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Abstract - The local (pointwise) entropy generation rate per unit volume S''' is a key to improving many energy 
processes and applications.  Entropy generation due to friction occurs from viscous dissipation of mean-flow 
kinetic energy (called "direct dissipation") and dissipation of turbulent kinetic energy into thermal energy 
("indirect" or turbulent dissipation).  The objective of the present study is to compare two approaches for the 
prediction of S''' for the viscous layer in near asymptotic (high Reynolds number) turbulent flows.   By employing 
available direct numerical simulations (DNS) it was found that about two-thirds of the entropy generation occurs 
in this layer.  A popular approximate approach does not agree with the result from the more exact evaluation of 
S''' but its integral falls within about four per cent at the edge of the viscous layer.  

1.  Introduction

 The local (pointwise) entropy generation rate per unit volume S''' is a key to improving 

many energy processes and applications [Bejan, 1982].  In developing his reciprocal relations 

for irreversible processes, Onsager [1931] extended Lord Rayleigh's "principle of least 

dissipation of energy" and indicated that the rate of increase of entropy plays the role of a 

potential.  Thus, entropy generation (or "production" [Prigogine, 1978]) may be used as a 

parameter to measure a system’s departure from reversibility.  Bejan has suggested that real 

systems which owe their thermodynamic imperfections to fluid flow, heat transfer and mass 

transfer irreversibilities be optimized by minimizing their entropy generation.  This approach 

has been applied to compact heat exchangers, power plants, natural convection, rotating 

bodies, enhanced heat transfer surfaces, impinging jets, convection in general and other 

thermal systems.   

 Kock and Herwig [2005] suggest that predicting the efficient use of energy in thermal 

systems requires accounting for the second law of thermodynamics since the loss of available 

work [Kestin, 1980] is proportional to the amount of entropy produced (e.g., via the Gouy 

[1889]-Stodola [1910] theorem cited by Bejan).  Therefore, apparatus producing less entropy 

by irreversibilities destroys less available work, increasing the efficiency.  Neumann, von 

Wolfersdorf and Weigand [2005], Kock and Herwig and others are using computational fluid 

dynamics (CFD) codes to predict entropy generation for optimization by minimizing it.  Since 

S''' determines the localized contribution to energy losses or reduction in the availability of 

energy [Clausius, 1887;  Lichty, 1936], insight into the dominant loss sources and their 

locations can allow reducing them intelligently, thereby improving efficiency.  These CFD 

studies seek to identify the regions of maximum entropy production so they may be attacked 

and reduced. 

 In the present study, we examine entropy generation due to shear stresses in idealized 

fully-developed turbulent channel flows between infinitely-wide flat plates. We concentrate 

on the viscous layer because it is typically the region where the largest gradients occur and the 

production of turbulence is greatest.  Following Bradshaw [1975], we are here defining the 



viscous layer as the region where viscous effects are significant, but not necessarily dominant, 

typically to y+ about 30 in a classical zero-pressure gradient case (it includes the "laminar" 

and buffer sublayers in some investigators’s terminology).  The quantity y is the normal 

distance from the wall and the superscript + here and later represents normalization by wall 

units, kinematic viscosity  and friction velocity u  (= ( w/ )1/2 with w symbolizing the 

mean wall shear stress and  the fluid density).  The major resistances to momentum, energy 

and mass transfer occur in this layer -- and the pointwise entropy generation rate is greatest 

here as well. 

 Key relations for evaluating entropy generation are presented in the Background 

section which follows.  Proposals to estimate the pointwise contribution of entropy generation 

rates due to friction in incompressible turbulent wall flows include (1) evaluation of the 

fluctuating gradients forming the dissipation term in the turbulent enthalpy equation and (2) 

an approximate analogy to laminar flow employing assumed boundary layer (and other) 

approximations [Schlichting, eq. 23.8d, 1968].  Accordingly, the objective of the present study 

is to compare these two approaches for the viscous layer in near asymptotic (high Reynolds 

number) turbulent flows. The bases of the examination are the direct numerical simulations 

(DNS) by Abe, Kawamura and Matsuo [2001].  After comparison for the pointwise and 

integral results, we then summarize with concluding remarks.   

2.  Background 

 Entropy appears in the second law of thermodynamics which can be written for a 

flowing open system, in terms of the "rate of creation" of entropy [London, 1960], as  

RoC(S)  =  Sout  +  (dScv / dt)  -  Sin  (
.
Q /T) 

where Sin/out is the rate of entropy convection into or out of the system, Scv is the entropy 

stored in the control volume, t is time, 
.
Q  is the rate of heat transfer into the control volume 

and T is the absolute temperature of the thermal reservoir from which this heat transfer comes.

