brought

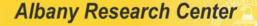
Albany Research Center

Office of Fossil Energy - U.S. Department of En

Solutions that make the Nation's energy systems safe, efficient

Microstructural Stability of 9-12%Cr Stee at Elevated Temperatures

Ö.N. Doğan J.A. Hawk


U.S. Department of Energy Albany Research Center Albany, Oregon 97321 www.alrc.doe.gov

Materials Science and Technology 2005 Ferrous Physical Metallurgy of Highly Alloyed Steels: Stainless Steel Pittsburgh, PA September 25-28, 2005

9-12 Cr Steels

- Various martensitic 9-12 Cr steels are utilized in advanced energy plants for their good elevated temperature properties:
 - ≻Creep strength
 - Steam side oxidation resistance
 - ≻Fire side corrosion resistance
 - ≻Thermal fatigue resistance

Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

MS&T 2005, Pittsburgh, PA, September 25-28, 2005

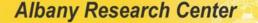
Applications

- Boilers:
 - ➢ Superheater tubing
 - ≻Headers
 - ≻Steam pipes

• Steam Turbines:

- ➢Rotors
- ≻Casings
- ≻Valves
- ≻Inlet pipes

Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

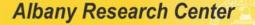


MS&T 2005, Pittsburgh, PA, September 25-28, 2005

Motivation for Current Research

 Need for further improvements on the properties for higher temperature (>600°C) use driven by the environmental concerns (i.e., improve efficiency to reduce emissions and fossil fuel consumption)

Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures



MS&T 2005, Pittsburgh, PA, September 25-28, 2005

Objective

• Explore new subsitutional solute solution (Cu, Co) and precipitate (TiC) hardening mechanisms for improved strength of 9-12 Cr martensitic steels

Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

MS&T 2005, Pittsburgh, PA, September 25-28, 2005

Alloy Design

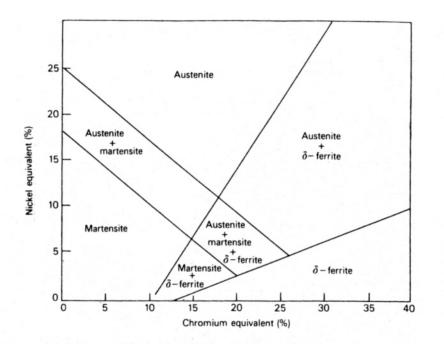


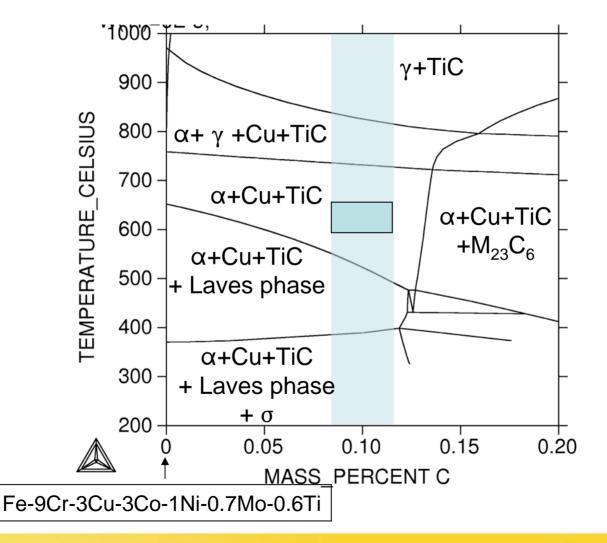
Fig. 12.4 Schaeffler diagram. Effect of alloying elements on the basic structure of Cr-Ni stainless steels (Schneider and Climax Molybdenum Co., *Foundry Trade J.* 108, 562, 1960).

Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

Albany Research Center

MS&T 2005, Pittsburgh, PA, September 25-28, 2005

Nominal Composition of Alloys (wt%)


Alloy	Fe	Cr	Cu	Co	Мо	Ni	Ti	С	Mn	Si	Other
HR52	Bal	9	3	3	0.7	1	0.5	0.1	-	-	
HR53	Bal	10.5	3	4	0.7	1	0.5	0.1	-	-	
HR54	Bal	12	3	4	0.7	1	0.5	0.1	-	-	
HR58	Bal	9	3	3	0.7	1	0.5	0.1	-	0.25	
HR59	Bal	9	3	3	0.7	1	0.5	0.1	0.2	0.25	
HR60	Bal	9	3	3	0.7	1	0.5	0.1	0.6	0.25	
HR61	Bal	9	3	3	0.7	1	0.5	0.1	1	0.25	
P91	Bal	9	0.1	-	1	0.3	-	0.1	0.5	0.3	0.2V-0.08Nb

