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ABSTRACT

A method for designing and optimizing recirculating pebble-bed reactor cores is

presented. At the heart of the method is a new reactor physics computer code,

PEBBED, which accurately and efficiently computes the neutronic and material

properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be

unique for a given core geometry, power level, discharge burnup, and fuel circulation

policy. Fuel circulation in the pebble-bed can be described in terms of a few well-defined

parameters and expressed as a recirculation matrix. The implementation of a few

heat-transfer relations suitable for high-temperature gas-cooled reactors allows for the

rapid estimation of thermal properties critical for safe operation. Thus, modeling and

design optimization of a given pebble-bed core can be performed quickly and efficiently

via the manipulation of a limited number key parameters. Automation of the optimization

process is achieved by manipulation of these parameters using a genetic algorithm. The

end result is an economical, passively safe, proliferation-resistant nuclear power plant.



iv

TABLE OF CONTENTS

LIST OF FIGURES .................................................................................................. viii

LIST OF TABLES .................................................................................................... xi

FORWARD.............................................................................................................. xiv

Chapter 1 Introduction ............................................................................................ 1

1.1 Objective of this Research ......................................................................... 1
1.2 Next-Generation Nuclear Power Plants – Greater Demands on Design

and Operation ............................................................................................ 2
1.3 Organization of this Thesis......................................................................... 5

Chapter 2 The Pebble-Bed Reactor and Analysis Methods .................................... 6

2.1 Summary of High-Temperature Reactor Design Efforts ............................. 6
2.2 Characteristics of the Pebble-Bed Reactor................................................. 9

2.2.1 Fuel Design.................................................................................. 10
2.2.2 Core Safety.................................................................................. 12
2.2.3 Fuel Economy.............................................................................. 15
2.2.4 Proliferation.................................................................................. 16

2.3 HTGR Physics ........................................................................................... 17
2.3.1 Pebble Flow – Studies and Relevance......................................... 21

2.4 Existing PBR Neutronics Analysis Methods ............................................... 28
2.4.1 Neutronics of Cores with Moving Fuel .......................................... 28
2.4.2 Equilibrium Cycle Analysis ........................................................... 31

2.5 Direct, Deterministic Analysis and Optimization of the Asymptotic Core..... 33
2.6 PBR Design and Optimization Considerations ........................................... 37
2.7 Genetic Algorithm Optimization.................................................................. 40

2.7.1 Stochastic Optimization................................................................ 40
2.7.2 Genetic Algorithm Basics ............................................................. 42
2.7.3 Genetic Algorithms in LWR Fuel Management............................. 44

Chapter 3 Modeling Pebble Bed Cores with PEBBED ............................................ 46

3.1 PEBBED .................................................................................................... 46
3.2 Matrix Representation of Recirculation in PEBBED.................................... 48

3.2.1 Recirculation Matrix Nomenclature............................................... 49
3.2.2 Pebble Flow in a Channel ............................................................ 51
3.2.3 Flow Contributions from Recirculated Pebbles ............................. 54
3.2.4 Order of the Recirculation Matrix.................................................. 58
3.2.5 Validity of Values ......................................................................... 59

3.3 Temperature Calculations in PEBBED....................................................... 61
3.3.1 Fuel and Coolant Temperatures During Normal Operation........... 62

Estimation of Coolant Temperature Profile.......................................... 62
Temperature Profile Inside a Pebble ................................................... 63
Pebble- and Channel-Averaged Quantities ......................................... 68



v

3.3.2 Peak Accident Temperature......................................................... 69
3.4 Summary of PEBBED Modeling Capability ................................................ 71

Chapter 4 Examples of PEBBED Reactor Models .................................................. 72

4.1 HTR Modul 200.......................................................................................... 72
4.1.1 Model of the HTR-Modul 200 ....................................................... 72
4.1.2 Recirculation Matrix Formulation for the HTR Modul 200 ............. 73
4.1.3 Results of PEBBED Analysis ....................................................... 77

4.2 PBMR with Dynamic Inner Reflector .......................................................... 80
4.2.1 Model of the PBMR-DIR............................................................... 80
4.2.2 Recirculation Matrix...................................................................... 81
4.2.3 Analytical Results......................................................................... 86

4.2.3.1 Effect of the Size of the Inner Reflector .......................... 86
4.2.3.2 Neutronic and Thermal Characteristics of the

Asymptotic Core........................................................................... 87
4.2.3.3 Enveloping Calculations and Pebble Histories................ 89
4.2.3.4 Isotopic Characteristics of the Spent Fuel ...................... 93
4.2.3.5 Depressurized Conduction Cooldown Transient............. 95

4.3 GE MPBR with an OUT-IN Fuel Management Policy ................................. 96
4.3.1 Model of the GE MPBR................................................................ 96
4.3.2 Recirculation Matrix...................................................................... 97
4.3.3 Analytical Results......................................................................... 101

4.3.3.1 Characteristics of the Asymptotic Core........................... 101
4.3.3.2 Accident Fuel Temperature ............................................ 105

4.4 Summary ................................................................................................... 106

Chapter 5 Other Applications .................................................................................. 108

5.1 Achieving Optimal Moderation using PEBBED and MICROX..................... 108
5.1.1 Optimal Moderation...................................................................... 108
5.1.2 Temporary Optimal Moderation in Batch-loaded Cores................ 109
5.1.3 Optimal Moderation in Static Cores.............................................. 111
5.1.4 Asymptotic Pattern Iterations and Cross-Section Generation ....... 113

5.1.4.1 Consequences of Optimal Moderation on Water
Ingress Reactivity Insertion .......................................................... 117

5.1.5 Effect of Pebble Optimization on Fuel Economy........................... 123
5.2 Bounding Cases for Hotspot Analysis ........................................................ 126

5.2.1 Modeling and Probability of Hot Channel Formation in the
PBMR-DIR .......................................................................................... 126

5.2.2 Consequences of a Combined Hot Channel Formation-DCC
Event .................................................................................................. 131

5.2.3 Accumulated Stress on Pebbles................................................... 132
5.3 Considerations for Proliferation Resistance................................................ 134

5.3.1 Dual Use of a PBR for Electricity and Weapons Production ......... 134
5.3.2 Covert Dual Use........................................................................... 135

5.3.2.1 Methods and Computational Models .............................. 136
5.3.3.2 Optimized Natural Uranium Production Pebbles............. 138

5.3.4 Effect of Introduction of Production Pebbles on Core Neutronics . 139



vi

5.3.5 Conclusion ................................................................................... 141

Chapter 6 Design of a Very High Temperature Reactor .......................................... 142

6.1 Background and Approach......................................................................... 142
6.1.1 VHTR – Characteristics and Design Objectives ........................... 142
6.1.2 Passive Safety Confirmation with MELCOR................................. 144
6.1.3 Confirmation of PEBBED Accident Temperature Calculations ..... 147

6.2 Approach and Results................................................................................ 152
6.2.1 Basic Design Approach................................................................ 152
6.2.2 The Search for the Feasible 300 MWt and 600 MWt Designs ...... 154
6.2.3 Selected Performance Characteristics of the VHTR..................... 161
6.2.4 Conclusion ................................................................................... 163

6.3 Hotspot Analysis of the VHTR-300............................................................. 163
6.3.1 Non-random Flow Distributions .................................................... 164
6.3.2 Results......................................................................................... 165
6.3.3 Conclusion ................................................................................... 168

Chapter 7 Automating PBR Design with PEBBED .................................................. 170

7.1 Genes, Traits, and Fitness ......................................................................... 170
7.2 Description of the Operators ...................................................................... 175

7.2.1 Selection ...................................................................................... 176
7.2.2 Cross-over ................................................................................... 176
7.2.3 Mutation ....................................................................................... 178

7.3 Results....................................................................................................... 178
7.3.1 Search for a Better HTR Modul 200 ............................................. 178
7.3.2 Search for a Better GE-MPBR ..................................................... 180
7.3.3 Search for a Better VHTR-600 ..................................................... 185

7.4 Conclusions ............................................................................................... 187

Chapter 8 Conclusions and Further Work ............................................................... 189

8.1 Fuel Management and Neutronics Analysis in Pebble-Bed Reactors......... 189
8.2 Passive Safety in Pebble-Bed Reactors..................................................... 190
8.3 Analysis of Existing PBR Designs .............................................................. 191

8.3.1 Results of Core Analysis .............................................................. 192
8.4 Other Applications of PEBBED and the Recirculation Matrix...................... 194
8.5 Design of a Very High Temperature Pebble-bed Reactor........................... 196
8.6 Automated Design of Pebble-bed Reactors ............................................... 197

8.6.1 Genetic Algorithm Search ............................................................ 198
8.6.2 Design Results............................................................................. 199

8.7 Future Work ............................................................................................... 200

Bibliography............................................................................................................. 205

Appendix A PEBBED Solution to the Diffusion Equation......................................... 214

Finite Difference Solution to the Diffusion Equation.................................... 214



vii

Surface and Volume Elements................................................................... 216
Boundary Conditions.................................................................................. 217
Coefficient Matrix (Coupling coefficients) ................................................... 219

Appendix B Solution to the Depletion Equations in PEBBED .................................. 224

Burnup and Nuclide Density....................................................................... 224
Simple Batch Decay................................................................................... 225

Batch Decay and Capture ................................................................... 227
Decay, Capture, and Fission ............................................................... 228

Linearization of Chains .............................................................................. 229
Time Intervals in PEBBED ......................................................................... 230
Round-off Error .......................................................................................... 231

Appendix C Transient, Non-Convective Radial Heat Transfer in PEBBED.............. 233

One-Dimensional Radial Conductive Heat Transport ........................................ 233
Initial Conditions.................................................................................. 239
Material Properties.............................................................................. 239
Other Solids ........................................................................................ 243
Gas Gaps............................................................................................ 246

Appendix D Validation of PEBBED Neutronics Solver............................................. 249

CRITICALITY.................................................................................................... 249
ANALYTICAL SOLUTIONS .............................................................................. 250

Appendix E Reactor Models.................................................................................... 258

Partition Coefficients for the PBMR-DIR.............................................. 262
Partition Coefficients for the GE-MPBR............................................... 265
Partition Coefficients for the Manually Optimized VHTR-300............... 268
Partition Coefficients for the VHTR-300 used in the Hotspot

Analysis ....................................................................................... 268
Partition Coefficients for the VHTR-600 .............................................. 275

Appendix F Fuel Pebble Models ............................................................................. 276



viii

LIST OF FIGURES

Figure 2-1: AVR – the first pebble-bed reactor. ........................................................ 6

Figure 2-2: THTR..................................................................................................... 7

Figure 2-4: A typical PBR fuel element with embedded fuel particles....................... 11

Figure 2-5: Krypton release during tests with irradiated spherical fuel elements at
1,600°C to 2,100°C [31]. ................................................................................... 13

Figure 2-6: Peak fuel temperature in AVR during loss-of-forced-cooling tests.......... 14

Figure 2-7: Moderator spectrum and absorption cross-section in a graphite-
moderated reactor. ........................................................................................... 20

Figure 2-8: Photographs of pebbles in recirculating pebble-bed............................... 22

Figure 2-9: Qualitative drawing of residence spectra vs. an arbitrary parameter
[47]. .................................................................................................................. 23

Figure 2-10: Drop zone above core as modeled by PFC3D [48]. ............................... 25

Figure 2-11: PBMR core with mixing of graphite and fuel pebbles [48]. ................... 26

Figure 2-12: Local distribution vs. core radius.......................................................... 27

Figure 2-13: Some fuel loading options in a PBR..................................................... 39

Figure 2-14: 8-bit binary crossover operation........................................................... 43

Figure 3-1: Computational flow in PEBBED version 3. ............................................. 47

Figure 3-2: Radial zoning of pebble flow. ................................................................. 48

Figure 3-3: PEBBED heat transfer model of pebble cooling. .................................... 64

Figure 4-1: Fast (>0.11MeV) flux in the HTR Modul 200. ......................................... 78

Figure 4-2: Effect of inner reflector size on core multiplication factor........................ 86

Figure 4-3: Pebble power for average and channeled trajectories. .......................... 90

Figure 4-4: Centerpoint fuel temperature for various trajectories.............................. 91

Figure 4-5: Thermal (<1.86 eV) flux in the PBMR-DIR. ............................................ 95

Figure 5-1: Infinite core multiplication factor vs. fuel region radius (MCNP).............. 112



ix

Figure 5-2: Effective multiplication factor dependence on the radius of the pebble
fueled zone. ...................................................................................................... 116

Figure 5-3: Core multiplication factor vs. density of steam in VHTR-300 coolant
(MCNP)............................................................................................................. 118

Figure 5-4: Multiplication factor versus fuel zone radius (PEBBED/COMBINE
model)............................................................................................................... 119

Figure 5-5: Core multiplication factor as a function of coolant steam density. .......... 120

Figure 5-6: Core multiplication factor vs. fuel temperature. ...................................... 121

Figure 5-7: Core multiplication factor vs. fuel region radius...................................... 122

Figure 5-8: Misdirected pebble scenarios in two-zone PBMR core........................... 127

Figure 5-9: Percent of residence time that the average pebble is above
temperature. ..................................................................................................... 133

Figure 6-1: MELCOR model of the VHTR. ............................................................... 146

Figure 6-2: Peak fuel temperature in a depressurized conduction cooldown of the
300 MWt test VHTR – MELCOR. ...................................................................... 148

Figure 6-3: PEBBED radial model of the 300 MWt test VHTR.................................. 149

Figure 6-4: Peak fuel temperature in a depressurized conduction cooldown of the
300 MWt test VHTR – PEBBED........................................................................ 150

Figure 6-5: Asymptotic core eigenvalue vs. radius of inner eeflector – VHTR-300. .. 155

Figure 6-6: DCC fuel temperatures at different axial locations* – extreme IN-OUT
event................................................................................................................. 167

Figure 7-1: Example of a four-point peak fuel temperature contribution to the
fitness specification........................................................................................... 172

Figure 7-2: Core eigenvalue contribution to fitness. ................................................. 173

Figure 7-3: Outer reflector radius contribution to fitness........................................... 174

Figure 7-4: Pumping power contribution to fitness. .................................................. 175

Figure C-1: Radial mesh interval in PEBBED transient calculation........................... 234

Figure C-2: Graphite thermal conductivity. ............................................................... 241

Figure C-3: Graphite specific heat............................................................................ 243



x

Figure C-4: SSTL-304 specific heat. ........................................................................ 244

Figure C-5: SSTL-3-4 thermal conductivity. ............................................................. 244

Figure C-6: 2.25Cr-1Mo specific heat. ..................................................................... 245

Figure C-7: 2.25Cr-1Mo thermal conductivity. .......................................................... 245



xi

LIST OF TABLES

Table 2-1: Key parameters for two PBR designs [9]................................................. 18

Table 4-1: Recirculation and thermal parameters for the HTR Modul 200 [9]. .......... 76

Table 4-2: PEBBED-computed characteristics of the HTR Modul 200. .................... 77

Table 4-3: Structural components of HTR Modul 200 1D radial heat transfer
model................................................................................................................ 78

Table 4-4: Operating parameters of the PBMR with dynamic inner reflector. ........... 81

Table 4-5: Flow Zone Boundaries and Flow Partition in the PBMR-DIR................... 82

Table 4-6: Flow distribution in PBMR-DIR................................................................ 85

Table 4-7: Neutronic features of the PBMR-DIR. ..................................................... 88

Table 4-8: Pu-239 content in discharged pebbles. ................................................... 93

Table 4-9: PBMR discharge Plutonium vector (% of total Pu mass). ........................ 94

Table 4-10: Flow partition in the GE-MPBR (OUT-IN). ............................................. 102

Table 4-11: VSOP-BOLD-VENTURE vs. PEBBED physics results for the GE
MPBR. .............................................................................................................. 103

Table 4-12: Plutonium isotopics for various Th-U fuel types..................................... 104

Table 4-13: DCC peak temperature results for the GE-MPBR. ................................ 106

Table 5-1: Optimization parameters for PBR core design and fuel management. .... 111

Table 5-2: Peak water ingress reactivity insertion for various VHTR core and fuel
designs. ............................................................................................................ 120

Table 5-3: Core multiplication factor of the PBMR with nominal and optimized
pebbles. ............................................................................................................ 124

Table 5-4: Fuel performance of optimal vs. nominal PBMR pebble. ......................... 124

Table 5-5: Flow distribution in PBMR-DIR – addition of fuel to inner reflector for
one pass (1st replacement scenario). ................................................................ 129

Table 5-6: Flow distribution in PBMR-DIR – switching of fuel and graphite for one
pass (1st transposition scenario)........................................................................ 130

Table 5-7: Effect of fuel handling failure modes on core parameters........................ 131



xii

Table 5-8: Operational parameters for nominal and dual use PBRs......................... 139

Table 5-9: Isotopics of discharge pebbles (mg per pebble). ..................................... 140

Table 6-1: Features of VHTR test systems. ............................................................. 151

Table 6-2: Attributes of some candidate 300 MWt VHTR reactors. .......................... 157

Table 6-3: Dimensions of the prismatic GT-MHR. .................................................... 159

Table 6-4: Attributes of some candidate 600 MWt VHTR reactors. .......................... 160

Table 6-5: Performance characteristics of PBMR vs. VHTR designs. ...................... 162

Table 6-6: Results of the VHTR-300 hot spot analyses............................................ 166

Table 7-1: Four point fitness specification for the simple 200 MWt core design........ 179

Table 7-2: Nominal values and gene domain for the 200 MWt simple core
optimization. ..................................................................................................... 179

Table 7-3: Selected results of HTR Modul 200 and optimized version. .................... 180

Table 7-4: Four point fitness specification for an optimized GE-MPBR. ................... 181

Table 7-5: Nominal values and gene domain for the GE-MPBR optimization........... 182

Table 7-6: Selected results of GE-MPBR and optimized version.............................. 182

Table 7-7: Flow distribution of optimized GE-MPBR. ............................................... 183

Table 7-8: Mass of U-233 in pebbles at exit plane after each pass. ......................... 184

Table 7-9: Four point fitness specification for VHTR-600. ........................................ 185

Table 7-10: Nominal values and gene domain for the VHTR-600 optimization......... 186

Table 7-11: Selected results of VHTR-600 manual and automated design runs....... 186

Table C-1: Temperature-dependent parameters in graphite conductivity
correlation......................................................................................................... 241

Table C-2: Thermal properties of non-temperature dependent materials. ................ 246

Table D-1: Analytical vs. PEBBED-calculated core eigenvalues. ............................. 257

Table E-1: HTR Modul 200. ..................................................................................... 258

Table E-2: PBMR-DIR.............................................................................................. 260



xiii

Table E-3: GE-MPBR............................................................................................... 263

Table E-4: VHTR-300. ............................................................................................. 266

Table E-5: VHTR-600. ............................................................................................. 273

Table F-1: HTR Modul 200 pebble. .......................................................................... 276

Table F-2: PBMR pebble. ........................................................................................ 278

Table F-3: GE-MPBR pebble ................................................................................... 280



xiv

FORWARD

A number of people contributed to the development and analysis of the models

contained herein. Dr. Eben Mulder and Frank Emslie of PBMR (Pty), Ltd. of the Republic

of South Africa (RSA) graciously volunteered design information on the Pebble Bed

Modular Reactor. Ramatsemela Mphahlele, fellow Penn State graduate student and

analyst for the National Nuclear Regulator of the RSA, donated a considerable number

of hours running MICROX to generate cross-sections for use in this work. Richard L.

Moore of the INEEL constructed and ran reactor models using MELCOR. This provided

the confirmation of the heat transfer models exploited in PEBBED.

Drs. William Terry and Abderrafi Ougouag offered guidance and feedback on a

daily basis at the INEEL. Much of this research is a product of the exceptional synergy

developed between the three of us. Dr. Terry is the creator of the PEBBED algorithm.

Dr. Ougouag laid the foundation for the work on non-proliferation, optimal moderation,

and hot spot analysis. Both of them contributed substantially to this effort.



1

Chapter 1

Introduction

1.1 Objective of this Research

Decades of research and development into light water reactor in-core fuel have

contributed to an impressive increase in the amount of energy that can be safely

extracted from uranium fuel. Recently, the pebble-bed reactor (PBR) with recirculating

fuel is attracting interest as a viable alternative. Passive safety features, simplicity of

operations, a stable waste form, high outlet temperature, and more efficient use of fuel

are causing some utilities to take a closer look at the helium-cooled thermal reactor. In

some ways, the pebble-bed is an established technology; two pebble-bed reactors

successfully generated power in Germany [1], a 10 MW pebble-bed achieved criticality

in China in 2000 [2], and a number of critical facilities have been built to conduct physics

experiments [3]. Yet this reactor concept has yet to mature, particularly with regard to

fuel design and in-core fuel management. With regard to the latter, the fact that the fuel

physically moves through the core during operation poses both interesting challenges

and opportunities. The sophisticated optimization techniques that have been applied to

light water reactor designs cannot be similarly applied to pebble-bed cores without new

analysis tools.

This work introduces new techniques for PBR design and fuel management.

These techniques have been incorporated into a new PBR analysis code called

PEBBED.
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1.2 Next-Generation Nuclear Power Plants – Greater Demands on Design and
Operation

In 2000 William Magwood IV, Director of the U.S. Department of Energy's Office

of Nuclear Energy, Science and Technology, called for a new generation of nuclear

power plant [4]. The Department of Energy has since engaged governments, industry,

and the research community worldwide in a wide-ranging discussion on the development

of next-generation nuclear energy systems known as “Generation IV.” The Generation IV

roadmap calls for the development and demonstration of one or more advanced nuclear

energy systems that offer advantages in the areas of sustainability, safety and reliability,

and economics, and that could be deployed commercially by 2030. Concepts are

identified as “Generation IV” if they may satisfy most or all of eight goals pertaining to

these areas as identified by the Generation IV NERAC Subcommittee. These goals are:

Goal 1 – Generation IV systems (including fuel cycles) will provide sustainable energy

generation that meets clean air objectives and promotes long-term availability of

systems and effective fuel utilization for worldwide energy production,

Goal 2 – Generation IV nuclear energy systems will minimize and manage their nuclear

waste and notably reduce the long-term stewardship burden in the future,

thereby improving protection for the public health and the environment,

Goal 3 – Generation IV nuclear energy systems including fuel cycles will increase the

assurance that they are a very unattractive and least desirable route for diversion

of theft of weapons-usable materials,

Goal 4 – Generation IV nuclear energy systems operations will excel in safety and

reliability,

Goal 5 – Generation IV nuclear energy systems will have a very low likelihood and

degree of reactor core damage,
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Goal 6 – Generation IV nuclear energy systems will eliminate the need for off-site

emergency response,

Goal 7 – Generation IV nuclear energy systems will have a clear life-cycle cost

advantage,

Goal 8 – Generation IV nuclear energy systems will have a level of financial risk

comparable to other energy projects.

Though no specific cost targets were identified by the Generation IV Roadmap

group, a target of $1,000 per KWe of installed electrical power was identified by a

Generation IV Working Group as a value under which new nuclear plants may compete

with other energy sources. A busbar cost of 3¢/KWh wholesale electricity from a new

plant is also considered a maximum value if nuclear plants are to compete with natural

gas-fired units.

One concept identified as a Generation IV candidate, the Very High Temperature

Reactor (VHTR), is distinguished by its graphite-moderated core, helium coolant, and

high outlet temperature (1,000°C) [5]. This high outlet temperature makes the VHTR a

leading candidate for hydrogen as well as electricity production. The VHTR is the

successor to the high temperature gas reactor (HTGR), of which many versions have

been designed and few actually built and operated. Pebble fuel can be used in either to

enhance fuel efficiency and safety. Modular construction may also reduce the capital

cost of the plants. The attributes of a modular pebble-bed HTGR/VHTR (henceforth

referred to as a Modular Pebble-Bed Reactor [MPBR]) are summarized in the next

chapter.

In order for the MPBR to compete successfully as an advanced power plant,

however, advanced design and analysis methods must be applied. Such methods have

heretofore not existed. Because the fuel elements in these reactors is actually in motion
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during operation, the techniques developed for other reactor types are not valid. Genetic

algorithms, neural networks, and other modern optimization tools that have been

successfully applied to light water reactors have not been adapted for the MPBR. The

principal obstacle has been the lack of an efficient analysis method that can treat moving

fuel. Such a method has recently been developed and incorporated into PEBBED [6].

This code solves the coupled diffusion and depletion equations for cores in which fuel

flows in a predictable pattern. The current version converges directly upon the

asymptotic or equilibrium core burnup distribution but can analyze static cores as well.

A boundary condition for the solution to the asymptotic core profile is the entry

plane burnup, a spatially dependent quantity that is determined by the method in which

pebbles are loaded and reloaded in the core. In this work, a formulation for the entry

plane burnup is developed that describes arbitrary, user-defined pebble flow patterns in

terms of a multi-dimensional recirculation matrix, the elements of which are functions of

a few easily computed coefficients. Thus, PBR core design and fuel management are

reduced to the manipulation of a small number of variables readily amenable to

optimization techniques. This is demonstrated by applying one such technique, a genetic

algorithm, to optimize a number of proposed MPBRs designs. The utility of the

recirculation matrix is also used to address other issues that are common to pebble-bed

reactors.

The techniques introduced in this work provide a framework for advanced core

design and fuel management of pebble-bed reactors that will allow them to achieve ever

more stringent standards of safety and performance.
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1.3 Organization of this Thesis

Chapter 2 provides a brief overview of the high-temperature, gas-cooled reactor

followed by a description of the pebble-bed reactor and the properties of pebble flow.

Methods for physics analysis are discussed including an introduction of the technique

used in PEBBED.

Chapter 3 provides an overview of the PEBBED code followed by the derivation

of the recirculation matrix, the method by which entry plane burnup is computed in

PEBBED. Special cases of the matrix are discussed. Also described are the correlations

and equations that are used in PEBBED to estimate fuel temperatures under normal and

accident conditions.

Chapter 4 describes applications of the code to various reactor designs in the

literature. Comparisons to results of previous analyses are made when possible.

Chapter 5 shows how the code is used to address important issues in the design

and safe operation of the modular pebble-bed reactor.

Chapter 6 describes the conceptual design of a VHTR using a manual search.

Chapter 7 introduces the genetic algorithm and how it is used for efficient MPBR

design. Optimization is performed on three different MPBR concepts. Chapter 8

summarizes the work and discusses future research needs.
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Chapter 2

The Pebble-Bed Reactor and Analysis Methods

2.1 Summary of High-Temperature Reactor Design Efforts

The history of graphite-moderated thermal reactors goes back to the first

man-made critical assembly, CP-1. A high temperature graphite reactor with a prismatic

core was first investigated in 1956 at the Atomic Energy Research Establishment in

Harwell, England. The 20 MWt DRAGON reactor was built in the United Kingdom and

began operation in 1966 with cooperation and support from a number of countries in

Europe [1]. General Atomics picked up on the prismatic HTGR concept and built the

40 MWe Peach Bottom power station in 1967 near Philadelphia. Using the particle fuel

concept invented in the U.S., Schulten proposed the alternative concept of the

pebble-bed in Germany in the late

1950’s [7]. The pebble-bed was

(and is) unique in that it uses solid,

spherically-shaped fuel elements

that trickle through the core vessel

during operation. Details of the fuel

and core are described in the next

section. Design and construction

began on the Arbeitsgemeinschaft

Versuchs Reaktor (AVR,
Figure 2-1: AVR – the first pebble-bed reactor.
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Figure 2-1) with initial criticality in 1967 [8].

The success of the AVR led to larger

pebble-bed designs and the construction of

the Thorium Hochtemperatur Reaktor

(THTR) [1]. This thorium-fueled power plant

(Figure Figure 2-2) ran from 1986 until

1988 when, during a planned maintenance

outage, some bolt heads from the hot duct

cover plates were found inside the gas

ducts. In isolation such a technical setback

would not have prevented eventual restart but the combination of public safety concerns

(Chernobyl was still a recent memory) and the growing strength of the PWR in Germany

led to the decision not to restart. In the U.S., General Atomics built the Fort St. Vrain

300 MWe HTGR power plant in Colorado, again with a prismatic core, based on its

success with the Peach Bottom plant, which shut down in 1975. The Fort St. Vrain

reactor operated from 1974 to 1989.

Figure 2-2: THTR
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The modular HTGR concept gathered technical

momentum in the early 1980’s with the design of the HTR

Modul 200 by Kraftwerk Union and Siemens/Interatom [9],

[10]. The design stressed simplicity and inherent safety

even in the most severe of accidents. The HTR Modul 200

(Figure 2-3) features a recirculating core with a single

discharge tube and a single central loading tube for

pebbles. Large electricity demands could be met by

building multiple copies of the same 200 MWt plant on the

same site. Although this plant was designed to drive a

steam cycle, many of the basic design features have been

adapted for the gas-turbine PBRs under consideration

today.

At the same time in the United States, General

Atomics was developing its own modular HTGR efforts with

support from the Department of Energy (DOE) [11], [12]. In

addition to power generation, variants of the basic General

Atomics design have been proposed for both weapons

material production (MHTGR-NPR or New Production Reactor), weapons material

destruction [13], and even submarine propulsion [14]. More recently, the DOE has

supported development of a modular pebble-bed reactor power plant via a research

grant to the Idaho National Engineering and Environmental Laboratory (INEEL) with

support from the Massachusetts Institute of Technology [15].

Elsewhere in the world the HTGR has also received some attention and

development. Critical PBR facilities have been built in Germany [16], Switzerland [3],

Figure 2-3: Core

vessel of the HTR Modul

200.
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and Russia [17]. Japan began fuel and materials testing for its HTGR program in 1976

and the 30 MWt High Temperature Test Reactor (HTTR) began operation in 1998 [18]. It

uses a prismatic core to drive a steam generator. An experimental hydrogen production

unit recently began operation and gas-turbine power conversion unit is under

development.

In the Netherlands, the research consortium NRG is developing a 40 MWt

pebble-bed reactor for cogeneration [19], [20]. The same power plant has been

proposed for ship propulsion [21].

The People’s Republic of China purchased technology and equipment from

Germany to build a 10 MWt experimental pebble-bed reactor, the HTR-10. This reactor

went critical in December 2000 [22]. The HTR-10 is the only pebble-bed reactor in

operation in 2003.

The South African state utility ESKOM directed an analysis of the technical,

commercial, and economic feasibility of the modular PBR in the late 1990s. It has

recently received preliminary approval for construction [23] [24]. The ESKOM PBMR has

backing from the energy firm BNFL and its American partner Westinghouse. The power

plant would be built on the site of South Africa’s only other nuclear power plant, a PWR

at Koeberg. The PBMR borrows heavily from the German designs but uses a

gas-turbine cycle for improved thermodynamic efficiency.

2.2 Characteristics of the Pebble-Bed Reactor

The MPBR’s safety and economic basis is the fuel element. Fuel kernels coated

with pyrolytic layers and encased in a graphite matrix, PBR fuel can be burned safely to

a high degree.



10

2.2.1 Fuel Design

Modern gas-reactor fuel elements are composed of small (0.5 mm diameter)

uranium oxide (UO2) kernels surrounded by various layers of pyrolytic carbon, silicon

carbide, and buffer graphite (Figure 2-4). Kernels composed of uranium carbide (UC2) or

a mixture of UO2 and UC2 have also been designed and fabricated. The pyrolytic carbon

layers are applied in a chemical vapor deposition process to form a fuel particle of just

under 1 mm diameter. The layers serve as a pressure boundary and retention zone for

fission products. Many thousands of these so-called TRISO particles are then mixed with

graphite and a binder. The mixture is formed into a sphere of about 5 cm in diameter (or

a cylindrical compact for use in a prismatic core).

A 0.5 cm layer of pure graphite surrounds the fuel zone to form the 6 cm pebble.

In most current designs, each pebble contains between 7 to 9 grams of uranium

enriched to about 8%. The Dutch research consortium NRG has developed a small

40 MWt design for co-generation applications that would use 19.7% enriched uranium in

its pebbles [20].
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Figure 2-4: A typical PBR fuel element with embedded fuel particles.

Particle
Kernel - UO2 or UCO
Buffer - Low Density Graphite
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SiC - Silicon Carbide
OPyC - Outer Pyrolytic Carbon

Pebble
Fuel Zone - 10-20,000 particles in

a carbon-graphite matrix
Shell - polished carbon-graphite
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0.9 mm

6 cm



12

2.2.2 Core Safety

The potential safety characteristics of the modular pebble-bed reactor are the

result of a number of design features, the most important of which is the TRISO-coated

fuel particle described above. Other factors contribute to safe operation as well. The

active core of the pebble-bed is much larger than a LWR of the same power. The

HTR-Modul 200 produces 200 MW of thermal power in a core of about 9.4 m in height

and 3 m in diameter (66.4 m3 volume). This core has an average thermal power density

of 3.0 W/cm.

By contrast a 3,400 MWth Westinghouse PWR has an active core volume of

about 32.8 m3 and thus generates an average power density of 104 W/cm3. The lower

power density of the pebble-bed means that the fuel is less likely to attain a high enough

temperature to induce failure. The relatively high thermal conductivity of graphite

(30-50 W/mK) compared to pure UO2 (3 W/mK) ensures that heat is transferred quickly

away from the fuel and out of the core even in the event of a loss of forced cooling or

depressurization. Computational analysis and experiments performed on the AVR

confirm that fuel failure temperatures are avoided in these extreme cases [25], [26], [27],

[28], [29], [30]. The strong negative feedback coefficient in the fuel also limits the amount

of fission power that is generated in the fuel elements in the event of a reactivity

excursion.

In addition to the core features that limit achievable core temperatures, the

confinement of radioactive fission products is assured by the design of the fuel particle

coatings. Extensive studies of the behavior of coated fuel particles have been conducted

under various temperature and fluence conditions. These studies will not be described

here but some of the conclusions are important for fuel cycle optimization. For example,
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the silicon carbide layer is such that that no radiologically significant quantities of

gaseous or metallic fission products are released from the fuel elements at temperatures

of up to 1,650°C (3,000°F).

Figure 2-5 illustrates the results of krypton release tests performed on pebbles

using various particle designs.

A number of such tests were conducted in Germany in support of the pebble-bed

reactor programs. The plot shows the release fraction of krypton-86, a fission product,

which can be detected after the failure of the silicon carbide boundary in a particle [31].

In essence it shows the fraction of particles in a pebble that fail after a certain time at

temperature. A substantial amount of data exists for 1,600°C tests and the results clearly

Figure 2-5: Krypton release during tests with irradiated spherical fuel elements at
1,600°C to 2,100°C [31].
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indicate that, on average, less than one particle per pebble will fail as long as the

temperature remains below this value. A few tests showed that, for some particle

designs, no failed particles were detected for heating times of less than 100 hours at this

temperature. Particle failures on the order of 10 to 20 per pebble (about 0.1% of the

total) were observed when pebbles were heated for more than 50 hours above 1,800°C.

Bulk failure of particles is observed at temperatures exceeding 2,000°C, the temperature

above which silicon carbide begins to decompose.

Fuel integrity was also confirmed in loss of forced flow experiments on the

AVR [30]. The peak fuel temperature, presented in Figure 2-6, rose to a peak value of

1,400°C then decreased as decay heat transferred out of the core. This favorable

outcome is the results of a combination of proper pebble and core design.

In the AVR experiment, primary system helium pumps were turned off and the

control system that would respond with the insertion of control elements was disabled.

The strong negative fuel temperature feedback quickly shut down the reactor. The fuel

Figure 2-6: Peak fuel temperature in AVR during loss-of-forced-cooling tests.

Peak Fuel

Reflector
Power
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temperature peaked at a level well below the value at which fuel failure is expected to

start occurring (1,650°C). Radiation monitors detected no fission product release.

The South African PBMR and Kraftwerk Union HTR-Modul 200 possess such

characteristics. Future designs will be expected to do so as well.

The extremely low probability (<once per 106 reactor years of operation) of fuel

damage and subsequent release of fission products puts the risk of off-site

consequences at a level far lower than other accepted hazards of modern living and

LWRs. Thus, off-site emergency response is not required.

2.2.3 Fuel Economy

Most MPBR designs assume a spent fuel discharge burnup of 80 megawatt-days

per kilogram of initial loaded heavy metal (MWd/kgihm), considerably higher than is

currently achieved in light water reactors (LWR). Experiments conducted in Germany

extended the burnup of some fuel pebbles up to 160 MWd/kgihm [32]. If a recirculating

fuel system is used, each fuel element loaded into the core will achieve a minimum

specified burnup before discharge in contrast to fixed fuel reactors in which the burnup

of individual fuel units is a function of their location in the core. Furthermore, the fact the

pebbles are loaded at intervals measured in minutes, sufficient excess reactivity is

needed only for control and restart. The need for burnable poisons to hold down fresh

fuel reactivity is eliminated. Semi-continuous refueling also means that the core can

operate in an optimally-moderated state during most of its operating life. A study was

performed by the author and colleagues to demonstrate this effect and will be described

in Chapter 4.
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The PBR can thus operate with very high neutron economy. This advantage of

the MPBR is somewhat offset by the higher enrichment required of most high

temperature gas reactor designs. Nonetheless, significant overall savings in fuel costs

can be realized with a properly designed MPBR and fuel cycle [33]. Improved fuel

economy also results in reduced waste volume.

The fuel form itself is a robust waste form. The silicon carbide pressure boundary

and the graphite matrix are thermodynamically stable on a geologic time scale. Spent

pebbles can be released directly to a repository.

2.2.4 Proliferation

Graphite-moderated thermal reactors fueled with low enriched uranium (LEU)

generate significant amounts of plutonium and other actinides within the fuel pebbles

during operation [34]. The on-line refueling mechanism in a recirculating MPBR allows

for the extraction of pebbles at various stages of burnup. Considered in isolation, these

two factors would imply that the danger of weapons material proliferation might be

greater in the MPBR than in other reactor types. In fact, on-line refueling capability in the

pebble-bed reactor allows for a mode of operation that greatly decreases the likelihood

that the power plant will be co-opted for weapons production. Studies [35], [36], [37]

have been performed by the author and colleagues to demonstrate this effect and will be

described in more detail in later chapters. By allowing the addition of fuel only as needed

to maintain criticality, the MPBR can operate with a very small amount of excess

reactivity. The diversion of neutrons toward illicit weapons material production would

result in a drop in reactivity that would require either higher enrichment in the fresh fuel

or an easily detected change in the operation of the reactor (lower power, frequent
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shutdown, etc.). In a batch-fueled reactor loaded on an 18- to 24-month cycle (PBR or

LWR), this reactivity penalty could be avoided by lowering the concentration of burnable

poison in the fresh fuel. Thus, with reasonable oversight on the part of a safeguards

agency, the proliferation threat posed by a nation possessing a pebble-bed reactor is

comparable to or less than that of one operating a LWR, provided that the nation does

not possess an indigenous enrichment capability. Reduction of the rate of weapons-

material production can be considered a goal of an optimization calculation.