As a measure of the irreversibility, Bejan [1982] and others define an entropy generation rate 

or rate of production of entropy [Reynolds and Perkins, 1970]  

Sgen  =  ( m s)out  +  (dScv/dt)  -  ( m s)in  -  (
.
Q /T)   0 

which can be seen to be the inequality, if any, between RoC(S) and the reversible portion of 

entropy transfer with heat into the system. (The symbol m  represents the mass flow rate.) 

Possible irreversible processes are recognized to include friction, heat transfer with significant 

temperature gradients, combustion, etc.   

For an isothermal, laminar pipe flow with no external heating imposed, Bejan [1982] 

and others suggest that the volumetric entropy generation rate S''' can be estimated by 

evaluating the viscous dissipation function  for the flow, 

S'''{y}  =  (  / T)  =  ( U/ y)2 / T



The symbol  denotes absolute viscosity.  Throughout the remainder of this paper, the 

streamwise velocity is represented as U + u, where upper and lower case letters symbolize its 

mean value and the fluctuation about it, respectively;  the wall-normal velocity V + v is 

treated in a similar fashion.  (The braces {} are used to indicate that S''' is considered to be a 

function of y.)   

 The time-mean value of  at a point in a flow with turbulent fluctuations may be 

expanded to  +  where the former represents viscous dissipation of mean-flow kinetic 

energy (called "direct dissipation") and the latter represents dissipation of turbulent kinetic 

energy into thermal energy ("indirect" or turbulent dissipation) [Cebeci and Bradshaw, 1984;  

Gersten and Herwig, 1992;  Schlichting and Gersten, 1997, 2000],   
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with z and w being the spanwise coordinate and the turbulent fluctuation in that direction, 

respectively.  When expressed in wall units, the pointwise entropy generation rate for a fully-

developed turbulent flow between infinitely-wide parallel plates can be written as

(S'''{y+})+  =  ( U+/ y+)2  +

where (S''')+ is defined as T S'''/( u 4) and + is /u 4 while x is the streamwise coordinate.

The mean velocity components V and W are identically zero for this idealization. 

 The prediction of pointwise (S'''{y+})+ is desired to identify regions where most losses 

occur (large values of S''') and to deduce the entropy generation rate per unit surface area – 

and, ultimately, S' or S over the entire surface.  In wall coordinates, the entropy generation per 

unit surface area can be evaluated as

(S"{y+})+  =  (TS"/( u 3))  =
0

y+

(S'''{y+})+ dy+

 Previous studies of turbulent flows with favorable streamwise pressure gradients have 

been summarized by Narasimha and Sreenivasan [1979], Spalart [1986], McEligot and 

Eckelmann [2006] and others.  Based on definitions, continuity and momentum equations and 

empirical relations, one can form approximate relations between some of the non-dimensional 

parameters suggested as governing the flows.  Streamwise acceleration in a boundary layer is 

often represented by an acceleration parameter [Kline et al., 1967] defined as  

Kv  =  ( /U
2
) dU  / dx 

The subscript infinity indicates evaluation in the freestream.  For a boundary layer flow, one can 

show Kv = -(cf/2)
3/2

 Kp where cf is the skin friction coefficient, defined as (2 w /( U
2
)).  For 

fully-developed flow in a duct, Kv is zero by definition and the pressure-gradient parameter may 

be estimated as 



Kp  =  ( / u
3
)dp/dx    -20.1 ReD,h

-(7/8)

by employing a Blasius correlation [Patel, 1965].  The letter p denotes static pressure and the 

Reynolds number ReD,h here is based on the bulk or mixed mean velocity and on the hydraulic 

diameter Dh calculated as four times the cross sectional area divided by the "wetted" perimeter 

of the duct.  Consequently, some authors may have interpreted "pressure-gradient effects" as 

"low-Reynolds-number effects" and others may not have realized that their fully-developed 

internal flow could have entailed significant streamwise pressure gradients.  The distance yc to 

the centerplane, centerline or other thickness measure can be represented as

y
+

c   = (yc u / ) =  (yc/Dh) ReD,h (cf/2)
1/2

  0.20 (yc/Dh) ReD,h
7/8

This quantity is also denoted as Re  (= yc u / ) by some investigators (e.g., Kim, Moin and 

Moser [1987]). 

