip  , the interphase pressure, is taken equal to the 
pressure of the most compressible phase.  In Saurel and Abgrall, ip  is taken equal to the mixture 
pressure and iu  to the velocity of the center of mass.  In [Lallemand and Saurel, 2000] new and 
enhanced pressure relaxation procedures are presented for this method. 

New variants of this theory are appearing in the literature, or are in preparation.  For example, 
[Chinnayya, Daniel, and Saurel, 2004] use a new homogenization method (DEM) to obtain 
explicit formulas for ip  and iu  that are symmetric, compatible with the second law of 
thermodynamics, and responsible for the fulfillment of interface conditions when dealing with 
contact/interface problems; they also provide a general explicit formula for  .  Other recent 
works with these models include [Andrianov, Saurel, and Warnecke, 2003] and [Andrianov and 
Warnecke, 2004].  Also of interest, [Guillard and Murrone, 2005] use asymptotic analysis, in the 
limit of zero relaxation time, to reduce the 7-equation two-phase equation model (which contains 
relaxation terms that drive the system toward pressure and velocity equilibrium) to a five 
equation reduced hyperbolic system. 

This whole approach seems to be gaining momentum.  It is important to get the correct wave 
behavior during transients.  The methods discussed above seem to be headed in the right 
direction.

{Note: all equations given here are in a one-dimensional context, but extend directly to 
multidimensions.  Also, though not discussed here, most of the above methods also include 
models for the difference between the mean phase and interface pressures, e.g. Hicks and 
Ransom as well as several recent papers by Moon-Sun Chung, Sung-Jae Lee and co-workers in 
South Korea; references available} 
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Chapter 3:  Two-Phase Example 
Two Barotropic Fluids, No Phase Change 

Consider the simple two-phase example of two barotropic fluids exhibiting no phase change, i.e. 
no mass exchange between the two fluids. 

Continuity

1 1 1 1 1 0
u

t x
 (1) 

2 2 2 2 2 0
u

t x
 (2) 

Momentum (no surface tension)

2
1 1 11 1 1 1 1 1

1 1i

uu p
p M

t x x x
 (3) 

2
2 2 22 2 2 2 2 2

2 2i

uu p
p M

t x x x
 (4) 

2

1
0k

ki k
k

p M
x

 (5) 

Volume Fraction Propagation (and saturation constraint)

1 1 1 2
1 2i

c

u p p
t x

 (6) 

2

1
1k

k
 (7) 

where (a couple of choices) 
k k k

k
i i k

k k
k

u
u or u u  (8) 

is an interface velocity.

Constitutive

2
1 01 1 1 01 01 1 01, ,p p c p c constants  (9) 

2
2 02 2 2 02 02 2 02, ,p p c p c constants  (10) 
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kiRelationships for p  (11) 

kRelationships for M  (12) 

Now consider that at longer times the phasic pressures may tend toward a common equilibrium
or equilibration pressure, p  .  Toward this end let us rewrite the right hand side (RHS) of (3) 
and (4)

k k k kk k
ki k ki k

k k
k k ki k k

k
k ki

acceleration by momentum exchange by
equilibration pressure press

k k

ure difference betw

p p
p M p M

x x x x
pp p p p M

x x x x

p p
x x

p p p
x x

(

)
( )

k k

acceleration by nonequilibrium
een phase pressure pressure difference

equilibration pressure and between phase and equilibration
local phasic interface pressures
pressure acceleration force

p p
x kM

(13)

Traditional two-phase models (i.e. 1-pressure models) have only the first term on the RHS of 
(13) .  The second and third terms can be very important.  Even if we had the case of interface 
pressures being equal to the phasic pressures, ki kp p  , the RHS of (13) would be 

k
k k k

p pp M
x x

 (14) 

and it is seen that the second term only disappears as kp p  which almost certainly does not 
occur in wave propagation. 

Let us assume that the interface pressures are equal for the two phases, i.e. 1 2i i ip p p  , and 
that separate phase pressures exist.  Then (5) and (7) give 

2 1M M M  (15) 

and the momentum equations (3) and (4) can be written 

2
1 1 11 1 1 1 1 1

i

uu p
p M

t x x x
 (16) 

2
2 2 22 2 2 2 2 2

i

uu p
p M

t x x x
 (17) 

Now if we introduce equilibration pressure as in (13) the momentum equations can be written as 
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2
1 1 11 1 1 1

1 1 1 i

uu p p p p p M
t x x x x

 (18) 

2
2 2 22 2 2 2

2 2 2 i

uu p p p p p M
t x x x x

 (19) 

Again it is seen that this model reduces to the traditional, single pressure model only as 
1 2, , ip p p p  . 

It would appear that the definition of mean or equilibration pressure, p , is arbitrary.  By 
physical reasoning alone the equilibration pressure can be defined as the pressure that enables 
specified masses of separate materials to fill an entire volume with no ongoing compression or 
expansion of the materials.  Using (7), this mathematical statement is 

2

1

1 0k k

k k p
 (20) 

in which 1

k p
 is the volume occupied by a unit mass of pure material k  at the equilibration 

pressure p  .  This can be thought of as the asymptotic value of mixture pressure, as time 
becomes large, after packing arbitrary or specified amounts of multiple materials into a box or 
cell, and allowing them to expand or contract isentropically. 

Notice that the term k k

k p
 has units of material k  volume per unit total volume, suggesting an 

obvious definition for the equilibrium volume fraction k

k k
k

k p
 (21) 

which provides the most popular closure for this part of the equations, namely k k  .  This is 
called the equilibrium pressure model.  In this model, the term involving the pressure difference 

k kp p  vanishes in the momentum equations (18) and (19) as does also the ip p  term. 

The pressure of a component (phase) of a barotropic fluid is given by (9) and (10).  At 
equilibrium 

2
0 0

2
k k k

k
k

c p p
p

c
 (22) 
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Substitution of (22) into (20) allows us to obtain p  and substitution of (22) into (21) provides 

k  . 

To summarize, the equilibrium pressure model is 

1 1 1 1 1 0
u

t x
 (23) 

2 2 2 2 2 0
u

t x
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2 2
1 1 1 2 2 2

2 2
1 01 01 2 02 02

1 0
c c
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c
c p p
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2 11  (29) 

Another useful relation can be developed for p  .  Recall that p  was defined to be the pressure 
satisfying (20).  Differentiating (20) in time (denoted by the subscript t  ), 

2

2
1

1 0k k
k k kt t

k k k

 (30) 

Applying (1) and (2) , and noting from (9) and (10) that 2
k k tt

p c  we get 
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But using 2
k k xx

p c
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 (32) 
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and
2 2

2 2
1 1

k k k

k k k kk k
cc

 (33) 

equation (31) becomes 
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0k kk k k
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This equation can be rewritten in the illustrative form 
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where
2
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2
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k
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u
cu
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 (36) 

Equations (35)-(36) are referred to as the pressure equation; it has a nice form.  It says if the 
volume of one material displaces another due to flow in and/or out of the volume, the 
equilibration pressure must respond, and does so in proportion to the sound speeds of the various 
materials present. 

Note two limiting cases for (35)-(36).  For a single-phase, 1k  and we have 

2 up c
x

 (37) 

which is an identity.  The second limiting case is for a single fluid having c  ,corresponding 
to the incompressible fluid; then this just says 

0u
x

 (38) 

An alternative derivation of the pressure equation could be as follows.  Beginning with the 
continuity equations (1)-(2) 
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or
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Using the previous identities 
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equation (40) can be written 
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Dividing by k  gives 
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Summing over the k  phases 
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