2.3 HTGR Physics

The use of graphite as both moderator and structural material distinguishes the

HTGR from other thermal reactor designs. It also eliminates the need for metal cladding

and other structure material in the core assembly. Coated fuel particles in either

prismatic or pebble-bed cores distinguish the HTGR from other graphite-moderated

reactors such as the British Magnox and AGR (Advanced Gas-Cooled Reactor).

Although very high coolant temperatures are normal (>1,000°C at the outlet of hot

channels), the structural integrity of the particle coating keeps the fuel confined even

under loss-of-flow or loss-of-pressure conditions. Heavy metal kernels of 0.5 mm

diameter mixed with graphite in either pebbles or fuel compacts results in a tight

coupling between the moderator and fuel and a strong negative temperature feedback

coefficient [38].

The use of helium as coolant is also a unique feature. The chemical inertness

and transparency to neutrons means that direct void reactivity feedback effects are

negligible. The high coolant outlet temperatures make the HTGR a potential power

source for process heat applications [39].



18

The modular pebble-bed core consists of a cylindrical graphite vessel/reflector

that contains upwards of 450,000 pebbles. The pebbles are randomly packed in the

vessel with a packing density that varies between 0.61 and 0.64. Helium gas is blown in

from the top and is forced through the packed bed to carry off heat. Table 2-1 contains a

comparison of the more important core parameters in the HTR Modul-200 and an early

version of the South African PBMR.

Nominal reactor control is achieved with control rods inserted into the outer

reflector. The small diameter of the modular pebble-bed results in sufficient reactivity

worth of these radial absorbers so that in-core absorption is not necessary. A secondary

Table 2-1: Key parameters for two PBR designs [9]

HTR Modul 200 PBMR (dynamic core)

Thermal Power (MW) 200 268

Core Diameter (m) 3.0 3.5

Core Height (m) 9.4 8.5

Mean Power Density (W/cc) 3.0 3.25

Diameter of Inner Reflector (m) N/A 0.8m

Number of Pebbles (fuel/graphite) 360,000/0 330,000/110,000

System Pressure (MPa) 6 7.0

Helium Temperature (°C inlet/outlet) 250/700 530/900

Number of control rods 6 6

Number of Absorber ball systems 18 18

Average No. of Passes per Pebble 15 10

No. of Particles per Pebble 11,200 15,000

Heavy Metal Loading (g/pebble) ~7 ~9

Enrichment 7% 8%

Fresh Fuel Injection Rate (pebbles/day) 347 372

Discharge Burnup (MWD/kg) 80 80

Fuel Residence Time (days) ~1,000 ~850
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shutdown system (KLAK) consisting of absorber balls blown into reflector channels is

also available but these are not used for power shaping or ramping. Load following is

also achievable through manipulation of the helium inventory of the primary loop [40],

[41].

The use of graphite as moderator has both advantages and disadvantages. The

low absorption cross-section means a higher moderating ratio but the crystalline

properties also necessitate a detailed treatment of the scattering law in physics

calculations. The low parasitic absorption rate in the overall core and reflector allows the

fuel to achieve high burnup at low fuel cost. Taking the fuel to these levels also requires

higher enrichment. A higher moderating ratio (moderator atom per fuel atom) results in

more neutron absorptions by the fuel in the thermal energy range (85% vs. 70% in a

PWR). However, the high temperature promotes upscattering and pushes the thermal

energy peak into a range populated by a number of plutonium resonances (Figure 2-7).

The effect is particularly evident at high burnups with the significant buildup of plutonium

isotopes.
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Helium is essentially transparent to neutrons and thus coolant temperature and

voiding effects have a negligible effect on reactivity.

Although HTGR fuel is rather homogeneously dispersed in the graphite matrix,

heterogeneity effects cannot be ignored [42]. Traditionally, the effect of the irregular

pebble lattice is addressed through the use of Dancoff correction factors in the

resonance treatment. Closed-form expressions for Dancoff factors in spherical-element

lattices do not exist but an approximation can be made [43]. More recently, Monte Carlo

calculations of Dancoff factors for both pebble and particle lattices have been performed

for a variety of geometries and packing densities [44]. The Dancoff factor, however, is

still an approximation to the resonance absorption calculation. An explicit treatment of

randomly packed spherical fuel lattices would require a three-dimensional deterministic

Figure 2-7: Moderator spectrum and absorption cross-section in a graphite-moderated
reactor.
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transport treatment of a homogeneous infinite-cell cross-section calculation. Such work

is underway with support from the INEEL [45].

With an appropriate method for generating cross-sections, HTGR cores with

stationary (prismatic or pebble-bed) fuel elements can be analyzed with a number of

existing few-group diffusion-depletion codes. If the fuel is allowed to flow through the

core during operation, the set of applicable analysis tools shrinks considerably. Before

surveying the set of PBR analysis tools, it is useful to understand the nature of the flow

of pebbles in a cylindrical vessel.

2.3.1 Pebble Flow – Studies and Relevance

Soon after Schulten proposed the concept of spherical fuel elements flowing

through a core, a detailed study of the characteristics of pebble flow was undertaken by

Bedenig, et al., in support of AVR operation and THTR design [46], [47]. Two techniques

were used in this effort; one to determine the paths followed by fuel in the core and one

to determine the velocity distribution.

In a cylindrical core with single or multiple discharge tubes, the flow of pebbles is

observed to follow streamlines. These streamlines were first investigated using a

transparent core model with glass spheres some of which were rendered opaque. The

core was filled with a liquid with an index of refraction identical to that of the transparent

spheres. As the clear pebbles were circulated, opaque pebbles were inserted at fixed

locations on the top of the pebble-bed (see Figure 2-8).
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The principal conclusion from these studies was that pebble flow could be

considered “laminar,” i.e., streamlines do not cross. This fact is crucial to the

development of valid nuclide distribution models.

Figure 2-8: Photographs of pebbles in recirculating pebble-bed.
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The other study did not require the visualization of pebble flow. A single layer of

pebbles distinguishable by a subtle difference in diameter or the presence of radioactive

tracer was placed on a surface of a pebble-bed. The pebbles were allowed to circulate

and the appearance of pebbles at the core outlet was recorded as a function of the total

number of recirculated pebbles. The results are plotted as a residence spectrum, which

illustrates the distribution of the time for a fraction of the pebbles to traverse the core

relative to the recirculation of the entire core. A schematic drawing of residence spectra

is shown in Figure 2-9.

Each curve represents a percentage of the total number of pebbles that traverse

the core in a specified time interval as a function of the parameter of interest (P). The

effect of that parameter on pebble flow rate is thus inferred.

Because of the streamline flow confirmed in the first study, a relation between the

distance from the core axis and the residence time in the core can be inferred. In other

words, the farther from the core axis, the longer a pebble takes to traverse the core.

Figure 2-9: Qualitative drawing of residence spectra vs. an arbitrary parameter [47].
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Residence spectra were measured for test cores with varying values of parameters such

as; the ratio of the core height to its diameter, the angle of inclination of the discharge

conus, the diameter of the discharge tube, friction on the pebble surface, pebble specific

weight, and so on. With knowledge of the residence spectra and the assumption of

streamline flow the velocity distribution in a pebble-bed core can be computed.

Among other findings, Bedenig concluded the following:

1. With increasing core height, the flow becomes more uniform,

2. Above core height-to-diameter ratios of 0.8, the ratio of residence time for

the first and last pebble is unity (slug flow).

Most of the PBR designs under consideration today have height-to-diameter

ratios around 3.0. The uniform velocity (slug flow) assumption is valid for purposes of

computing nuclide flow distribution in the core. The flow rate of pebbles as a function of

radial location r and axial velocity v at the entry plane is expressed simply as in Eq. 2.1.

More recently, computational methods have been applied to the flow of

pebbles [48]. Discrete element codes running on fast computers model the motion of

individual pebbles as they are dropped into the core (Figure 2-10) and flow through it.

The PFC3D code has been used to model the flow in the early PBMR design featuring

graphite and fuel pebbles in an annular configuration.

F(r,v) = 2πrv 2.1
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Also of interest is the stochastic radial motion of pebbles particularly with regard

to the mixing of two major pebble zones such as in the original PBMR design. This effect

is illustrated in Figure 2-11 and quantified in Figure 2-12.

Figure 2-10: Drop zone above core as modeled by PFC3D [48].



26

Figure 2-11: PBMR core with mixing of graphite and fuel pebbles [48].
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The distribution of fuel pebbles increases smoothly from the inner boundary of

the mixing region to the outer. Agreement between experimental results and these

computations is within 10% [49].

These results are important for modeling the burnup distribution in the

recirculating core.

Figure 2-12: Local distribution vs. core radius.
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2.4 Existing PBR Neutronics Analysis Methods

2.4.1 Neutronics of Cores with Moving Fuel

The movement of fuel through the PBR core is orders of magnitude slower than

the change in power level under normal and accident conditions. For safety analysis and

reactor control, core dynamics models and codes that assume stationary fuel are no

doubt adequate provided that reasonable estimates of the power and nuclide

distributions can be supplied. These distributions, however, must be obtained from a

code that solves the balance equation for nuclide k expressed as Eq. 2.2 [38],

in which
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Equation 2.2 assumes that pebble flow is strictly axial. All current PBR designs

have one or two discharge tubes so that radial movement of fuel is a fact. However, the

axial flow assumption is generally valid because most of the radial movement occurs in

the bottom conus in which a relatively low flux exists. Equation 2.2 can be generalized to

track nuclide variations along streamlines with a modest increase in input specifications

and computation.

Depletion codes used in LWR analysis justifiably set the spatial derivative on the

left-hand side of equation 2.3 to zero. Detailed treatment of the effects of

azimuthally-dependent core elements such as control rods requires the full

three-dimensional representation. For many applications, however, azimuthal symmetry

may be assumed with little loss in accuracy. Eq. 2.2 then reduces to Eq. 2.3.

in which r is the distance from the core centerline and z is the distance from the entry

plane or top of the pebble-bed core.

The inter-dependence of neutron flux and nuclide density requires that Eq. 2.3

and the neutron diffusion equation be solved simultaneously. The first code to do this

was VSOP (Very Superior Old Programs) [50], developed in Germany with the HTGR

program. VSOP consists of cross-section libraries and processing routines and neutron

spectrum evaluation based upon the GAM-GATHER-THERMOS system, 2-D diffusion

and depletion routines, in-core and out-of-pile fuel management, fuel cycle cost analysis,

and thermal hydraulics for pebble-bed reactors. Until recently, it was the only code

available for life-cycle analysis of PBRs. The diffusion module, based on the CITATION
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finite difference method, synthesizes the R-Z flux distribution in four energy groups from

one-dimensional (axial) calculations. Forty isotopes can be tracked explicitly in up to 200

compositions and the spectrum calculation is repeated when a significant change in the

spectrum is expected. The fuel management module tracks ‘batches’ of pebble from the

moment of entry into the core, through recycling, and to eventual discharge. The batches

are treated as though they reside in a stationary manner in assigned sections of fuel

streamlines so that the second term in Eq. 2.3 vanishes. The equation can be solved

using standard depletion techniques (Appendix B). After each time step, they are moved

discontinuously to the next region in the streamline. The module simulates shuffling

(recirculation) in this manner for currently known PBR designs. It has been extended to

include burnup-dependent optional re-loading of pebbles and different fuel streams.

Optimization with VSOP was even performed to a limited extent on an

azimuthally-varying core for the design of a 500 MWt PBR [51]. The time-dependent

capability allows VSOP to model changes in the fueling scheme in mid-cycle.

VSOP is widely accepted as the most appropriate suite of codes for fuel cycle

analysis of PBRs. Though effective for many situations (in particular the pre-equilibrium

or running-in phase of operations), it is two generations of codes and methods older than

the state of the art in neutronics solvers. Because the finite difference method requires a

very fine spatial mesh for accuracy, it is significantly slower than one that uses a nodal

diffusion solver, and it is thus a less effective tool for frequent repetitive calculations

needed for design and optimization.

The BURNER/VENTURE codes [52] use a similar approach as VSOP. Werner

[34] very briefly describes a method that appears similar to VSOP. Jung [53] presents a

formal time-dependent solution in one spatial dimension, but he leaves it to the reader to
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determine the boundary conditions, i.e., the nuclide concentrations at the entry plane,

which are a function of the way pebbles, are recirculated.

More recently, the PANTHERMIX [54] code has been developed to compute

combined neutronic and thermal-hydraulic data for pebble-bed cores. It also solves the

time-dependent nuclide balance equation in a batch manner like VSOP and can analyze

non-equilibrium conditions. Like VSOP, it tracks nuclide density along streamlines so is

not restricted to axial flow models. PANTHERMIX is a combination of the PANTHER

neutronics analysis code (hexagonal finite-difference) with the THERMIX/DIREKT

thermal-hydraulics codes (the PANTHER thermal-hydraulics module does not cover

pebble-bed cores). Nuclide contributions from batches leaving the core with various

stages of burnup are used to compose new batches at the entry plane. Discrete changes

in burnup per time step are distributed over the different fuel types and burnup classes

according to a specified distribution function of the heavy metal mass.

2.4.2 Equilibrium Cycle Analysis

After a pebble-bed core has been operating for some time (e.g., three years for

the ESKOM PBMR) with new fuel elements of constant composition being added to

maintain criticality, the average nuclide distribution converges to a steady value. The

reactor may then run indefinitely with this equilibrium or asymptotic nuclide and flux

distribution. Some approaches attempt to find this steady-state configuration directly.

The KUGEL code [55] treats the distribution of fuel pebbles statistically, assuming that

their composition is a function of irradiation only, and then calculates the probability of

finding a pebble with a given irradiation at any point in the core. A zero-dimensional

depletion code (MUPO/BO) computes the burnup of pebbles as a function of irradiation
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and tabulates the results for lookup so that the burnup equations do not explicitly appear

in KUGEL. Simple reshuffling schemes can be approximately modeled in this manner

[56]. Izenson [57] also used a statistical approach, coupled with VSOP for the flux

calculations, to find a steady state and evaluate the probability of finding "hot spots" in

which groups of pebbles of higher-than-average power are clumped together. The PREC

[58] and PREC2 [59] codes obtain a steady state directly for the once-through-then-out

(OTTO) cycle in which pebbles are discharged after one pass through the core, i.e., no

recirculation. These codes allow tracking of pebbles along curved streamlines. PREC

converts the nuclide balance equation to discretized differential form and solves

iteratively the resulting system of algebraic equations. The finite difference neutron

diffusion equation with direct-coupled scattering law is solved simultaneously with this

system.

The time-dependent codes and the statistical methods require extensive

calculations, and the OTTO cycle is not general enough for design optimization of most

PBRs. Liem [60] proposed a code (BATAN-MPASS) that solves the discretized burnup

equation and computes the entry plane burnup from prescribed mixing of contributions

from exit plane pebbles. Streamline flow and various recirculation strategies can be

modeled. The extent to which this code can model complex recirculation schemes is not

described in the reference. However, Liem also incorporated thermal-hydraulic

calculations of accident temperature with the BATAN-MPASS burnup analysis in order to

assess the ability to design passively safe cores [61]. Although no advanced

optimization technique was used, Liem’s work was the first to use a combined neutronic

and thermal-hydraulic calculation in the design of a modern pebble-bed reactor.
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2.5 Direct, Deterministic Analysis and Optimization of the Asymptotic Core

Terry, Ougouag, and Gougar [6] developed a new method for solving the coupled

neutron diffusion and nuclide depletion equations. The exact solution to the nuclide

balance equation in a small region of the core is solved assuming constant flux across

the region. One way to express the change in nuclide density is to treat burnup as an

incompressible fluid and solve a continuity equation (Eq. 2.4).

The partial derivative of burnup (B) with respect to time is the rate at which

burnup is generated in the volume, F, minus the net rate at which it flows from the

volume given by the divergence of the product of the burnup and the flow rate vector u
�

.

The relationship between the burnup variable B and nuclide density N is given in

Appendix B.

In the asymptotic limit, the time derivative in Eq. 2.4 vanishes. By assuming

incompressibility (a valid assumption for pebble-beds in which the packing fraction does

not vary considerably) and strictly axial pebble flow, Eq. 2.4 is integrated to obtain the

following expression for the burnup distribution, Eq. 2.5,

in which

Bo is the distribution of burnup at the entry plane (top of core),

A is a normalization factor,

w is the axial pebble speed such that zwu ˆ=�
,

fΣ is the macroscopic fission cross section, and
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φ is the average flux in the volume.

Because the flux is a function of the cross sections and the nuclide density, the

burnup distribution expressed in Eq. 2.5 must be solved in an iterative fashion after

assuming an initial burnup distribution.

An important boundary condition in Eq. 2.5 is the entry plane burnup, Bo. In an

OTTO cycle fed with fresh fuel, the entry-plane burnup is identically zero. When pebbles

are recirculated, however, the entry-plane burnup depends on the procedure governing

the recirculation process and on the burnup increments accrued by pebbles on

successive passes through the core. So the entry-plane burnup becomes another

unknown quantity to be determined in the iteration scheme; the rule for the recirculation

procedure (e.g., cutoff burnup for recirculation) provides the extra information needed for

finding the additional unknown quantity.

The solution is started by assuming that the burnup is zero throughout the core

and calculating the neutron flux distribution with the diffusion or transport solver. Then

the burnup and associated composition are found from Eq. 2.5 under the assumption

that the entry plane burnup is still zero. The solution is still not self-consistent, because

the neutron flux was not obtained from the compositions calculated in the last step.

Furthermore, except in the OTTO cycle, the entry-plane burnup is still not determined.

Next, a double iteration loop is begun in which the inner iteration converges on

the neutron flux and the burnup below the entry plane, and the outer iteration converges

on the entry-plane burnup. The algorithm for the outer iteration depends on the rule

governing pebble recirculation and will be covered more thoroughly in the next section.

The method does not require the solution variables to follow a physically

meaningful sequence of states, but only to converge to a physically meaningful

configuration. The solution is guaranteed to converge for any initial value of the burnup
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(nuclide) distribution. Thus convergence is obtained in a few outer iterations. This

behavior permits the new method to calculate steady states much more rapidly than

methods that follow actual sequences of transient states to asymptotic steady states.

The early version of the PEBBED code adopted this approach for two simple

recirculation schemes: 1) partially burned pebbles exiting the core are randomly

distributed at the entry plane, and 2) partially burned pebbles are reloaded into their

original radial locations. Under these conditions, entry plane nuclide densities are simple

functions of the values at the exit plane with fresh fuel densities replacing those of

pebbles to be discharged. The entry plane burnup for a randomly-reloaded core can be

approximated using the following one-dimensional treatment.

The equation for the entry-plane burnup is found by following the accumulation of

burnup in a single pebble as it makes repeated trips through the core. If a pebble is

removed when its burnup exceeds the cutoff value Bmax, and mmax trips through the core

are required for this, then it is found that the average burnup of the mixture of

recirculated and new pebbles at the entry plane is

where m
HB is the burnup of an individual pebble at the end of its mth pass (after traversing

a core of height H). This equation relies on the observation that the number of pebbles in

any core layer which are making their mth pass is the same for all m less than or equal to

mmax.

An approximate value for mmax can be found from the core thermal power, P, and

the number of pebbles in the core, np, as Eq. 2.7,
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where

Bd is the threshold discharge burnup (MWD/kgihm),

v = the mean axial pebble speed (m/day),

mp = the mass (kg) of heavy metal in a fresh pebble,

np = the number of such pebbles in the core,

P = the core power (MW), and

H = the height (m) of the core.

Because pebbles can only be extracted from the core at the exit plane, the value

computed by Eq. 2.7 must be rounded up to the next integer.

The values of B(m) are found in terms of the number density, N, of fuel nuclei:

By following the consumption of fuel nuclei in a pebble during successive passes

through the core, and applying Eq. 2.8, one finds that

and

The random reloading pattern is actually a good approximation of the HTR

Modul 200 design in which there is only one path for discharge and loading of pebbles

into the core. However, if multiple pathways for loading and discharge are present,

radially-dependent reloading of pebbles of various types and various stages of burnup is

B = (No - N)A . 2.8
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possible. A more general method for the computing radially-dependent entry-plane

burnup is needed. Such a method is introduced in Chapter 3.

2.6 PBR Design and Optimization Considerations

Powerful tools have been developed for performing optimization of nuclear

reactor fuel cycles. Such methods and tools will not be described here because they are

generally not applicable to the PBR. Fuel cycle optimization in a light water reactor

involves finding the most effective distribution of fuel assemblies and burnable poisons

within those assemblies to safely maximize the length of a cycle. The fundamental goal

of PBR optimization is similar: minimize the cost of the fresh fuel required to safely

operate the power plant at the desired power level. In a nutshell, this means either

reducing the enrichment or mass of the fuel to be loaded, and to load it in such a manner

as to keep the fuel temperature within an acceptable range. Particle degradation and

fission product release becomes significant at temperatures above 1,800°C [62] so the

distribution of the fissile inventory, flux, and coolant must be tuned to avoid local fuel

temperature peaks [63].

In the recirculating PBR, fuel is loaded while the reactor is operating and in such

small increments that for all practical purposes it can truly be considered continuous.

There is no need to build in excess reactivity into the fresh fuel and thus no need to use

burnable poisons or control rods to hold down this reactivity. Because each fuel element

spends roughly equal amounts of time in all axial zones, the need to use burnable

poisons to shape the axial power profile, as is done in PWR fuel assemblies, is also

eliminated.
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Burnable poisons have been proposed for PBRs, particularly for OTTO [64] or

so-called peu-à-peu cycles. In OTTO (once-through-then-out) cores, the fuel must move

an order of magnitude more slowly than in recirculating cores in order to extract an

economically feasible amount of energy from each pebble. In the peu-à-peu core, a very

tall reactor vessel is partially loaded with pebbles. Fresh pebbles are simply added to the

top of the bed to maintain power and criticality. This continues until the vessel is filled. In

both cases, the difference in the average burnup between pebbles at the top and bottom

of the core is so great that the axial power peak is amplified and shifted toward the top.

Burnable poisons have been proposed to push this peak down and back toward the

center. The use of these poisons necessarily reduces the neutron economy of the core.

They do represent an interesting option for PBRs but will not be examined in this study.

The graphite blocks that serve as both a container for the pebbles and as a

neutron reflector also protect the outer pressure vessel from excessive damage caused

by fast neutrons. This reduces the need to load fuel in such a way as to reduce fast

fluence at the periphery. The blocks also act as a large heat sink that is able to absorb

much of the decay heat of the core during an accident.

Unlike light water reactors, options for loading fuel in a PBR are strongly

dependent upon the fuel loading mechanism itself. In the LWR, the vessel head is

removed providing access to each fuel assembly in its entirety. In theory, each fuel

assembly can be transposed with any other or replaced with a new assembly. In the

PBR, fuel elements are dropped onto the top surface of the pebble-bed through one or

more loading tubes. In the simplest designs, a single centrally located tube is used so

that the dropped pebbles form a cone throughout which they are randomly distributed.

Not much ‘in-core’ fuel management can be performed. Fuel elements are not

accessible until they drop out of the bottom discharge tube(s). Because of this feature,
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the complexity of the fuel management problem in PBRs is very much a function of the

design of the pebble handling mechanism.

In a recirculating core, partially-burned pebbles are reintroduced to the top of the

pebble-bed along with fresh pebbles. Any local region of the core contains pebbles at

various stages of burnup. This novel approach to fuel management lends itself to

optimization in a way that is very different than what can be accomplished with

batch-loaded cores. Figure 2-13 shows three different fueling schemes that have been

proposed for PBRs. The left figure shows a simple single-zone, single-pebble-type core.

The central figure shows a two-zone core in which pebbles of one type are loaded into a

central column while pebbles of the other type are loaded into the surrounding annulus.

In the right figure, only one pebble type is used but its recirculation is burnup-dependent.

Fresh pebbles are loaded into the outer annulus for one or more passes before being

transferred to the central zone to finish out the remainder of their lives.

Figure 2-13: Some fuel loading options in a PBR.
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The local population of pebbles within a given burnup range is a function of the

flexibility of the loading mechanism and the desired fuel recirculation policy. For this

reason, a PBR fuel management/core analysis code system must possess a means of

prescribing the pebble flow scheme in a way that is amenable to optimization routines.

Once this has been achieved, any one of a number of sophisticated optimization

methods can be applied. The one chosen for this work is the Genetic Algorithm.

2.7 Genetic Algorithm Optimization

2.7.1 Stochastic Optimization

Genetic algorithms [65] are a type of stochastic optimization. Stochastic methods

sample a wide variety of solutions and then focus on ones that satisfy increasingly

stringent criteria. Simulated Annealing is another type of stochastic approach. Traditional

linear optimization techniques rely on local gradients to minimize or maximize a function

and thus may yield only a local optimum. Stochastic methods by contrast possess a

random search component that allows the search to explore other regions of the variable

space. This random search component greatly increases the chance of locating the

global optimum.

A major drawback with stochastic methods is the significant number of

calculations that must be performed in order to locate the global optimum with

reasonable confidence. Each sampled solution requires running a core analysis code to

evaluate the objective function (keff, power peaking, etc.) and can mean prohibitively long

computer time. One way around this obstacle is to bias the search by eliminating known

sub-optimal regions from the searchable space (heuristics or expert knowledge). Parks



41

[66] used the former when applying the simulated annealing approach to optimize a fuel

stringer in a British Advanced Gas Reactor (AGR). An AGR typically contains over 300

such stringers that are replaced regularly while the reactor is running. Optimization

means reducing the net cost of the assembly by adjusting, among other parameters, the

enrichment and burnable poison loading. Knowledge acquired from previous AGR

experience was used to filter out poor solutions before the simulated annealing routine

had a chance to sample them. Mahlers [67] used simulated annealing to place

assemblies then used linear programming to place burnable poisons.

Kropaczek and Turinsky [68] developed a fuel management procedure based

upon a method known as simulated annealing. This method is modeled upon the

process of a slowly cooling solid in which particles in the solid attempt to reach the

lowest energy state. The method works by starting at an initial state and moving in small

random steps until an optimum state is reached as measured by the value of an

objective function. If the step improves the value, the step is accepted. If not, there is a

chance that the step may still be accepted. The probability of acceptance depends upon

the system temperature, an analog of the actual temperature of a cooling solid

(Eq. 2.11).

This probabilistic element allows the system to climb away from a local minimum

and continue towards a global minimum. In the algorithm, the initial temperature is high,

allowing the system to freely sample a number of possible states. As the calculation

progresses, then temperature is lowered so that the solution converges to a (hopefully)

global minimum.

)/exp()(Prob kTEE −∝ 2.11
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A full discussion and application of the various stochastic methods is beyond the

scope of this work. Rather, it is the objective of this research to demonstrate how such

methods can be used successfully in PBR core design. Future studies can and should

explore the merits of different optimization schemes. As genetic algorithms are the

method employed in this work, some background information is necessary.

2.7.2 Genetic Algorithm Basics

Genetic Algorithms have been used for a wide variety of optimization

applications, including LWR fuel cycle optimization. Genetic Algorithms (GAs) differ from

simulated annealing in that while both incorporate small random perturbations

(mutations) in searching for better solutions, GAs retain information about a solution that

can direct the next step. The problem starts by coding the important attributes (genes) of

the system either as a binary word (i.e., a series of zeros and ones) or as real numbers.

A ‘net’ is cast over the domain of the solution space by randomly generating the genes

for a specified number (population) of ‘individuals’. Genotypes (e.g., core attributes) that

produce favorable ‘traits’ (e.g., acceptable peak fuel temperature and/or fast fluence

near the pressure vessel) are passed along to the next generation. An overall fitness

value is generated for each individual core design based upon a user-specified function

of the traits. In a process called selection, a specified fraction of the population with the

highest fitness values are allowed to ‘survive’ and form the gene pool for the next

generation. Attributes of two randomly chosen survivors are mixed to form two new

individuals in a crossover process that is mathematically analogous to genetic breeding.

The population is thus rebuilt from the fittest individuals and the process is repeated. The

selection and crossover processes alone may, however, lead to a loss in population
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diversity and converge to a local fitness maximum. Therefore, a third process, mutation

is employed. This low probability event involves changing the gene of an individual to a

randomly chosen new value within the variable domain. In this way, the search is

directed toward previously unexplored regions of the solution space that may yield better

local, and hopefully a global, optima.

Finding a global optimum nestled within a large number of local optima more

than a brute force random search. In a genetic algorithm, search refinement is achieved

using ‘mutation’ and ‘cross-over’ processes. In mutation, there is a small (say, 1 in 104)

possibility that a bit in the string will be arbitrarily changed to the opposing value. This

does not advance the search for a solution but it does prevent the development of a

uniform population unable to ‘evolve’. Crossover refers to the exchange of subsets of

two strings in which the favorable parts of two parent strings are combined to produce an

offspring that contains both, as illustrated in Figure 2-14.

Figure 2-14: 8-bit binary crossover operation.

1 0 0 1 1 1 0

0 1 0 0 1 0 1

0 1 1 1 1 0 1 0

1 1 0 1 0 1 1

Parent

Parent

1 0 0 1 1 1 0

0 1 0 0 1 0 1

0 1 1 1 1 0 1

1 1 0 1 0 1 1

1 0 0 1 1 1 0

0 1 0 0 1 0 1 0 1 1 1 1 0 1

1 1 0 1 0 1 1 Offspring

Offspring
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In real-coded genetic algorithms, population characteristics are stored as real

variables rather than binary words. Crossover may result in the direct transposition of

genes from the parents but it also may result in a hybrid, i.e., a weighted average of the

genes of the parents. A wide variety of “crossover operators” have been proposed and

employed in different optimization routines.

Crossover does not guarantee that the offspring solution will be superior but it

does focus the search algorithm on regions that have a higher concentration of favorable

attributes. The three attributes of selection, mutation, and crossover are direct analogs of

biological reproduction with recombinant DNA.

Because of the ease of use and effectiveness, genetic algorithms have been the

subject of much study and broad application. A full review of these efforts is beyond the

scope of this thesis and would not improve upon some definitive work already

completed. Goldberg [70] in particular provides a comprehensive text on the theory and

practice of genetic algorithms as well as a list of authors of many of the early

developments in the field.

2.7.3 Genetic Algorithms in LWR Fuel Management

Poon and Parks [71] replaced a simulated annealing routine in the FORMOSA

code with a genetic algorithm. They observed that the GA was superior in narrowing

down the initial global search but that the simulated annealing algorithm converged on

the local solution more quickly. This conclusion was consistent with belief that GAs are

efficient for locating the region in which a global solution resides, but other techniques

are better for ‘pin-pointing’ the exact optimal point. The authors did conclude that the

Generalized Perturbation Theory they used to accelerate the GA process effectively (in
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place of a full core analysis) limited the ability of the algorithm to converge quickly on the

optimum.

Initial work with GAs indicated the promise of the technique even though not all

of these attempts yielded success. Parks extended the work to multi-objective

optimization to simultaneously maximize EOC boron concentration and discharge

burnup while minimizing power peaking. DeChaine and Feltus developed a bit-base GA

system (CIGARO) to represent the k� map in a 1/8th core model that is able to work with

any reactor physics code [72]. They then accelerated the search by incorporating expert

knowledge to bias the ‘genotype encoding’ in a PWR optimization problem [73].

Yamamoto used a hybrid GA search for the global optimal fuel and burnable poison

loading then performed local optimization on fuel assembly rotations [74]. Martín del

Campo applied the system to BWR fuel assembly axial optimization [75].

The GA technique has emerged as a powerful tool for LWR in-core fuel

management. In this work, it is applied to the problem of pebble-bed reactor core design

and fuel management
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Chapter 3

Modeling Pebble Bed Cores with PEBBED

3.1 PEBBED

The PEBBED code was developed by the author to solve for the asymptotic

loading pattern in a pebble-bed reactor using the method proposed by Terry, et al. [6]

For the flux distribution, PEBBED solves the one, two, and three-dimensional finite

difference approximations to the diffusion equation (Appendix A). The outer boundary

condition is that of non-re-entrant current in the formulation described by Stamm’ler and

Abbate [76]. Work is underway at the INEEL to replace this solver with a

three-dimensional analytical nodal solution [77]. The semi-analytical solution to the

depletion equations used in PEBBED is detailed in Appendix B and is based upon the

formulation presented by Benedict, et al. [78]. The neutronics solver was tested using

simple reactor models for which analytical solutions exist. These solutions and a

comparison of computational and analytical results are given in Appendix D.

Currently, PEBBED assumes that pebble flow is strictly axial so that the mesh

cells over which the depletion equation is solved are the same as the diffusion equation

cells. The algorithm does allow for radially varying pebble velocities.

The computational flow of the code is illustrated in Figure 3-1.
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Figure 3-1: Computational flow in PEBBED version 3.
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A key feature of the code is its ability to solve for the entry plane burnup for an

arbitrary, user-defined recirculation pattern. It achieves this solution through the use of a

matrix formulation for the recirculation of pebbles. This formulation was introduced by

the author in reference [79] is described in detail below.

3.2 Matrix Representation of Recirculation in PEBBED

The PEBBED code currently assumes axial flow and thus the streamlines

correspond to concentric cylinders or flow zones (Figure 3-2).

The average value for the density of a nuclide at the entry plane of a zone is

computed from the densities in each of the pebbles that are loaded into that zone. These

pebbles will differ in composition based upon the initial material loading (pebble type)

and previous history (trajectory) in the core. The rate at which pebbles of different types

and burnups are loaded into a zone is a function of the recirculation scheme.

Figure 3-2: Radial zoning of pebble flow.
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3.2.1 Recirculation Matrix Nomenclature

Before proceeding with the derivation, it is helpful to define some of the variables

to be used.

General

• A curved “hat” ( ) over an N refers to a pebble nuclide density

• No hat refers to a zone average nuclide density

• A strike through N refers to an exit plane value (leaving the core)

• No strike refers to an entry plane value (entering the core).

Specific

in� Nuclide flow rate (atoms/sec) into zone I

iN Mean entry plane density in ith zone

p
j

mN
�

Exit plane nuclide density in pebble of type type p, on pass m, in zone j

p
j

mN Zone—averaged entry plane nuclide density in pebble of type type p, on pass m,

in zone j

p
jN Zone—averaged entry plane nuclide density in pebble of type type p, in zone j,

from all passes

M Maximum number of passes per pebble (core mean)

P Total number of pebble types

J Total number of zones

F Total core pebble flow rate (cm3/sec)

if Flow rate in zone i (cm3/sec)

p
if Flow rate of type p in zone i

�
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i
m f Flow rate of pebbles on pass m on zone i

p
i

m f Flow rate of pebbles of type p, on pass m in zone i.

p
i

m f

pass type

channel

Indexing

p
i

m f

pass type

channel

Indexing

If a quantity is missing one or more indices, then it is assumed that the quantity

indicates the sum over all units specified by the missing index; e.g., mfi refers to the flow

rate into zone i of mth pass pebbles of all pebble types.

The flow of nuclide units (e.g., atoms) into a zone is denoted as:

p
i

mn� = atoms/sec of a nuclide flowing into zone I that are constituents of pebbles

of type p and are starting their mth pass.

This is a zone flow rate. It is related to the nuclide density in the pebbles

(smeared over the effective pebble volume). To relate the zone flow rate to the atom

density of the nuclide within a pebble, one must account for the fact that only a fraction

of the flow in zone i may be of type p, and only a fraction of the flow is undergoing its

mth pass. Define the partition coefficients:

F

fi
i =α (fraction of core flow in that is in zone I)

i

p
ip

i f

f=α (fraction of flow in I that consists of type p pebbles)

p
i

p
i

m
p

i
m

f

f=α (fraction of type p flow in i that consists of pebbles on pass m)
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P
j

m

p
ji

m
p

ij
m

f

f ←=α (fraction of flow of pebbles of type p, on pass m, in zone j that is

diverted to i).

3.2.2 Pebble Flow in a Channel

The flow rate of a nuclide into zone i due to pebbles of type p starting their mth

pass is related to the nuclide density in the pebble by Eq. 3.1:

To obtain the total flow of a nuclide into zone I, sum over M passes and J types

(Eq. 3.2)

Substitute Eq. 3.2 into Eq. 3.1 to obtain an expression for the total flow rate of the

nuclide in terms of the contributions from all pebbles and passes (Eq. 3.3).

The flow of a nuclide into zone i is composed of contributions from the zone exit

plane flows (except for the last pass) and the fresh pebble injection flow rate given by
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Now sum this over all passes m (except for the last pass), add the fresh flow

contribution, and sum over all pebble types p to get the total flow of the nuclide into the

zone:

Using Eq. 3.2 equate this to the RHS of Eq. 3.5 to get:

and thus

The denominator can be brought inside the sums and noting that

then
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Finally, given that

one can write

Eq. 3.11 is the expression relating the nuclide density in pebbles from zones j,

passes m, and types p, to the overall zone nuclide density in zone i. The inner-bracketed

term is thus the decomposed recirculation matrix element
p

ij
mr

This matrix element weights the contributions from the exit plane nuclide

densities on zone, pebble type, and pass (burnup) basis to yield an overall entry plane

zone nuclide density.

The partition coefficients, αj,
p
jα , m p

jα and m p
ijα , are functions of the core

geometry and/or the pebble loading and recirculation policy. The fraction of total core

flow in zone j (αj) is a function of the total core dimensions and the mechanics of pebble

motion which can be considered fixed for a given core design. The pebble type fraction

per zone ( p
jα ) and the transfer coefficient (m p

ijα ) are both functions of the pebble loading

mechanism. These may be considered to have user-specified values in that they can be

altered either in the core design process or, if the design allows, during operation. The
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remaining coefficient, the fraction of pebbles of type p on pass m (m p
jα ), is now shown to

be a function of the other coefficients.

Except for m = 1 (fresh pebbles), the flow rate of pebbles of type p starting their

mth pass in zone i is given by:

Here, f denotes the pebble flow rate (pebbles/sec) rather than the volumetric flow

rate. Likewise, F denotes the total core pebble flow rate. The two rates are directly

proportional if one assumes that the effective pebble volume (pebble plus surrounding

coolant space) is constant.

Note that PEBBED assumes that the distribution of pebbles within a channel is

homogeneous. This assumption may lead to error in cores that have radially-varying

entry plane composition. For example, a core composed of an inner column of graphite

pebbles surrounded by an outer annulus of fuel pebbles contains a narrow region (about

30 cm) that contains both. The distribution of graphite and fuel pebbles in this region

varies smoothly from all graphite on the inner boundary to all fuel on the outer. By

assuming that the mixing zone is a homogeneous mixture, the neutronic effect of this

smooth transition is lost. Preliminary study by the author indicates that this effect is

minor. Nonetheless, further study should be performed to confirm this.