 The likelihood of streamwise pressure gradients affecting the viscous layer was 

discussed by McEligot and Eckelmann [2006].  The governing momentum equation may be 

written

U+( U+/ x+)  +  V+( U+/ y+)  =  -Kp  +  ( +/ y+)

From the momentum equation, one sees the distribution of +{y+}/ y+ will be a function of 

Kp alone if the convective terms are zero or negligible.  Fully-developed flows in tubes, 

channels and parallel plate ducts inherently satisfy this requirement.

 Near the wall, the solution for the total shear stress variation can be approximated 

[Julien, Kays and Moffat, 1969;  Finnicum and Hanratty, 1988] as

+{y+}   =  ( {y+}/ w)  =  1  +  Kpy+[1 - (cf/(2y+))
0

y+

(U+)2dy+]

For a fully-developed flow in a duct or tube, the convective terms become zero as noted and this 

solution reduces to

+{y+}  =  ( {y+}/ w)  =  1  +  Kp y+

With –Kp  0, the x-momentum equation reduces to +{y+}  1 near the wall, i.e., the 

constant shear layer assumption becomes valid, provided the flow thickness is "large" enough.  

For the effect of a pressure gradient to be negligible in the viscous layer, one could establish a 

criterion that + still be greater than 0.95 or such at its edge (say y+  30).  This constraint 

translates to requirements such as –Kp < 0.0017, Re  > 600 and, for tubes or ducts, ReD,h > 

46,000.  McEligot and Eckelmann suggest that, for the viscous layer behavior to be similar in 

various geometries and flows, one needs (1) the viscous layer to be small relative to geometric 

scales in the flow and (2) to have the same distribution of +{y+}/ y+ through the viscous 

layer.  The variation of +{y+} in the viscous layer is indicated by evaluating the term -Kpy+

at y+ = 30.  In a comparable study, Nieuwstadt and Bradshaw [1997] showed that viscous 



layer statistics can be expected to be approximately equivalent in different geometries if their 

values of Re  are the same, i.e., +{y+} would be about the same in both geometries. 

 For fully-developed turbulent pipe flow at high Reynolds numbers, Bejan [1982] 

derived an "universal" distribution of (S'''{y+})+ by assuming the three-layer von Karman 

"universal velocity profile."  This assumption of an asymptotic high-Reynolds-number profile 

is equivalent to considering a low streamwise pressure gradient and a constant shear layer 

{y} near the wall.  He predicted that for y+ > 30 the pointwise entropy generation rate would 

be less than fifteen per cent of its wall value, decreasing as y+ increases (his Figure 3.6), and 

that the contribution of the turbulent dissipation would be about half the total (his Figure 3.8).  

As noted by McEligot and Eckelmann [2006], for low values of –Kp (e.g., "high" Reynolds 

numbers), the viscous layer of a turbulent channel flow should show the same behavior as the 

viscous layer in a pipe flow.  

3.  Entropy Generation from Turbulent Dissipation 

 The objective of the present study is to compare a popular approximate approach 

estimating S''' for the viscous layer in near asymptotic (high Reynolds number) turbulent flows 

to the more exact treatment above for the same situation.   The DNS database of Kawamura 

and colleagues for isothermal turbulent channel flow at Re  = y+c = 640 forms the basis [Abe, 

Kawamura and Matsuo, 2001];  the flow was idealized as being fully-developed between 

infinitely-wide parallel plates with the Newtonian fluid having constant properties.  This 

condition corresponds to ReDh  49,000 and Kp  - 0.0016 for the streamwise pressure 

gradient.  According to the order-of-magnitude reasoning of McEligot and Eckelmann [2006], 

these viscous layer results should be reasonably applicable to any geometry provided the 

characteristic dimension is greater than about 600 in wall units, -Kp < 0.0017 and ReDh > 

46,000.  The reduction in total shear stress across the viscous layer is given by the quantity 30 

Kp or about 4.7 per cent in this case, close to the constant shear layer approximation for an 

asymptotically-high Reynolds number.  The calculations of Kock and Herwig [2004] were for 

Re = 395 giving a reduction of about 7.6 per cent across the viscous layer, i.e., slightly less 

constant.

 The direct numerical simulation solves the governing Navier-Stokes and continuity 

equations in their three-dimensional, unsteady forms without modeling any terms.  