3.2.3 Flow Contributions from Recirculated Pebbles

Eq. 3.13 reflects how the channel flow rate is evaluated from that of pebbles

completing the m-1th pass:
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Equating Eq. 3.13 and Eq. 3.14 and eliminating the total core flow rate F yields:

Solve for p
j

mα to get

This indicates that each pass-type partition coefficient m p
jα is a function of m-1 p

jα

(j=1..J). Equation Eq. 3.16 is valid for m = 2…M, i.e., all recirculated pebbles. To obtain a

fully determined set of linear equations, one more expression involving these coefficients

is needed. This expression is obtained from the fact that, by definition, the sum of m p
jα

over all passes m is unity.

The system of equations is more obvious if one substitutes the following into

Eq. 3.16. Let

so that

Or, cast as a linear equation with constant coefficients,
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Combining Eq. 3.20 with Eq. 3.17 yields the following system of linear equations

of order J•Mx

.0... 11
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3.2.4 Order of the Recirculation Matrix

The coefficients K are unique and known for a specified recirculation scheme.

The pass-type partition coefficients, p
j

mα , can thus be computed off-line using a

standard matrix inversion algorithm. This system is solved separately for each pebble

type p. Because of this independence, different recirculation trajectories can be assigned

to each pebble type. Sophisticated fuel management schemes not available to

batch-loaded reactor cores are thus possible.

This fully decomposed expression for the recirculation matrix element indicates

the sensitivity of entry plane density to various partitioning schemes (i.e., pebble

recirculation rules). It also lends itself to sophisticated optimization algorithms. The

partition coefficients, ( )p
ij

mp
j αα , , may form part of the solution space over which the

search is performed.

The number of partition coefficients to be computed depends upon the

complexity of the fueling pattern. The number of flow partition coefficients is equal to the

number of flow channels J specified by the user. The number of type partition

coefficients is equal to the product of J and the number of pebble types specified, P. The

number of pass partition coefficients for a given pebble type is equal to the product of J

and the maximum number of passes M computed for that pebble type. The number of

transfer partition coefficients for each pebble type is equal to J2*M. For example, the

HTR Modul 200 can be modeled with a single flow channel (J = 1) and uses only one

type of pebble (P = 1). Each pebble traverses the core 15 times (M = 15). Thus, the

number of flow partition coefficients is one, as is the number of type partition coefficients.



59

The number of pass partition coefficients is 1*1*15 = 15, and the number of transfer

partition coefficients is 1*1*1*15 = 15.

The PBMR core model used extensively in this work contains five flow channels

and two pebble types. Graphite pebbles are assumed to pass through the core only

once (because they accrue no burnup a fresh graphite pebble is neutronically identical to

a recirculated one) while the fuel pebbles each traverse the core ten times. Thus, the

number of flow coefficients is 5, the number of type coefficients is 10, the number of

pass coefficients for the graphite and fuel pebbles is 5 and 50, respectively. The number

of transfer coefficients for the graphite and fuel pebbles is 25 and 250, respectively.

At first glance, the number of partition coefficients needed to accurately describe

a given design may look unwieldy and not amenable to efficient design. In Chapter 4,

however, a number of examples will be used to demonstrate that all of the coefficients

can be generated easily from a handful of core parameters.

3.2.5 Validity of Values

The coefficients are all assumed to be real numbers on the closed interval [0,1]

and thus there is an infinite number of possible values. However, only sets that conserve

pebble flow are candidates for valid recirculation matrices. Regardless of the values

chosen for the elements of the recirculation matrix, total recirculated nuclide flow into or

out of a zone must sum to the fraction of the core flow in the zone less the fresh injection

flow rate. The following relations must hold:

( )p
i

p
i

M

m
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j

p
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m r αα 1
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which states that flow of type p diverted from all zones to i must sum to the fraction of

the total flow of type p that is recirculated,

which states that the total flow diverted from all zones to i must sum to recirculated flow

fraction of i,

which states that the flow of type p diverted from zone j to other zones must sum to the

recirculated flow fraction of p in j, with
p
jα1

being the fraction of p-type pebbles in

channel j that are fresh (m = 1), and

which states that the total pebble flow diverted from zone j to other zones must sum to j

to other zones must sum to the fraction of core flow that is recirculated through j.

PEBBED performs a check on user-supplied partition coefficients by checking

that these equalities hold for the supplied or computed sets of coefficients.

In the next chapter, partition coefficients are computed for a few proposed PBR

designs that employ simple recirculation schemes. It will be shown that these partition

coefficients are easily computed from a few parameters. For ease of use, these cases

are “hard-wired” into PEBBED and may be invoked by setting the proper parameter in

the input deck. These include:

3. Random recirculation – recirculated and fresh pebbles are distributed

randomly over the entire entry plane (e.g., HTR Modul 200),
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4. Pebble channeling – pebbles are restricted to a specific flow channel for

their entire core lives,

5. Two-zone transfer – pebbles are introduced into either the inner or outer

radial zone then transferred to the opposing zone at some point in their

trajectory (OUT-IN or IN-OUT).

The partition coefficients for more complex schemes must be supplied by the

user in an auxiliary input file. Examples of both will be provided in Chapters 4 and 5.

3.3 Temperature Calculations in PEBBED

Fuel temperature during both normal operation and severe accident conditions

must be kept below specified limits. For a passively safe pebble bed reactor, heat is

removed by the primary coolant during normal operation and by conduction and

radiation during extreme loss-of-pressurized-flow events. A proper core design effort

must include fuel temperature calculations to which a certain amount of conservatism is

applied. Normally, sophisticated thermal-hydraulic and systems analysis models are

constructed and run to determine fuel temperatures during normal and accident

conditions. A fair amount of iteration between neutronics and thermal-hydraulics may

occur during the design process; a potentially tedious and time-consuming process.

In a modular pebble-bed reactor, however, fuel temperatures can be estimated to

first order using computationally quick one-dimensional heat transfer models. Heat

transfer modules have been added to PEBBED to generate a fuel temperature profile

during normal operation and the peak fuel temperature during a loss-of-pressurized flow

event, also known as a depressurized conduction cooldown (DCC). The results of these

calculations are used to evaluate core safety margins and are fed directly to the
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objective function of the optimization algorithm. This procedure is sufficient for a

conceptual design; a final design must be subjected to a multi-dimensional thermal-

hydraulic analysis with valid correlations.

3.3.1 Fuel and Coolant Temperatures During Normal Operation

Estimation of Coolant Temperature Profile

Coolant and fuel temperatures during normal operation are estimated using a

simple one-dimensional mass and heat balance. The inlet coolant temperature, i
cT , and

mass flow rate, m� , are provided by the user. The coolant flow is divided among the

major pebble flow channels according to cross-sectional flow area. The helium flow

model currently used in PEBBED assumes:

1. The coolant mass flow is divided among the pebble flow zones in

proportion to the cross-sectional area of the flow zone, and

2. There is no flow between coolant channels.

The first of these assumptions is not conservative with regard to fuel

temperatures. Regions of higher power density generally cause higher coolant

temperatures and pressure, thus reducing the mass flow in the zone. A more

sophisticated model incorporating a momentum balance would be needed to address

this deficiency. The second assumption is conservative with regard to fuel temperatures

but is generally considered reasonably valid for pebble-beds.

The power, P, generated in axial cell, k, of coolant zone, i, is related to the

temperature rise across the cell by Eq. 2.5
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in which

im� is the helium flow rate (kg/s) through zone I,

Cp is the temperature-dependent specific heat (J/kg-K) of helium,

i
kT is the coolant temperature at the inlet side of cell k, zone i,

and

i
kT 1+ is the coolant temperature at the outlet side of cell k, zone i.

The cell powers are provided by the neutronics solution.

Temperature Profile Inside a Pebble

The temperature distribution in the pebble is computed using a one-dimensional

model of heat generation and conduction through a uniform sphere. The coolant

temperature surrounding the pebble is assumed to be uniform. All the thermal power is

assumed to be generated within the fueled region of the pebble, conducted through the

graphite shell, and deposited into the coolant by convection. (In fact, some heat is

generated by neutron thermalization and gamma heating in the graphite shell region but

the error introduced by this omission is considered to be well within the accuracy limits of

this model). There are three heat transfer regions modeled when computing pebble

temperatures. These are illustrated in Figure 3-3.

( )i
k

i
kp

ii
k TTCmP −= +1� 3.26
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The convective heat transfer between the bulk coolant and the pebble surface is

a function of the mass flow rate and temperature difference Eq. 3.27.

The convective heat transfer coefficient is given by Eq. 3.28

in which

h = heat transfer coefficient (W/m2K),

Dp = pebble diameter (m),

KHe = thermal conductivity (W/mK) of coolant,

and

Nu = Nusselt number.

Figure 3-3: PEBBED heat transfer model of pebble cooling.
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Three correlations for the Nusselt number are available in PEBBED, one of which

is detailed here. Gnielinski [81] evaluated the results of 20 authors to establish a

relationship among the Nusselt, Prandtl, and Reynolds numbers and void fraction of

helium cooled pebbled-bed systems. The theory is based upon the assumption that the

heat transfer of spheres in a pebble-bed (Eq. 3.29) can be related to that of a single

sphere by introducing an arrangement factor, fε, dependent on the void fraction, ε:

with

The Nusselt number of a single sphere is given by Eq. 3.31

with the Nusselt number for laminar flow given by

the Nusselt number for turbulent flow given by

and the Reynolds number given by Eq. 3.34
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fε = 1+1.5(1-ε) . 3.30

222 tls NuNuNu ++= 3.31

3
12

1

Pr
Re

664.0 




=

εlNu 3.32




 −




+








= −

1Pr
Re

443.21

Pr
Re

037.0

3
2

1.0

8.0

ε

ε
tNu 3.33

c

pvD

µ
=Re 3.34



66

with coolant velocity (m/s), v, and dynamic viscosity µc (Ns/m2). This correlation is valid

for the ranges 500 < Re < 104, Pr > 0.6, and 0.26 < e < 0.935. This covers the range of

PBRs under consideration today and was used for the analyses described in this work.

Incropera [80] provides the steady-state heat balance between the inner and

outer surfaces of the graphite shell, as

in which

q is the power (W) generated within the pebble,

ks is the thermal conductivity (W/mK) of the shell,

Ts,i and Ts,o are the inner and outer shell temperatures (°C),respectively,

and

ri and ro are the radii (m) of the inner and outer shell surfaces.

Within the heat-generating, uniform fueled region, the temperature at the center

of the pebble is derived here. The steady-state heat balance for a uniform sphere is

given by Eq. 3.36

in which

kf, is the thermal conductivity of the fuel region,

and

q” is the thermal power density (W/m3) within the sphere.

Assuming that the thermal conductivity throughout the sphere is constant,

multiply both sides by r2/kf to get
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Integrate both sides to obtain Eq. 3.38

Divide by r2 and integrate again to obtain Eq. 3.39

The two integration constants are obtained by applying the boundary conditions:

BC#1: 0
0

=
=rdr

dT
(spherical symmetry)

BC#2: ( ) sTRT = (known temperature at sphere surface,R).

Applying BC#1 to leads directly to C1 = 0. Applying the second boundary

condition yields Eq. 3.40.

Thus, the temperature distribution is given by Eq. 3.41.

The pebble centerpoint temperature is obtained by setting r = 0 to obtain
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By assuming constant density and averaging the temperature in Eq. 3.41 over

the mass of the fueled region, one can show that that mean fuel region temperature is

related to the centerpoint and surface temperature by Eq. 3.43

With the local pebble power provided by the neutronics solution and the inlet

coolant temperature and mass flow rate provided by the user, these equations are used

to generate a fuel and coolant temperature profile for the steady-state core.

Pebble- and Channel-Averaged Quantities

Using the partition coefficients defined in Section 3.2 to generate weighting

factors, average quantities for each pebble type can be computed. For example, the bulk

coolant temperature at a certain axial location surrounding pebbles of type p undergoing

their mth pass through the core is obtained from a weighted average of the coolant

temperatures in the different flow zones, c
iT . The weight applied to the coolant

temperature in zone i depends upon the fraction of total flow of pebbles through that

zone, the fraction of the zone flow that is of type p, and the fraction of type p pebbles in

that zone that are on their mth pass. The mean is thus obtained by summing over the

weighted coolant temperatures, i.e., Eq. 3.44.
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Of course, averaging over pebbles in all channels discards information about the

extreme temperature to which a member of a given pebble type will be subjected. In the

next chapter, a method for obtaining extreme values will be demonstrated.

3.3.2 Peak Accident Temperature

Core safety implies that fuel temperatures can never achieve a failure threshold

during a design basis event. Passive safety implies that this is achieved without

deliberate action on the part of engineered safety systems or operators. For modular

pebble-bed reactors, a worst-case accident is the depressurized loss of coolant event,

also known as the depressurized conduction cooldown (DCC). In such an event, the

forced cooling of the pebbles ceases and the vessel depressurizes. A properly designed

MPBR can withstand such events without significant core damage for two reasons:

3. Strong negative fuel temperature feedback inhibits the fission chain

reaction with a modest increase in temperature, i.e., the reactor shuts itself

down, and

4. Decay heat is transported from the core into the surrounding reflector and

containment by conduction and radiation at a sufficiently high rate to

prevent the fuel from ever reaching failure temperature.

Studies confirming this behavior are well documented [25], [26], [27], [28], [29],

[30] and will not be discussed here. However, the robust characteristics of the fuel and

core design also allow for rapid and reasonably accurate evaluation of passive safety

during the design process itself. Specifically, the large height-to-diameter ratio of

modular PBR cores means that the flow of thermal energy during a depressurized

conduction cooldown is predominantly radial in direction. Ignoring axial and convective
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heat transfer results in only a small but conservative error in the estimate of peak

accident core temperature. This fortunate consequence of MPBR core design was

confirmed with comparison to two-dimensional computational results [82], [83] and

exploited in other studies [84]. It is again exploited in PEBBED to provide the means to

assess the passive safety characteristics of the numerous designs that can be

generated by the code.

The technique involves simply using the pebble power and temperature profile

generated using the methods described above to compute the initial conditions for a

subsequent transient heat conduction-radiation problem. One of the conclusions of the

studies performed in Germany (cited above) was that the peak accident fuel temperature

generally occurs at the location of the greatest local power density. In PEBBED, the

radial profile of the core at the axial location of this peak provides the initial conditions for

the one-dimensional radial heat transfer equation (Eq. 3.45).

Material and geometric details of the power plant outside of the outer reflector

must be provided by the user to perform this calculation (the neutronics calculation only

requires specification of the core out to the outer reflector.) The radially-dependent

power density and core temperature profile provide part of the initial conditions. A

constant outer boundary (containment wall) temperature is also provided by the user.

Because no heat is generated outside of the core, the initial temperature profile outside

of the core can be obtained by solving the steady-state version of Eq. 3.45 with the heat

generation term set to zero and the boundary conditions obtained from the neutronics

solution and this outer boundary temperature. The transient solution is then solved using

a semi-implicit, finite-difference approximation to Eq. 3.45 with the spatial and temporal

ρ T( )Cp T( )∂T r,t)( )
∂t

= ∇• k T( )∇T (r,t) + q r,t( ) =
1
r

∂
∂r

k T( )r ∂T r, t( )
∂r

 
 
 

 
 
 + q r,t( ) 3.45
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mesh specified by the user. Radiant heat transfer between pebbles and across voids are

subsumed by casting the radiant heat transfer equation in conduction equation form.

This general approach was used successfully by Savage [83] in the stand-alone

thermal-hydraulic code SHERLOC with the initial core power and temperature profiles

provided by independent analysis. This method has also been adapted with some

modification for use in PEBBED. The full derivation of the PEBBED one-dimensional

transient calculation is given in Appendix C.

3.4 Summary of PEBBED Modeling Capability

Direct convergence on the asymptotic burnup solution, pebble recirculation

described in terms of a few easily manipulated parameters, and one-dimensional heat

transfer calculations for nominal and extreme accident conditions combine to yield an

efficient and powerful approach to pebble-bed core design and sensitivity analysis. In the

next two chapters, the utility of this approach will be demonstrated using documented

and proposed PBR designs. In Chapter 7, the method will be augmented with an

advanced optimization routine to automate the design process.
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Chapter 4

Examples of PEBBED Reactor Models

In the previous chapter, a formulation was derived to compute the entry plane

burnup of a recirculating pebble-bed reactor from the content of pebbles leaving the

core. The elements of the recirculation matrix were shown to be simple functions of a

few parameters easily computed in advance of the burnup calculation. In this chapter,

examples of a few reactor concepts with different fuel management schemes are

discussed. The utility of the recirculation matrix is further shown via application to

generic issues associated with the PBR. Nominal and accident fuel temperatures will be

computed and compared to data available in the literature.

4.1 HTR Modul 200

4.1.1 Model of the HTR-Modul 200

The Hochtemperaturreaktor-Modul 200 (HTR Modul 200) was developed in the

mid 1980s by Kraftwerk Union and Interatom [9], [10] as the first modular high

temperature reactor emphasizing passive safety under all design basis conditions. Its

tall, thin pebble-bed core design allowed the removal of decay heat before fuel failure

temperatures would be attained. Modularity implied the use of standardized reactor, heat

transfer, and loop components. Although no HTR Modul 200 was ever built, this design

set the standard for all subsequent modular pebble-bed reactors.
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4.1.2 Recirculation Matrix Formulation for the HTR Modul 200

In Chapter 2, a formulation was introduced that described the flow of pebbles

through a pebble-bed core in terms of a few easily computed parameters called partition

coefficients (redefined below):

F
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i =α

(fraction of core flow in that is in zone i)

i

p
ip

i f

f=α
(fraction of flow in i that consists of type p pebbles)
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m
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i
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f

f=α
(fraction of type p flow in i that consists of pebbles on pass m)

P
j

m

p
ji

m
p

ij
m

f

f ←=α
(fraction of flow of pebbles of type p, on pass m, in zone j that

is diverted to i).

These coefficients are used to relate the burnup of pebbles at the discharge point

(exit plane) of the reactor to the burnup distribution at the entry plane (top). The

variability of the coefficients is related to the flexibility of the core loading and discharge

mechanism.

In terms of simplicity and flexibility, the HTR Modul 200 is an extreme. It features

a single fuel loading tube centered above the core and a single discharge tube centered

below. Only one type of pebble type (fuel) is circulated. These pebbles are dropped onto

the top, forming a conus, and are distributed randomly over all radial and azimuthal

zones, regardless of the accumulated burnup. Once the threshold burnup is achieved

(about 15 passes through the core), the spent pebbles are discharged. This fuel loading

policy may be described as type-independent, burnup-independent, and

zone-independent recirculation.
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The flow coefficient, αi, is a function of the dynamics of the pebble-bed core. The

subscript is the radial channel index, with i = 1, corresponding the innermost radial

channel. Bedenig’s experiments [46], [47] showed that for sufficiently high height-to-

diameter ratios (H/D>0.8) that pebble flow is uniform, i.e., axial and largely constant as a

function of radial distance. The downward velocity does decrease near the reactor wall

as a result of wall friction but for the most part the ‘slug flow’ approximation yields

reasonable results for typical PBR designs. Therefore, the flow fraction coefficients can

be computed directly from the cross-sectional area of the specified flow zone. In

PEBBED, the user specifies the zone boundaries and total core flow rate. The user may

also specify the coefficients of a quadratic axial velocity profile (as a function of radial

distance) for non-uniform pebble-flow. The flow fraction coefficients are computed

directly from these values. Given the assumption of slug flow and zone-independent

recirculation in the HTR Modul 200, the entire pebble-bed region may be modeled as a

single flow zone for burnup purposes, i.e., 1=iα , (i = 1).

The type coefficient,
p

iα , is also equal to unity because there is only one pebble

type in this design. Even if more than one radial flow zone were specified (i>1), these

values would all be set to 1.

The pass coefficient,
p

i
mα , indicates what fraction of pebbles of a certain type p

in zone i are on their mth pass. As discussed in Chapter 3, the values of the pass

coefficients are computed from the others. However, for the HTR Modul 200 the values

can also be determined heuristically. Because the distribution of pebbles at the entry

plane is completely random, all burnup stages (passes 1 through 15) are represented

equally (on average) in any location in the core. Thus, for a single-zone core (i = 1) with

one pebble type (p = 1),



75

Finally, the transfer coefficient specifies what fraction of the pebbles of type p in

zone j and completing their mth pass will be loaded into zone i at the entry plane. For the

HTR Modul 200 with its single loading tube, there is no deterministic means of sorting

the pebbles and they will be distributed randomly over all zones. Therefore the value of

the transfer coefficient is just the probability of being dropped into the specified zone,

i.e.,

Thus, all partition coefficients are completely specified by the pebble flow

characteristics (radial flow distribution) and the number of passes traversed by a pebble

before discharge (M). No changes can be made to these values without radically

changing the core design or fuel handling mechanism.

An estimate of the number of passes traversed by a pebble before discharge can

be determined to first order from the core geometry, power level, and discharge burnup

target using Equation 2.7.

Because the burnup accrued by a pebble flowing through the core is a function of

the fissile content of the fuel as well as the overall mass, the discharge burnup of each

pebble type in a core is computed and checked against the target burnup. If they do not

match to within a specified tolerance, the number of passes or core flow rate is adjusted

automatically.

Equivalent cylindrical volumes are computed for the top and bottom flow cones to

obtain the effective core height. The cones are located in low flux regions of the core and

thus the error introduced by this approximation is limited.

15
1== αα mp

i
m , m = 1,15. 4.1

i
p

ij
m αα = for all p, m, j. 4.2
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All of these factors can be determined in advance of the burnup-flux calculation

and thus the recirculation matrix can be fully specified off-line. Table 4-1 includes these

and thermal parameters used in the PEBBED model. A full description of the PEBBED

computational model of the HTR Modul 200 is given in Appendix E. A detailed

description of the HTR Modul fuel element is given in Appendix F.

Table 4-1: Recirculation and thermal parameters for the HTR Modul 200 [9].

Height (m) 9.4

Core Radius (m) 1.50

Discharge Burnup (MWd/kg) 80

Core Thermal Power (MW) 200

Fresh Pebble Heavy Metal Content (kg) 0.007

Uranium Enrichment 7.8%

Coolant Inlet/Outlet Temperatures (°C) 250/700

System Pressure (MPa) 6

Mean Pebble Velocity (m/day) 0.14

Six group cross-sections for the fuel and reflector materials were generated using

the MICROX-2 [85] cross-section code. The last two groups are in the thermal region in

which upscattering does occur. PEBBED does treat upscattering (unlike VSOP, which is

limited to four groups) but does not currently update cross-sections as functions of

temperature or spectrum. A single set of values based on a unit cell calculation was

used. A full description of the process by which these cross-sections were generated will

be provided in Chapter 5. Control rods and absorber balls are generally withdrawn from

the core during operation and thus were not modeled. Efforts are underway at the INEEL

to develop an accurate control rod modeling method for PBRs.
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4.1.3 Results of PEBBED Analysis

Some of the results of the analysis are shown in Table 4-2.

The core eigenvalue is high. This can be attributed to the fact that most fission

product chains are not modeled in this case (only xenon and samarium). The actual HTR

Modul may have control rods partially inserted from the top. Including these two effects

would decrease the core multiplication factor to something closer to unity. The fast

(<0.11MeV) flux is plotted in Figure 4-1.

Table 4-2: PEBBED-computed characteristics of the HTR Modul 200.

Core Multiplication Factor (keff) 1.0885

Mean Power Density (W/cm3) 3.01

Peak Power Density (W/cm3) 5.035

Peak Pebble Temperature (°C) 736

Mean Pebble Temperature (°C) 522

Fresh Fuel Rate (pebbles/day) 356

Total Pebble Flow Rate (pebbles/day) 5,335

Discharge Quantities (g/pebble)

U-235 0.097

U-238 6.14

Pu-239 0.038

Pu-240 0.023

Pu-241 0.019
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Calculations were performed to generate the peak fuel temperatures during

normal operation and after a depressurized conduction cooldown (DCC). For the DCC,

the structural components and dimensions are shown in Table 4-3.

Figure 4-1: Fast (>0.11MeV) flux in the HTR Modul 200.

Table 4-3: Structural components of HTR Modul 200 1D radial heat transfer model.

Radial Region Outer Radius (cm) Density (g/cm3) Emissivity

Pebble Bed 150 1.06 0.75

Outer Reflector (Graphite) 230 1.53 0.75

Carbon Brick Insulator 250 1.75 0.80

Gas Channel 265 0.0 N/A

Core Barrel (SSTL-304) 270 7.8 0.80

Gas Channel 295 0.0 N/A

Pressure Vessel

(2.25Cr: 1 Mo Steel)

310 7.675 0.80

Gas Channel 430 0.0 N/A

r (cm)z (cm)

φ (n/cm2s)
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A reactor cavity cooling system is assumed to be functional at the inner wall of

the concrete containment vessel. This system provides an outer wall boundary

temperature of a constant 50°C. The mathematics of the transient calculation and

detailed material properties are described in Appendix C. Although material properties

and correlations for the calculation performed by Frewer [9] are not included in their

paper, enough detail is provided to re-create their model within reasonable accuracy.

Frewer’s calculation predicts a peak fuel temperature of 1,530°C at 32 hours after

shutdown. This peak occurs at the core centerline 380 cm below the top of the core.

PEBBED predicts a peak DCC temperature of 1,424°C at 32 hours, 390 cm below the

core top. Part of the reason for the lower temperature is the lower initial fuel temperature

estimated by PEBBED. Frewer reports a steady state temperature of about 600°C at this

axial location while PEBBED computes a starting temperature of 465°C. The coolant

temperature rise across the core for the specified inlet and outlet temperatures is 450°C.

If half the power is produced and deposited into the coolant in the top 390 cm of the

pebble bed, one would expect the coolant temperature to be roughly 250°C + 225°C =

475°C, similar to the PEBBED value. The value reported by Frewer no doubt reflects a

fair amount of conservatism in the accident temperature calculation. Therefore, a second

PEBBED computation was performed in which the inlet temperature was raised until the

steady-state fuel temperature reached about 610°C. The peak accident temperature

under these conditions is computed by PEBBED to be 1,465°C and occurs 27 hours

after accident initiation.

Another run was performed in which the core power was raised to 250 MW. The

authors surmised that the reactor could operate at this power under less stringent U.S.

regulations. With the 250°C inlet temperature and same coolant flow rate, PEBBED

computes a peak accident temperature of 1,589°C at 371 cm below the core top
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occurring 34 hours after accident initiation. These results indicate that the peak accident

temperature is more a function of local power density than initial temperature, as

reported by Lutz [82].

4.2 PBMR with Dynamic Inner Reflector

4.2.1 Model of the PBMR-DIR

The first Pebble-Bed Modular Reactor proposed for construction in South Africa

is a variation on the HTR Modul theme. The early design, the subject of study in this

work, featured a 268 MWt core with a so-called dynamic inner reflector consisting of

flowing graphite pebbles. The outer annulus would be fueled with fuel pebbles with a

slightly higher enrichment and heavy metal content than the HTR Modul 200. The

graphite and fuel pebbles are not physically separated and thus are free to mingle (see

Figure 2-11). This mixing is limited, however, and a two-zone pebble-bed core is

maintained, albeit with a ‘fuzzy’ boundary. The graphite pebbles are always loaded via

the central loading tube while the fuel pebbles are loaded via the outer radial loading

tubes. A single discharge tube is shared in this type-dependent, burnup-independent

loading scheme. The overall radius of the active core is 175 cm and the approximate

radius of the inner reflector is 87 m. Fuel pebbles traverse the core 10 times before

discharge. Other parameters are specified in Table 4-4.
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4.2.2 Recirculation Matrix

The two-zone core requires multiple fuel loading tubes; a central tube for the

graphite pebbles and a number of azimuthally-spaced fuel loading tubes set some

distance from the core centerline. The partition coefficients are derived as follows.

The flow partition coefficients are dependent only upon the mechanics of pebble

flow. It is reasonable approximate this flow as uniform (constant velocity across all

channels) but for this model a second order polynomial was fitted to a flow distribution

obtained from VSOP and also used in PANTHERMIX [54]. Equation 4.3 states the radial

dependence of the flow velocity used in the PEBBED model as,

Table 4-4: Operating parameters of the PBMR with dynamic inner reflector.

Height (m) 8.5

Core Radius (m) 1.75

Discharge Burnup (MWd/kg) 80

Core Thermal Power (MW) 268

Fresh Pebble Heavy Metal Content (kg) 0.009

Uranium Enrichment 8.0%

Coolant Inlet/Outlet Temperatures (°C) 503/900

System Pressure (MPa) 7

Mean Pebble Velocity (m/day) 0.099

( ) ( )11027.01023.0 224 ++−= −− xrxvrv o , 4.3
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in which vo is the centerline pebble speed. The zone boundaries were chosen to divide

the core flow into approximately equal parts so that the zone coefficients, αi, are all

roughly equal to 0.2 (Table 4-5).

The boundary between the inner graphite column and outer fuel annulus lies about

halfway through the second pebble flow channel and thus this channel contains both

graphite and fuel. The location of this boundary is determined by the relative flow rates

of pebbles loaded into these two major core zones. The other channels contain only one

pebble type. The type partition coefficients, p
jα , are easily computed from the user-

supplied parameter that specifies the fraction of total pebble flow that is loaded into the

outer zone. This parameter is defined in Eq. 4.4.

For the PBMR, this value is about 0.75 which means that 75% of the total pebble

flow in the core is in the outer annulus (and 75% of the flow consists of fuel while the

Table 4-5: Flow Zone Boundaries and Flow Partition in the PBMR-DIR

Zone Outer Radius (cm)
iα

1 72.5 0.19

2 102.5 0.19

3 129.5 0.21

4 152.5 0.20

5 175.0 0.21

F

f o
o =α 4.4
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remaining 25% consists of graphite pebbles). The type coefficients are computed from

this quantity and the flow coefficients using, for fuel, Eq. 4.5.

and, for graphite pebbles (p = 2) going into the inner zone, Eq. 4.6.

The transfer coefficients, p
ij

mα , are type-dependent. Graphite pebbles are

distributed randomly among zones 1 and 2 while fuel pebbles are distributed randomly

among zones 2 through 5. However, only about half of zone 2 is open to each pebble

type. The transfer partition coefficients can be computed from Eq. 4.7.

For p = 1 (fuel), the summation in the denominator is just αo because fuel

pebbles are exclusively loaded into the outer zone. For graphite pebbles, the summation

is 1- αo. The numerator is the fraction of total core pebble flow that occurs in zone i and

consists of type p.

The pass coefficients are computed by PEBBED from the other coefficients. Like

the HTR Modul 200, however, the distribution of pebbles in not burnup-dependent and

thus all burnup stages are equally represented at each location in the fueled zones, i.e.,
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10
11 =i

mα for all passes m. The graphite pebbles are similarly distributed by pass but

since no burnup is accrued in these pebbles, they can be circulated using an OTTO

(once-through-then-out) policy without affecting the neutronic solution.

These relations are coded into PEBBED and can be invoked by flagging a

two-zone, burnup-independent recirculation pattern in the input deck. The user supplies,

in the input file, the coefficients of the velocity profile (Eq. 4.3) and the fraction of core

flow in the outer zone, αo. PEBBED computes all of the partition coefficients from these

parameters and the core geometry.

The resulting pebble flow distribution (by channel, type, and pass) is shown in

Table 4-6.
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As indicated above, only in channel 2 does both graphite and fuel pebbles reside,

with fuel outnumbering graphite slightly. Also, the number of fuel pebbles in a channel

does not change with pass number, a characteristic of burnup-independent recirculation

patterns.

A full description of the PEBBED computational model of the PBMR-DIR,

including partition coefficients, is given in Appendix E. A detailed description of the

PBMR fuel element is given in Appendix F.

Table 4-6: Flow distribution in PBMR-DIR.

Pebble Flow Rate (pebbles/hour)

Channel 1 2 3 4 5

Pass Fuel

1 0 2.16 4.55 4.35 4.42

2 0 2.16 4.55 4.35 4.42

3 0 2.16 4.55 4.35 4.42

4 0 2.16 4.55 4.35 4.42

5 0 2.16 4.55 4.35 4.42

6 0 2.16 4.55 4.35 4.42

7 0 2.16 4.55 4.35 4.42

8 0 2.16 4.55 4.35 4.42

9 0 2.16 4.55 4.35 4.42

10 0 2.16 4.55 4.35 4.42

Total 0 21.63 45.53 43.46 44.21

Graphite

1 (OTTO) 40.71 18.62 0 0 0



86

4.2.3 Analytical Results

4.2.3.1 Effect of the Size of the Inner Reflector

In the actual PBMR-DIR design, fuel pebbles comprise about 75% of the total

pebble flow while graphite makes up the remainder in the central column. Before taking

a detailed look at this particular configuration, a study was conducted of the effect of

varying this ratio on the core multiplication factor. As indicated above, only one

parameter, αo, must be varied in the input deck to model the change in the size of the

inner reflector. The other partition coefficients are automatically computed from this and

the velocity profile. Figure 4-2 shows a plot of the result.

A low value for αo implies a very narrow annulus and a very thick inner reflector

column. Other than the size of the inner reflector the other parameters (core outer

boundary, height, pebble size) were held constant. The overall pebble flow rate was
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Figure 4-2: Effect of inner reflector size on core multiplication factor.
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automatically adjusted to maintain the discharge burnup at 80 MWD/kgihm. The plot

indicates poor neutron economy for cores in which the inner reflector graphite comprises

more than 50% of the pebble flow. The core eigenvalue appears to be approach an

asymptotic value for outer flow fractions above αo = 0.70. Increasing the size of the fuel

annulus (decreasing the size of the inner reflector) beyond this yields little neutronic

benefit.

4.2.3.2 Neutronic and Thermal Characteristics of the Asymptotic Core

For the nominal PBMR core, a value of αo = 0.723 was computed based upon

the flow characteristics obtained from the literature, Cross sections for this core model

were computed using both COMBINE [86], [87] and MICROX-2. PEBBED produced the

results shown in Table 4-7. The INEEL COMBINE code differs from MICROX-2 in that its

resonance treatment does not extend into the thermal spectrum. Furthermore,

upscattering is only allowed in the thermal spectrum. This presents a problem when

modeling graphite-moderated reactors with high burnup fuel. Plutonium isotopes build up

to significant quantities and Pu-240 has a very high capture resonance at about 1 eV,

well within the upscatter region. Partial compensation was achieved by generating a

infinite lattice neutron spectrum with a 1.86 eV thermal energy upper limit. Most of the

cross-sections were generated with this thermal energy cutoff. A separate ‘cell’

calculation using this spectrum but with the thermal energy set at 0.876 eV was run to

generate the cross-sections for Pu-240 with a more accurate treatment of the low-lying

resonance.
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Designed for coated particle gas reactor fuel, MICROX does not share this

energy barrier limitation and also has a more advanced treatment of the shadowing

effects of the particles.

Table 4-7 was generated using the MICROX cross-sections.

Correspondence with PBMR personnel yielded some VSOP data for comparison

[88]. These are shown in parenthesis in the table. The peak power density and mean

temperature computed by PEBBED are somewhat higher than those computed by

VSOP. The peak fuel temperature is slightly lower than the VSOP value. The validity of

the temperature comparison is rather limited because of the way these parameters are

computed. For peak temperature, PEBBED computes a weighted average of the peak

values achieved by pebbles in different flow zones (more on this in Section 4.5) while

VSOP computes an average temperature of pebbles in the batch that has the overall

Table 4-7: Neutronic features of the PBMR-DIR.

Core Multiplication Factor (keff) 1.0732

Mean Power Density (W/cm3) 3.28 (3.28)

Peak Power Density (W/cm3) 6.77 (6.56)

Peak Pebble Temperature (°C) 1,040 (1,063)

Mean Pebble Temperature (°C) 804 (760)

Fresh Fuel Rate (pebbles/day) 372

Total Pebble Flow Rate (pebbles/day) 5,140

Discharge Quantities (g/pebble)

U-235 0.141

U-238 7.84

Pu-239 0.053

Pu-240 0.032

Pu-241 0.026
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highest temperature. Given these different methods, complete agreement cannot be

expected.

4.2.3.3 Enveloping Calculations and Pebble Histories

The recirculation matrix can be exploited to yield pebble history information for a

specific trajectory rather than a weighted average of all trajectories. To do this, one or

more new pebble types are specified in the input deck. The new pebbles have the same

composition as the nominal fuel type but the partition coefficients describing their

trajectories are altered. The type partition coefficients for the new pebble types are set to

extremely low values (<10-4) so that their presence does not significantly alter the

neutronic characteristics of the core. The model is run and the pebble histories for these

special types are generated along with the nominal types.

This approach has been exploited to generate bounding scenarios for fuel

conditions in the PBMR-DIR. In addition to the nominal fuel and graphite pebble types

described in the previous sections, four other pebble types were modeled corresponding

to the cases in which pebbles are confined to a single flow channel for their entire core

trajectory (the pebble channeling scheme briefly described in the previous chapter). The

set of transfer partition coefficients for a given pass m for such channeled pebbles just

form the identity matrix; i.e., all pebbles discharged from channel 3 are reintroduced into

channel 3, etc. For example, the second radial channel in the PBMR is the so-called

mixing zone containing roughly equal parts fuel and graphite spheres. Because of its

proximity to the inner zone of pure graphite pebbles, the fuel in the mixing zone

(channel 2) is exposed to a relatively pronounced thermal flux. Fuel pebbles thus

generate much more power than pebbles with the same entry burnup passing through a
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different flow channel, and consequently accrue more burnup on this pass. Pebbles that

are confined to the mixing zone (channel 2) for their entire core lives are like candles

that burn intensely and quickly. The next set of figures illustrate the pebble histories for

the “average” pebble as well as pebbles that are channeled into each of the four fueled

zones in the PBMR-DIR.

Figure 4-3 shows pebble power as a function of time for the channel-averaged

pebble and for those restricted to channels 2 and 3. Each loop in a curve corresponds to

a pass through the core.

The “wavelengths” of the channel 2 and channel 3 trajectories are shorter than

that of the mean and other channel trajectories because the axial pebble velocity is

higher for the inner radial zones. The decrease in the amplitude over time corresponds
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Figure 4-3: Pebble power for average and channeled trajectories.
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to the decrease in the fissile content of the pebbles. As stated previously, pebbles in

channel 2 are exposed to a greater thermal flux and thus produce considerably more

power than those in other trajectories. Careful examination of the figure also reveals that

pebbles confined to channel 2 undergo only nine passes while all others undergo ten,

another consequence of the higher thermal flux. These pebbles reach the discharge

burnup value (80 MWD/kgihm) in one less pass through the core.

Figure 4-4 is a plot of the PEBBED-computed fuel temperature for the same set

of trajectories.

During a single pass, the mean temperature varies roughly between 600°C and

1,030°C. Note that the peak temperature during each pass through the core occurs at

the exit plane. Unlike LWR fuel, the higher conductivity of pebble fuel elements allows
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Figure 4-4: Centerpoint fuel temperature for various trajectories.
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heat to pass more quickly out of the pebble. As a consequence, the pebble fuel

temperature profile tracks the surrounding coolant temperature profile rather than the

power profile. The coolant enters the top of the core at about 500°C and exits the core at

900°C. The temperature difference between the surface and center of a pebble varies

between 50°and 100°C. Pebbles in channels 4 and 5 exhibit similar temperature

profiles.

Pebbles in channel 3 experience the greatest temperature variation and a peak

temperature of 1,122°C, considerably higher than the trajectory-averaged peak of

1,040°C. This peak is attained for a trajectory that has a very low probability of occurring.

Channel 3 carries 29.5% of the fuel flow through the core. The probability that an

individual pebble is randomly dropped in channel 3 on all 10 passes of its trajectory is

approximately 0.29510 or 1 chance in 500,000. There are roughly 330,000 fuel pebbles in

the PBMR-DIR core. The product of these two numbers is 1.6, indicating that it is very

likely that at least one pebble in the PBMR is following this trajectory. In fact, the number

of pebbles attaining 1,122°C is about 30% of the total in the core. This is because this

peak value occurs on the first pass through the core and 30% of all pebbles go through

channel 3 on their first pass, regardless of the trajectories taken on subsequent passes.

Thus for purposes of establishing the fuel temperature envelope, the 1,122°C value is

appropriate.

Note that the pebbles in channel 2, while producing much more power than those

in other channels, do not run at the highest temperature. As mentioned previously, the

fuel temperature profile tracks the coolant temperature more closely than it tracks pebble

power. Although the power produced is highest in this channel, only about half of the

pebbles in this channel actually contain fuel and thus the local power density is lower
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than that found in other channels. The coolant temperatures are lower and thus so are

the fuel temperatures.

The analysis described above was used in the design of a PBMR fuel testing and

qualification program proposed by the INEEL.

4.2.3.4 Isotopic Characteristics of the Spent Fuel

Also of interest in fuel cycle analysis is the buildup of plutonium and other minor

actinides in pebble-bed fuel. Studies of plutonium content have been conducted using

different code packages and methods [89]. These include:

1. An MIT study using VSOP (4-group)

2. An INEEL study using MCNP and ORIGEN (continuous, unit cell)

3. A PBMR Pty, Ltd. study using VSOP (4 group)

4. An INEEL study using COMBINE-6 and PEBBED (4 group)

5. An INEEL study using MICROX-2 and PEBBED (6 group).

Table 4-8 lists the amount of plutonium-239 per discharged pebble calculated in

these studies.

Table 4-8: Pu-239 content in discharged pebbles.

Study Pu-239 Mass (mg) in Pebble at

80MWD/kghm

MIT-VSOP 11

INEEL-MCNP/ORIGEN 79

PBMR VSOP 86

COMBINE/PEBBED (4) 67

MICROX/PEBBED (6) 53
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Clearly there is ample disagreement between the modeling methods. Each

method has strengths and weaknesses. The MCNP-ORIGEN model uses continuous

energy cross-sections but the model is only of a unit cell, not an entire recirculating core

with its regionally varying spectra. VSOP updates its cross-sections (using the

GAM-THERMOS libraries) for spectral and temperature changes but is limited to four

energy groups with no upscattering. PEBBED can use more energy groups and treat

upscattering but currently uses only a single set of constant cross-sections for each

composition in the core. The cross-sections are computed in an iterative manner for a

pebble of average burnup (see Chapter 5), which is an advantage over the other

methods. Still, these results indicate the need for further development and benchmarking

in the area of pebble-bed cross-section generation.

In another comparison, the total discharge plutonium vector was compared

between some of these methods (Table 4-9).

The four-group PEBBED and VSOP models agree well on a relative basis

although the total amount of plutonium differs between the two. The Pu-240 content

predicted by these models is much higher than the others; probably the result of the

treatment of the 1 eV resonance. The six-group MICROX-PEBBED model shows a

Table 4-9: PBMR discharge Plutonium vector (% of total Pu mass).

Isotope MCNP-

ORIGEN

PBMR

VSOP

COMBINE/PEBBED

(4)

MICROX/PEBBED

(6)

Pu-238 1 2 1 2

Pu-239 46 39 39 40

Pu-240 28 34 34 24

Pu-241 16 16 16 20

Pu-242 9 10 10 15
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significantly lower Pu-240 yield. Clearly, more development and benchmarking is

needed to generate PBR isotopic data with certainty.

Figure 4-5 shows a plot of the thermal flux in the PBMR. The graphite inner

reflector is rich with thermal neutrons but there is a thermal peak near the outer reflector

as well.

4.2.3.5 Depressurized Conduction Cooldown Transient

Assuming the successful operation of a surface cooler system, PEBBED’s DCC

module computes a peak accident temperature of 1,420°C occurring 45 hours after

accident initiation. Calculations by PBMR, Ltd. using THERMIX indicate a peak value of

about 1,450°C occurring about 55 hours after accident initiation [48]. A model of the core

Figure 4-5: Thermal (<1.86 eV) flux in the PBMR-DIR.

r (cm)
z (cm)

φ (n/cm2s)
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was constructed at the INEEL using the safety analysis MELCOR. This model will be

discussed in more detail in Chapter 6. The MELCOR model predicts a peak temperature

of 1,406°C at 45 hours. The THERMIX and MELCOR models are two-dimensional and

include convective heat transfer. The agreement with the PEBBED one-dimensional

conduction-radiation model confirms the assumption that most heat transfer during this

transient is radial and very little is convective.

The peak temperature value also suggests that the total core power can be

raised to some extent without violating the 1,600°C limit. Indeed, the current PBMR

design [48] is rated at 400 MWt.

4.3 GE MPBR with an OUT-IN Fuel Management Policy

In early 1982, the Department of Energy commissioned General Electric to

conduct study of the use of a modular pebble-bed reactor to drive a steam reforming

plant for process heat application [82]. Like the PBMR, this General Electric design

featured a two-zone core, however, it used only a single pebble type that was loaded

into the outer, annular zone for the first half of its residence time then transferred to the

inner zone for the remainder. This burnup-dependent, or ‘OUT-IN’, loading scheme has

been used extensively in batch-loaded LWR cores to limit power peaking.

4.3.1 Model of the GE MPBR

The GE MPBR features a 250 MWt core that has a radius of 1.45 meters and an

approximate height of 9.3 meters. The fuel is a mixture of thorium and 20%-enriched
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uranium. Thorium is fertile and is converted to uranium-233 while in the core. Helium

coolant enters at 400°C and 4.6 MPa and exits at 950°C.

4.3.2 Recirculation Matrix

In an ‘OUT-IN’ or ‘IN-OUT’ PBR fuel management system, the core is divided

into two zones, each of which contains one or more flow channels. One of the flow

channels may be split between the two zones. A single type of fuel pebble is loaded into

only one of the zones (the entry zone) and recirculated until an intermediate (transfer)

threshold is attained. The pebbles are then transferred into the second (exit) zone and

recirculated until the discharge burnup level is exceeded.

As with the PBMR, the radius of the boundary between the zones is determined

by the relative rates of flow into these zones. For a burnup-dependent scheme, of which

the OUT-IN is an example, the relative zone loading rate also fixes the transfer burnup

threshold value, BT, and the number of passes each pebble undergoes before being

transferred, MT.

The rate of flow between the zones must equate to the fresh fuel injection rate in

order to maintain flow conservation. Because the entry zone flow rate is not likely to be

an integer multiple of the fresh fuel injection rate, only a fraction of the pebbles on pass

MT can be transferred. The remainder will be transferred on the following pass, MT + 1.

These parameters and the transfer coefficients are derived as follows for the

single pebble type case (the p superscript is omitted for clarity as only one pebble type is

used in this core design). The formulation is easily generalized to the multiple pebble

type case.



98

As with the PBMR-DIR core, all but one of the flow channels resides within either

the inner column or outer annulus. Define
o
jα as the fraction of the flow in flow channel j

that is in the entry zone. The subscript o is used to indicate that the entry zone is the

outer fuel annulus rather than the inner column but the equations are also valid for the

reverse case. In fact, the values of these zone coefficients are numerically equal to the

values of the type coefficients in the PBMR and thus are computed in the same way

using Eq. 4.5. In this case, however, the pebbles are all of one type (fuel). The

superscript indicates the flow stream (inner or outer) of which the pebble is a member.

Let αT be the fraction of the pebbles on pass MT that are transferred from the entry zone

to the exit zone. This number is the same for all flow channels in the entry zone if there

is only one discharge tube.

The flow rate of pebbles being transferred from the entry zone to the exit zone,

FT, is given by Eq. 4.8.

This can be simplified as follows.
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In fact, the transfer flow rate (rate at which pebbles are transferred from the outer

to the inner zone) is simply equal to the flow rate of pebbles on any pass m, including

m = 1 (the fresh fuel injection rate), because pebbles are introduced to the core only

when they are fresh and discharged only after pass M.

The total flow rate in the entry zone can be computed from Eq. 4.12.

This simplifies to�

1F is the fresh fuel injection rate.�

Eq. 4.15 can be solved for αT to yield:

By the definition of a partition coefficient, 0 ≤ αT ≤ 1, so that the transfer pass

number MT is fixed as the integer part of the quotient of the entry zone flow and fresh fuel

flow, Eq. 4.17,
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Thus, the transfer pass number and fraction of flow transferred in a two-zone

simple transfer scheme are easily computed from the core flow distribution and fresh fuel

injection rate. The fresh fuel injection rate is obtained from the total core flow and the

number of passes computed for that pebble type.

These parameters are now used to derive the actual transfer coefficients for this

fuel cycle.

For pre-transfer flow, the pebbles in channel j are distributed according to the

partition of the entry zone among the flow channels I:

For each channel j completing transfer pass MT, there are two flow paths:

recirculation back into the entry zone channels or transfer to an exit zone channel. The

transfer coefficient is the sum of the probabilities of these outcomes:

Finally, for post-transfer flow, all of the pebbles are equivalently distributed

among the exit zone flow channels,

This expression can be obtained from Eq. 4.19 by setting αT
= 1.�
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As in the PBMR-DIR case, all of the partition coefficients are thus easily

computed from the pebble velocity profile, the discharge burnup, the core geometry, and

the ratio of the outer annulus flow to the total pebble flow. In PEBBED, OUT-IN, or

IN-OUT recirculation schemes can be specified easily and optimized by varying these

quantities.

A full description of the PEBBED computational model of the GE-MPBR,

including partition coefficients, is given in Appendix E. A detailed description of the

GE-MPBR fuel element is given in Appendix F.

4.3.3 Analytical Results

4.3.3.1 Characteristics of the Asymptotic Core

An outer flow fraction (αo) of 0.5 and a uniform velocity profile was specified for

the GE-MPBR core. For simplicity, flow channel boundaries were adjusted slightly so

that no channel contained a mixture of inner and outer zone pebbles. Solving for the

recirculation matrix in PEBBED yielded the pebble flow pattern listed in Table 4-10.
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For the GE study, VSOP was used to generate the cross-section, burnup, and

thermal-hydraulic characteristics. The equilibrium nuclide distribution from VSOP was

fed to a BOLD-VENTURE [52] model to generate power peaking factors. Table 4-11

shows a comparison of the VSOP-BOLD-VENTURE results vs. those produced by

PEBBED for the equilibrium core.

Table 4-10: Flow partition in the GE-MPBR (OUT-IN).

Fraction of Flow in Zone, ai

Ch. 1 Ch. 2 Ch. 3 Ch. 4

0.25515 0.24494 0.22852 0.27139

Number of Pebbles in Each Zone

Pass

1 0 0 8.45 10.04

2 0 0 8.45 10.04

3 0 0 8.45 10.04

4 0 0 8.45 10.04

5 0 0 8.45 10.04

6 9.44 9.1 0 0

7 9.44 9.1 0 0

8 9.44 9.1 0 0

9 9.44 9.1 0 0

10 9.44 9.1 0 0
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The PEBBED-generated inventory indicates a higher buildup of plutonium

relative to that produced by VSOP. Such a buildup is typical of thorium-fueled systems

as the (n,γ) reaction in Th-232 eventually leads to Pu-238 and higher plutonium isotopes.

Pu-238 was not listed in the GE study so comparison is difficult. The other differences in

the way that cross-sections are generated in VSOP and for PEBBED may also be a

significant source of the disagreement in nuclide densities, core multiplication factor, and

power peaking. In particular, the temperature of the fuel pebbles varies significantly over

the axial dimension of the core. The cross-sections computed using MICROX assumed

Table 4-11: VSOP-BOLD-VENTURE vs. PEBBED physics results for the GE MPBR.

VSOP-BOLD-

VENTURE

PEBBED

Core Multiplication Factor 0.9980 1.045

Mean Fuel Residence Time (days) 737 741

Discharge Burnup (MWd/kg ihm) 79.3 80.0

Overall Power Peaking Factor 2.1 1.6

Axial Distance of Power Peak below Top

of Pebble Bed (cm)

278 329

Maximum Fuel Temperature (°C) 1,098 1,035

Mean Fuel Temperature (°C) 775 738

Fuel Inventory (kg)

U-233 14.6 15.5

U-235 76.9 93.4

U-238 757 742

Th-232 1,304 1,322

Pu-239 3.4 6.0

Pu-240 2.0 2.6

Pu-241 .98 2.0

Pu-242 .77 0.995
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a proper average temperature but effect of variations was neglected. Coolant enters the

top of the core so on average the fuel and moderator temperatures are much lower near

the top, improving moderation. Local reactivity is thus underestimated in the upper part

of the core and overestimated in the lower. As a result, the actual axial peak is probably

higher than what is computed by PEBBED.

The cross-section libraries themselves may contribute to large differences. Most

of the cross sections for the PEBBED model were taken from the PBMR-DIR set. Cross

sections for the members of the thorium chain were computed in a separate cell

calculation with no subsequent iteration (to be described in Chapter 5). This method

yields quick results but does not capture the effect of the thorium-derived nuclides on the

neutron spectrum.

Isotopic data for direct comparison is rare but a study of thorium-uranium fuel for

light water reactors was recently completed at the INEEL [91]. Table 4-12 shows a

comparison of the plutonium content of these fuels and the results obtained for the

GE-MPBR computed by VSOP and PEBBED.

Table 4-12: Plutonium isotopics for various Th-U fuel types.

Th/U

Ratio

Burnup

(MWd/kgihm)

Pu Content

(kg/tonneihm)

Pu Vector %

238-239-240-241-242

MOCUP LWR 25:75 56 4.9 7-50-17-18-8

MOCUP LWR 30:70 73 5.7 8-47-18-17-10

MOCUP LWR 35:65 85 6.8 9-46-18-17-10

VSOP

GE-MPBR

58:42 80 4.5 NA-38-27-15-21

PEBBED-

MICROX

GE-MPBR

58:42 80 7.9 3-40-21-20-16
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LWR and HTGR spectra are sufficiently different to prevent firm conclusions. Yet

the LWR data does support the higher Pu content of the PEBBED results to some

extent.

4.3.3.2 Accident Fuel Temperature

A peak fuel temperature attained during a depressurized conduction cooldown

(DCC) in the GE-MPBR was computed by Lutz to be 1,644°C using the two-dimensional

THERMIX code [82]. The power and temperature distribution in the core at steady state

was obtained by feeding the nuclide distribution from VSOP into a BURNER-VENTURE

calculation. The peak temperature was achieved 27 hours after accident initiation.

Savage used the power and temperature distributions obtained in this study as a

test of the one-dimensional (radial) conduction-radiation code SHERLOC [83].

Mentioned in the previous chapter, the methods and material properties employed in

SHERLOC were adapted with minor modifications to produce the DCC fuel temperature

module in PEBBED. PEBBED provides its own steady-state power and temperature

distribution, which was shown above to be rather different that those produced by

VSOP-BURNER-VENTURE. As a check on the DCC module, the steady-state radial

temperature and power density distributions used by Savage were hard-wired into

PEBBED to replace the PEBBED computed profiles in a test case. The results are

shown in Table 4-13.
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The small differences between the SHERLOC and PEBBED calculation with the

same initial conditions can be explained by the minor differences between the

algorithms. The differences between the THERMIX and full PEBBED calculation are

clearly the result of the flatter (axial and radial) power distribution computed by PEBBED.

The peak power density predicted by PEBBED (6.6 W/cm3) is significantly lower than

predicted by BOLD-VENTURE (8.6 W/cm3), perhaps a consequence of the lower axial

peak resulting from the lack of temperature dependence in the cross-sections.

4.4 Summary

The recirculation matrix is derived for pebble-bed reactors with three different

fuel-loading patterns. For each, it is shown that the elements of the recirculation matrices

describing their flow are easily computed from a few general core parameters. Neutronic

characteristics (eigenvalues, power peaking factors) are generated and, for the PBMR

Table 4-13: DCC peak temperature results for the GE-MPBR.

Peak Fuel

Temperature

(°C)

Time of Peak

(hours after

shutdown)

Radial Location of

Peak

(cm below top of core)

BOLD-VENTURE-

THERMIX

1,644 27 278

THERMIX steady-state

SHERLOC transient

1,648 26 185

THERMIX steady-state

PEBBED transient

1,643 25 185

PEBBED steady state

and transient

1,507 19 329
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and HTR Modul – 200, yield reasonable agreement with results obtained from the

literature. Large differences, particularly with the GE-MPBR, are likely the result of the

significant differences in the way that cross-sections are computed in the various

models.

Peak fuel temperatures attained during depressurized conduction cooldown

transients are computed using a one-dimensional, radial convection-radiation model.

The DCC model was validated against a code (SHERLOC) employing the same method,

correlations, and initial conditions. When using the boundary and initial conditions

generated by PEBBED, the model yields satisfactory results for the PBMR-DIR. The

peak DCC temperatures computed for the HTR Modul and GE-MPBR are somewhat

lower than reported in the literature; a result that can be largely attributed to the lower

power peaking computed by the current PEBBED/MICROX method of cross-sections.

The next chapter examines the application of PEBBED and the recirculation

matrix to generic MPBR issues, i.e., not tied to a specific design. The topic of each

section in Chapter 5 is the subject of already or soon-to-be published papers

co-authored by the author of this work.
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Chapter 5

Other Applications

In this chapter, applications of PEBBED and the recirculation matrix to generic

MPBR issues, i.e., not tied to a specific design, are examined. The topic of each section

is the subject of already or soon-to-be published papers co-authored by the author of

this work.

5.1 Achieving Optimal Moderation using PEBBED and MICROX

5.1.1 Optimal Moderation

The concept of optimal moderation in a pebble-bed reactor was first proposed by

Ougouag, et al. [92] In batch-loaded cores, such as the LWR and prismatic HTGR, the

fuel within the core is replenished at periodic intervals of one year to eighteen months. In

the time between refueling outages, the fuel itself is not expected to be mobile. In such

reactors, after a number of refueling events, the core configuration is said to attain a

state known as the “asymptotic loading pattern” or the “asymptotic equilibrium” core.

However, despite this nomenclature, the core keeps changing between reloading

events. Thus, the asymptotic loading pattern is not really a steady state; rather it merely

indicates that subsequent reloading configurations will be essentially the same as this

“asymptotic” pattern. During operation, even in the asymptotic pattern, the state of the

core continues to change. This continuing change of the core makes the realization of

certain optimization objectives difficult if not outright impossible. One particular objective
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that cannot be met continuously with fixed fuel cores, such as LWRs, is that of optimal

moderation. Here optimal moderation is meant as the moderation state that would exist

exactly between over- and under-moderation (the concept is described further below).

Here it is shown how optimal moderation can be achieved and maintained for the bulk of

the operating life of a pebble bed reactor (or for any reactor with continuous refueling

and defueling). Some of the safety and economic benefits of operating in the optimal

moderation state are also described.

5.1.2 Temporary Optimal Moderation in Batch-loaded Cores

Light water power reactors are commonly built, by design, to be undermoderated.

The purpose is to ensure negative reactivity feedback if the coolant density were to

decrease, a necessary safety requirement. The level of undermoderation shifts during a

cycle, but not enough to result in overmoderation. This condition is complicated to some

extent by the presence of burnable poisons and, in the boiling water reactor (BWR), the

normal presence of operational levels of boiling. Undermoderation and overmoderation

are not the ideal state for the most efficient use of the neutrons generated in operation

as is described below.

The ideal use of neutrons is in producing further fission events. Such a use would

correspond to a fuel, moderator, and other material configuration that ensures the

highest possible effective multiplication factor. One could envision a fixed-core reactor

that is constructed to be thus optimally moderated. For example, this could be the case

at the beginning of a cycle, i.e., just after refueling. In such a reactor, fuel depletion (and

other composition changes that result from neutron interactions) would result in a nearly

immediate departure from the optimal moderation once the reactor is operated. Such
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departure may even result in an overmoderated configuration, which is prone to positive

void reactivity feedback, an undesirable feature from the safety standpoint. Similarly, if

optimal moderation were to arise later than immediately upon refueling, further depletion

would again result in immediate departure from the desired state. From these

considerations, it is apparent that optimal moderation in a fixed-fuel reactor cannot be

maintained once the reactor is operated and therefore cannot be relied on as the normal

operating mode. This conclusion applies to LWRs as well as to other fixed-fuel reactors

such as the prismatic gas-cooled high temperature reactor. The foregoing conclusions

apply even to the asymptotic equilibrium cycle described in the introduction.

Furthermore, for light water reactor, once the reactor departs from optimal moderation,

the expected ensuing overmoderation is undesirable. For fixed-core gas-cooled,

graphite-moderated reactors the positive void reactivity feedback is not an issue since

the coolant has very little reactivity impact. However both under and overmoderation

may have a detrimental effect on the neutron economy.

In contrast to the LWR, graphite-moderated reactors are designed, when

possible, in such a way as to allow the effective control of the positive reactivity insertion

that would result from potential (though hypothetical they may be) water or hydrogen

ingress events. For example, in the design of the HTR-Modul 200, the moderation level

(i.e., fuel to moderator ratio) is chosen such that the negative reactivity worth of available

control rods is sufficient to offset the positive reactivity insertion expected from a water

ingress event [10]. In continuously refueled and defueled reactors, the moderating ratio

need not be tied to control rod worth. In fact, because of the very low level of excess

reactivity that can be achieved for a PBR and because of the existence of a true

asymptotic fuel loading and burnup distribution pattern, the core can be designed to



111

remain continuously ideally moderated. The remainder of this section explores one

approach to building optimal moderation into the design of a pebble bed reactor.

In a continuously fueled and defueled pebble bed reactor, an equilibrium

asymptotic fuel loading and burnup distribution pattern arises relatively soon after initial

loading and persists for the bulk of the operating life of the reactor. As explained in

Chapter 3, this asymptotic loading pattern is determined uniquely by a small set of

design and operational parameters such as fresh fuel enrichment, fuel discharge burnup,

or pebble flow rate and pattern. Because of this uniqueness, and the small number of

determining parameters, it is possible to optimize the design of a PBR for any specific

objective by varying only that small number of parameters. These parameters are listed

in Table 5-1.

5.1.3 Optimal Moderation in Static Cores

The fuel itself possesses numerous degrees of freedom that affect the

characteristics of the core, including the moderation state. These include: total heavy

metal loading per pebble, enrichment, moderator-fuel ratio, and moderator composition.

Ougouag, et al., describe a study involving a set of MCNP [93] models that provide proof

Table 5-1: Optimization parameters for PBR core design and fuel management.

Core Power

Core Geometry (radius and height)

Reflector Geometry

Discharge Burnup

Total Pebble Flow Rate

Relative Zone Pebble Flow Rate (multiple zone cores)
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that optimal moderation can be achieved merely by varying one or more fuel design

parameters [92].

The MCNP model assumes a core geometry similar to that of the HTR

Modul 200. The enrichment and particle density are held constant but the radius of the

inner-fueled zone of the pebble is varied with a corresponding effect on the core

multiplication factor. The results of these changes are shown in Figure 5-1. It is clear that

optimal moderation is achievable with fuel and materials typical of PBR designs. It is

also clear that for this static reactor configuration (i.e., no fuel motion and no depletion)

the location of the fueled/unfueled zones interface at a radius of 2.5 cm is not optimal.

If a reactor is constructed using a pebble with fueled/nonfueled interface at about

1.9 cm, then the maximum neutron multiplication is achieved. In such a reactor the

neutron economy is the most efficient and moderation is at its peak.
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Figure 5-1: Infinite core multiplication factor vs. fuel region radius (MCNP).
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These results demonstrate that material compositions, including fuel, that

constitute the core of a gas-cooled graphite-moderated pebble bed reactor can be

adjusted to produce an optimally moderated core. Yet these results pertained to a static

core and ignored the effects of operation (and hence depletion) that would terminate the

optimally moderated state. To demonstrate optimal moderation in a recirculating PBR,

an equilibrium cycle code such as PEBBED must be employed.

5.1.4 Asymptotic Pattern Iterations and Cross-Section Generation

The computation of the effective multiplication factor for a reactor core

pre-supposes the availability of diffusion theory nuclear data that are compatible with the

ultimately sought asymptotic state. That is, the neutron spectrum used in generating the

data (multigroup cross section and diffusion coefficients) must be the neutron spectrum

that would exist when the reactor core is in the asymptotic state. A priori, that spectrum

is not known and therefore the corresponding nuclear data are not available. Two

approaches are possible for producing the needed data.

In the first possible approach to diffusion theory preparation, a library of data is

generated using a model assuming an infinite domain of fresh pebbles and gradually

depleting them to the cutoff discharge burnup. A data library is thus generated for all

possible depletion states of a pebble. Since the pebble bed reactor includes pebbles at

various stages of depletion at every layer, the average state of depletion of any given

level (and leakage in and out of adjacent layers) determines the neutron spectrum in the

layer under consideration. One possibility (in the first approach) is to use data from the

library directly, using data from pebbles at a depletion level (i.e., exposure in MWd)

equal to the average depletion level of the core layer under consideration. A second
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alternative (still in the first approach) is to generate macroscopic data using a mix of data

from the library, at the various levels of depletion, in proportion to the number of pebbles

present in the core layer (or modeling zone) under consideration that are at the

corresponding levels of depletion.

In the second approach to diffusion data preparation, adopted in this work, an

iterative scheme is followed. Microscopic nuclear data corresponding to the average

burnup level (or any reasonable arbitrary burnup level, including fresh fuel data) of the

entire core are initially assumed. The data are prepared using both MICROX-2 and

COMBINE. The data are then used in the PEBBED code to determine the corresponding

asymptotic loading and burnup pattern and the corresponding nuclide number densities

and their respective distributions. The newly determined nuclide number densities are

then input into the MICROX-2 code and the spectrum computation repeated and an

updated set of diffusion theory microscopic data generated. The process is then

repeated until convergence.

The product of the iterative process just described is a plausible design for a

PBR asymptotic core, including the nuclides distribution, and the corresponding set of

nuclear data based on a consistent spectrum. Each time the design of the fuel pebble or

core is varied there results a different outcome of the iterative process. The search for

an optimally moderated core consists in systematically varying the design of the fresh

fuel pebble and logging the characteristics of the resulting asymptotic core. The optimal

moderation fresh fuel pebble is the one that yields the asymptotic core design with the

highest value of the effective multiplication factor. That core is the optimally moderated

core given for the fuel enrichment, moderator choice, and core parameters listed in the

previous section.
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Once an optimally moderated core design is obtained, its properties are studied

via further models. For example, the response of the core to water ingress is

investigated by assuming the gradual addition of water vapor into the coolant phase (or

the gradual substitution of water vapor for portions of the coolant). The sequence of

required computations starts with an evaluation of the nuclear data (e.g., using

MICROX-2). Input to this evaluation is the nuclides number densities of the optimally

moderated asymptotic core augmented with the relevant concentration of water vapor

and helium coolant. The resulting nuclear data are then used in a criticality calculation

(without further depletion). The process is repeated as needed for increased water

inventory in the core region. This method was applied to obtain the cross-sections for

most of the models described in this work.

The nature of the asymptotic fuel loading and burnup distributions can be

affected by, among other things, the design of the fresh fuel pebbles. As explained

above, any changes to the pebble design were subjected to the constraint that all

hardware of previous designs remain applicable. Thus the size of the pebbles is

unchanged. A further simplifying choice is the assumption that the only parameter in the

pebble design that is allowed to vary is the radius of the interface between the fueled

and the nonfueled zones within the pebble and consequently the amount of fuel kernels

present. The first result shown below is the demonstration of a continuously optimally

moderated core. It followed by results that illustrate the property of such a core.

In Figure 5-2, the change in the effective multiplication factor is shown for two

possible pebble bed reactor as the radius of the fueled zone in fresh pebbles is varied.
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The two reactors addressed in the figure are a 300 MWth and a 600 MWth

versions of a Very High Temperature Reactor (VHTR) to be discussed in Chapter 5.

Each of the points on the figure corresponds to a converged PEBBED/MICROX-2

solution of the combined search for the asymptotic equilibrium fuel loading and burnup

pattern and the corresponding consistent nuclear data.

The 300 MWt core displays peak moderation at a fuel region radius of 2.4 cm

while the 600 MWt core peak is shifted slightly to 2.39 cm. As expected, the optimal

pebble design depends on the size and power of the reactor. Though not demonstrated

here, the optimal pebble design may also depend on other core design parameters.

Since the same particle packing fraction is assumed within the fueled zone, the fuel

region radius numbers correspond to a particle loading of about 13,271 particles per

pebble for the 300 MWt core and 13,106 particles per pebble for the 600 MWt design.

The performance and safety aspects of these designs will be discussed in later sections.
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Figure 5-2: Effective multiplication factor dependence on the radius of the pebble fueled
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Since each point in Figure 5-2 corresponds to an asymptotic equilibrium pattern, the

possibility of continuously optimally moderated operating reactor is demonstrated.

5.1.4.1 Consequences of Optimal Moderation on Water Ingress Reactivity Insertion

At least one modular gas-cooled reactor design, the GT-MHR, employs a

shutdown cooling system in which decay heat carried by the helium in the core during

periods when the reactor is shut down is passed to a water loop in a heat exchanger

near the core [94]. Therefore, the potential exists for water to enter the core. It is

possible that a similar system will be required for the pebble-bed VHTR, so an analysis

of water ingress into the pebble-bed core is presented below.

Initial studies of the effect of water ingress into the coolant spaces between the

pebbles were performed using COMBINE-generated cross-sections. The “Dry” peak

corresponding to optimally moderated fuel was found to occur at a fuel region radius of

2.33 cm, substantially different from that computed using MICROX cross-sections.

However, the results of the water ingress calculations qualitatively agree with

subsequent MICROX runs and the previous MCNP study and thus are discussed here.

Figure 5-3 displays the effect of water ingress on core multiplication factor as

computed with a full-core MCNP model.
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In the figure it can be seen that a moderate rise in the multiplication factor occurs

followed by a subsequent drop. The reactivity insertion is modest, even at its maximum.

The concentration of water at this maximum reactivity insertion corresponds to a water

inventory in the core region of approximately 500 kg. Such an amount of water can

penetrate the core region only gradually, and only under the assumption of a major

malfunction. In the early stages of the insertion only smaller amounts of water, and thus

only smaller reactivity insertions are plausible. The consequence of this gradual insertion

of reactivity is discussed below in conjunction with feedback effects. The MCNP results

of Figure 4-2 do not account for the motion or the depletion of the fuel. For these effects,

the PEBBED/COMBINE or the PEBBED/MICROX-2 combinations of codes must be

used. Figure 5-4 shows the effect of water ingress for various pebble designs (i.e.,

various fueled zone radii).
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Figure 5-3: Core multiplication factor vs. density of steam in VHTR-300 coolant (MCNP).
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The curve labeled “dry” pertains to cores with no water present. The rise then fall

in the curve represent the change in core reactivity as the radius of the fueled region

within the pebble is changed. In the modeling, the overall core size and other

characteristics (including core dimensions, fuel circulation patterns etc. remain

unchanged). Each point on the “dry” curve is the result of a converged iteration process

using the PEBBED and the COMBINE codes. The other curves correspond to various

steam densities in the coolant. All of the curves indicate a positive reactivity insertion for

steam ingress for pebbles with fueled region radii of 2.20 cm or greater. Water has

completely negative reactivity effect for small (Rf <2.1 cm) pebble designs.

The steam ingress performance of the ‘optimal’ pebble, i.e., one the design of

which corresponds to the dry peak in Figure 5-2, was compared to that of the standard

PBMR pebble design with a fuel region radius of 2.5 cm. Figure 5-5 shows the core
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Figure 5-4: Multiplication factor versus fuel zone radius (PEBBED/COMBINE model).
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multiplication factor as a function of steam density for each case. Clearly water has a

less severe reactivity effect for optimized pebbles. The peak characteristics are

summarized in Table 5-2.
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Figure 5-5: Core multiplication factor as a function of coolant steam density.

Table 5-2: Peak water ingress reactivity insertion for various VHTR core and fuel designs.

Peak Insertion ($) Water Density (g/cm3)

300 MWt Standard Fuel 7.74 0.06

300 MWt Optimized Fuel 3.89 0.04

600 MWt Standard Fuel 16.34 0.09

600 MWt Optimized Fuel 9.49 0.06

The peak reactivity insertions from steam ingress for the optimized pebbles are

roughly half as great as those for the standard pebbles.

Any insertion of reactivity will result in an increase in power and core temperature

(assuming that coolant flow is held constant). Such power excursions are inherently
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self-limiting because of the strong negative temperature coefficient of the

graphite-moderated fuel.

Figure 5-6 illustrates the effect of temperature on the core multiplication factor.

The data were generated using various graphite scattering kernels available in the

COMBINE code.
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Figure 5-6: Core multiplication factor vs. fuel temperature.

Figure 5-7 compares four operating conditions for cores with pebbles of different

fuel region radii. Recall that the COMBINE-optimized pebble has a fuel radius of 2.33 cm

and the standard pebble has a fuel radius of 2.5 cm. The thick dark curve shows the

nominal VHTR with a core-wide average pebble temperature of 1,100 K. The uppermost

curve corresponds to this temperature but with a steam ingress of 0.0076g/cm3,

indicating a reactivity insertion of $1.39 for the optimized pebble and $2.66 for the

standard PBMR pebble. (This steam density corresponds to the replacement of half the

helium atoms by water molecules.)
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The lowermost curve corresponds to a dry core at 1,200 K, a 100-degree

increase above the nominal case. The curve just above it shows the combined reactivity

effect of a 100 K increase in core-wide average temperature and the steam ingress. The

core-optimized pebble is $0.43 less reactive than the nominal core while the core fueled

with the standard PBMR pebble is $0.63 more reactive. Fission product energy is

deposited almost instantaneously, while the time scale for reactivity insertion is the

transit time of coolant through the core, so thermal feedback will occur faster than the

reactivity insertion. Clearly, a VHTR core can be designed that is largely immune to

water ingress events.

All of the foregoing analyses were performed with a fuel enrichment of 8%. The

results may be different if enrichment is allowed to vary. The PEBBED studies also

assume recirculation of the pebbles until they reach the maximum allowed burnup. Top
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layer fueling with fresh and recirculated pebbles is assumed random. Additional

optimization of the core could be possible if specific circulation schemes are assumed

with deliberate placing of pebbles in preferred zones.

These preliminary results indicate that pebble fuel can be made much more

resistant to ingress events. The PBR core fueled with an optimized pebble, while still

exhibiting a significant reactivity insertion for a sufficiently high steam density, is superior

to the nominal PBMR design in this regard. The higher moderating ratio of properly

designed pebble fuel results in a significantly lower core excess reactivity that decreases

the effect of water ingress. Furthermore, Figure 5-4 indicates that for certain pebble

designs, steam ingress reactivity will be negative under all circumstances; a feature not

attainable in batch reload high temperature gas reactor designs. Finally, as shown in

Figure 5-7, temperature feedback can be expected to mitigate the steam ingress

reactivity insertion for the dry optimized pebble.

5.1.5 Effect of Pebble Optimization on Fuel Economy

As implied in the previous sections, an optimally-moderated pebble should yield

a neutron economy superior to that of a non-optimized pebble. Specifications for PBMR

and optimized pebbles were incorporated into the model of the PBMR (with dynamic

inner reflector) and burned to the same discharge level of 80 MWd/kghm, The optimized

pebble yielded a core with a noticeably higher core multiplication factor, confirming the

prediction (see Table 5-3).
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A reactor operating at a steady state has a core multiplication factor of 1.0

regardless of the pebble design so a second calculation was performed in which the

discharge burnup of the core with optimized pebble was adjusted to yield the same core

multiplication factor as that computed for the PBMR with standard pebble (Table 5-4).

Table 5-3: Core multiplication factor of the PBMR with nominal and optimized pebbles.

keff

PBMR-DIR with Nominal Pebble 1.0737

PBMR-DIR with Optimal Pebble 1.0764

Table 5-4: Fuel performance of optimal vs. nominal PBMR pebble.

keff 1.074 1.073
Discharge Burnup (MWD/Kghm) 80 81.4
Enrichment 8% 8%
HM loading (g) 9 7.962
# Particles per pebble 15,000 13,271

Pebble Injection Rate (peb/day) 371.6 413
# Passes per pebble 10 9
Residence Time (days) 885 764

Discharge Concentration (g/day)
total change
(g/pebble) (g/day)

total change
(g/pebble) 

U-235 53 -215 43 -221
U-238 2,913 -162 2,872 -152
Pu-239 20 20 16 16

Pu-240 12 12 11 11
Pu-241 10 10 8 8
Pu-242 7 7 7 7

Fuel Utilization (g/MWD) -1.23 -1.23

HM Mass Daily Throughput (g/day) 3,344 3,288
HM Mass Daily Throughput per MWD 12.5 12.3

Particles/MWD 20,799 20,451
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The pebble injection rate is 11% higher in the optimized fuel because there is

11% less heavy metal contained within each pebble. If all other parameters were held

constant, the heavy metal requirements of the cores would be the same. However, the

improved neutron economy of the core charged with optimized pebbles would also result

in a higher core multiplication factor. This extra reactivity can be either held down with

burnable poisons or control rods, or it can be exploited to reduce the fuel requirements

of the power plant. One way to do this is to reduce the enrichment of the uranium in the

particles. Another is to reduce the size of the core and increase neutron leakage. For

this work, the discharge burnup level was raised a bit by slowing down the flow rate

slightly. The increased core-averaged burnup level and poison content reduced the core

eigenvalue as well as the fresh fuel requirements of the core, expressed as particles

loaded per MWd of energy produced. The bottom row of the table reveals that the

optimized pebble uses 2% less fuel than the standard PBMR pebble.