Consequently, it is not a "turbulence model."  Kawamura and coworkers imposed periodic 

boundary conditions in the streamwise and spanwise directions with the no-slip condition at 

the wall.  A finite difference method was adopted for solution with a fourth-order central 

difference scheme for the streamwise and spanwise directions and a second-order central 

difference scheme in the wall-normal direction.  For time advancement, the Crank-Nicholson 

method was applied for viscous terms with wall-normal derivatives and the second-order 

Adams-Bashforth method was employed for other terms.  The time integration for ensemble 

averaging corresponded to about fourteen residence times after the flow reached a fully-

developed state.  Spatial resolution for the grid was x+ = 8.00, z+ = 4.00 and y+ was 

varied from 0.15 near the wall to about eight at the centerplane.  The staggered computational 

grid of 1024 x 256 x 1024 nodes covered a volume of 12.8 yc+ x 2 yc+ x 6.4 yc+.



 From the Background considerations above, one sees that profiles of mean velocity 

and the dissipation of turbulence kinetic energy are needed in order to calculate the pointwise 

entropy generation rate.  Kawamura and others tabulate a "pseudo dissipation" u+ (in the 

terms of Gersten and Herwig [1992]);  citing Hinze [1975], the desired dissipation  is called 

the "true dissipation" by Wilcox [1998].  For a fully-developed channel flow, the difference is 

provided by a term common with viscous diffusion, 

 - u =   ( 2 2v / y2)

which, therefore, cancels in the governing equation for turbulence kinetic energy.   From the 

DNS of Kim, Moin and Moser [1987] at -Kp  0.006 (Re  180), Bradshaw and Perot [1993] 

show that the contribution of viscous diffusion is everywhere less than about two per cent of 

the dissipation rate and conclude that the difference between the true dissipation rate and the 

pseudo dissipation rate can be ignored for all purposes of computation and discussion.

 In the present study we formed  by calculating the second derivative of ( 2v {y+})+

from Kawamura's tabulations and adding it to u+.  The term ( 2v {y+})+ is positive near the 

wall and becomes negative near y+ about fifteen and positive again at y+ > 160.  The resulting 

maximum difference between "true" and pseudo dissipation is about 2-1/2 per cent at y+ near 

five -- where it is small relative to direct dissipation from the mean motion anyhow.  A 

maximum negative value of about 1.3 per cent occurs near the edge of the viscous layer. 

 The direct dissipation from the mean motion (labeled "Mean") and the turbulent 

dissipation + (labeled "Diss") are compared in Figure 1.  Figure 1a uses linear coordinates 

and Figure 1b employs logarithmic coordinates;  each has its advantage for the reader.  The 

linear presentation was employed by Bejan for his pipe flow and, perhaps, provides easier 

visualization of relative magnitudes.  The logarithmic representation emphasizes the viscous 

layer while still giving indication of results well outside it.  Logarithmic coordinates also 

make it easy to estimate per cent differences and, therefore, relative importance of terms. 

 In wall coordinates the contribution of direct dissipation is unity at the wall.  It 

dominates near the wall while turbulent dissipation contributes about fifteen to twenty per 

cent to the total.  Consequently, the difference between true and pseudo dissipation 

corresponds to less than one-half per cent of the total in this region.  Both direct and turbulent 

dissipation decrease as y+ increases but the reduction of direct dissipation is more rapid with 

respect to y than the turbulent dissipation -- so they become of about equal magnitude near y+

 14 or so.  For larger values of y+, turbulent dissipation becomes progressively more 

dominant.  By the edge of the viscous layer the contribution of the mean motion is about 

negligible.  Both direct and turbulent dissipation are seen to decrease rapidly beyond this 

region.  Through the typical logarithmic layer and central core region the dissipation and 

therefore the entropy generation is essentially provided by the turbulent dissipation. 



Fig. 1.  Predictions of volumetric entropy generation rate and contributing terms from direct 

numerical simulations of Kawamura and coworkers [Abe, Kawamura and Matsuo, 2001]:  (a) 

linear presentation and (b) logarithmic presentation. 

 The pointwise entropy generation rate (S''')+ is represented by the solid line in Figure 

1.  Since it is the sum of direct and turbulent dissipation, in wall coordinates it is of order
unity in the linear layer (y+ < ~ 5).  It then undergoes a sharp reduction through the rest of the 

viscous layer.  By y+ of thirty, the volumetric rate S''' is reduced to about eight percent of its 

value at the wall and it continues to decrease rapidly further away from the wall.  This result 

agrees with the approximate prediction of Bejan [1982] for a fully-developed, high-Reynolds-

number pipe flow;  according to the reasoning of McEligot and Eckelmann [2006], his pipe 

flow would correspond to a low value of –Kp, the non-dimensional streamwise pressure 

gradient.   