This same optimized pebble yielded a safety benefit as well. Although the peak

power attained by the optimized pebble is higher than that of the standard pebble, the

mean and peak pebble temperatures did not significantly change. The peak DCC

temperature also remained at about the same value. However, the 0.001 g/cm3 steam

ingress reactivities computed by PEBBED for the cores fueled with standard and

optimized pebbles are $0.30 and $0.21, respectively. This is consistent with the results

plotted in Figure 5-7. The core with optimally-moderated fuel is much more tolerant of

steam in the coolant. Again, a proper transient analysis code should be used to fully

confirm this feature but the initial results generated by PEBBED suggest that significant

benefits can be obtained with a fuel-core optimization process.
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5.2 Bounding Cases for Hotspot Analysis

In pebble-bed reactors, pebbles are dropped in at the top, and a cone develops

below each drop point. The pebbles roll off the mounds until they reach stable positions,

and they move downward in an essentially axial direction. However, some radial

wandering is expected, and the stable position on the top from which any pebble begins

its downward course is somewhat randomly determined. These stochastic processes

generate concern about the possibility of the development of hot spots, where clusters of

highly reactive pebbles may form in regions of high thermal neutron flux, so that

excessive heat generation may occur locally. To explore the possibility and

consequences of such hot spot formation, the model of the PBMR-DIR analyzed in the

previous chapter was modified to use various off-normal pebble recirculation patterns.

Once again, the capability of the recirculation matrix to easily describe such patterns

was exploited to obtain low-probability bounding operating conditions.

5.2.1 Modeling and Probability of Hot Channel Formation in the PBMR-DIR

The PBMR-DIR is characterized by a central column of graphite pebbles

surrounding by an annulus of fueled pebbles. The graphite pebbles are loaded via a

central loading tube while the fueled pebbles are loaded via a number of

azimuthally-distributed tubes located some distance between the central axis and outer

reflector. All pebbles exit the core through the same centrally-located discharge tube

where they are separated by type and their burnup levels are measured. Pebble storage

and fuel handling mechanism can easily be made to insure, with virtually complete

certainty, that only fuel pebbles are forwarded to the annulus loading tubes while only
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graphite pebbles are directed to the central loading tube. Nonetheless, it is an interesting

exercise to conceive a beyond-design-basis situation in which the fresh and

partially-burned fuel handling mechanisms fail and allow the graphite and fuel pebbles to

be loaded into the incorrect zones. Two general failure scenarios are investigated here

and illustrated in Figure 5-8. Keep in mind that these are asymptotic core calculations; at

nominal pebble flow rates the reactor would need to operate for up to three years with

the prescribed faulty fuel handling mechanisms in order to achieve these core

conditions. If the fuel handling mechanisms were to fail for much shorter periods of time,

a small cluster of reactive pebbles may form but the remainder of the core would closely

resemble the nominal case. In the event of a depressurized loss of coolant flow, pebbles

in the cluster may exceed failure temperatures for a short period of time but extensive

core damage would not ensue.

Figure 5-8: Misdirected pebble scenarios in two-zone PBMR core.

Replacement Scenario Transposition
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In the first misdirection scenario (replacement), both the fresh fuel and

recirculating fuel-sorting mechanisms are assumed to fail to various degrees. Fresh fuel

pebbles are allowed into the central loading tube (along with graphite pebbles) so that

very reactive pebbles are loaded into the central column with its high thermal flux. At the

discharge tube, the sorting mechanism also fails in such a way that fueled pebbles may

be routed back to either the central or annular loading tubes. Graphite pebbles, however,

are properly loaded only in the central column. The net effect on the core is a

replacement of some of the graphite pebbles with relatively fresh fuel pebbles (and an

increase in the overall heavy metal inventory of the core). The fuel pebbles are

transferred to the outer annulus after one or more passes through the central column.

Table 5-5 shows the distribution by channel and pass of fuel and graphite pebbles in the

a replacement scenario in which fresh fuel pebbles are loaded nominally into the outer

annulus but also into the inner reflector region as well, replacing some of the graphite

pebbles that are normally injected there. The misloaded fuel pebbles are transferred to

the outer annulus after the first pass, as if the fuel recirculation system were functioning

properly. For comparison, refer to the flow pattern of the nominal PBMR-DIR core shown

in Table 4.2.
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In the second misdirection scenario (transposition), there is a one-for-one

transposition of graphite and fuel pebbles, i.e., whenever a fuel pebble is improperly

loaded into the central column, a graphite pebble is also improperly loaded into the

annulus. The overall core heavy metal inventory of the nominal PBMR-DIR is preserved.

Table 5-6 shows the flow pattern for such a scenario in which fuel pebbles are

inappropriately loaded into the central column while graphite pebbles are loaded into the

annulus. After the first pass, the pebbles are sorted and loaded properly.

Table 5-5: Flow distribution in PBMR-DIR – addition of fuel to inner reflector for one
pass (1st replacement scenario).

Pebble Flow Rate (pebbles/hour)

Channel 1 2 3 4 5

Pass FUEL

1 10.65 4.87 0 0 0

2 0 2.17 4.57 4.36 4.43

3 0 2.17 4.57 4.36 4.43

4 0 2.17 4.57 4.36 4.43

5 0 2.17 4.57 4.36 4.43

6 0 2.17 4.57 4.36 4.43

7 0 2.17 4.57 4.36 4.43

8 0 2.17 4.57 4.36 4.43

9 0 2.17 4.57 4.36 4.43

10 0 2.17 4.57 4.36 4.43

Total 10.65 26.56 45.65 43.58 44.33

GRAPHITE

1 (OTTO) 30.17 13.79 0 0 0
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The number of variations on these two failure scenarios is extremely large

because of the number of pebbles that can be misdirected. A few representative cases

can be used to capture the general effect. Specifically investigated are the situations in

which all fresh fuel pebbles loaded into the central column are transferred to the outer

annulus after one, two, or three passes. To model these cases, an IN-OUT recirculation

mode is specified for fuel pebbles loaded into the central column. The fraction of fuel

pebbles loaded into the two fueling zones is adjusted to obtain transfer of all fuel pebbles

after the specified number of passes through the central column. The geometry of the

core and flow conservation require that all fuel pebbles are transferred out in three

passes or less.

Table 5-6: Flow distribution in PBMR-DIR – switching of fuel and graphite for one pass
(1st transposition scenario).

Channel 1 2 3 4 5

Pass FUEL

1 10.62 4.86 0 0 0

2 0 2.16 4.55 4.35 4.42

3 0 2.16 4.55 4.35 4.42

4 0 2.16 4.55 4.35 4.42

5 0 2.16 4.55 4.35 4.42

6 0 2.16 4.55 4.35 4.42

7 0 2.16 4.55 4.35 4.42

8 0 2.16 4.55 4.35 4.42

9 0 2.16 4.55 4.35 4.42

10 0 2.16 4.55 4.35 4.42

Total 10.62 24.33 40.98 39.12 39.37

GRAPHITE

1 (OTTO) 30.08 15.92 4.55 4.35 4.42
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5.2.2 Consequences of a Combined Hot Channel Formation-DCC Event

Shown in Table 5-7 is the effect of these off-normal situations on the core

eigenvalue, peak nominal fuel temperature (trajectory-averaged), and peak accident

(DCC) fuel temperature.

The core multiplication factors (keff) reflect the fact that the distribution of fuel

toward the central column yields better neutron economy. This effect diminishes if the

pebbles are kept in the central column for more than one pass and their fissile content

decreases. In actual operation, the extra reactivity would force the insertion of control

rods or a reduction in the fresh fuel injection rate to keep the core critical. Peak fuel

temperatures during normal operation are significantly higher than the nominal case but

not so high as to lead to fuel failure. Peak accident (DCC) fuel temperatures do exceed

the 1,600°C threshold so some particles would be expected to fail (see Figure 2-5) with

Table 5-7: Effect of fuel handling failure modes on core parameters.

Case Keff Peak Operating Fuel

Temperature (°C)

Peak DCC Fuel

Temperature (°C)

Nominal PBMR-DIR 1.074 1040 1452

Replacement

Transfer after 1 pass 1.110 950 1,613

Transfer after 2 passes 1.116 1,078 1,696

Transfer after 3 passes 1.102 1,127 1,712

Transfer after 4 passes 1.085 1,133 1,676

Transposition

Transfer after 1 pass 1.115 968 1,613

Transfer after 2 passes 1.127 1,268 1,736

Transfer after 3 passes 1.121 1,209 1,776

Transfer after 4 passes 1.109 1,243 1,784
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a small release of fission product inventory to the coolant. In none of the cases does this

peak temperature exceed 1,800°C much less 2,000°C, the value at which extensive fuel

failure would begin to occur. Furthermore, this is the peak value for the entire core,

meaning that the bulk of the core never even reaches this peak temperature.

This type of analysis further reflects the robustness of the core and fuel. Even in

a vanishingly low probability event in which the reactor is operated for years with a failed

(or sabotaged) fuel handling mechanism, followed by a sudden and complete loss of

coolant pressure and flow, large release of the fuel inventory would not be expected to

occur.

In Chapter 6, a similar analysis is performed on a 300 MWt Very High

Temperature Reactor design.

5.2.3 Accumulated Stress on Pebbles

The motion of the pebbles confers a unique benefit not shared by nuclear

reactors with static cores. Although the pebbles move slowly downward, the locations of

radial and axial temperature and power density peaks are essentially constant once the

core reaches the asymptotic state. Pebbles flow through these hot spots and then move

on to cooler areas. Figure 5-9 is a plot of the pebble center point temperature of a

600 MWt VHTR, to be described in more detail in Chapter 6. The curves correspond to

the different passes the average pebble makes through the core and the number at the

left end of each curve is the burnup accumulated before the start of the pass.
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For example, the dotted lines indicate that a pebble spends about 26% of its total

core life above a temperature of 800°C and above 56 MWd/kg. The residence time for

pebbles in this design is about 885 days.

The probability of fuel failure increases with temperature and burnup. The top

curve indicates that a pebble is above 1,000°C for about 1/3 of its core life. The bottom

curve indicates that the pebble is above 1,000°C and 72 MWd/kg for only about 7% of its

residence time. The integrated stress on fuel particles is substantially lower than that of

batch-loaded cores, in which certain fuel elements reside at hot spots throughout the

cycle. In the pebble bed, thermal, and irradiation–induced stresses are shared almost

equally among all pebbles, thus reducing the likelihood of fuel failure.

Figure 5-9: Percent of residence time that the average pebble is above temperature.
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5.3 Considerations for Proliferation Resistance

The routine recirculation of the fuel pebbles and the online de-fueling and

refueling of these reactors raises questions about their potential use as production

facilities for weapons materials. However, this feature also allows the reactors to operate

with very little excess reactivity. In this section the dual use of a PBR (simultaneous

production of power and weapons materials) is investigated. This subject and analytical

approach were conceived by Ougouag in 2001 as an application of the capabilities of

PEBBED and published in papers by Ougouag, Gougar, and Terry [35],[36].

5.3.1 Dual Use of a PBR for Electricity and Weapons Production

The PEBBED code computes directly the asymptotic (equilibrium) fuel-loading

pattern of a PBR, given the fresh fuel composition. This asymptotic core profile is that

which is established well after (>3 years) the initial loading and persists for the remainder

of the operating life of the reactor as long as the fuel composition and recirculation

scheme are held constant. The profile is highly predictable. Presumably the result of

extensive optimization, it is expected that this core will be maintained to the benefit of

and by the operator. Departures from this pattern could be viewed as suspicious and as

possible attempts at diversion of fuel for dual use. Any departure from the pattern will

result in noticeable changes in fresh fuel requirements, power production, and/or

discharge isotopics. All three attributes could easily be monitored via an instituted

safeguards regime and via spent fuel re-purchase. As continuous burnup monitoring of

discharged pebbles is part of the fuel management policy, the information on the

isotopics could also be made available on-line or via the transmission of recorded data
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sets to the safeguards authority. Uninterrupted fuel supply would be contingent upon

acceptable reactor use.

The PBR owner is assumed to be a low technology country without front-end fuel

cycle facilities (i.e., enrichment capability) and thus dependent on a supplier country for

its fresh fuel needs. The supplier country is party to a non-proliferation regime and

agrees to enforce safeguards on its fuel customers. Either the spent fuel is re-claimed or

information on discharged pebbles average isotopics is required. Finally, it is assumed

that for economic reasons the on-hand fresh fuel inventory of the PBR owner is

maintained as low as practical. For this study, it is assumed that after the initial loading

the fuel supplier periodically provides ninety days of fresh fuel to the PBR owner, just

prior to stock exhaustion.

Three principal scenarios were investigated in the Ougouag studies: (i) the covert

dual use of the facility, (ii) the overt diversion of the facility as built, and (iii) the

construction of an alternate facility using equipment diverted from the original facility

(“cannibalization”). Only the first of these will be discussed here, as it requires the most

use of the recirculation matrix.

5.3.2 Covert Dual Use

In this scenario, a small number of production pebbles are covertly introduced

into the reactor to produce weapons materials while still producing power. The goal of

the reactor owner would be to produce weapons material at the maximum rate possible

at which the effects on the legitimate fuel cycle use would be undetectable. The reactor

owner expects to continue receiving replacement fresh fuel from the supplier. The

maximum dissimulation case of this first scenario was considered in the first Ougouag
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study [35] in which it was assumed that illicit fuel pebbles were manufactured by the

reactor owner and used as production targets in the reactor. Those illicit pebbles were

assumed identical to legitimate fuel pebbles in all respects except uranium enrichment.

Thus, they included the same physical features and compositions, save for the

replacement of enriched uranium with natural uranium. In that earlier study, it was shown

that this scenario was very impractical for the production of weapons materials and that

it resulted in very early detection because of shortfalls in power production and an

unjustified increase in fresh fuel needs. The production pebbles were “optimized” to

resemble the legitimate ones as much as possible. In this study, a variant of the first

scenario is considered in which the illicit pebbles are optimized to minimize the

perturbation on the multiplication factor that they cause (and thus minimize their impact

on neutron economy).

This study shows that a PBR fueled only by natural uranium pebbles would be

large enough to be detectable by reconnaissance satellites. It also shows that adding

natural-uranium production pebbles to the regular fuel pebble flow stream at

undetectable rates would not only lead to slow production of weapons material but would

also produce plutonium of very marginal quality. If higher quality plutonium is sought, the

time to accumulation of sufficient materials for practical weapons use is shown to be

extremely large, and not compatible with the speedy production of even a modest

arsenal.

5.3.2.1 Methods and Computational Models

There exist many ways by which covert production of weapons materials could

be detected; here, it is assumed that a decrease in fuel utilization of more than 5% (or a
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commensurate increase in fuel requirements) would cause suspicion. Similarly, a

discrepancy between energy production and fuel consumption or fuel requirements

would raise suspicion. Furthermore, a departure of discharged fuel pebbles isotopics

from the nominal values that correspond to optimal plant operation would also be

reasons for suspicion, as the isotopic distribution in an optimally operated PBR, a

consequence of the asymptotic loading pattern, is likely unique and accurately

predictable. The models developed in this study, as in the preceding one, rely on these

measures to demonstrate the PBR is not a good choice for production of weapon

materials. The models developed in these studies are conservative. That is, they are

devised so that their predictions are consistently more pessimistic than reality. For

example, the quantity of concern [95] is taken as the lower range of a mass of

weapons-grade Pu-239 that could conceivably be fashioned into a weapon regardless of

the actual quality expected from the mode of production. This would assume a very

sophisticated design and access to advanced technologies. Thus, in this study, about

5 kg of Pu-239 is the quantity of concern, regardless of the presence of additional Pu

isotopes. Note that the information presented in this work contains a large number of

approximations and thus imply a certain degree of uncertainty is inherent in the results

presented. However, the orders of magnitude, the trends, and the conclusions of the

study are to be regarded as correct. The constraints on the various scenarios to

weapons-material production were explored by constructing numerical models for

analysis by the Monte Carlo code MCNP [93] and PEBBED. These models are

described in turn below.
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5.3.3.2 Optimized Natural Uranium Production Pebbles

The model results for the pebble design optimization study are only summarized

here. The variation of the infinite multiplication factor, k∞, with the uranium-graphite ratio

was studied for several values of void radius of the fuel sphere. The greatest maximum

value was shown to occur when the void radius is zero – i.e., when the fuel sphere is

solid. The same conclusions were reached for pebbles with a 2 cm overall radius. The

uranium-to-graphite volume ratio at which k∞ is greatest for each value of the void radius

was compiled for both pebble sizes considered. It was observed that the most

successful production of Pu-239 would be achieved by using a pebble with a volume

ratio of 0.00564, an average of all the values found for different trials. This corresponds

to a solid uranium inner sphere radius of 0.533 cm, or only 17% of the radius of the

pebble.

Production pebbles of the optimized design (i.e., natural uranium spheres

0.533 cm in radius within graphite shells 3 cm in external radius) were introduced into

the PEBBED model of the two aforementioned PBR designs. In this study, the “driver”

legitimate fuel pebbles were recirculated as in the legitimate cores, but the illicit

production pebbles were removed after their first pass through the reactor for optimal

plutonium isotopics. Introducing natural uranium into the core reduces the core reactivity.

Thus, in order to maintain criticality the legitimate fuel pebble injection rate was

increased with a corresponding decrease in discharge burnup of the driver fuel.
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5.3.4 Effect of Introduction of Production Pebbles on Core Neutronics

The fuel utilization characteristics of the nominal and dual use (5% production

pebbles) reactors are listed in Table 5-8.

Not surprisingly, the higher number of production pebbles in the HTR Modul 200

core causes a much greater perturbation. The discharge burnup of the driver fuel had to

be reduced by over 10% to maintain the same multiplication factor as the nominal core.

Pu-239 was produced at such a rate that five kilograms is accumulated in a little over a

year and a half. However, the fresh fuel requirement increased by 11% so a 90-day

supply of driver fuel would last only 80 days at full power. A 10-day shutdown every

three months would have considerable impact on the economics of the power plant and

would be immediately noticeable to the safeguards authority.

The PBMR-DIR with 5% of its graphite pebbles replaced with production pebbles

would be harder to detect. The discharge burnup need only be reduced by

Table 5-8: Operational parameters for nominal and dual use PBRs.

Driver Production

Case keff Injection
Rate

(peb/day)

Discharge
Burnup

(MWd/kgihm)

Injection
Rate

(peb/day)

Pu-239
Content

(mg/pebble)

5kg
Accumulation
Time (days)

Nominal
HTR

1.088718 356.1 80.0 NA NA NA

HTR
with 5%
NU

1.088736 397.4 70.5 271.9 31.4 586

Nominal
PBMR

1.073666 371.6 80.0 NA NA NA

PBMR
with 5%
NU

1.073668 377.1 78.4 72.25 26.9 2,573
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1.6 MWD/kgihm to sustain Pu production. This may be easier to sustain if there is

uncertainty in the burnup measurements and the reactivity loss may be recovered in

other ways such as increasing the coolant flow rate and lowering the temperature of the

core. However, the Pu-239 production rate is significantly lower than the previous case;

a full seven years is required to accumulate five kg of weapons material.

Table 5-9 lists the plutonium content of discharged pebbles for the different

cases.

The quality of the Pu-239 in the discharged HTR production pebbles is greater

than that of the PBMR. 90% of the plutonium is Pu-239 while only 80% of the plutonium

in the PBMR pebbles is Pu-239; very poor quality for weapons material and probably

due to the relatively slow passage of the production pebbles through the core. The Dual

Use HTR produces weapons material much more quickly and of higher quality but it

does not do so covertly, a condition of this scenario. In both cases, extensive chemical

processing of the indigenously produced production pebbles would be required to extract

good quality weapons material.

Table 5-9: Isotopics of discharge pebbles (mg per pebble).

Case Pu-239 Pu-240 Pu-241 Pu-242

Nominal HTR Driver 38.1 23.0 18.8 16.1

Dual Use HTR Driver 38.8 23.1 18.2 12.1

Dual Use HTR Production 31 3.0 0.3 .009

Nominal PBMR Driver 53.3 32.0 25.8 20.0

Dual Use PBMR Driver 54.0 32.4 25.9 19.1

Dual Use PBMR Production 26.9 5.6 1.4 0.10
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5.3.5 Conclusion

Once again the utility of the PEBBED code is demonstrated in addressing an

issue associated with pebble-bed reactors. The recirculation matrix allows various

multiple-pebble recirculation schemes to be modeled and compared with ease. In this

study, the code was used to show that the covert production of Pu-239 for weapons

using standard fuel and core designs is difficult and time consuming.

The study ignored many issues of paramount importance to the safety and

practicality of the various scenarios (dual use/cannibalization). For example, the design

of the pebbles is likely to be improper for the retention of fission products and generated

gases. Ensuing releases could cause health and safety concerns and would most likely

make the facility easier to detect. The study could also be used for the identification of

safeguard steps and procedures and for the identification of sensitive equipment. Such

an extended study should be conducted.



142

Chapter 6

Design of a Very High Temperature Reactor

In this chapter the conceptual design method of a Very High Temperature

Reactor (VHTR) using a recirculating pebble-bed core is presented. The approach

exploits the unique neutronic and thermal-hydraulic capabilities to generate key

parameters for a range of candidate designs. The ability of the code to estimate passive

safety characteristics is confirmed using a more sophisticated accident analysis code

and model. The uniqueness of the asymptotic pattern and the small number of

independent parameters that define it suggest that the PBR fuel cycle can be efficiently

optimized given a specified objective. In this paper, candidate core geometries are

evaluated primarily on the basis of core multiplication factor and peak accident fuel

temperature. Pumping power, pressure vessel fast fluence, and maximum particle power

are considered as well. A design that achieves the criticality and passive safety

objectives can be analyzed and further optimized with more detailed and sophisticated

models. For this study, 300 MWt and 600 MWt designs were generated.

6.1 Background and Approach

6.1.1 VHTR – Characteristics and Design Objectives

The Very High Temperature Reactor is one of six advanced concepts chosen by

the Department of Energy for further research and development under the Generation IV

program [5]. Of the six concepts, the VHTR offers the greatest potential for economical
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production of hydrogen as well as electricity because of the high outlet temperature of

the helium coolant (1,000°C). This outlet temperature is one of only two absolute

requirements for the candidate designs in this study. The other requirement is that the

VHTR be passively safe, i.e., no active safety systems or operator action are required to

prevent damage to the core and subsequent release of radionuclides during design

basis events. The worst such event, the depressurized loss of forced cooling scenario

(D-LOFC), is bounded by a depressurized conduction cooldown (DCC) transient in

which helium pressure and flow are lost. During a DCC, the negative temperature

reactivity shuts down the chain reaction. However, passive safety also requires that the

subsequent decay heat be removed from the core by conduction and radiation before

the fuel reaches failure temperatures. For TRISO-particle-based gas reactor fuel, a

conservative limit on fuel temperatures is the widely accepted value of 1,600°C.

Other desirable objectives of a VHTR design include acceptable operating peak

fuel temperature (<1,250°C), lifetime pressure vessel fluence (<3x1018 n/cm2), minimal

pumping power, and peak particle power (<0.2 W). Of course, criticality is assumed.

Therefore a range of acceptable core multiplication factors (keff) was identified that

allows sufficient margin to offset the negative reactivity of minor fission products not

modeled in the code. In all the designs considered here, the fuel is assumed composed

of 8% enriched UO2 in coated particles embedded in a graphite matrix. Other enrichment

values are possible but were not considered in this study.

In the event of ingress, the hot graphite in the core would react with air and water

in exothermic reactions. This could in turn result in core damage. This is compounded by

the fact that ingress may also inject positive reactivity at a rate that could result in fuel

failure, before said failure could be pre-empted by the negative reactivity feedback from
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the subsequent temperature increase. Proper design must include an assessment of

water and air ingress reactivity.

A parameter unique to the recirculating pebble-bed reactor is the rate at which

pebbles flow through the core. During normal operation, pebbles trickle through the core

and drop out of discharge tube at the bottom of the core vessel. Typically three or four

pebbles are released every minute. The burnup of each pebble is measured to

determine if it is to be reloaded at the top or delivered to a spent fuel container for

subsequent processing to disposal. The total pebble flow rate is limited by

considerations on the physical integrity of the pebbles. In addition, the speed at which

pebbles flow affects the design of the burnup measurement system. For this study,

pebble flow was limited to 4,500 pebbles per day (about 1 every 20 seconds) for every

300 MWt of core power to allow for adequate burnup measurement time using two

parallel fuel measurement channels. This limitation on the pebble discharge rate (and

consequently on in-core flow rate) can of course be relaxed to allow higher pebble

throughput merely by providing a larger number of fuel measurement channels. The

limitations stemming from physical considerations on the pebbles’ integrity would

remain, however. As with those described in previous chapters, the models used in the

VHTR design search did not include control elements.

6.1.2 Passive Safety Confirmation with MELCOR

For confirmation of passive safety, the thermal-hydraulics code MELCOR is

used. MELCOR is an integrated systems-level code developed at Sandia National

Laboratory to analyze severe accidents [100]. It has been used extensively to analyze

LWR severe accidents for the Nuclear Regulatory Commission. However, because of
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the general and flexible nature of the code, other concepts such as the pebble-bed

reactor can be modeled. For the analysis presented in this report a modified version of

MELCOR 1.8.2 was used. The INEEL modifications to MELCOR 1.8.2 were the

implementation of multi-fluid capabilities and the incorporation of the ability to model

carbon oxidation [101]. The multi-fluid capabilities allow MELCOR to use other fluids,

such as helium, as the primary coolant.

The power profile of a core computed by PEBBED calculations is used to

establish the initial steady state distribution in a MELCOR full transient analysis.All the

PEBBED/MELCOR models include a stainless steel core barrel, a 30 cm gas gap

between the outer reflector and core barrel, a 5 cm gap between barrel and steel

pressure vessel, and a 30 cm gap between the vessel and the concrete containment. A

natural circulation (air) reactor cavity cooling system (RCCS) is assumed to function as

designed during design basis events. This allows the use of a constant outer wall

temperature boundary condition. The PEBBED model uses a finer radial mesh than the

one used in MELCOR but the MELCOR model is two-dimensional (R-Z) and allows for

axial heat removal. Figure 6-1 shows the layout of the heat structures in the MELCOR

model.



146

CV027CV025 CV026

CV023

CV101 CV301

CV401 CV601

042 043

038

CV020

CV017

CV014

CV011

CV008

CV005

CV002

CV126

CV125

CV124

CV123

CV022

CV019

CV016

CV013

CV010

CV007

CV004

CV001

CV024

CV021

CV018

CV015

CV012

CV009

CV006

CV003

036

031

026

021

016

011

006

001

037

032

027

022

017

012

007

002

033

028

023

018

013

008

003

260

259

258

068

039

034

029

024

019

014

009

004

040

035

030

025

020

015

010

005

CV100

CV102

CV103

CV104

CV105

CV106

CV107

CV108

CV109

CV110

CV211

CV212

CV213

CV111

044

045

046

047

048

049

050

051

052

053

054

254

255

256

CV302

CV303

CV304

CV305

CV306

CV307

CV308

CV310

CV311

CV312

CV313

CV314

CV309

CV404 CV604

CV413 CV613

Vault

067

055

345

346

347

348

349

350

351

352

353

354

454

455

456

545

551

745

958

750

957

LEGEND

Reactor Core

HeliumBypass Annulus

Reactor Cavity Air

Inlet Flow

Figure 6-1: MELCOR model of the VHTR.
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The two-dimensional nature of the model is clearly indicated. The arrows

between structures represent the heat flow between them and are specified by suitable

heat transfer correlations.

6.1.3 Confirmation of PEBBED Accident Temperature Calculations

The one-dimensional radial conduction radiation model in PEBBED incorporates

a number of material properties and physical effects but ignores or simplifies a number

of features in the geometry of a PBR. This allows for rapid estimation of peak accident

temperature. A PEBBED DCC calculation takes minutes on a PC while the execution of

the MELCOR model shown above takes hours or days depending on the length of the

transient. It is necessary then to confirm the PEBBED approach using a comparable

MELCOR model.

A simple VHTR design, based loosely upon the PBMR, was employed for this

purpose. The annular core is 9.4 meters high with a solid inner graphite reflector with a

radius of 40 cm. The fuel annulus has an outer radius of 175 cm. The recirculation

scheme is type- and pass-independent; the pebbles are dropped randomly into the top

and recirculated 10 times before discharge at 80 MWD/kgihm. The fuel pebbles were

optimized using the method described in Section 5.1. The COMBINE code was used to

generate the cross-sections and the optimal fuel region radius was found to be 2.33 cm.

This core geometry and fuel design resulted in very high neutron economy; a core

multiplication factor of 1.104 was calculated.

The PEBBED and MELCOR models used the same material properties including

a correlation for heat transfer in a pebble-bed and a constant thermal conductivity in

graphite of 35.55 W/mK. PEBBED’s thermal module contains a graphite conductivity
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correlation that is temperature and fluence dependent but this was not used for this

calculation. A constant inner containment wall temperature of 35°C was used as an

outer boundary condition. The core barrel was assumed to be made of solid graphite;

the pressure vessel was assumed to be made of type 304 stainless steel. The gas gaps

were filled will stagnant helium. MELCOR allows natural convection of this gas while

PEBBED does not. The MELCOR model used a maximum time step of 0.5 seconds

while the PEBBED model used a time step size of 30 seconds.

PEBBED and MELCOR models of the depressurized conduction cooldown

accident yielded the following results obtained from a design study performed at the

INEEL [102]. Figure 6-2 shows the progression of the peak fuel temperature as

computed by MELCOR.
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Figure 6-2: Peak fuel temperature in a depressurized conduction cooldown of the
300 MWt test VHTR – MELCOR.
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As shown in Figure 6-1, the core is divided into three radial zones and the curves

in the above figure correspond to those zones. MELCOR computes a peak fuel

temperature of 1,473°C occurring 27 hours after accident initiation.

The PEBBED model is one-dimensional and is shown in Figure 6-3.

The progression of the transient as calculated by PEBBED is shown in Figure 6-

4.

Figure 6-3: PEBBED radial model of the 300 MWt test VHTR.
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PEBBED computes a peak temperature of 1,490°C at 34 hours after accident

initiation. The peak temperature is slightly higher and can easily be explained by the lack

of axial heat removal in this model. Although the MELCOR model used the power

density distribution computed by PEBBED, it computes its own initial steady-state

temperature distribution, another source of difference. As in the previously discussed

cases (Chapter 4), the simpler and faster PEBBED model estimates peak accident fuel

temperatures with reasonable accuracy for design purposes.

A similar comparison was conducted for a 600 MWt VHTR design. The higher

power output requires a larger core so the fuel inner and outer radii of the VHTR-300

were increased. The MELCOR and PEBBED thermal-hydraulic models were otherwise

the same.
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Figure 6-4: Peak fuel temperature in a depressurized conduction cooldown of the
300 MWt test VHTR – PEBBED.
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As one more test, a MELCOR model of the PBMR-DIR was also constructed and

run to generate results for the DCC transient. Selected characteristics of the test

candidates are shown in Table 6-1.

Given the differences in the geometries of the models, the differences in the

predicted peak accident fuel temperatures are plausible. The PEBBED peak

temperature values are conservatively higher than those predicted by MELCOR. The

time-to-peak computed by PEBBED is longer, a non-conservative error, so any

subsequent analysis should pay close attention to this value. For design and scoping

purposes, however, the simple, one-dimensional transient model used in PEBBED is

considered adequate.

As for passive safety, the 600 MWt test design does not satisfy the requirement,

coming in at well over 1,700°C and staying above that temperature for at least 80 hours

according to PEBBED. The data plotted in Figure 2-5 suggests that properly designed

Table 6-1: Features of VHTR test systems.

Design VHTR-300 VHTR-600 PBMR-DIR

Inner Reflector/Fuel
Annulus/Outer Reflector Radius
(cm)

40/175/251 110/225/301 ~87/175/251

Height (cm) 940 900 840

Power dDnsity (W/cc)
Mean
Peak

3.5
6.1

5.5
8.8

3.3
6.8

Peak Fuel Temperature (°C)
Normal
DCC (PEBBED)
DCC (MELCOR)

1,039
1,490 (34 hrs)
1,476 (27 hrs)

1,053
1,773 (74 hrs)
1,772 (62 hrs)

1,040
1,419 (42 hrs)
1,406 (45 hrs)

Peak Vessel Fast Fluence after
60 years (n/cm2)

3.2E19 2.8E19 4.5E19
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fuel may be able to withstand this event with modest particle failure. Moreover, only a

small fraction of the core actually attains this temperature so, even with this design,

significant release of the core inventory is very unlikely. Nonetheless, lower peak

accident temperatures should be pursued in design efforts to provide an adequate

margin of safety.

6.2 Approach and Results

6.2.1 Basic Design Approach

The design process for the VHTR began by choosing an established PBR

concept and making subsequent adjustments. For this work, the PBMR-DIR vessel and

internals was chosen as the starting point. The first departure from this model was the

addition of a solid inner reflector rather than a dynamic pebble reflector. The fuel pebbles

were designed using the optimization process described in Chapter 5 but using MICROX

rather than COMBINE for generating cross-sections. From there, candidate VHTR

designs were obtained by changing the core and inner reflector radii and evaluating the

results. The thicknesses of the ex-core components (outer reflector, core barrel,

pressure vessel, and gas gaps) were held constant. A significant, though limited, number

of candidate designs for 300 and 600 MWt reactors were analyzed.

The PEBBED models include neither the bulk of the minor fission products nor

control rods that may be partially inserted during nominal operation. Both of these

reduce core reactivity. The PBMR-DIR model is computed to have a core eigenvalue of

about 1.073. This leaves enough excess reactivity to allow for the addition of these

features later on yet still keep a critical core. For the VHTR design runs, an eigenvalue of
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1.073 was therefore adopted as a reasonable target for good designs. The 1,600°C limit

for fuel temperature during a depressurized conduction cooldown was also a design

target.

The flow rate of pebbles in the core offers a degree of freedom not available to

batch-loaded reactors. To achieve a certain discharge burnup, there are an infinite

number of flow rate values that will suffice, each corresponding to a certain number of

passes through the core. The slowest flow rate corresponds to an OTTO core (one pass

per pebble). At twice this rate, pebbles will pass through the core twice before the

discharge burnup is attained. Higher flow rates are advantageous in that they reduce the

mean burnup differential across the core and thus reduce axial power peaking. To

understand this, consider a core with a specified discharge burnup of 80 MWd/kgihm. For

the OTTO cycle (M = 1), the average burnup at the entry plane is zero while the average

burnup at the exit plane is 80 MWd/kgihm. The burnup differential is 80 MWd/kgihm, quite

high for a PBR. Doubling the flow rate means that half the pebbles at the entry plane are

fresh (0 MWd/kgihm) while the other half are roughly half-burned (~40 MWd/kgihm). The

mean entry plane burnup is about 20 MWd/kgihm Likewise at the exit plane, half the

pebbles are half-burned while the remainder are full burned. The mean exit plane burnup

is thus roughly 60 MWd/kgihm. The mean burnup differential across the core is about

40 MWd/kgihm, about half that of the OTTO case. Adjusting the flow rate to yield ever

higher numbers of passes for the fuel will result in an ever-decreasing burnup gradient,

going to zero in the limit of infinite pebble speed.

Of course, practical limits are imposed on the flow rate. The recirculating fuel

cycle requires that each pebble have its burnup measured at the exit plane to decide if is

to be put back in or discharge. Current pebble burnup measurement technology means

that about 20 to 30 seconds per pebble is required for such a measurement. A single
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burnup measurement stream can thus handle about 5,000 pebbles per day. Advanced

measurement techniques have been proposed that may significantly reduce the

measurement time [103]; nonetheless, for this study pebble flow rates were limited to

about 5,000 pebbles per day per 300 MW of thermal power produced. This allows

high-powered VHTR cores to use parallel measurement streams.

Other core characteristics were considered desirable but not at the expense of

good core eigenvalue and DCC peak fuel temperature values. These other

characteristics include: pressure vessel diameter and core height (smaller is better), flux

at the pressure vessel (less is better), peak fuel temperature during normal operation,

and steam ingress reactivity. These and other parameters will be compared with the

PBMR-DIR values.

6.2.2 The Search for the Feasible 300 MWt and 600 MWt Designs

The first core modification consisted of varying the size of the inner reflector until

the core multiplication factor attained a maximum. Figure 6-5 shows the

PEBBED-computed effective core multiplication factor for a VHTR-300 as a function of

the radius of the inner reflector. Equivalent cases were run using COMBINE and

MICROX cross-sections. The fuel annulus outer radius was kept at 175 cm, the same as

the PBMR.
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The COMBINE cross-section indicates a much less reactive core. It also

indicates a neutronically optimal inner reflector radius of 40 cm. Below and above this

value, the core is not optimally moderated. The optimal radius of the fuel region in the

COMBINE-based optimization is 2.33 cm. The MICROX results show that the core

multiplication factor continues to increase as the inner reflector is reduced and there is

no peak value in the range considered. Both sets of data indicate that an inner reflector

size near 40 cm yields a core with good neutron economy. However, this geometry does

not necessarily yield a core that is passively safe, and when it does, it may not

necessarily be (and indeed is not expected to be) the core design with the largest

passive safety margin. The temperature calculation may indicate the need to

compromise neutron economy in the interest of core safety.

In light of the superior neutron economy of the 300 MWt core, the target

discharge burnup was raised to 94.3 MWd/kgihm (10% FIMA) for the VHTR-300 design

search. This lowered the core eigenvalue to the PBMR target and improved fuel
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Figure 6-5: Asymptotic core eigenvalue vs. radius of inner eeflector – VHTR-300.



156

utilization. Another approach would be to lower the fuel enrichment. A proper economic

analysis would need to be conducted to determine the best approach.

In the 600 MWt case, the inner reflector dimensions that allowed a passively safe

core did not bracket the core eigenvalue peak so a neutronically optimal inner reflector

had to be abandoned. The neutron economy of the VHTR-600 was inferior to that of the

VHTR-300; the discharge burnup of 83 MWd/kgihm was found to yield the target core

eigenvalue. This is a slight improvement over the PBMR result.

Table 6-2 lists some of the candidate VHTR-300 systems analyzed.
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Of the candidate designs listed in Table 6-2, the design with the 175 cm fuel

annulus and 40 cm inner reflector (shown in italics) possesses high neutron economy

and adequately low DCC peak temperature. The core eigenvalue is high enough to allow

for a decrease in enrichment or higher discharge burnup. The design with the 30 cm

reflector may also work but the safety margin is narrower. The larger designs show less

neutron economy. Because a smaller pressure vessel is preferable, there is no reason to

consider these further.

The chosen design shows promise but the peak accident fuel temperature is still

over the prescribed limit of 1,600°C. This was addressed by increasing the core height

from 850 cm to 875 cm and lowering the overall power density. A modest increase in

core height would not be expected to significantly raise the cost of the plant. Increasing

the core diameter would also lower the power density but at a higher cost. Hoop

stresses on a pressure vessel increase with the diameter, not the height. Increasing the

diameter would require a thicker vessel.

The PEBBED model was run with the 875 cm core height. As expected, the DCC

peak temperature dropped to about 1,608°C without significantly perturbing the other

parameters of interest. This value is better and could probably be lowered even further

with subtle changes to the core geometry. Per the previous discussion of flow rates,

however, an attempt was made to lower the axial power peaking by increasing the flow

rate so that the pebbles pass through the core more quickly and more often. Indeed,

doing so lowered the peak DCC fuel temperature to 1,597°C, under the limit. The flow

rate required to achieve this however was computed to be 5,600 pebbles per day, higher

than what can be handled by a single burnup measurement system using today’s

technology. A detailed analysis of the effect of these variables should be part of future

design efforts.
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A 600 MWt core will be larger to keep the core power density to a safe level.

However, a thick fuel annulus also means a longer conduction path during a DCC

transient. The VHTR-300 discussed in the previous section was used as a starting point

for the search for a 600 MWt core. The height was raised to 900 cm and the inner and

outer boundaries of the fuel annulus were varied to produce a set of candidate designs

for PEBBED analysis. An upper limit on the core size was set at five meters. This is

roughly the dimension of the prismatic GT-MHR [94], which is also designed to run at

600 MWt. For comparison, some dimensions of the GT-MHR are provided in Table 6-3.

Table 6-4 lists some of the candidate VHTR-600 systems analyzed. Of the

candidate designs listed in, the one with the 250 cm fuel annulus and 150 cm inner

reflector is worthy of further study. It displays a peak DCC temperature well near

1,600°C and enough excess reactivity to account for other fission products and

shutdown margin.

Table 6-3: Dimensions of the prismatic GT-MHR.

Inner reflector effective outer diameter (m)� 2.96

Fuel annulus effective outer diameter (m)� 4.83

Pressure vessel outer diameter (m)� 7.66

Height of active core (m)� 7.93
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The eigenvalue for the selected core was slightly higher than the PBMR-DIR

value. It was found that by increasing the discharge burnup to 82.6 MWd/kgihm the target

value could be achieved. The slightly larger burnup gradient pushed the DCC peak fuel

temperature up to 1,584°C. There were no significant changes to the other listed

parameters either.

6.2.3 Selected Performance Characteristics of the VHTR

All the designs used in the VHTR search used pebbles optimized according the

method described in Chapter 5. Presumably, they should exhibit improved performance

over core designs that use a pebble that is not so optimized. In this section, fuel

utilization and response to steam ingress are two measures by which the chosen VHTRs

are compared to the PBMR-DIR.

A fuel utilization calculation like the one conducted in Section 5.1 was performed.

Again, fuel utilization is expressed in terms of the number of fuel particles consumed per

net unit of thermal energy produced. Both the standard and optimized pebbles use the

same particle design; only the number of particles per pebble varies. Net thermal energy

is the thermal output of the core less the power required to pump the coolant. The

pressure drop through pebble-bed reactors is greater than a prismatic HTGR of the

same thermal power rating and coolant profile. At high power and taller cores, the power

required to pump helium through the core can become very significant.

Table 6-5 lists these performance parameters for the PBMR-DIR with standard

fuel and the two VHTR designs with their optimized pebbles.
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The results indicate a 14% improvement in fuel utilization by the VHTR-300 as

compared to the PBMR-DIR. Interestingly, the response to a 0.001 g/cm3 steam ingress

condition was worse ($0.41 for the VHTR-300 compared to $0.30 for the PBMR-DIR).

Further study should be performed to discover what drives the increase.

The VHTR-600 displays a fuel utilization rate comparable to that of the PBMR. In

terms of gross thermal power, the design is more efficient but the considerable pumping

power (26 MW vs. about 3 MW for the PBMR) takes a toll on the overall plant efficiency.

Clearly, high-powered pebble-bed cores cooled in this fashion may have some difficulty

competing with prismatic gas-cooled reactors of comparable power. This may limit the

PBR to small markets. On the other hand, if the economics permit, clusters of 300 MWt

VHTRs may prove to be the preferred alternative.

Recently, a design innovation has been proposed that may address the issue of

large pressure drops in the PBR. Muto [104] proposed that helium be blown in radially

through the outer reflector, through the fuel annulus, and into an exit channel in the inner

reflector. The coolant is forced through the narrow dimension of the pebble-bed rather

than through the entire axial length of the core, thus reducing the pressure drop. This

concept should be explored in future VHTR design efforts.

Table 6-5: Performance characteristics of PBMR vs. VHTR designs.

Design PBMR-DIR VHTR-300 VHTR-600

Thermal Power (MW) 268 300 600

Pumping Power (MW) 2.9 6.4 26.5

0.001g/cm3 Steam Ingress
Reactivity ($)

0.30 0.41 0.09

Discharge Burnup (MWd/Kghm) 80 94.3 82.6

Fuel Utilization (particles/ net MWd) 21,024 18,047 21,084
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6.2.4 Conclusion

For the two power levels studied here, potential VHTR designs have been

identified using PEBBED and a simple direct search method. Success was achieved in

producing a core design that has sufficiently high neutron economy to account for

possible control elements and is tolerant of the extreme loss of coolant accidents. The

calculation of peak temperatures during such an accident was confirmed for three cases

against results obtained using the accident analysis code MELCOR. A 300 MWt VHTR

conceptual design was generated that displays superior fuel economy compared to an

established design. A 600 MWt core was also designed to be passively safe. Improved

fuel utilization in this design is offset by the high pumping power required during

operation.

Further optimization and design changes may yield improved results for

secondary objectives vessel such as pressure vessel fluence values and pumping

power. To achieve a 60-year vessel life, fluence levels must be reduced by an order of

magnitude. Acceptable fluence levels may be obtained by increasing the width of the

outer reflector (at the cost of a larger pressure vessel) and through the use of a borated

shield. More accurate treatment (a transport calculation) of the shielding is required to

assess how much the design must be modified to reduce the fluence. Pumping power

can be reduced by changing the core geometry within the bounds of passive safety.

6.3 Hotspot Analysis of the VHTR-300

In Section 5.2, off-normal scenarios were modeled to study the effects of

non-random distribution of pebbles on core temperatures. Some scenarios were
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proposed wherein pebbles were made to pass through regions of high thermal flux while

they were highly reactive, and then moved to regions of lower thermal flux when they

had reached a burnup level that made them less reactive. A similar analysis was

performed for the test VHTR-300 discussed in Section 6.2.1 in order to assess its

vulnerability to ‘hotspots’. The test core was modified by removing the inner reflector. A

single central loading tube can thus provide fuel to the entire core. Also, the discharge

burnup was raised to 94 MWD/kgihm to reduce core reactivity, as was done the design

search. The larger core burnup gradient increases the power peaking in the core. This is

evident in the larger DCC peak temperature computed for the nominal VHTR-300 model.

These off-normal recirculation scenarios were modeled using

specially-constructed recirculation matrices that correspond to nonrandom distributions

of fresh and depleted pebbles. The effect on the DCC peak fuel temperature is

summarized and discussed in this section.

6.3.1 Non-random Flow Distributions

Four alternate pebble recirculation patterns are modeled:

5. OUT-IN – in which fresh pebbles are loaded into and kept in the outer fuel

zone for eight passes then transferred to the inner zone for the remaining

two passes,

6. IN-OUT – in which pebbles are loaded into the inner zone and kept for a

number of passes before being transferred to the outer,

7. PEBBLE-CHANNELING – in which pebbles remain in their original

channels throughout their life,

8. FULLY RANDOM – no deliberate zoning of pebbles occurs.
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A variant on the IN-OUT scheme is also investigated in which a certain

percentage (x) of fresh pebbles are loaded into the central channel and the remaining

(100-x) percentage are distributed randomly over the outer zone. The pebbles are all

recirculated randomly after the first pass. The four main types of pebble recirculation

listed above are “hard-wired” into the PEBBED code and can easily be executed by

setting the appropriate flags and variables in the input deck. This variant on the IN-OUT

scheme however, requires that the transfer partition coefficients be computed separately

and supplied in an auxiliary input file. These cases are labeled WARM in the subsequent

discussion. The central channel constitutes 10% of the total pebble flow area in the core

in all of these calculations.

The partition coefficients for the various hotspot models are listed in Appendix E

along with the base model of the VHTR-300.

6.3.2 Results

Table 6-6 presents the results of the PEBBED thermal analysis of these

scenarios during DCC events.
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The index x in the IN-OUT-x case specification refers to the number of passes in

which a fresh pebble is kept in the inner zone before being transferred to the outer

annulus. The index in the WARM1-x case specification refers to the percentage of fresh

pebbles that are dropped into the inner zone upon initial insertion into the core.

In the “IN-OUT” cases the peak LOCA fuel temperature exceeds 1,800°C. Fuel

damage is to be expected in the region where this hot spot occurs (the central channel).

In Figure 6-6, peak fuel temperatures are for various axial locations in the IN-OUT-1

model. The axial locations are somewhat evenly spaced so that each curve represents

1/9th of the core.

Table 6-6: Results of the VHTR-300 hot spot analyses.

Case Peak Power
Density
(g/cm3)

Peak LOFA
Fuel Temp.

(°C)

Peak Fuel
Temp.

(°C)

Peak
k-eff

Nominal VHTR-300 6.2 1,699 1,037 1.0781

Out-In 5.6 1,598 1,049 1.0711

In-Out-1 10.3 1,680 1,403 1.0868

In-Out-2 10.3 1,805 1,354 1.0916

In-Out-3 9.6 1,848 1,283 1.0951

In-Out-4 9.0 1,835 1,226 1.0940

Pebble Channeling FIX FIX FIX FIX

Fully Random 6.2 1,731 1,024 1.0818

WARM1-20 7.8 1,742 1,123 1.0809

WARM1-30 7.4 1,731 1,089 1.0799

WARM1-40 7.0 1,720 1,061 1.0685

WARM1-50 6.6 1,709 1,039 1.0790
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Figure 6-6: DCC fuel temperatures at different axial locations* – extreme IN-OUT event.

From the plot one can estimate that at least half of the core exceeds 1,600°C for

some time, while at least 40% exceeds this temperature for much more than 30 hours.

Figure 2-5 indicates that 1 in 1,000 particles can be expected to fail under these

conditions, or a total fuel failure of 0.04 % of the fuel inventory.

Probabilities for these events have not yet been calculated rigorously, but some

general conclusions may be drawn. With only a single loading tube at the top, the only

way in which these configurations can be achieved is by statistical deviation from a fully

random loading process. The central channel comprises 10% of the flow in the core,

therefore, 10% of the fresh pebbles should ordinarily fall into the sensitive “hot” zone.

The pebbles make about 10 passes each during their lives; so about 10% of all the

pebbles are fresh. Hence, if all of the fresh pebbles fell onto the hot-zone 10% of the

surface area, they would cover that part of the surface. As each pebble fell onto the hot
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zone, it would reduce the remaining available area for the remaining pebbles. Even if

there are only 100 pebbles in each layer, ignoring competition from pebbles on passes

after their first pass one can show that the probability of all of the fresh pebbles landing

on the central 10% of the surface area is 5.78x10-13. This is only the probability that all

the fresh pebbles in a single layer will land in the central zone. For the feat to be

repeated layer after layer until an entire column of fresh pebbles is established is so

improbable that the typical scientific calculator does not store numbers small enough to

quantify it. The probabilities of cases IN-OUT-2 through IN-OUT-4 are progressively

smaller.

The WARM events are less severe; the temperatures do not exceed 1,800°C so

fuel failure is less likely. The probability of these cases is higher; it is more probable that

only a fraction of fresh pebbles will randomly clump in the central zone. However, to

sustain this condition for the time needed to establish an equilibrium core still requires a

statistical fluctuation the probability of which is infinitesimal.

6.3.3 Conclusion

The random nature of fuel loading in a pebble-bed reactor and its effects on core

safety parameters is addressed to some degree through the analysis of extreme loading

heterogeneities made possible using the recirculation matrix formulation in the PEBBED

code. In these extreme cases, the peak accident fuel temperature is shown to exceed

the threshold above which fuel failure can be expected to occur but not above the

temperature at which the silicon carbide layers begin to decompose. Local pebble failure

would be expected to occur but substantial core disassembly is not predicted.
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It is noted that the probability of occurrence of any of the non-random pebble

distributions described above is vanishingly small, orders of magnitude smaller than

what is considered a design basis event.
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Chapter 7

Automating PBR Design with PEBBED

A manual search for a reactor design as presented in the previous chapter is

inefficient and unlikely to result in the best possible design. A much more sophisticated

approach is desired. As part of this work, an optimization feature was added to PEBBED

to perform design studies. The new tool was developed with funding from a DOE

Nuclear Energy Research Initiative grant. Preliminary results of its application to the

PBR are provided here. Three different core types were optimized using this tool: a

simple type-independent, burnup-independent core based upon the HTR Modul 200, a

VHTR 600 (as described in the previous chapter), and a 250 MWt cogenerator with an

OUT-IN recirculation scheme like the GE-MPBR.

As discussed in Chapter 2, the advanced optimization component now available

in PEBBED is based upon a genetic algorithm. A relatively simple algorithm is used

without much “tuning” of parameters that may significantly improve the execution time.

However, the method is shown to be more effective than the manual search employed in

the previous chapter.

7.1 Genes, Traits, and Fitness

The fitness of an individual (candidate design) is a function of its traits, as

specified by the user. Fitness specifications are developed for the three cases stated

above, and the results of the optimization are presented. PEBBED allows the user to

specify the variables (genes) over which the search is to be performed. For this design
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study, variables included the inner reflector radius, the fuel annulus width, the core

height, and the fraction of total pebble flow that is in the outer zone (of a two-zone core).

These variables were allowed to vary over a range specified in an input file containing

the optimization parameters.

The user then specifies the core characteristics or traits that determine fitness.

For this study, traits included equilibrium core eigenvalue, maximum DCC fuel

temperature, outer reflector radius, and ratio of required pumping power to total thermal

power. Peak operating fuel temperature, maximum particle power, and reactivity can

also be selected as traits in PEBBED but were neglected in this study.

The way in which these traits are factored into the overall fitness is specified by

the user in a 4-point interpolation scheme. As an example, the maximum accident fuel

temperature fitness is illustrated in Figure 7-1.
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If this trait were the only one to be specified in an optimization run, the algorithm

would be driven toward a set of genes that yield a peak accident fuel temperature of

1,600°C. Above this value, the fitness value drops and even goes negative as a value of

1,800°C is approached. Negative values can be used to strongly penalize designs that

exhibit completely unacceptable traits such as exceeding fuel failure temperatures

during a DCC transient.

The contributions from all selected traits are summed to yield the overall fitness

of the individual. For example, in the VHTR-600 MWt design study to be discussed later

in the chapter, core eigenvalue, maximum DCC fuel temperature, outer reflector radius,
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Figure 7-1: Example of a four-point peak fuel temperature contribution to the fitness
specification.
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and height were the selected traits. The specifications for these traits are shown in the

following plots. Figure 7-2 illustrates how core multiplication factor is weighted.

The plot achieves its maximum at 1.06 (3rd point) and then is constant for higher

eigenvalues. This allows for the negative reactivity of fission products not currently

modeled in PEBBED and control rods that may be used to hold down any excess

reactivity that is used for power manipulation. Holding it constant above that value

means that cores with higher eigenvalues will be considered neither better nor worse.

The algorithm may drive the solution to keff = 1.06 if reducing it helps raise the fitness

contribution of another trait.

Figure 7-3 illustrates the fitness contribution from the size of the outer reflector.

The overall contribution does not go above 0.3, a somewhat arbitrarily chosen number.

The radius of the outer reflector is minimized for economic reasons: to keep the size of
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Figure 7-2: Core eigenvalue contribution to fitness.
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the pressure vessel down. The pressure vessels of proposed gas-cooled reactors are

very large compared to their LWR counterparts and present a manufacturing challenge.

Penalizing large diameters can help to avoid impractical designs even if they are

passively safe. However, the overall magnitude of this fitness contribution is less than

that from the core eigenvalue and maximum DCC fuel temperature because (so the

author assumes in this work) it is more important to make a critical, passively safe

reactor than a small one.

For small modular PBRs such as the PBMR and the VHTR-300, pumping power

is not significant (1-3 MW) even though it is still larger than a comparable prismatic core.

Pumping power rises with the cube of the mass flow rate so that for high power

pebble-bed reactors the required pumping power can be a significant fraction of the total

thermal power output (see Table 6-5). For this reason, pumping power was added as a

trait and chosen for the VHTR-600 MW optimization. Figure 7-4 illustrates the fitness

contribution from the ratio of pumping power to core power.
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Figure 7-3: Outer reflector radius contribution to fitness.
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The solution will be driven toward lower ratios (i.e., shorter cores) with a heavy

penalty above 0.03.

There is a complex interplay between the variables that specify core geometry

and the traits that result. Core fitness specification itself is an art that can take

considerable study. A full core design involves some testing and tweaking of the fitness

functions until a fully satisfactory design is obtained. However, even the early attempts

discussed in the following sections show that the method is powerful and flexible.

7.2 Description of the Operators

As discussed in Chapter 2, genetic algorithms apply three operations to a set of

individuals: selection, crossover, and mutation. Variations on each of these have been

applied to many different problems with varying degrees of success. For this work, no

effort was made to experiment with different operators, a considerable effort in itself.
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Figure 7-4: Pumping power contribution to fitness.
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Rather, a set was chosen that the author judged to be adequate for the type of problem

being solved. This set was successful in producing satisfactory designs in a reasonable

amount of time. They are discussed in this section. Future development will likely lead to

more efficient algorithms.

7.2.1 Selection

Individuals that exhibit superior traits “survive” into the next generation.

Superiority in this algorithm simply means a higher overall fitness value as described

above. The user specifies which traits are to contribute to the fitness and how they are to

be weighted. The user also specifies the number of individuals in a population as well as

the number of individuals that are allowed to survive and populate the next generation.

Grefenstette [69] observed that a population size of 80 yielded an efficient algorithm.

Goldberg [70] quotes studies performed with population sizes of between 16 and 100

with satisfactory results for sizes of 30 and above. For the efforts described in the next

section, a population size of 40 was chosen. Of these, the 10 individuals in a generation

that displayed the highest fitness were deemed the survivors.

7.2.2 Cross-over

The variables available for selection as “genes” in PEBBED (inner reflector

radius, fuel annulus width, outer reflector width, active core height, fraction of core

pebble flow that is in the outer zone) are all real-valued and are coded as such. The

crossover operation involved taking weighted averages of the genes of two parent
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individuals to form two new individuals. The “parents” are selected randomly from the

“survivors” of the selection operation.

The weights used in determining the genes of the offspring are computed from

the fitness of the selected parents according to the following formula. Let g1 and F1 be

the values of the gene and overall fitness, respectively, of parent 1. Likewise the

subscript 2 denotes the properties of parent 2. The hybrid gene computed for the first

offspring, g1’, is given by Eq. 7.1.

The value of the gene computed for the other offspring is obtained from the

complementary weight, Eq. 7.2.

A user-specified crossover probability value determines whether the crossover

operation occurs for a given gene in a match. For the cases performed in the next

section, a crossover probability of 85% was used. In other words, for each gene pair

processed, there was an 85% chance that the corresponding genes of the offspring were

computed in this fashion, and a 15% chance that no mixing occurred. In these cases,

offspring #1 took the gene of parent 1 and offspring #2 took the gene of parent 2.

This process takes place until the population is replenished to the user-specified

level.
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7.2.3 Mutation

After the new population is formed, a mutation operation may be performed on all

but the fittest individual in the population. The algorithm loops through each gene of

each individual (except the fittest) and generates a random number between 0 and 1 for

each. If the number is less than or equal to a user-specified mutation probability, that

gene is changed to a new value. The new value is itself a randomly chosen member on

the interval (gene domain) specified in the input file and thus is correlated neither to the

genes of the parents nor the original value of the individual.

The three operations described above are performed on each generation. The

number of generations computed in a design process is specified by the user.

7.3 Results

7.3.1 Search for a Better HTR Modul 200

The first application of the PEBBED genetic algorithm tool was the HTR

Modul 200. Recall from Section 4.1 that PEBBED computed a core eigenvalue of 1.0885

and a peak DCC fuel temperature of 1,455°C. This suggests (within the accuracy of the

PEBBED model) that there is some margin for varying the core geometry that would

allow for better performance while still preserving passive safety features. A simple

optimization was performed in which the only ‘gene’ was the radius of the fuel annulus.

The height was kept at the original design value (940 cm) and there is no inner reflector.

As a single zone core, there is no outer zone flow fraction to be varied. The selected

traits included the core eigenvalue, the peak DCC fuel temperature, and the outer

reflector radius.
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The four-point fitness specification for this run is given in Table 7-1.

The genotype in this problem consisted only of the fuel annulus width. The HTR

Modul 200 design has a fuel annulus width of 150 cm (there is no inner reflector so this

is also the core radius). The range of acceptable values (gene domain) is specified in

Table 7-2.

The trait specifications strongly favor a peak DCC fuel temperature of 1,600°C

and a core eigenvalue (keff) of 1.07. The weight on the DCC fuel temperature was set to

be greater than that of the eigenvalue (1.5 vs. 1.1) so that passive safety would not be

trumped by fuel economy. Small outer reflector radii were rewarded to some extent but

the fitness contribution of this trait is small compared to the other traits.

After 10 generations and, the algorithm produced the results shown in Table 7-3.

Table 7-1: Four point fitness specification for the simple 200 MWt core design.

Point keff Fk

DCC Peak
Temp °C Ft

Outer Reflector
Radius (cm) Fr

1 1.04 0 1,400 1.2 0 0.3

2 1.05 1 1,600 1.5 100 0.3

3 1.07 1.1 1,700 0.8 300 0

4 1.08 1 1,800 -0.5 330 -0.3

Table 7-2: Nominal values and gene domain for the 200 MWt simple core optimization.

Gene HTR Modul 200 Value Minimum
Value

Maximum
Value

Fuel Annulus Width (cm) 150 120 170
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As expected, the solution was driven toward a peak DCC temperature of

1,600°C. Evidently, the fitness advantage of this temperature outweighed that of both the

optimal eigenvalue and a smaller radius because the computed eigenvalue is much

higher than the optimal and the outer reflector radius is slightly larger than the HTR

Modul 200. At this point, a core designer may choose to try again with a lower DCC

temperature fitness specification to drive the solution toward a smaller vessel size.

Alternatively, the fuel enrichment may be lowered to take advantage of the improved

neutron economy of this core.

Once an optimal design is identified (either this one or the result of further

iterations), confirmation of passive safety should be confirmed using a multi-dimensional

safety analysis code. Given the agreement shown in the previous chapter between the

PEBBED and MELCOR estimates of peak accident temperature, MELCOR modeling

was not performed on this design.

7.3.2 Search for a Better GE-MPBR

The second application of the optimization tool was the GE-MPBR. Recall from

Section 4.2 that this 250 MWt core features an “OUT-IN” refueling policy in which fresh

pebbles are loaded into the outer zone, recirculated four more times, then transferred to

the inner zone for five passes before discharge. The parameter that is used to generate

Table 7-3: Selected results of HTR Modul 200 and optimized version.

Trait HTR Modul 200 PEBBED Design

keff 1.0885 1.09470

DCC Peak Temperature (°C) 1,424 1,599

Outer Reflector Radius (cm) 245 251.6
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the partition coefficients is the fraction of pebble flow that is in the outer zone, αo. The

nominal value that yields the five OUT-five IN pattern was found to be 0.5.

For the nominal GEMPBR, PEBBED computed a core eigenvalue of 1.045 and a

peak DCC fuel temperature of 1,507°C. As with the HTR Modul 200, there is no inner

reflector. The selected traits once again included the core eigenvalue, the peak DCC fuel

temperature, and the outer reflector radius.

The four-point fitness specification for this run is given in Table 7-4.

The core eigenvalue and outer reflector radius fitness specifications are the

same as those set for the previous optimization. The DCC fuel temperature peak weight

was relaxed a bit to 1.3 (from 1.5) but the abscissa was decreased from 1,600°C to

1,575°C to provide a safety margin.

The genotype in this problem consisted of the fuel annulus width, the height, and

the outer flow fraction, αo. The nominal GE-MPBR values and the gene domain for this

problem are included in Table 7-5.

Table 7-4: Four point fitness specification for an optimized GE-MPBR.

Point keff Fk

DCC Peak
Temp °C Ft

Outer Reflector
Radius (cm) Fr

1 1.04 0 1,400 1.2 0 0.3

2 1.05 1 1,575 1.3 100 0.3

3 1.07 1.1 1,700 0.6 300 0

4 1.08 1 1,800 -0.5 330 -0.3
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By changing the fraction of outer flow, the transfer burnup threshold is adjusted,

i.e., pebbles may be moved from the outer to the inner flow zone after something other

than five passes.

After ten generations and seven hours on a Dell Precision 650 Workstation, the

algorithm produced the results shown in Table 7-6.

As expected, the solution was driven toward a peak DCC temperature of 1,575°C

but other traits and limits kept the temperature at a slightly lower value. The core

diameter was pushed to the upper limit of 150 cm. This increased the neutron economy

somewhat but not as high as the 1.07 target eigenvalue. Relaxing the limit on the core

Table 7-5: Nominal values and gene domain for the GE-MPBR optimization.

Gene GE-MPBR value Minimum
Value

Maximum
Value

Fuel Annulus Width (cm) 145 80 120

Height (cm) 926 750 1,000

Outer Flow Fraction 0.5 0.05 0.95

Table 7-6: Selected results of GE-MPBR and optimized version.

Trait GE-MPBR PEBBED Design

keff 1.045 1.05271

Outer Flow Fraction 0.5 0.14

Outer Reflector Radius (cm) 245 250

Height (cm) 926 861

Diameter of Active Core (cm) 145 150

DCC Peak Temperature (°C) 1,424 1,569

Peak Operating Fuel
Temperature (°C)

1,035 1,002

Peak Power Density (W/cm3) 6.51 6.16
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diameter may yield better results but this particular core is the same diameter as that of

the HTR Modul 200 and thus can use the vessel designed for that reactor.

The stress on the fuel temperature was decreased slightly from 1,035°C to

1,002°C, probably the result of the lower overall power density of the larger core as is

indicated by the peak power density value. The peak temperature during a DCC

transient was increased considerably but is still comfortably below the 1,600°C limit.

Interestingly, PEBBED produces an optimized core with a significantly smaller

outer annulus. The outer flow fraction drops from 50% to 14%. This means that fresh

fuel pebbles are circulated in the periphery of the core for only a couple of passes before

being transferred to the inner zone. The flow distribution is shown in Table 7-7. The flow

distribution of the nominal GE-MPBR is shown in Table 4-10.

Table 7-7: Flow distribution of optimized GE-MPBR.

Fraction of Flow in Zone, ai

Ch. 1 Ch. 2 Ch. 3 Ch. 4

0.25515 0.24496 0.22850 0.27137

Number of Pebbles in Each Zone

Pass

1 0 0 0.0 18.49

2 3.19 3.06 2.86 9.38

3 5.50 5.28 4.92 2.79

4 5.50 5.28 4.92 2.79

5 5.50 5.28 4.92 2.79

6 5.50 5.28 4.92 2.79

7 5.50 5.28 4.92 2.79

8 5.50 5.28 4.92 2.79

9 5.50 5.28 4.92 2.79

10 5.50 5.28 4.92 2.79
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The table indicates that almost two-thirds of the pebbles are transferred to the

inner zone after one pass and the remaining are transferred after the second. After the

second pass, a few pebbles still appear in channel 4. These are actually inner zone

pebbles; channel 4 contains 27% of the total core flow but the outer zone only makes up

14% of the total. Therefore, (100-14/27) = 48% of the outer channel is in the inner flow

zone of the two-zone core.

Recall that the fuel for the GE-MPBR is a 50/50 mixture of 20% enriched uranium

and fertile thorium. Thorium is converted to fissile U-233 within the core. The buildup of

U-233 is shown in Table 7-8.

Table 7-8: Mass of U-233 in pebbles at exit plane after each pass.

Mass of U233
(grams/pebble)

Pass Nominal GE-MPBR Optimized GE-MPBR

0* 0.0 0.0000

1 0.00974 0.00868

2 0.02285 0.02165

3 0.03441 0.03443

4 0.04409 0.04555

5 0.05210 0.05474

6 0.05944 0.06224

7 0.06626 0.06835

8 0.07186 0.07331

9 0.07637 0.07731

10 0.07996 0.08054

* pass #0 indicates the fresh pebble content
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The buildup of U-233 is slightly slower in the optimized core but it achieves a

slightly higher discharge value. The differences in this case are not neutronically

significant and are not likely related to the differences in the computed temperature.

Once again, to complete the design study, passive safety should be confirmed

using a multi-dimensional safety analysis code.

7.3.3 Search for a Better VHTR-600

The 600 MWt pebble-bed VHTR identified in the previous chapter was used as a

reference point for a genetic algorithm optimization. This reactor contains a solid inner

reflector and a simple burnup-independent recirculation scheme. The discharge burnup

was kept at a nominal 80 MWd/kgihm. Once again a population size of 40 was chosen,

from which 10 survivors were propagated to next generation.

The four point fitness specification for this run is given in Table 7-9.

The contribution from the core eigenvalue peaks at 1.073, the target eigenvalue

from the previous search. The DCC peak fuel temperature contribution peaks at

1,575°C, somewhat lower than the limit to provide an extra margin for safety. These two

specifications dominate the fitness function but lower reflector radii is also rewarded to a

Table 7-9: Four point fitness specification for VHTR-600.

Point keff Fk

DCC Peak
Temp. °C Ft

Outer Reflector
Radius (cm) Fr

Pumping
Power/Core

Power Fp

1 1.04 0 1,400 1.2 0 0.3 0 0.3

2 1.05 0.9 1,575 1.3 100 0.3 0.05 0.15

3 1.073 1.0 1,700 0.5 305.5 0 0.10 0

4 1.08 1 1,800 -0.5 330 0 0.15 -0.4
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lesser extent. Another gene was added to cause the fitness function to favor low

pumping power. Table 7-10 shows the reference gene values from the VHTR-600

designed in the previous chapter as well as the range chosen for the genetic algorithm

search.

Table 7-11 lists the results of the manual search from the previous chapter and

the one obtained using the genetic algorithm. This GA result was obtained after eight

generations of a population of 40 individuals. It required 29 hours of CPU time on a Dell

Precision 650 workstation.

Table 7-10: Nominal values and gene domain for the VHTR-600 optimization.

Gene Reference VHTR-
600 Value

Minimum
Value

Maximum
Value

Inner Reflector Radius (cm) 150 1 150

Fuel Annulus Width (cm) 100 80 120

Height (cm) 950 750 1,050

Table 7-11: Selected results of VHTR-600 manual and automated design runs.

VHTPBR-600
(Manual Search)

VHTPBR-600
GA search

Inner Reflector Radius (cm) 150 147.8

Fuel Annulus Radius (cm) 250 246.6

Outer Reflector Radius (cm) 326 322.6

Height (cm) 950 991.9

Keff 1.073 1.073

Maximum DLOCA Fuel Temperature (°C) 1,584 1,573

Pumping Power (MW) 26 28

Maximum Operating Fuel Temperature (°C) 1,028 1,025

Peak Particle Power (W) 0.14 0.14
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The GA-designed core is slightly thinner than the reference design. The accident

temperature fitness specification peak of 1,575°C is slightly smaller than the reference

design value of 1,584°C. To achieve the more stringent criterion, the core width was

narrowed to provide a shorter conduction length to the reflectors. To re-capture the

desired core eigenvalue, the height of the core was raised by 42 cm. The fitness benefit

of achieving the target eigenvalue was somewhat offset by an increase in the required

pumping power (2 MW more than the reference design).

The outer diameter of the pressure vessel is 7.45 meters, smaller than the

prismatic GT-MHR by 21 cm. The active core is two meters taller than the GA design. A

proper sensitivity study should be performed to find the optimal tradeoff between

diameter and height. This specification could then be incorporated directly or indirectly

into the fitness specification in future design efforts.

The major downside of a large pebble-bed, compared to the prismatic HTGR, is

the tremendous pumping power requirement, 26-28 MW for a 600 MWt core. This

requirement effectively makes the VHTR-600 a VHTR-570 and undercuts much of the

advantages derived from the optimization of the fuel. One way to compensate may be to

implement the cross flow scheme of Muto [104] and have the coolant pass radially

through the bed rather than axially. This improvement alone may make the difference in

economic viability. PEBBED’s temperature correlations are not currently able to handle

cross flow so this is an option that cannot yet be explored.

7.4 Conclusions

A simple genetic algorithm is shown to yield improved designs for various types

of pebble-bed reactors. A four-point fitness specification allows the user to specify with
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great flexibility which core characteristics determine a good design and how the fitness

varies with these traits. The requisite genetic operators of selection, crossover, and

mutation that have been devised for this work do yield improvements over reference

designs; further study of these and other operators may result in improved computational

efficiency.

The technique was applied to three reactor designs with different core

configurations. The first is a simple burnup-independent core with no inner reflector

based upon the HTR Modul 200. The code exploited a margin in the peak accident fuel

temperature to increase the size of the core and improve neutron economy. In the

second application, the OUT-IN scheme of the GE-MPBR 250 MWt base design was

modified to yield a core with a 150 cm radius and an 861 cm height; shorter and fatter

than the nominal GE-MPBR but still passively safe and with a higher core multiplication

factor. Finally, the code generated was used to generate a 600 MWt Very High

Temperature Reactor. The new design is slightly thinner and taller than the one that was

obtained in the manual search, largely because of a more stringent accident fuel

temperature specification.

Considerable improvement in computational efficiency may result from a study of

different algorithm parameters and operators.
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Chapter 8

Conclusions and Further Work

The purpose of this research was the development of a method and tool for

analyzing, designing, and optimizing the pebble-bed reactor with recirculating fuel. While

a few codes and methods have been created for the PBR, this work shows how PBR

core design and fuel cycle optimization reduce to the manipulation of a handful of key

parameters that are readily manipulated using simple or advanced techniques.

8.1 Fuel Management and Neutronics Analysis in Pebble-Bed Reactors

A pebble-bed reactor is able to operate with what is effectively continuous

refueling. Fuel, in the form of pebbles, is added to the top of the core at intervals

measured in minutes. Pebbles drop out of the bottom of the core. If a pebble has not

achieved the specified discharge burnup, it is dropped back into the core for another

pass. If this mode of operation is continued, the core will achieve an asymptotic state in

which pebbles constantly circulate through the core but the core-wide flux and nuclide

distributions are essentially constant.

Pebble flow studies performed in Germany decades ago indicate that, for vessel

geometries typical of pebble-bed reactors, pebbles follow well-behaved and largely

vertical streamlines. (These studies have recently been accurately simulated using

sophisticated discrete element codes that calculate the motion of individual pebbles.)

This flow behavior can be modeled using a conservation law that treats burnup as an

incompressible fluid. With knowledge of the pebble velocity profile, a variable
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transformation (time to axial dimension) is applied to the nuclide depletion equations.

The depletion equations are solved simultaneously with the neutron diffusion equation in

an iterative fashion.

The radial burnup distribution at the entry plane is a boundary condition of this

system. However, this distribution can be determined from the composition of the fresh

fuel and the nature in which partially burned pebbles are reintroduced into the core. In

this work it is shown how the flow of pebbles in the core can be parameterized in a way

that links the entry plane burnup distribution to the composition of pebbles at the exit

plane. Thus, the complete burnup profile of the core can be solved in a self-consistent

manner with the neutron flux. Furthermore, it is shown that this parameterization of

pebble flow (described in terms of a recirculation matrix) can be completely determined

in terms of a few variables that are computed in advance of the neutronics calculation.

As a result, pebble-bed core design and fuel management become readily amenable to

simple and advanced optimization techniques.

8.2 Passive Safety in Pebble-Bed Reactors

For the foreseeable future, new nuclear power plant must demonstrate an

exceptional degree of safe operation. While this can be achieved with engineered active

safety systems, such systems add considerably to the capital cost of the plant. There is

considerable interest in designing reactors that are passively safe, i.e., for all design

basis events, core integrity is maintained using passive heat removal mechanisms. The

modular pebble-bed reactor achieves this standard through the use of a robust coated

particle fuel form and a tall, thin core with a low power density. In the event of a

complete loss of coolant pressure and flow, the resulting core temperature increase



191

terminates the fission reaction through Doppler feedback. Decay heat is transported

from the core via conduction and radiation at such a rate that fuel failure temperatures

can be avoided. The fuel temperature design limit used in this work is the widely

accepted 1,600°C.

By assuming that heat transfer under these conditions is exclusively radial and

nonconvective, the transient heat transfer problem can be solved using a simple

one-dimensional conduction equation. A finite difference solution to this equation has

been added to PEBBED to quickly generate peak fuel temperatures during a

depressurized conduction cooldown event. Comparison to results from two-dimensional

analyses of pebble-bed reactor accidents reveals that this method is sufficiently accurate

for conceptual design purposes.

8.3 Analysis of Existing PBR Designs

PEBBED was used to analyze three different types of recirculating pebble-bed

cores. The PEBBED core models are rather simple in that neither control rods nor most

minor fission products are included. Use of control rods in the modular PBR is generally

limited to holding down core reactivity during shutdown; and then they are inserted only

into the outer reflector, not into the core. For this reason, neglecting control rods is

considered a reasonable assumption for most design purposes. Because of the online

and semi-continuous refueling, excess reactivity can be kept to a minimum, also

eliminating then need for burnable poisons. Minor fission products account for a few

percent δk/k. Compensation for unmodeled reactivity effects in the PEBBED design

models is achieved by setting target eigenvalues to high values (1.05 to 1.07).
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Cross sections are generated for the asymptotic core in an iterative fashion using

PEBBED and a cross-section code such as COMBINE or MICROX-2. Cross-sections for

the fresh fuel composition are inserted into the PEBBED core model and depleted to

generate the number densities of the fuel at the mean burnup level of the core. The new

number densities are fed back to the cross-section generation code to produce improved

values. This procedure is repeated until the core eigenvalues from successive PEBBED

iterations differ by no more than $0.10 (65 pcm). This method captures the spectral

characteristics of the core that result from the burnup of the fuel. PEBBED currently does

not adjust the cross-sections for variations in temperature. These variations can be

many hundreds of degrees in the PBR. On the other hand, the PEBBED models use a

six-group energy structure that captures resonance and upscattering effects better than

the four-group VSOP code.