 As noted in the Background section, the integral with respect to y of the pointwise 

entropy generation rate gives the entropy generation rate per unit surface area (S") which 

would be sought by thermal fluid engineers.  Figure 2 demonstrates the increase of (S"{y+})+

through the viscous layer as the solid curve (labeled S").  Since (S''')+ ranges only from about 

1.2 to 0.9 in the linear layer, the integral increases nearly linearly with respect to y in that 



region.  About thirty per cent of the entropy generation occurs in this layer.  Beyond y+  5, 

S''' decreases sharply with respect to y.  By y+   20 the turbulent dissipation is significantly 

greater than the direct dissipation due to the mean motion so the contribution to S" is then 

primarily from turbulent dissipation.  For these conditions, the total (S"{y+c})+ is about 

nineteen;  by the edge of the viscous layer at y+  30, approximately two-thirds has appeared 

(and about three-quarters by y+  50).  Direct dissipation is reduced to less than one per cent 

of the wall value of total dissipation by y+  100 but by then + is an order-of-magnitude 

greater than the direct dissipation so (S''')+ +.  Beyond y+  100 the distance to the 

centerplane is still large in wall units, but (S''')+ is small so the additional contribution to 

entropy generation per unit surface area (S")+ is likewise small.

Fig. 2.  Predictions of entropy generation rate per unit surface area from direct numerical 

simulations of Abe, Kawamura and Matsuo [2001]. 

4.  Approximate Prediction or Measurement of Entropy Generation 

 By application of boundary layer and other approximations, Schlichting [eq. 23.8d, 

1968] has suggested that dissipation in a turbulent boundary layer may be evaluated as  

  [  ( U/ y)  -  uv ] ( U/ y)  

so that the volumetric entropy generation rate can be calculated approximately as 

(Sap''')+    ( U+/ y+)2  +  ( uv )+( U+/ y+)

One sees his turbulent dissipation term to be equivalent to the main contributor to production 

of turbulent kinetic energy.  Several investigators have adopted this idea to measure or predict 

entropy generation (e.g., O'Donnell and Davies [1999], Stieger and Hodson [2003]).  While 



the approximation that production is equal to turbulent dissipation may be reasonable in the 

typical logarithmic layer beyond y+  30, Figure 1 reminds us that they can differ significantly 

in the viscous layer.  Near the wall, production (labeled "Pro") is negligible whereas turbulent 

dissipation (labeled "Diss") is significant.  Then at its peak near y+ of eleven, the production 

is almost eighty per cent greater than turbulent dissipation.   

 Conceptually, one might suggest that the root source of entropy generation is the 

production of turbulence kinetic energy which is later dissipated as thermal energy.  Further, 

the approximate representation Sap'''{y} is much easier to predict and measure than the more 

complete version of Cebeci and Bradshaw [1984], Gersten and Herwig [1992] and others.  

The Reynolds shear stress (- uv ) can be measured at a point by single-slanted or dual-

crossed hot-wire or hot-film probes and comparable laser Doppler velocimetry systems and, in 

some situations, it can be deduced from mean velocity profile data (e.g., pitot tubes).  

However, for the exact treatment, one needs to measure the instantaneous gradients, i.e., 

values of the individual components at two points simultaneously.  For example, Hinze [1975] 

suggests three techniques for deducing turbulent dissipation from hot-wire measurements but 

all depend on isotropic assumptions which are not valid close to a wall.  For prediction of 

with turbulence models, one needs solution of a dissipation equation (which corresponds to 

pseudo dissipation u) plus solution for the Reynolds normal stress in the wall-normal

direction to evaluate the dominant contribution to viscous diffusion.  In contrast, even a 

reasonable van Driest mixing length model can be adequate to predict the Reynolds shear 

stress in the viscous layer and, therefore, the production of turbulence kinetic energy there 

[Huffman and Bradshaw, 1972;  McEligot, 1985].  So the question becomes --- how well (or 

poorly) do the two approaches agree? 

 One sees from the discussion of Figure 1 above that, in the linear layer near the wall, 

the pointwise volumetric entropy generation rate Sap'''{y} will be less than S'''{y}.  Then as 

production exceeds dissipation and direct dissipation becomes the same order-of-magnitude as 

turbulent dissipation, Sap'''{y} will become greater than S'''{y} until they become 

approximately equal (production  dissipation) beyond the viscous layer.  At larger distances 

in the typical logarithmic layer and beyond, both approaches give small values compared to 

their magnitudes in the viscous layer. 