8.3.1 Results of Core Analysis

The HTR Modul 200 represents the first and simplest type of PBR modeled. It

features a solid cylindrical core and a single type of pebble that is loaded randomly.

PEBBED neutronic analysis of the core yields a core multiplication of 1.088 with

cross-sections generated using the MICROX-2 code. DCC accident analysis of the

200 MWt core yields a peak fuel temperature of 1,424°C, considerably lower than the

1,530°C reported in the literature for this core. A likely reason is that PEBBED may

underestimate the axial power peaking in the core that results from the fuel temperature

distribution.

This reactor design may also be operated safely at a core power of 250 MWt.

PEBBED confirms this with a peak accident temperature of 1,589°C for this core power.
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The axial location of the power peak computed by PEBBED agrees well with that

reported in an earlier study.

An early design of the South African Pebble Bed Modular Reactor uses a

dynamic inner reflector made of graphite pebbles surrounded by a fuel pebble annulus.

Fuel pebbles are loaded via peripheral loading tubes while the graphite pebbles are

loaded via a central tube. The recirculation matrix for this scheme is generated from

general core properties and the ratio of the flow of pebbles in the outer annulus to the

total core flow.

PEBBED analysis of the PBMR-DIR yields a core multiplication factor of 1.073,

sufficiently high to account for control rods, fission products, and required excess

reactivity. The peak operating fuel temperature computed by PEBBED is 1,040°C,

somewhat lower than that computed using VSOP (1,063°C) but reasonably close given

the different definitions of fuel temperature used by the two codes. PEBBED computes a

peak accident temperature of 1,419°C compared to the THERMIX (2D) computed value

of 1,450°C. The PEBBED value compares favorably with one computed by the 2D

accident analysis code MELCOR (1,406°C) using the core power densities supplied by

PEBBED. Again, the differences between the PEBBED and literature values are likely

the result of differences in power peaking that are attributable to the way in which cross

sections are modeled.

An OUT-IN fuel recirculation scheme is demonstrated using a core design of a

MPBR developed by General Electric. In the GE-MPBR, pebbles are loaded with a

mixture of uranium and thorium oxides. The fresh pebbles are introduced in the outer

radial region of the core, circulated for five passes, then transferred to the inner core

zone for another five passes. The higher mean burnup of the inner zone reduces power

peaking.
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The PEBBED/MICROX combination yields a core eigenvalue of 1.045 compared

to the VSOP-computed value of 0.998. VSOP tracks a larger number of fission products

but it does not explicitly track Pu-238. A separate power profile was generated by GE

using the BOLD/VENTURE code and nuclide densities from VSOP. This analysis also

yields a higher power peaking factor than what is computed using PEBBED. Discharge

isotopic composition of pebbles varies greatly between VSOP, PEBBED, and

MCNP-ORIGEN models of the PBMR, indicating a need for cross-section methods

development and benchmarking.

A depressurized conduction cooldown transient in the GE-MPBR was analyzed

by both GE (using THERMIX) and Oak Ridge National Laboratory using the

one-dimensional code SHERLOC. SHERLOC employs essentially the same method as

is used in PEBBED and the results agree well when a common power and initial

temperature profile is used. However, the BOLD-VENTURE-THERMIX value for the

peak DCC temperature is 1,644°C while the PEBBED value is only 1,507°C. The

difference is directly attributable to the lower power peaking computed by PEBBED,

again a difference in the modeling of cross-sections.

8.4 Other Applications of PEBBED and the Recirculation Matrix

The ability to efficiently model the asymptotic fuel loading in a pebble-bed reactor

for an arbitrary fuel recirculation scheme was exploited to study a handful of issues

associated with pebble-bed reactors. Each of the topics addressed in this portion of the

thesis were (or will be) presented in American Nuclear Society conference transactions.

Continuously fueled reactors offer the distinct advantage that an optimal ratio of

fuel to moderator can be maintained indefinitely once the asymptotic core has been
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reached. This feature was demonstrated by computing the core eigenvalue of a reactor

for a number of pebble designs that differed in the amount of fuel particles they contain.

Plotting the results yielded a definite peak corresponding to the optimally moderated

core-fuel configuration. Comparisons between a PBMR-DIR reactor fueled with standard

and optimized pebbles showed safety and performance benefits. The optimized pebble

yielded a core that was more tolerant of steam ingress, i.e., the resulting reactivity

insertion was less for the optimized pebble than for the standard. Reactors using

optimized pebbles also used less fuel than those using standard pebbles although the

difference in the PBMR-DIR design was slight.

The stochastic nature of pebble loading and motion has led to concerns that hot

spots could develop in a PBR core with subsequent fuel failure. To address this issue,

the fuel-loading pattern in the PBMR-DIR model was adjusted to correspond with

extreme cases of pebble misdirection. Simulations of fresh fuel pebbles being loaded

into the central reflector region were performed by generating special recirculation

matrices. Under these circumstances, the peak accident temperatures attained by the

anomalous cores did achieve levels that would lead to mild fuel failure (up to 1,784°C in

the worst case) in a large portion of the core (less than 0.05% overall fuel inventory

release). It is noted, however, that because such a core condition would take so long to

develop (one to three years to develop an asymptotic core) the probability that such a

configuration would develop in conjunction with a complete loss of coolant flow and

pressure is certainly beyond design basis.

The possibility was addressed that an owner of a standard PBR would attempt to

clandestinely produce weapons plutonium. Under the scenario addressed in this work,

indigenously produced production pebble fueled with natural uranium would be

introduced into the core without the knowledge of the reactor or fuel vendor. One case



196

modeled with PEBBED involved replacing 5% of the fuel pebbles in an HTR Modul-like

reactor with these production pebbles. The other case involved replacing 5% of the

graphite pebbles in the PBMR-DIR with such production pebbles. In the first case, the

absorption of neutrons by the illicit material led to a 12% increase in the required

refueling rate. In the second, there was only a slight increase in the required fueling rate

(about 1.4%) which conceivably be compensated through other means. However, to

acquire enough Pu-239 for a weapon would require seven years at this rate of

production. It is concluded that the low excess reactivity inherent in a properly fueled

PBR does not allow for both secret and fast accumulation of quality weapons material.

8.5 Design of a Very High Temperature Pebble-bed Reactor

The efficiency with which PEBBED can model a wide variety of PBRs was

exploited in the design of the Generation IV reactor concept, the Very High Temperature

Reactor or VHTR. The VHTR is a high temperature, gas-cooled reactor that can produce

an outlet temperature of 1,000°C yet still demonstrate passive safety features.

PEBBED can quickly generate peak accident (DCC) fuel temperatures by solving

a simple one-dimensional conduction problem. The accuracy of this approach was

tested using the safety analysis code MELCOR. Two-dimensional MELCOR models of

three different reactors were constructed using the power profiles generated in PEBBED.

The peak accident temperatures computed by MELCOR and PEBBED showed

remarkable agreement given the nature of the two calculations. With this result in hand,

a search for 300 and 600 MWt VHTR designs was initiated.

The pebbles used in the VHTR design search were optimized per the method

described in Chapter 5. Then, starting with a familiar base design (the PBMR-DIR),
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modifications to the core geometry were made until reasonable values for core

eigenvalue and DCC peak temperature were obtained. The pebble-based graphite inner

reflector of the PBMR-DIR was replaced with a solid graphite cylinder. The inner

reflector and fuel annulus radius were then varied. When values close to the targets

were achieved, the core height and discharge burnup were adjusted to home in on the

final design.

A 300 MWt VHTR was generated that fits inside the PBMR-DIR vessel. The peak

accident fuel temperature fell slightly above the 1,600°C limit so a slight downward

adjustment was effected by increase the flow rate of pebbles. The completed design

displayed a 14% improvement in fuel economy over the PBMR-DIR.

A 600 MWt VHTR was generated that fits inside the radial dimension of the

pressure vessel of the 600 MWt prismatic GT-MHR designed by General Atomics. The

pebble-bed VHTR is considerably taller than the GT-MHR (950 cm vs. 793 cm). The

improved fuel economy of the optimized pebble is offset by the considerable pumping

power requirements of this tall reactor so that the fuel requirements of the VHTR-600 are

comparable to that of the PBMR-DIR.

This design process provides the starting point for more detailed design studies

and optimization. Complex neutronic and thermal-hydraulic modeling can take place with

some confidence that a satisfactory design will emerge.

8.6 Automated Design of Pebble-bed Reactors

The direct search method described in the previous section yielded a design that

satisfied the basic requirements of the VHTR. Yet it is likely that the resulting designs

are not the best that can be obtained. An automated search tool, based upon a genetic
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algorithm, was shown to produce user-specified core characteristics with minimal user

intervention.

8.6.1 Genetic Algorithm Search

A genetic algorithm is a type of stochastic optimization technique in which

favorable attributes of the members of a randomly generated population are used to

direct the search toward promising regions of the solution space. In a direct analogy to

biological reproduction, selection, crossover, and mutation operations are performed on

specified parameters shared by the member of the population to generate new members

with ever improving characteristics.

In this work, an individual is a specific core design. The parameters varied by the

algorithm may include: inner and outer reflector width, fuel annulus width, height, and

fraction of pebble flow that composes the outer flow zone. The user specifies which of

these “genes” will be varied and the upper and lower bounds on the values. A PEBBED

analysis is conducted on each individual to generate a “fitness” value. The fitness is a

function of characteristics of the PEBBED solution which currently may include: core

eigenvalue, peak operating fuel temperature, peak accident fuel temperature, outer

reflector radius, reactivity (as measured against the previous case), required pumping

power, and peak particle power.

The user specifies which of these “traits” are to contribute to the fitness function.

For each chosen trait, the contribution to the overall fitness is determined by a four-point

interpolation scheme. This allows the user great flexibility in directing the solution toward

particular core characteristics. It also requires the user to exercise some engineering

judgment in specifying the fitness function.
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Once the genes and trait functions are established the user chooses the size of

the population and the number of survivors, i.e., the number of solutions that will be

propagated to the next generation. Those with the highest fitness values survive

(selection). The genes of the survivors are used to reconstruct the population. Genes of

new members are generated by mixing the genes of randomly chosen survivors

(crossover). Finally, there is a small probability that one or more genes of randomly

chosen individuals will be arbitrarily changed to new values (mutation). This allows the

algorithm to explore previously untested regions of the solution space.

8.6.2 Design Results

This method was used to optimize the design of existing PBR concepts. In the

first case, the core diameter of the HTR Modul 200 was varied to produce a passively

safe version with improved neutron economy. After 10 generations, the resulting design

was slightly larger in diameter and possessed a higher eigenvalue. The peak accident

fuel temperature settled at 1,599°C, very close to the target specified by the fitness

function.

In the second case, a core with an OUT-IN fueling scheme was optimized by

varying the core radius, the height, and the fraction of flow composing the outer flow

zone. Compared to the original design, the resulting core yielded higher core eigenvalue

and a much smaller outer fuel zone.

In the third case, a 600 MWt Very High Temperature pebble-bed Reactor was

designed from scratch and compared to the one obtained from the previous manual

search (reference design). The genes varied in this search included the inner reflector

radius, the fuel annulus width, and the height. The traits contributing to the fitness
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function included the core eigenvalue, the peak accident fuel temperature, the outer

reflector radius, and the required pumping power.

After eight generations, the algorithm produced a design that exhibited an

eigenvalue comparable to the reference design. The peak accident fuel temperature was

slightly lower than the reference design and matched closely the target value specified in

the fitness function. The algorithm achieved this by narrowing the core annulus and

increasing the height of the core. The required pumping power was also increased

slightly. However, the outer diameter of the pressure vessel is small than both the

reference design and the prismatic GT-MHR.

The genetic algorithm employed in this work is not the product of a detailed study

of computational parameters and sensitivity studies. Improvements on the scheme can

probably be discovered with a modicum of effort. Nonetheless, this inaugural algorithm

did produce satisfactory designs and amply demonstrates the effectiveness of this

approach.

8.7 Future Work

This research was meant to be introductory. The state of core design and fuel

management in pebble-bed reactors is decades behind that of light water reactors.

Advanced methods and tools have yet to be developed, largely because of the lack of

interest in PBR development since the closure of the THTR. With the operation of the

HTR-10 and the imminent construction of the PBMR, an ever-increasing need for such

advanced tools will be observed.

The current state of PEBBED and its recirculation matrix formulation addresses

the key need for an efficient and accurate design tool. However, the results obtained



201

from this effort also point to other developments that will be required for this technology

to mature.

The generation of accurate cross-sections is the next major step. The results

shown in this work indicate a large discrepancy among the different codes and

techniques available for this task. These discrepancies lead directly to large

uncertainties in power peaking factors, discharge isotopics, critical dimensions, etc.

While the fundamental conclusions and trends observed in this work are sound, large

error bars must be attached to any numerical results until improved methods and

benchmarks are developed.

In particular, parametric variations in cross sections must be implemented to

account for the wide range of temperatures and material compositions in the core. The

single set of values currently employed in PEBBED models are generated about the

mean temperature and composition of fuel pebbles. However, neutron scattering in

graphite and absorption in heavy metals may be strongly dependent on local conditions.

Work is underway at the INEEL in conjunction with the Pennsylvania State University

and the Georgia Institute of Technology to develop advanced cross section generation

methods.

The current diffusion equation solver in PEBBED is a standard finite difference

treatment (albeit in three-dimensional cylindrical coordinates). Small computational mesh

sizes are needed to achieve high accuracy but they also lead to long calculation times.

To retain accuracy while lowering execution times, a modern diffusion equation solver

should be implemented. At the INEEL, a coarse, mesh finite difference nodal solution in

being implemented and tested. This type of nodal solution fits easily into the existing

algorithm and will allow larger mesh sizes with no loss of accuracy.
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An analytical solution to the cylindrical nodal equations has been developed at

the INEEL. Mathematical singularities have thwarted earlier attempts at obtaining an

analytical solution but an ingenious workaround was discovered and developed by

Ougouag and Terry. This will eventually be the default solver in PEBBED.

Future reactor models will also need to be more sophisticated. As previously

indicated, most minor fission products are neglected. The structure of PEBBED allows a

large number of decay chains to be included once an improved method for generating

cross sections is developed. In many cases, however, large groups of fission products

can be treated as one or more lumped fission products to adequately capture the

reactivity effects. Development of lumped fission products appropriate for high burnup

HTGR fuel will require then application of suitable depletion codes and techniques.

Although control rods have a minimal role to play during normal operation, they

are required to shut down the reactor and keep it subcritical when the reactor is cold.

One important consideration for pebble-bed reactors is that, unlike cores with stationary

fuel, control rods cannot be inserted into the active core. They must be inserted into the

outer reflector (or the inner reflector if it is solid). Generating cross sections requires the

use of transport codes to adequately treat the high absorption properties of the rods and

to generate the proper spectrum in the reflector regions.

Because the rods are limited to reflector positions, the reactivity worth is not as

great as if they could be inserted into the core. This fact poses a limitation on the radial

size of the reactor core. If the core is too large, radial neutron leakage and thus rod

worth may be too small to provide adequate cold shutdown margin. Future design efforts

must incorporate rod worth calculations to avoid this serious deficiency.

On a related note, a potential drawback of large graphite-moderated reactors is

the possibility of large spatial xenon transients. MPBR cores are sufficiently narrow to
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prevent large radial and azimuthal distributions in xenon concentration but axial

transients are possible. Like control rod worth, these may limit the size that can be

achieved and should be explored with a proper transient analysis code.

Radial pebble flow is not currently modeled in PEBBED. This is not a serious

deficiency because radial flow is largely restricted to the low flux region of the bottom

conus. However, neglect of this radial flow does introduce error that can be avoided with

a little development. The burnup equation is currently solved along axial streamlines but

this can be generalized to non-axial streamlines if the geometry of those lines is properly

specified. The non-axial flow error may be particularly important with fast spectrum

reactors.

The first few years of operation in a PBR core are not optimal. The core takes

some time to achieve the asymptotic state for which it would presumably have been

optimized. The so-called running-in period requires modified fuel pebbles or different

core configurations to achieve safe and economic operation. The coupled

diffusion-depletion equations currently solved in PEBBED assume that the reactor has

achieved a steady state core configuration, i.e., the partial derivative of the burnup with

respect to time in the left hand side of Eq. 2.4 vanishes. However, a poorly designed

transition core may adversely affect the overall economics of the plant. Furthermore,

startup is not the only time in which the core may be in transition. Over the 60-year life of

a plant, a number of advances in fuel design would be expected to occur. Switching to a

new fuel design entails a long transition time until a new asymptotic state is achieved.

The time-dependent burnup equations will need to be incorporated into PEBBED

to treat these cases. The input specification will need to be modified to accommodate a

time-dependent fresh fuel injection description.
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Light water reactor fuel management has been the subject of many advances in

optimization of which genetic algorithms are but one type. The algorithm in PEBBED has

not been optimized and probably can benefit greatly from various parametric studies and

testing of different operators.

Other optimization methods may prove very effective as well. Simulated

annealing and neural networks are two methods that have been applied with success to

LWR fuel management. Some studies have suggested that the genetic algorithm is very

good at locating the region in which a global optimum exists but not so well at

converging to that optimum. Hybrid solution techniques have been proposed in which a

stochastic technique is augmented with a neural network or traditional linear optimization

method that performs a faster local search. All of these approaches can be used with the

recirculation matrix formulation in PEBBED and are worthy of further study.
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Appendix A

PEBBED Solution to the Diffusion Equation

Finite Difference Solution to the Diffusion Equation

Much of the following material was obtained from reference [76].

The diffusion equation for energy group g is given by

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )rr
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The corresponding neutron current is given by

( ) ( ) ( )rrDrJ ggg
�����

φ∇−= . (A2)

Each term in (A1) is integrated over the volume of the mesh cell in which the

material properties and flux are assumed constant.

The integrated leakage term is then converted into a surface integral using the

Divergence Theorem. In the finite difference (FD) approximation, the leakage through a

surface is equal to the product of the current across each surface and the magnitude of

the corresponding surface element. The sum over all surfaces bounding the mesh cell

yields the total leakage from the cell.
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The neutron balance equation for mesh cell k bordered by J mesh cells can thus

be expressed as
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j
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Define a dimensionless (except for the azimuthal direction) diffusion coefficient

as

kx

k
kx

D
d

,
, ∆

≡
(A5)

Assuming that one direction is considered at a time then spatial index subscript is

dropped, and define the following:
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jjkk
kj dd

dd

+
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φφ

φ
: flux at surface between cells j and k, (A6)
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kj dd
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+
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2

: mean dimensionless diffusion coefficient at boundary, (A7)

( )jkkjkj dJ φφ −≅
: approximate current across boundary (R-Z or X-Z). (A8)

For the azimuthal direction in cylindrical coordinates, the current is given by

( )
1

2

++
−

≅
ii

jkkj
kj rr

d
J

φφ

: approximate current across boundary (A9)

in which k and j denote the azimuthal mesh point of the cell and its azimuthal

neighbor and i denotes the radial mesh point of the cell.

For non-azimuthal systems, Equation (A4) can be expressed as

( ) kkkkkrjkkj

J

j
kj VQVdS ∆=∆Σ+−∆∑

=

φφφ ,
1 (A10)

This expression can be expanded to include the azimuthal current contributions if

those terms include the appropriate radius in the denominator (
θ
φ

θ ∂
∂−=

r
DJ

1 ).

The source term Q has contributions from fission and in-scattering.
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Surface and Volume Elements

In the one or two-dimensional solvers, the delta term(s) representing the mesh

intervals along the un-modeled dimension(s) appear in every term in Equation (A4). The

effective volume and surface elements in these ‘reduced’ geometries are thus computed

from the non-redundant terms only. The expressions for the effective mesh cell surface

areas (∆S) and volume (∆V) in the 1D, 2D, and 3D are as follows (the 3D terms are not

reduced):

Cartesian Volume Element Surface Elements

1D: ∆V = ∆xi, ∆yj, or ∆zk ∆S = 1

2D: y-z: ∆V = ∆yj ∆zk kzdSy ∆=•ˆ jydSz ∆=•ˆ

x-z: ∆V = ∆xi ∆zk kzdSx ∆=•ˆ ixdSz ∆=•ˆ

x-y: ∆V = ∆xi ∆yj jydSx ∆=•ˆ ixdSy ∆=•ˆ

3D: ∆V = ∆xi ∆yj ∆zk yi yxdSx ∆∆=•ˆ

ki zxdSy ∆∆=•ˆ

ji yxdSz ∆∆=•ˆ

Cylindrical Volume Element Surface Elements

1D: r: dV = 0.5(ri+ ri+1 ) ∆ri dSi = ri

θ: dV = r1 ∆θj dSj = 1

z: dV = ∆ zk dSk = 1
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2D: r-z: dV = 0.5(ri+ ri+1 ) ∆ri∆zk ki zrdSr ∆=•ˆ

iii rrrSdz ∆+=• + )(5.0ˆ 1

�

r-θ: dV = 0.5(ri+ ri+1 ) ∆ri  ∆θj jirSdr θ∆=•
�

ˆ

iii rrrdS ∆+=• + )(5.0ˆ
1θ

3D: dV = 0.5(ri+ ri+1 ) ∆ri  ∆θj ∆zk kji zrSdr ∆∆=• θ
�

ˆ

ki zrSd ∆∆=•
�

θ̂

ijii rrrSdz ∆∆+=• + θ)(5.0ˆ 1

�

Boundary Conditions

Stamm’ler and Abbate [76] provide a straightforward treatment of boundary

conditions for cartesian and rz geometries. The partial currents across a boundary can

be expressed as:

24
J

j ±=± φ
(A12)

The positive and negative partial currents are related by the albedo, α, according

to

extjjj += +− α
(A13)

in which jext is an arbitrary external current. Substituting (A13) into (A12) and

solving for J yields

origin

∆ri

ri ri+1
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Assume a fictitious ‘reflector’ mesh cell r opposite the actual boundary mesh k

and apply

( ) r
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(A15)

In this notation, the subscript k is generic; it can be applied to any dimension.

Substitute (A6) into (A14) to get another expression for the current at the boundary.
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Equate flux terms in (A15) and (A16) to get the following expressions for the

dimensionless diffusion coefficient and flux for the reflector mesh cell.
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α
φ

−
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1
4

r
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(A18)

Assuming that the external current is zero, the second term in (A15) vanishes.

The first term yields the current, which can be expressed in terms of the boundary cell

flux and albedo.
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For azimuthal geometries, a ‘wrap-around’ condition is assumed, i.e. the inner

and outer azimuthal mesh points are coincident.

Coefficient Matrix (Coupling coefficients)

From Equation (A6) one can determine the coupling coefficients that relate the

flux in a mesh cell with that of its neighbors and the source term. Ai,j,k is the diagonal

term. The axial cell neighbors (k-1 and k+1) are not shown in this 2D

representation. The k in the following expressions

specifically denotes the axial mesh index.
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(A20)

Non-boundary mesh cell coupling coefficients are given by
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For non-azimuthal boundary cells, one of the off-diagonal coefficients vanishes

and the diagonal coefficient includes an albedo term, dr, as defined in (A19). The

following expressions are for the axial dimension. Identical expressions hold for the

radial dimension and the y-dimension in XYZ geometry.

Coupling coefficients for inner and outer axial boundary mesh cells
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(A22)

(inner)
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(A23)

(outer)

For three-dimensional cylindrical systems, an inner radial boundary condition

may not be specified. The geometry of the system is altered by merging the azimuthal

cells at i = 1 (inner radial) into one fully-cylindrical node. The neutron balance in this

node is the sum of the leakage terms from the J nodes at i = 2 and the neighboring axial

nodes and the removal and source terms:

( ) ( ) ( )

kkkkkr

kkkkkkkkkkkkkjk

J

j
jj
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∑
φ
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(A24)

The central cell is not subdivided azimuthally so the j subscript is dropped from

the variables assigned to that cell. The matrix equation for the inner cells is thus given by

kk

J

j
kjkjkikkkkk VQAAAA ,1,1

1
,,2,,21,1,11,11,1,1,1 ∆=+++ ∑

=
++−− φφφφ

(A25)

The neighbor cell coupling coefficients are defined as in Equation 18 (without the

j subscript) or Equations A22 and A23 for the axial boundary cells. However, the central

cell coupling coefficient, A1,k, for this cell is given by

kkrkkkk

kkkkj

J

j
jk

VdS

dSdSA

,1,1,1,1,

1,1,,1
1

,1,1

∆Σ+∆+

∆+∆=

−−

++
=

∑
. (A26)
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One can maintain the standard matrix structure by accepting a degeneracy in the

azimuthal nodes (j) of the inner radial node (i = 1). The banded matrixOne must also be

careful not to count more than one of these nodes in the fission power and power

normalization calculations if the volume of the cell is πr2
2.

The resulting coefficient matrix is banded with 3, 5, or 7 adjacent bands

depending on the number of dimensions modeled. If the azimuthal direction is among

them, there will also be off-diagonal terms coupling the 1st and last nodes in the θ–

direction. Finally, for R-θ-Z systems, the i = 1 rows will include contributions from all i = 2

terms for a given axial node k to account for the geometry illustrated at the right.

The system of N equations for each dimension is solved iteratively using

Successive Over-relaxation (SOR) acceleration of the flux according to

m
kji

n

n

n

n

m
ddd
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dddkjikji
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= =
++
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(A27)

in which m represents the current iterate and dn is the dimension (r,θ, or z). The

acceleration parameter, ω, is found by trial and error. Starting with an initial flux guess

(unity or solution from previous source iteration), Equation (A27) is solved twice for all

mesh cells: a forward sweep followed by a backward sweep, until the maximum

difference between successive flux values differs by less than the user-specified

tolerance. This is the inner or flux iteration.

Once the flux has converged for a given source term, the integrated source term

is re-computed according to
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or, in operator notation

φFdVQ
V

=∫
(A29)

in which F is the source term operator (all groups and meshes). The new

eigenvalue,λ, is computed from

1

11

1

,

,

+

++
+ =

nn

nn

nn

FF

FF

φφ

φφ
λλ

(A30)

This last calculation is repeated (outer loop) until the eigenvalue convergence

criterion is satisfied.

Finally, after the outer loop has converged, the fluxes for all groups are scaled by

the same factor to yield the user-specified power level.
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Appendix B

Solution to the Depletion Equations in PEBBED

Burnup and Nuclide Density

Equation 2.4 describes the flow or accumulation of burnup in a computational cell

over time. Burnup accumulation, however, is a consequence of the fission process and

thus is inherently tied to nuclide depletion as follows.

The burnup accrued by the fuel contained within the cell is the amount energy

released by the atoms fissioned within the cell per unit of initial heavy metal. A number,

call it I, of fissionable isotopes are likely to exist within the cell so the energy released is

computed by summing over these,

( )( )∑
=

Φ∆−=
I

i
oifiifi

ihm

VNtN
m

B
1

,,,

1 σκ
, (B1)

in which

mihm = the initial mass of heavy metal in the cell,

κI = energy released during the fission of an atom if isotope I

σf,I = fission cross section of isotope I,

Ni,f(t) = number density of isotope i in the cell after depletion

Ni,o = number density of isotope i in the cell before depletion

Φ = mean fluence in the cell (assumed constant)

∆V = volume of cell.

For an asymptotic core, the mean number density does not change with time but

varies along the direction of pebble flow. Assuming that this flow is axial with speed



225

dt
dzv = , the final number density is the value at the downstream boundary of the cell

and is a function of the height of the cell and the flow rate.

The rate of burnup accumulation is related to the rate of change of the number

density of the fissionable isotopes:

( )( ) 
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Only the final number density varies so that

( )( )











Φ∆





∂

−∂
=

∂
∂ ∑

=

I

i

oifi
ifi

ihm

V
t

NtN

mt

B

1

,,
,

1 σκ
. (B3)

Thus, the rate of change of burnup can be computed from the rate of change of

nuclide density. The nuclide density (depletion) equations form a system of first order

linear differential equations the solution to which is described in the next section.

Simple Batch Decay

Nuclear Chemical Engineering [78] provides the derivation of the Batch decay

equation for a system of isotopes. In the example used in the reference, Lead-211

decays to Lead-207 in three steps as follows.

82
211Pb→

β −

83
211Bi→

α

81
207Tl→

β −

82
207Pb (B4)

Lead-211 (Pb-211) is the chain precursor (1st nuclide in the chain) and its net rate

of change is given by:

dN1

dt
= −λ1N1

(B5)
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The rates of change of Bi-211, Tl-207, and stable Pb-207 are functions of the

concentrations of their respective precursors:

(Bi211)
2211

2 NN
dt

dN λλ −=
(B6)

(Tl207)
3322

3 NN
dt

dN λλ −=
(B7)

(Pb207)
33

4 N
dt

dN λ=
(B8)

The solutions to these equations, subject to initial condition N(t=0) = No, are

N1 = N1
0eλ1t

(B9)

N2 =
λ1

λ2 − λ1

N1
0 e−λ1t − e−λ 2t( )

(B10)
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(B11)

The amount of the last and stable member of the chain can be obtained from a

material balance,

N4 = N1
0 1 − e−λ1t( )− (N2 + N3) . (B12)

The above formulation can be generalized to obtain an expression for the

number density of the ith member of an arbitrary linear decay chain,
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The above equation assumes zero initial concentration of chain members.

Non-zero initial concentrations can be accommodated via superposition,
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(B14)

Batch Decay and Capture

This equation is only valid for simple radioactive decay. In the presence of a

constant neutron flux φ, gain and loss of an isotope may also occur as a result of neutron

capture. Fortunately, this formulation is easily generalized to account for both. First,

define a removal rate constant, µi, for the ith isotope in the chain as

iii φσλµ += . (B15)

Also define the link constant, ξi ,between the ith and i+1th isotope as

ξi =
λi           if i forms i +1 by radioactive decay

φσ i         if i forms i +1 by neutron capture

 
 
 
  

Then it can be shown that Equation B14 becomes

Ni = ξi −1...ξ2ξ1N1
0 e

−µ j t

k= l
k≠ j

i

∏ µk − µ j( )
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i-1

∑ + Ni
0e−µ i t

(B16)

to account for the growth and decay of isotopes in the presence of a neutron flux.
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Decay, Capture, and Fission

One must then account for the production of isotopes due to fission (the

formation of fission products and their subsequent removal products).

Define a production rate, P, of a chain precursor directly formed from the splitting

of M fissionable isotopes as

∑
=

≡
M

m

f
mmP

1

φσγ
(B17)

in which γm is the fission yield of fission product from the splitting of m and σm
f is the

fission cross-section of isotope m. Then the change in number density dNi(t’,t) of chain

isotope i resulting from the decay of Pdt’ atoms of the chain precursor during time

interval dt’ is given by

dNi t,t’( ) = ξi−1...ξ2ξ1Pdt’
e

−µ j t − t’( )

k= l
k≠ j

i

∏ µk − µ j( )
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Integrate the above over the interval (0,dt’) to obtain
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Finally, a given chain isotope itself may be formed by fission with a rate given by

Pj = γ jmσm
fφ

m =1

M

∑
(B20)

so that the general expression for the production of isotopes in a chain due only to

fission is given by
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This equation assumes zero initial nuclide densities (Ni
o = 0 for all i). The

production of isotopes due to fission is independent of the production of isotopes due to

decay or capture and therefore these processes can be superimposed. The complete

expression for the number of isotopes formed from decay, neutron capture, and fission is

the sum of Equations B16 and B21,
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(B22)

Linearization of Chains

This formulation is valid for properly linearized chains. An example of the

linearization of chains is given here.

Thorium-232 is a fertile isotope that is converted to fissile uranium-233 via

Protactinium-233. U-233 fissions but also may capture a neutron and convert to U-234

Fission
product contribution

Batch decay/capture
contribution
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Th232 Th233 Pa233 Pa234

U233 U234 U235
σcσc

σcσcσc

λλ

and then again to U-235. U-234 may also be formed by the neutron capture from

Pa-233. The split and merged chain can be presented in the following diagram:

To be amenable to the depletion formulation derived above, it must be split into

two linear chains with a few common members, namely,

and

The production of U-234 and U-235 is the sum of the contributions from the two

chains. In PEBBED, individual chains are identified by their precursor isotopes but a

given chain may have multiple branches to accommodate situations as described above.

Time Intervals in PEBBED

In PEBBED, the time interval over which a depletion occurs is computed directly

from the channel axial velocity, vi, and the axial mesh width ∆k,

t =
∆k

vi (B23)

Th232 Th233 Pa233 Pa234

ξξξ
U234 U235

ξ ξ

Th232 Th233 Pa233 U233

ξξξ
U234 U235

ξ ξ
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in which k is the index counting the axial mesh intervals and i is the index counting the

radial mesh intervals. Pebbles flow downward, so the initial nuclide densities are those

at the upper boundary of a mesh cell.

In the current version of PEBBED, the spatial mesh over which the diffusion

theory is solved is also the same as that over which the depletion equations are solved.

This allows for direct coupling of the flux profile to the depletion mesh. Also, the small

mesh size required for accurate diffusion theory results also means that the constant flux

assumption used in the depletion equations is reasonably valid.

(A nodal approach to the solution of the diffusion equation is being developed for

PEBBED and would allow much larger mesh intervals. The depletion formulation will

have to be generalized to incorporate a spatially varying flux.)

Round-off Error

Implementation of this depletion formulation on a digital computer introduces the

possibility of significant error in long chains. The decay and fission production terms in

Equation B19 both contain summations of exponential functions with alternating positive

and negative coefficients. Each term in the sum is the contribution from a predecessor of

the nuclide in question. The farther back in the nuclide’s lineage, the less of a

contribution will be made by a predecessor. Yet the coefficient of the exponential term

may not be small so that small precision errors in the density may result in very large

errors in the final result. The remedy proposed by England and described in Stamm’ler

and Abbate is commonly used. It requires the evaluation of the following inequality,
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and N is the maximum number of significant digits stored in computer memory. This

expression evaluated for each branch in a chain. Contributions from decay/capture

predecessors for which the inequality holds true are discarded. For the fission yield term,

the following inequality is evaluated with the same consequence,
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Appendix C

Transient, Non-Convective Radial Heat Transfer in PEBBED

One-Dimensional Radial Conductive Heat Transport

The one-dimensional, transient conduction in cylindrical coordinates can be

expressed as

ρ T( )Cp T( )∂T r,t)( )
∂t

= ∇• k T( )∇T (r,t) + q r,t( ) =
1
r

∂
∂r

k T( )r ∂T r, t( )
∂r

 
 
 

 
 
 + q r,t( )

. (C1)

This equation is solved using a standard finite-difference approach described

here. The approach is loosely based upon that used in the SHERLOC code [83] but

there are a few key differences. SHERLOC uses a mesh-centered control volume while

PEBBED uses a boundary-centered approach. SHERLOC assumes constant mesh

width while PEBBED allows variable mesh spacing. Being a stand-alone

conduction-radiation code, the steady-state core power density must be supplied to

SHERLOC. PEBBED computes its own.

Consider the discretization of the radial dimension in a pebble-bed reactor (r = 0

corresponds to the core centerline) with the left and right boundaries of cell i at distances

ri and ri+1 from the core centerline (Figure C-1).
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Figure C-1: Radial mesh interval in PEBBED transient calculation.

This is applied as follows to the control volume shown in the diagram with

boundaries at ir
~ and 1

~
−ir . Assume that the material properties are constant across a cell

but may change discontinuously at the cell boundaries. These material properties

include:

cell heat generation rate (W/cm3) iq

cell density (g/ cm3) iρ

cell specific heat (J/gCo) p
iC

cell thermal conductivity (W/cmCo) ik

Fourier’s Law for the heat current across the boundaries yields

1
r

∂
∂r

k T( )r ∂T r,t( )
∂r

 
 
 

 
 
 = k T( )A

∂T r, t( )
∂r

r̃i −1

+ k T( )A
∂T r,t( )

∂r
r̃i . (C2)

Denote the midpoint of cell i as

2
~ 1++≡ ii
i

rr
r

(C3)

and the mean temperature of the control volume as iT
~

.

ri-1 ri
ri+1

∆i

r̂

1
~

=ir ir
~

control volume

mesh cell

∆i-1
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The heat balance for the control volume becomes

ρ̃ i T̃( )C̃i
p T̃( )∂T̃i t)( )

∂t
= ki −1Ar̃i−1

∂T t( )
∂r

r̃i −1

+ ki A r̃i

∂T t( )
∂r r̃i

+ q̃i t( )
. (C4)

The control volume, illustrated by the shaded region in the figure, may be

composed of two different materials and has a volume given by

Ṽi = hiπ r̃i
2 − r̃i −1

2( ) (C5)

Assuming that the height of the cells are equal (hi = h), one may compute the

following thermal parameters for the control volume:
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(C7)

The change in the quantity of thermal energy in the control volume is the sum of

the heat generated within the volume and the flow of heat into the volume across the

boundaries.

dQ̃i

dt
= C̃i

dTi

dt
= q̃iṼi + Ãi−1ki −1

dT̃

dr
r =r̃i −1

− Ãiki

dT̃

dr
r= r̃i (C8)

in which Ti is the temperature at ri that is assumed to be equal to the average

temperature of the control volume and the cross-sectional area of the heat transfer

surface at the boundary is defined as

Ãi = 2πr̃ih . (C9)

A difference equation is used to approximate the derivative of the temperature at

the cell boundaries,

volume-averaged
heat generation rate (W/cm3)

volume-averaged
volumetric specific heat (J/cm3Co)
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dT̃i

dt
≅

Ti +1 − Ti

∆ i , (C10)

and this leads to an approximation of the time derivative,

dQ̃i

dt
≅ q̃iṼi + Ãi −1ki −1

T̃i −1 − T̃i

∆ i −1

+ Ãiki

T̃i +1 − T̃i

∆ i . (C11)

Substituting in the expressions for the control volume and surface areas yields

dQ̃i

dt
≅ q̃ihπ r̃i

2 − r̃i −1
2( )+ h2πr̃i−1ki −1

T̃i−1 − T̃i

∆ i −1

+ h2πr̃iki

T̃i+1 − T̃i

∆ i . (C12)

To discretize the time variable, a superscript is introduced to denote the

temperature and other thermal properties at a specific time step n, and the

forward-difference approximation is applied to yield

dQ̃i
n

dt
≅

Q̃i
n +1 − Q̃i

n

tn +1 − t n =
C̃iṼi Ti

n+1 − Ti
n( )

tn+1 − tn =
C̃ihπ r̃ i

2−r̃ i −1
2( ) Ti

n +1 − Ti
n( )

tn+1 − tn
. (C13)

Substituting this expression into Equation C13 and dropping the common hπ term yields

the difference equation for transient radial conduction in the control volume, assuming

constant material properties and heat generation:

C̃i r̃i
2 − r̃i−1

2( ) Ti
n+1 − Ti

n( )
tn+1 − tn = q̃i r̃i

2 − r̃i−1
2( )+ 2r̃i−1ki −1

T̃i−1 − T̃i

∆ i −1

+ 2r̃iki

T̃i +1 − T̃i

∆ i (C14)

In fact, for the types of problems to which this equation is applied, the heat

generation rate is a function of time, following a decay heat curve. The material

properties change as well because they are often temperature-dependent and the

temperature changes over time. A theta-differencing technique is thus used to

accommodate variations in the parameters. Define an intermediate temperature

Ti
θ ≡ θTi

n+1 + 1 −θ( )Ti
n                0 ≤ θ ≤1 (C15)
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as a weighted average of the temperatures at successive time steps. The material

properties are then evaluated at this time step. Of course, Ti
n+1 , is the quantity to be

computed in a transient calculation and is thus not known in advance. A solution scheme

is employed that starts by assuming that Ti
n+1 = Ti

n and iterating to convergence.

In the theta-differencing algorithm, the finite difference formulation in

Equation C14 is generalized to

C̃i
n+θ r̃i

2 − r̃i −1
2( ) Ti

n+1 − Ti
n( )

t n+1 − t n
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(C16)

To obtain a form that is readily implemented in a computer program, the (n+1)

terms are moved to the left-hand-side,
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Define Hi as the quantity on the right-hand-side,
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On the left-hand-side of (C17), collect the T̃i
n+1 terms,
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C̃i
n+θ r̃i
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and define

Di ≡ θ 2r̃i−1ki −1
n +θ

∆ i −1

+
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Pi ≡ θ 2 r̃i −1ki −1
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T̃i −1
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. (C21)

So one may write

T̃i
n+1 =

Hi + Pi

Di . (C22)

Again, there is one unknown term, T̃i+1
n+1 , that must be assigned an assumed

value and then updated until a convergence specification is met.

The value of θ is specified by the user. For θ = 0, the material properties are

evaluated at the starting point of the time interval and P̃i vanishes. There are no

assumed values in this fully explicit algorithm so no iteration is required. However, it is

not guaranteed to be stable for all time steps. For θ = 1, the material properties are

evaluated at the end point of the time interval. This fully implicit algorithm is stable for all

time steps but one must iterate to obtain the solution. For 15.0 <≤ θ , the semi-implicit

solution scheme is also stable. The default value in PEBBED is 0.5.

The temperature-dependent material properties are provided in look-up tables

and are updated after the algorithm has converged on the new temperature.
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Initial Conditions

Before the transient calculation may begin, however, an initial temperature

distribution must be computed. This is obtained from a steady-state solution to

Equation C14, i.e.,

0 ≅ q̃iṼi + Ãi −1ki −1

T̃i −1 − T̃i

∆ i −1

+ Ãiki

T̃i +1 − T̃i

∆ i . (C23)

The steady-state temperature distribution in the core is computed by PEBBED

using an appropriate convective heat transfer correlation. Outside of the active core, one

may assume that the heat generation rate in the mesh cells is zero so that

0 = Ãi −1ki−1

T̃i −1 − T̃i

∆ i−1

+ Ãiki

T̃i+1 − T̃i

∆ i . (C24)

This is a simple system of linear equations easily solved with a standard matrix

inversion routine. It requires known boundary conditions: the temperatures at the

core-reflector interface and outer model boundary. The first is supplied by the

steady-state core temperature calculation; the second is supplied by the user. Because

the thermal conductivity is temperature-dependent, some iterations are required to

obtain a consistent steady-state solution.

Material Properties

For thermal conductivity calculations, there are currently seven materials

available for model construction: void, pebble-bed, graphite, stainless steel-304,

2.25Cr:1Mo steel, concrete, and carbon brick. Some of the material properties used in

PEBBED were taken from reference [83] and incorporated as look-up tables. Some are

illustrated here.
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Concrete properties are assumed to be temperature-independent. The thermal

conductivity for concrete is 0.9344 W/mC°and the specific heat is 837.3 J/kgC°.

Graphite

Graphite conductivity exhibits a strong dependence on temperature and fluence.

A correlation developed at Oak Ridge [33] captures this dependence.

( ) ( )gg TRGTK
1

, =Φ Φ (C25)

in which

Kg = graphite thermal conductivity (W/cmK)

Φ = fluence of irradiated graphite (n/cm2)

TΦ = temperature at which graphite was irradiated (K)

Tg = temperature of graphite (K)

and

( ) ( ) ( ) ( ) ( ) ( )( ) ( )[ ]{ } 1
32421 1,1, −

ΦΦΦΦ −++= gggg TGTGTGTGTGTTFTTR
(C26)

( ) ( ) ( ) ( )( ){ }Φ⋅−−= ΦΦΦΦ
2110exp1,8.8, TTTHTTTF gg βα

(C27)

( ) 0000269.0116.1 ≥−= ΦΦ ββ TT (C28)

( ) ( )[ ] ( )Φ
−

Φ +⋅−= TTTTTH ggg α65.14201045.81 8
, (C29)

( ) 000057.0055.1 ≥−= ΦΦ αα TT (C30)

The temperature-dependent quantities, Gn, are obtained by linear interpolation

from the data sets shown in Table C-1.
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Figure C-2 illustrates the conductivity as a function of temperature and fluence.

Assumed in this plot is that the graphite temperature is the same as the temperature at

which the graphite was irradiated.
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Figure C-2: Graphite thermal conductivity.

Table C-1: Temperature-dependent parameters in graphite conductivity correlation.

Temperature (K) G1 G2 G3 G4

300 1.10 1.0 1.12 74.2
350 1.05 1.0 0.905 71.0
400 1.00 1.0 0.766 68.2
500 0.90 1.0 0.605 63.5
600 0.84 0.7 0.518 60.5
700 0.78 0.7 0.467 58.4
800 0.72 0.7 0.431 56.4
900 0.67 0.7 0.410 55.5

1,000 0.62 0.7 0.394 55.0
1,100 0.58 0.7 0.384 54.9
1,200 0.54 0.7 0.375 54.3
1,300 0.50 0.2 0.368 54.1
1,600 0.46 0.2 0.355 54.3
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For the graphite in pebbles, the fluence and irradiation temperature are obtained

from the pebble history computed by PEBBED. For reflector graphite, fluence and

irradiation temperature are user-supplied quantities.

For most pebble designs, graphite makes up the bulk of the mass so that for the

purpose of determining pebble temperature, the conductivity and specific heat are

considered to be that of pure graphite. The user also has the option of specifying a fixed

value for graphite conductivity in the fuel and graphite shell regions.

Because the core is not composed of solid graphite but of graphite sphere, an

effective thermal conductivity is used which accounts for the contact between adjacent

pebbles and the radiative heat transfer between them. Breitbach and Barthels proposed

a modification to a model initially created by Zehner and Schlunder. The details are not

provided here but are available from reference [83]. The modified Zehner-Schlunder

model is given by:
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in which

σ = the Stefan-Boltzmann constant =5.669x10-8 W/m2K4,

T = pebble temperature (K),

ε = emmissivity of graphite,

Kg = thermal conductivity of graphite (W/mK),

Bz = 1.25*(p/(1-p))10/9

p = pebble bed packing fraction, and

Dp = pebble diameter (cm).
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The specific heat of graphite is obtained by interpolation from the following plot.
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Figure C-3: Graphite specific heat.

Other Solids

Temperature-dependent thermal properties are also provided as lookup tables

for stainless steel type 304 (SSTL-304) and 2.25 Chromium – 1 Molybdenum carbon

steel (2.25Cr-1Mo Steel). Their properties are plotted below.
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Figure C-4: SSTL-304 specific heat.
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Figure C-5: SSTL-3-4 thermal conductivity.
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Figure C-6: 2.25Cr-1Mo specific heat.
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Figure C-7: 2.25Cr-1Mo thermal conductivity.

The remaining materials available in the PEBBED code have the properties

shown in Table C-2.
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Baked carbon brick is a graphite pre-product used for furnace insulation and

other applications. Many early HTGR designs used carbon brick to line the outer radial

surface of the outer graphite reflector. The low thermal conductivity inhibits radial heat

transfer and decreases parasitic heat loss during normal operation, thereby improving

cycle efficiency. Carbon brick is not used in today’s modular HTGR cores because it

inhibits radial heat transfer and thus increases peak fuel temperature during a

depressurized conduction cooldown event.

The user has the option of specifying a substitute material into a region. The

user-supplied constant density, specific heat, thermal conductivity, and emissivity are

added on a special line in the input deck.

Gas Gaps

For gas channels such as exist between the core barrel and pressure vessel or

pressure vessel and cavity cooling channels, heat transfer is assumed to occur by

radiation and conduction through helium. For a sufficiently high temperature difference,

the predominant heat transfer mechanism is radiation. An effective conductivity of a gas

gap is the sum of the helium conduction contribution and radiation. The radiative heat

transfer rate can be expressed in terms of a heat transfer coefficient as follows.

Table C-2: Thermal properties of non-temperature dependent materials.

Material Specific Heat, Cp, (J/kgK) Thermal Conductivity, K, (W/mK)

Concrete 837.3 0.9344

Carbon Brick 709 6
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The heat flux between two surfaces at temperatures T1 and T2 is given by the

thermal radiation law:

( ) ( ) ( )21
4

2
4

11221, TThTTTTq r −=−=′′ σε (C32)

in which

ε12 = the effective emissivity between the surface,

σ= the Stefan-Boltzmann constant (defined above), and

hr= radiation heat transfer coefficient across the gap (W/m2K).

Solving the above for hr, one obtains
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The effective emissivity, ε12, is given by:
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in which ε1 and ε2 are the emissivities of the respective surface materials.

For infinite concentric cylinders, F12 = 1.0, so the above becomes,
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Substituting this expression into the above yields the radiative heat transfer

coefficient at surface 1. The value of the coefficient at surface 2 is obtained by using
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12
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1
21 εε
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A
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. (C36)

Thus, defining the effective conductivity of a gas gap of width ∆g due to radiation

as

rgrad hK ∆=
(C37)

one obtains the total effective conductivity of the gas gap as

radHegap KKK +=
(C38)
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The heat capacity of the gap is assumed to be zero.
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Appendix D

Validation of PEBBED Neutronics Solver

Benchmarks for PBR equilibrium cycle calculations have not yet been

established. The stand-alone diffusion equation solver can be validated however and is

done so in this appendix with simple cases for which analytical solutions exist.

CRITICALITY

Criticality conditions and flux profiles can be obtained analytically for simple

reactor configurations. Most analytical treatments assume a boundary condition of zero

flux at an extrapolated boundary. PEBBED assumes a zero reentrant current boundary

condition (except for pure reflected cases) so these analytical solutions must be

re-worked. The zero reentrant current boundary condition leads to a criticality condition

that must be evaluated using a numerical search, as closed form solutions do not exist.

MATLAB routines were written to generate critical dimensions given number densities

and cross-sections. PEBBED models were constructed using the computed geometry

(critical dimension) and material specifications. Computed eigenvalue (keff = 1) and flux

profiles must match the analytical solution to validate the code.

Analytical solutions for a number of simple reactors are developed in the

following discussion. From these solutions, critical geometries can be determined.

Corresponding PEBBED models with these geometries were then constructed and run.

Accuracy is measured by how closely the PEBBED-computed eigenvalue matches unity.
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Shown below are the analytical solutions of simple cases for which PEBBED

models were constructed. A table of analytical vs. PEBBED computed eigenvalues

follows this section.

ANALYTICAL SOLUTIONS

1.0 1-Group Treatment of Reactors

Some Definitions:
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Criticality Condition:
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1.4 2D, 1 Group Bare Homogeneous Square

One assumes that the Helmholtz equation for this system is separable in x and y.
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One assumes that the Helmholtz equation for this system is separable in r and z.

)Z()R(),( rrzr =φ

The two components are solved separately in the manner shown above for the

1D cases to yield:
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For a reactor that is azimuthally uniform, this solution is valid for any azimuthal

location θ.
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1.6 3D, 1 Group Bare Homogenous Cube

One assumes that the Helmholtz equation for this system is separable in x, y,

and z.
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2.0 2-Group Treatment

For bare reactors, the group fluxes all share the same spatial dependence. This

allows the derivation of a criticality condition in terms of a single buckling. The flux

shapes are the same as the one-group cases.
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2.1 1D, Bare Slab of width a
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Criticality Condition:

The boundary conditions specified for the 1-group treatment apply here. The

reactor is critical for a slab of width a, such that the following expressions are satisfied.

( )m

m

DB
B

a 2cot
2 1−= ( )( ) 1

11 222
=

++
∞

TmTm BLB

k

τ

2.2 2D Rectangle (length b may not equal width a)

Criticality Condition:

( )x

x

DB
B

a 2cot
2 1−= ( )( ) 1

11 222
=

++
∞

TmTm BLB

k

τ

( )y

y

DB
B

b 2cot
2 1−= 222

yxm BBB +=

2.3 2D Cylinder

( )z

z

DB
B

H 2cot
2 1−= 222

zrm BBB +=

( )
( )RBJ

RBJ
DB

r

ro
r

1

2 =



257

3.0 Numerical Results

For the 1-group cases, material properties from Example 6.3 in the Introduction

to Nuclear Engineering, 2nd Edition, by J. Lamarsh were used. These material properties

were used to compute critical dimensions (using bisection search routines coded in

MATLAB). PEBBED models were constructed using these materials and dimensions.

For the 2-group cases, material properties from Example 6.6 of Lamarsh were used.

Table D-1: Analytical vs. PEBBED-calculated core eigenvalues.

Case Geometry # of

Energy
Groups

Analytical
Eigenvalue

Computed
Critical

Dimensions

PEBBED
Eigenvalue

Bare Critical One-Dimensional
Cylinder

1 1 a = 30.47 cm 1.00002

Bare Critical One-Dimensional Slab 1 1 a =36.38 cm 1.00002

Bare Critical Two-Dimensional
Square

1 1 a =56.165
b = 56.165 cm

Bare Critical Two-Dimensional
Cylinder

1 1 R = 35 cm
H = 94.343 cm

1.00001

Bare Critical Three-Dimensional
Cylinder

1 1 R = 35 cm
H = 94.343 cm

1.00001

Infinite Two-Dimensional Slab 1 2.6069

(k∞)

N/A 2.6069

Reflected Critical One-Dimensional
Cylinder

1 1 Core R = 25 cm
Reflector Width =

38.121 cm

.00002

Reflected Critical One-Dimensional
Slab

1 1 Core R = 20 cm
Reflector Width =

18.931 cm

1.00018

Bare Critical One-Dimensional Slab 2 1 a =54.474cm 1.00043

Bare Critical Two-Dimensional
Square

2 1 a =60.0
b = 136.50 cm

0.99980

Bare Critical Two-Dimensional
Cylinder

2 1 R = 60.0 cm
H = 80.217 cm

1.00019
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Appendix E

Reactor Models

Table E-1: HTR Modul 200.

Core Geometry
Core (pebble-bed) radius = 150 cm, height = 940 cm
Top reflector radius = 240 cm, height = 135 cm
Radial reflector width = 95 cm, height = 940 cm
Bottom reflector radius = 240 cm, height = 260 cm
Gas plenum between core and top reflector height = 80 cm

Pebble Flow
Pebble packing fraction 0.613
Mean pebble flow rate (pebbles/day) 5300
Normalized axial velocity profile vz(r)
(vo = velocity at inner flow boundary)

v(r) = vo

Number of flow channels 1
Number of flow zones 1

Pebble Data
Ex-Core Decay Time
Composition (see below) FUEL
Discharge burnup (MWD/kgihm) 80
Ex-core decay time (hours) 40
Recirculation mode Random (1 flow zone)

Nuclear Data
Energy Group Max. Energy (eV)

1 1.6905E7
2 1.1109E5
3 7102.
4 29.023
5 2.3823
6 1.8554

Fuel isotopes (that produce fission products) U-235, Pu-239, Pu-241
Depletion chains

U-235 U-235 U-236 U-237 Np-237 Np238 Pu-
238 Pu-239

U-238 U-238 Np-239 Pu-239 Pu-240 Pu-241
Pu-242

Xe I-135 Xe-135
Sm Pm-149 Sm-149
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Table E-1: HTR Modul 200 (continued).

Composition Specification BOL Homogenized Atom Density
(atoms/barn-cm)

FUEL isotopes
C-12 0.05302
U-235 7.603E-06
U-238 8.874E-05
O-16 1.927E-4
Si-28 2.119E-4
He-4 1.964-4

REFLECTOR isotopes
C-12 0.07671

VOID isotopes
He-4 5.076E-04

Thermal-Hydraulic Data
Core power (MW) 200
Helium temperature (°C) - inlet/outlet 250/700
He flow rate (kg/s) 86
He specific heat (J/kg-K) 5196
He inlet pressure (Mpa) 6.0

Depressurized Conduction Cooldown Model
Region Composition Outer Radius (cm) Density

(g/cm3)
1 Pebble-bed 150 1.06
2 Reflector 230 1.53
3 Carbon brick 250 6.0
4 Void (He) 265 0.0
5 SSTL-304 270 7.8
6 Void (He) 295 0.0
7 2.25Cr-1Mo Steel 310 7.675
8 Void (He) 430 0.0
9* Concrete 480 1.75

* Used in models in with no reactor cavity cooling system
Outer boundary temperature (°C) 35
Mean reflector fluence (n/cm2) 0
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Table E-2: PBMR-DIR.

Core Geometry
Core (pebble-bed) radius = 175m, height = 850 cm
Top reflector radius = 250 cm, height = 135 cm
Radial reflector width = 75 cm, height = 850 cm
Bottom reflector radius = 250 cm, height = 260 cm
Gas plenum between core and top
reflector

height = 50 cm

Pebble Flow
Pebble packing fraction 0.613
Mean pebble flow rate (pebbles/day) 5140
Normalized axial velocity profile vz(r)
(vo = velocity at inner flow boundary)

v(r) = vo(-2.302E-5r2 + 2.750E-3r + 1)

Number of flow channels 5
Outer radii of flow channels (cm) 72.5-102.5-129.5-152.5-175.0
Number of flow zones 2
Radius of zone boundary (cm) 87.5

Pebble Data
Ex-Core Decay Time
Composition (see below) FUEL GRAPHITE

Discharge burnup (MWD/kgihm) 80 0
Ex-core decay time (hours) 40 0
Recirculation mode Type-dependent,

Burnup-independent
(outer zone only)

Type-dependent,
Burnup-independent

(inner zone only)
Nuclear Data

Energy Group Max. Energy (eV)
1 1.6905E7
2 1.1109E5
3 7102.
4 29.023
5 2.3823
6 1.8554

Fuel isotopes (that produce fission
products)

U-235, Pu-239, Pu-241

Depletion chains
U-235 U-235 U-236 U-237 Np-237 Np238 Pu-238

Pu-239
U-238 U-238 Np-239 Pu-239 Pu-240 Pu-241 Pu-242
Xe I-135 Xe-135
Sm Pm-149 Sm-149
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Table E-2: PBMR-DIR (continued).

Composition Specification BOL Homogenized Atom Density
(atoms/barn-cm)

FUEL isotopes
C-12 0.05290
U-235 9,998E-06
U-238 1.135E-04
O-16 2.470E-4
Si-28 2.700E-4
He-4 1.964-4

REFLECTOR isotopes
C-12 0.07671

VOID isotopes
He-4 5.076E-04

GRAPHITE isotopes
C-12 0.05379
He-4 1.964E-04

Thermal-Hydraulic Data
Core power (MW) 268
Helium temperature (°C) - inlet/outlet 503/900
He flow rate (kg/s) 125.74
He specific heat (J/kg-K) 5196
He inlet pressure (Mpa) 7.0

Depressurized Conduction Cooldown Model
Region Composition Outer Radius (cm) Density

(g/cm3)
1 Pebble-bed 175 1.06
2 Graphite 251 1.53
3 Void (He) 281 0.0
4 Graphite 284 1.53
5 Void (He) 291 0.0
6 2.25Cr-1Mo Steel 301 7.675
7 Void (He) 364.5 0.0
8* Concrete 370 1.75

* Used in models in with no reactor cavity cooling system
Outer boundary temperature (°C) 50
Mean reflector fluence (n/cm2) 5.7E20
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Partition Coefficients for the PBMR-DIR

flow partition coefficients (αj)

j-> 1 2 3 4 5

0.19008 0.18793 0.21260 0.20294 0.20645

type partition coefficients (αj
p)

j-> 1 2 3 4 5

1 (fuel) 0.000000 0.53748 0.99998 0.99998 0.99998

2 (graphite) 1.000000 0.46251 0.00000 0 00000 0.00000

transfer partition coefficients (mαj
p) for all m, p = 1

j-> 1 2 3 4 5

1 0.000000 0.000000 0.000000 0.000000 0.000000

2 0.139711 0.139711 0.139711 0.139711 0.139711

i 3 0.294048 0.294048 0.294048 0.294048 0.294048

4 0.280697 0.280697 0.280697 0.280697 0.280697

5 0.285544 0.285544 0.285544 0.285544 0.285544

Transfer partition coefficients (mαj
p) for p = 2 (graphite) are not defined since graphite

pebbles are assumed to be non-recirculating.
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Table E-3: GE-MPBR.

Core Geometry
Core (pebble-bed) radius = 144.8 cm, height = 926 cm
Top reflector radius = 344.8 cm, height = 100 cm
Radial reflector width = 100 cm, height = 926 cm
Bottom reflector radius = 344.8 cm, height = 100 cm
Gas plenum between core and top
reflector

none

Pebble Flow
Pebble packing fraction 0.613
Mean pebble flow rate (pebbles/day) 4438
Normalized axial velocity profile vz(r)
(vo = velocity at inner flow boundary)

v(r) = vo

Number of flow channels 4
Outer radii of flow channels (cm) 73.1 102.4 123.6 144.8
Number of flow zones 2

Pebble Data
Ex-Core Decay Time
Composition (see below) FUEL
Discharge burnup (MWD/kgihm) 80
Ex-core decay time (hours) 5
Recirculation mode Burnup-dependent (OUT-IN)

Nuclear Data
Energy Group Max. Energy (eV)

1 1.6905E7
2 1.1109E5
3 7102.
4 29.023
5 2.3823
6 1.8554

Fuel isotopes (that produce fission
products)

U-235, Pu-239, U-233

Depletion chains
U-235 U-235 U-236 U-237 Np-237 Np238 Pu-238

Pu-239
U-238 U-238 Np-239 Pu-239 Pu-240 Pu-241 Pu-242
Xe I-135 Xe-135
Sm Pm-149 Sm-149
Th-232a Th-232 Pa-233 U-233 U-234 U-235
Th-232b Th-232 Pa-233 (Pa-234) U-234 U-235
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Table E-3: GE-MPBR (continued).

Composition Specification BOL Homogenized Atom Density
(atoms/barn-cm)

FUEL isotopes
C-12 0.05043
U-235 8.107E-06
U-238 3.202-05
O-16 1.953E-4
Si-28 1.069E-3
He-4 1.427E-4
Th-232 5.752E-05

REFLECTOR isotopes
C-12 0.08022

Thermal-Hydraulic Data
Core power (MW) 250
Helium temperature (°C) - inlet/outlet 400/950
He flow rate (kg/s) 87.4
He specific heat (J/kg-K) 5196
He inlet pressure (Mpa) 4.0

Depressurized Conduction Cooldown Model
Region Composition Outer Radius (cm) Density

(g/cm3)
1 Pebble-bed 144.7 1.04
2 Reflector 220 1.6
3 Reflector 245 1.6
4 SSTL-304 248 7.8
5 Void (He) 266 0.0
6 2.25Cr-1Mo Steel 282 7.675
7 Void (He) 382 0.0
8* Concrete 422 1.75

* Used in models in with no reactor cavity cooling system
Outer boundary temperature (°C) 50
Mean reflector fluence (n/cm2) 0
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Partition Coefficients for the GE-MPBR

flow partition coefficients (αj)

j-> 1 2 3 4

0.25515 0.24494 0.22852 0.27139

type partition coefficients (αj
p)

j-> 1 2 3 4

p 1 (fuel) 1.000000 1.000000 1.000000 1.000000

transfer partition coefficients (mαj
p) for m < 5, p = 1

j-> 1 2 3 4

1 0.000000 0.000000 0.000000 0.000000

2 0.000000 0.000188 0.000188 0.000188

i 3 0.000000 0.457032 0.457032 0.457032

4 0.000000 0.542780 0.542780 0.542780

transfer partition coefficients (mαj
p) for m > 4, p = 1

j-> 1 2 3 4

1 0.510300 0.510300 0.510300 0.510300

2 0.489700 0.489700 0.489700 0.489700

i 3 0.000000 0.000000 0.000000 0.000000

4 0.000000 0.000000 0.000000 0.000000
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Table E-4: VHTR-300.

Core Geometry
Inner reflector radius = 40 cm, height = 875 cm
Core (pebble-bed) radius = 175 cm, height = 875 cm
Top reflector radius = 225 cm, height = 140 cm
Radial reflector width = 75 cm, height = 875 cm
Bottom reflector radius = 225 cm, height = 260 cm
Gas plenum between core and top
reflector

height = 50 cm

Pebble Flow
Pebble packing fraction 0.613
Mean pebble flow rate (pebbles/day) 5599
Normalized axial velocity profile vz(r)
(vo = velocity at inner flow boundary)

v(r) = vo(-2.302E-5r2 + 2.750E-3r + 1)

Number of flow channels 5
Outer radii of flow channels (cm) 75.5 96.8 132.4 153.7 175.0
Number of flow zones 1

Pebble Data
Ex-Core Decay Time
Composition (see below) FUEL
Discharge burnup (MWD/kgihm) 93.9
Ex-core decay time (hours) 40
Recirculation mode Random (1 flow zone)

Nuclear Data
Energy Group Max. Energy (eV)

1 1.6905E7
2 1.1109E5
3 7102.
4 29.023
5 2.3823
6 1.8554

Fuel isotopes (that produce fission
products)

U-235, Pu-239, Pu-241

Depletion chains
U-235 U-235 U-236 U-237 Np-237 Np238 Pu-238

Pu-239
U-238 U-238 Np-239 Pu-239 Pu-240 Pu-241 Pu-242
Xe I-135 Xe-135
Sm Pm-149 Sm-149
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Table E-4: VHTR-300 (continued).

Composition Specification BOL Homogenized Atom Density
(atoms/barn-cm)

FUEL isotopes
C-12 0.05300
U-235 8.845E-06
U-238 1.004E-04
O-16 2.186E-4
Si-28 2.389E-4
He-4 1.964-4

REFLECTOR isotopes
C-12 0.07671

VOID isotopes
He-4 5.076E-04

Thermal-Hydraulic Data
Core power (MW) 300
Helium temperature (°C) - inlet/outlet 600/1,000
He flow rate (kg/s) 144.4
He specific heat (J/kg-K) 5196
He inlet pressure (Mpa) 7.0

Depressurized Conduction Cooldown Model
Region Composition Outer Radius (cm) Density

(g/cm3)
1 Reflector (inner) 40 1.8
2 Pebble-bed 175 1.10
3 Reflector 251 1.8
4 Void (He) 281 0.0
5 Reflector (core barrel) 284 1.8
6 Void (He) 291 0.0
7 2.25Cr-1Mo Steel 301 7.675
8 Void (He) 428 0.0
Outer boundary temperature (°C) 35
Mean reflector fluence (n/cm2) 0
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Partition Coefficients for the Manually Optimized VHTR-300

flow partition coefficients (αj)

j-> 1 2 3 4 5

0.14167 0.13104 0.28952 0.20944 0.22834

type partition coefficients (αj
p)

j-> 1 2 3 4 5

p 1 (fuel) 1.000000 1.000000 1.000000 1.000000 1.000000

transfer partition coefficients (mαj
p) for all m, p = 1

j-> 1 2 3 4 5

1 0.14167 0.14167 0.14167 0.14167 0.14167

2 0.13104 0.13104 0.13104 0.13104 0.13104

i 3 0.28952 0.28952 0.28952 0.28952 0.28952

4 0.20944 0.20944 0.20944 0.20944 0.20944

5 0.22834 0.22834 0.22834 0.22834 0.22834

Partition Coefficients for the VHTR-300 used in the Hotspot Analysis

flow partition coefficients (αj)

j-> 1 2 3 4 5

0.10000 0.29755 0.20056 0.18983 0.21203

type partition coefficients (αj
p)

j-> 1 2 3 4 5

p 1 (fuel) 1.000000 1.000000 1.000000 1.000000 1.000000
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transfer partition coefficients (mαj
p) for all m, p = 1 – nominal case

j-> 1 2 3 4 5

1 0.100001 0.100001 0.100001 0.100001 0.100001

2 0.297548 0.297548 0.297548 0.297548 0.297548

i 3 0.200555 0.200555 0.200555 0.200555 0.200555

4 0.189832 0.189832 0.189832 0.189832 0.189832

5 0.212065 0.212065 0.212065 0.212065 0.212065

transfer partition coefficients (mαj
p) for m=1, p = 1 – InOut 1

j-> 1 2 3 4 5

1 0.000001 0.000000 0.000000 0.000000 0.000000

2 0.330609 0.000000 0.000000 0.000000 0.000000

i 3 0.222839 0.000000 0.000000 0.000000 0.000000

4 0.210924 0.000000 0.000000 0.000000 0.000000

5 0.235628 0.000000 0.000000 0.000000 0.000000

transfer partition coefficients (mαj
p) for m>1, p = 1 – InOut 1

j-> 1 2 3 4 5

1 0.000001 0.000001 0.000001 0.000001 0.000001

2 0.330609 0.330609 0.330609 0.330609 0.330609

i 3 0.222839 0.222839 0.222839 0.222839 0.222839

4 0.210924 0.210924 0.210924 0.210924 0.210924

5 0.235628 0.235628 0.235628 0.235628 0.235628

flow partition coefficients (αj) – hot2

j-> 1 2 3 4 5

0.11098 0.08921 0.25678 0.31040 0.23262
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transfer partition coefficients (mαj
p) for m=1, p = 1 – InOut 2

j-> 1 2 3 4 5

1 0.554921 0.554921 0.000000 0.000000 0.000000

2 0.445079 0.445079 0.000000 0.000000 0.000000

i 3 0.000000 0.000000 0.000000 0.000000 0.000000

4 0.000000 0.000000 0.000000 0.000000 0.000000

5 0.000000 0.000000 0.000000 0.000000 0.000000

transfer partition coefficients (mαj
p) for m>1, p = 1 – InOut 2

j-> 1 2 3 4 5

1 0.000000 0.000240 0.000240 0.000240 0.000240

2 0.000240 0.320980 0.320980 0.320980 0.320980

i 3 0.320980 0.388000 0.388000 0.388000 0.388000

4 0.388000 0.290780 0.290780 0.290780 0.290780

5 0.290780 0.000240 0.000240 0.000240 0.000240

flow partition coefficients (αj) – hot3

j-> 1 2 3 4 5

0.15755 0.13541 0.23231 0.25851 0.21622

transfer partition coefficients (mαj
p) for m=1,2, p = 1 – InOut 3

j-> 1 2 3 4 5

1 0.525155 0.525155 0.525155 0.525155 0.525155

2 0.451373 0.451373 0.451373 0.451373 0.451373

i 3 0.023473 0.023473 0.023473 0.023473 0.023473

4 0.000000 0.000000 0.000000 0.000000 0.000000

5 0.000000 0.000000 0.000000 0.000000 0.000000
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transfer partition coefficients (mαj
p) for m>2, p = 1 – InOut 3

j-> 1 2 3 4 5

1 0.000000 0.000000 0.000000 0.000000 0.000000

2 0.000000 0.000000 0.000000 0.000000 0.000000

i 3 0.321811 0.321811 0.321811 0.321811 0.321811

4 0.369304 0.369304 0.369304 0.369304 0.369304

5 0.308884 0.308884 0.308884 0.308884 0.308884

flow partition coefficients (αj) – hot4

j-> 1 2 3 4 5

0.16906 0.23108 0.16995 0.19995 0.22995

transfer partition coefficients (mαj
p) for m<4, p = 1 – InOut 4

j-> 1 2 3 4 5

1 0.422655 0.422655 0.422655 0.422655 0.422655

2 0.577345 0.577345 0.577345 0.577345 0.577345

i 3 0.000000 0.000000 0.000000 0.000000 0.000000

4 0.000000 0.000000 0.000000 0.000000 0.000000

5 0.000000 0.000000 0.000000 0.000000 0.000000

transfer partition coefficients (mαj
p) for m>3, p = 1 – InOut4

j-> 1 2 3 4 5

1 0.000000 0.000000 0.000000 0.000000 0.000000

2 0.000244 0.000244 0.000244 0.000244 0.000244

i 3 0.283250 0.283250 0.283250 0.283250 0.283250

4 0.333252 0.333252 0.333252 0.333252 0.333252

5 0.383253 0.383253 0.383253 0.383253 0.383253

flow partition coefficients (αj) – warm1-20 through warm1-50

j-> 1 2 3 4 5

0.10000 0.29755 0.20056 0.18983 0.21206
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transfer partition coefficients (mαj
p) for all m, p = 1 – warm1-20

j-> 1 2 3 4 5

1 0.088889 0.088889 0.088889 0.088889 0.088889

2 0.301223 0.301223 0.301223 0.301223 0.301223

i 3 0.203036 0.203036 0.203036 0.203036 0.203036

4 0.192174 0.192174 0.192174 0.192174 0.192174

5 0.214678 0.214678 0.214678 0.214678 0.214678

transfer partition coefficients (mαj
p) for all m, p = 1 – warm1-30

j-> 1 2 3 4 5

1 0.077778 0.077778 0.077778 0.077778 0.077778

2 0.304897 0.304897 0.304897 0.304897 0.304897

i 3 0.205512 0.205512 0.205512 0.205512 0.205512

4 0.194517 0.194517 0.194517 0.194517 0.194517

5 0.217296 0.217296 0.217296 0.217296 0.217296

transfer partition coefficients (mαj
p) for all m, p = 1 – warm1-40

j-> 1 2 3 4 5

1 0.066667 0.066667 0.066667 0.066667 0.066667

2 0.308570 0.308570 0.308570 0.308570 0.308570

i 3 0.207988 0.207988 0.207988 0.207988 0.207988

4 0.196861 0.196861 0.196861 0.196861 0.196861

5 0.219914 0.219914 0.219914 0.219914 0.219914

transfer partition coefficients (mαj
p) for all m, p = 1 – warm1-50

j-> 1 2 3 4 5

1 0.055560 0.055560 0.055560 0.055560 0.055560

2 0.312242 0.312242 0.312242 0.312242 0.312242

i 3 0.210463 0.210463 0.210463 0.210463 0.210463

4 0.199203 0.199203 0.199203 0.199203 0.199203

5 0.222531 0.222531 0.222531 0.222531 0.222531
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Table E-5: VHTR-600.

Core Geometry
Inner reflector radius = 150 cm, height = 950 cm
Core (pebble-bed) radius = 250 cm, height = 950 cm
Top reflector radius = 326 cm, height = 140 cm
Radial reflector width = 76 cm, height = 950 cm
Bottom reflector radius = 326 cm, height = 260 cm
Gas plenum between core and top
reflector

height = 50 cm

Pebble Flow
Pebble packing fraction 0.613
Mean pebble flow rate (pebbles/day) 8314
Normalized axial velocity profile vz(r)
(vo = velocity at inner flow boundary)

v(r) = vo(-2.302E-5r2 + 2.750E-3r + 1)

Number of flow channels 5
Outer radii of flow channels (cm) 171.1 192.1 213.2 234.2 250.0
Number of flow zones 1

Pebble Data
Ex-Core Decay Time
Composition (see below) FUEL
Discharge burnup (MWD/kgihm) 80.0
Ex-core decay time (hours) 5
Recirculation mode Random (1 flow zone)

Nuclear Data
Energy Group Max. Energy (eV)

1 1.6905E7
2 1.1109E5
3 7102.
4 29.023
5 2.3823
6 1.8554

Fuel isotopes (that produce fission
products)

U-235, Pu-239, Pu-241

Depletion chains
U-235 U-235 U-236 U-237 Np-237 Np238 Pu-238

Pu-239
U-238 U-238 Np-239 Pu-239 Pu-240 Pu-241 Pu-242
Xe I-135 Xe-135
Sm Pm-149 Sm-149
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Table E-5: VHTR-600 (continued).

Composition Specification BOL Homogenized Atom Density
(atoms/barn-cm)

FUEL isotopes
C-12 0.05300
U-235 8.735E-06
U-238 9.919E-05
O-16 2.158E-4
Si-28 2.359E-4
He-4 1.964-4

REFLECTOR isotopes
C-12 0.07671

VOID isotopes
He-4 5.076E-04

Thermal-Hydraulic Data
Core power (MW) 600
Helium temperature (°C) - inlet/outlet 600/1,000
He flow rate (kg/s) 288.4
He specific heat (J/kg-K) 5,196
He inlet pressure (Mpa) 7.0

Depressurized Conduction Cooldown Model
Region Composition Outer Radius (cm) Density

(g/cm3)
1 Reflector (inner) 150 1.8
2 Pebble-bed 250 1.10
3 Reflector 326 1.8
4 Void (He) 356 0.0
5 Reflector (core barrel) 360 1.8
6 Void (He) 366 0.0
7 2.25Cr-1Mo Steel 376 7.675
8 Void (He) 503 0.0
Outer boundary temperature (°C) 35
Mean reflector fluence (n/cm2) 0
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Partition Coefficients for the VHTR-600

flow partition coefficients (αj)

j-> 1 2 3 4 5

0.16316 0.19126 0.21682 0.23857 0.19019

type partition coefficients (αj
p)

j-> 1 2 3 4 5

p 1 (fuel) 1.000000 1.000000 1.000000 1.000000 1.000000

transfer partition coefficients (mαj
p) for all m, p = 1

j-> 1 2 3 4 5

1 0.16316 0.16316 0.16316 0.16316 0.16316

2 0.19126 0.19126 0.19126 0.19126 0.19126

i 3 0.21682 0.21682 0.21682 0.21682 0.21682

4 0.23857 0.23857 0.23857 0.23857 0.23857

5 0.19019 0.19019 0.19019 0.19019 0.19019
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