 Figure 1 provides comparisons of the two treatments and of the related terms.  Figure 

1a shows the relation of Sap''' to S''' to be consistent with the reasoning above.  It is seen that 

the distributions in the viscous layer differ between the two approaches as production and 

dissipation differ considerably there.  The approximate technique underpredicts in the "linear" 

layer and then overpredicts through the rest of the viscous layer.  Near the wall the ratio 

Sap'''/S''' is about 0.8 but it increases to about 1.37 near y+  17 before decreasing to near
unity in the usual logarithmic region as seen in both figures.  Near the "edge" of the viscous 

layer at y+ = 30, it is still about ten per cent high.  Both approaches agree in the logarithmic 

layer since production of turbulence kinetic energy approximately equals its dissipation there 

(in fact, this observation can be employed to derive the logarithmic "law").  

 Based on a scaling analysis (or boundary layer approximations) for turbulent boundary 

layers with negligible pressure gradients, Hinze [1975] concludes that in the fully-turbulent 

region beyond the viscous layer a state of energy equilibrium of the turbulence should occur 

where production approximately equals turbulent dissipation.  Since the contribution to 



entropy generation from the mean motion is the same for Sap''' and S''', this observation by 

Hinze would imply that Sap'''   S''' in the region beyond the viscous layer.  The centerline 

curve in Figure 1 presents the ratio Sap'''/S''' to examine this suggestion;  as y+ increases, this 

ratio becomes equivalent to production/dissipation because the contribution from the mean 

motion becomes negligible.  One sees that the two are approximately equal (say within ten per 

cent) in this region but differ in detail in Kawamura's results.  These detailed differences are 

best seen by examining this ratio over the full range as in Figure 1b.  

 To the unaided eye, it appears that in Figure 1a the areas under the curves for Sap''' and 

S''' are approximately equal in the range 0 < y+ < 30.  In the integration to obtain S"{y}, the 

higher value of S''' near the wall counters Sap''', which is higher in most of the viscous layer, 

to give agreement of S" within about four per cent by y+ = 30.  In Figure 2 the curve denoted 

by centerline symbols provides the ratio Sap"/S" to quantify agreement (or disagreement) of 

Sap" with S".  Ultimately, the integrations across the channel (e.g., S"{yc+}) should be equal.

Thus, one sees the asymptote Sap"{yc+} to be about the same as S"{yc+}, consistent with the 

production of turbulence kinetic energy across the cross section being equal to its turbulent 

dissipation.   At the centerplane, the DNS results predict the difference to be less than one per 

cent (ideally zero).  

 These comparisons demonstrate that while the approximate approach can give 

pointwise errors of Sap'''{y} over thirty per cent in the viscous layer, the integrals over the 

viscous layer agree more closely (i.e., within about four per cent). 

5.  Concluding Remarks 

 By employing the direct numerical simulations of Kawamura and colleagues, it has 

been possible to evaluate entropy generation in the viscous layer of turbulent channel flow at a 

near-asymptotically-high Reynolds number. About two-thirds of the entropy generation occurs 

in this layer.  In the viscous layer an approximate estimate of S''' (based on a suggestion of 

Schlichting [1968]) does not agree with the result from the more exact evaluation of the 

turbulent dissipation whereas reasonable agreement is found beyond the viscous layer where 

mechanical equilibrium (production  dissipation) is approached.  Highlighting the relative 

contributions due to viscous dissipation of mean-flow kinetic energy and dissipation of 

turbulence kinetic energy into thermal energy gives insight into the loss mechanisms.  The 

observation of fair agreement between Sap"{30} and S"{30} (within about four per cent) may 

be useful in the development of turbulence models and CFD predictions of entropy generation 

per unit surface area but such extension is beyond the scope of the present study.  The present 

results may be used, if only indirectly, to compare with entropy generation via heat transfer 

and to assess alterations in design from an entropy minimization point of view.  Since the 

non-dimensional streamwise pressure gradient Kp of the DNS calculated by Kawamura and 

colleagues can be considered to be low, the results for (S'''{y+})+ and (S"{y+})+ in the 

viscous layer should be approximately applicable to turbulent boundary layers with high 

Reynolds numbers (and negligible pressure gradients) as done by Kock and Herwig [2004] in 

developing their proposed wall functions. 
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