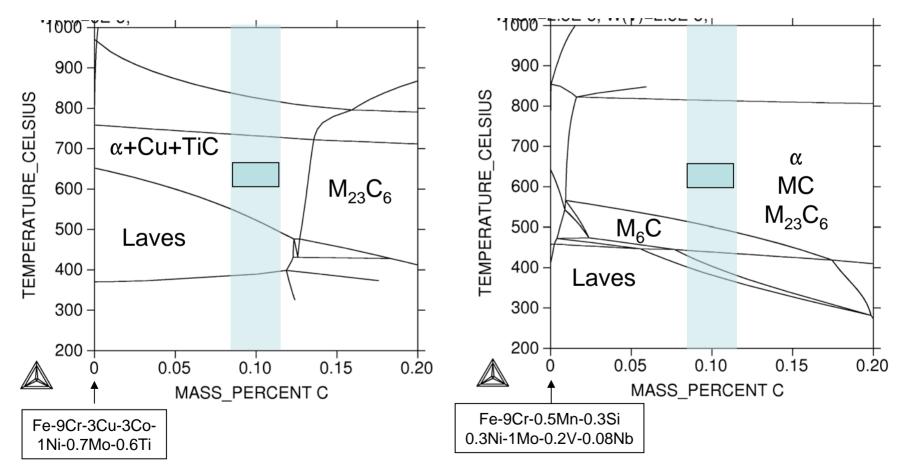
Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

Albany Research Center

MS&T 2005, Pittsburgh, PA, September 25-28, 2005

Thermodynamic calculation of phases in HR52

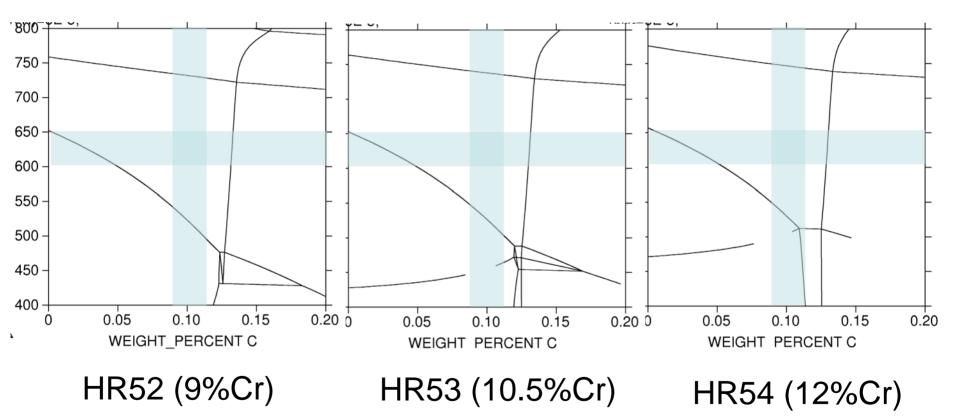
Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures


Albany Research Center

MS&T 2005, Pittsburgh, PA, September 25-28, 2005

HR52 vs P91

HR52



Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

Albany Research Center

MS&T 2005, Pittsburgh, PA, September 25-28, 2005

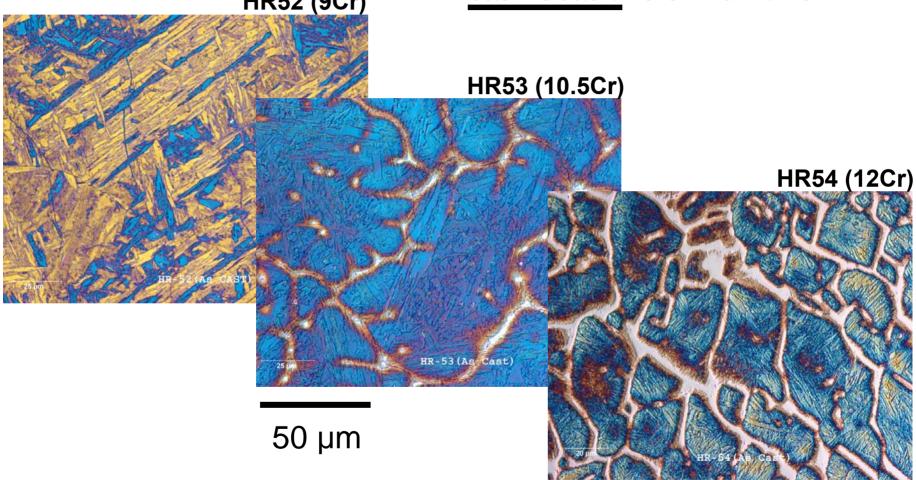
Effect of Cr on the equilibrium phases

Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

Albany Research Center

MS&T 2005, Pittsburgh, PA, September 25-28, 2005

Melting and Casting


- Experimental steels were vacuum induction melted using elemental charge materials
- They were poured into ceramic coated, 2 in diameter graphite molds

Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

Albany Research Center

MS&T 2005, Pittsburgh, PA, September 25-28, 2005

Microstructure of steels in theHR52 (9Cr)<u>as-cast</u> condition

Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

Albany Research Center

MS&T 2005, Pittsburgh, PA, September 25-28, 2005

Office of Fossil Energy - U.S. Department of Energy rolutions that make the Nation's energy systems safe, efficient and secure

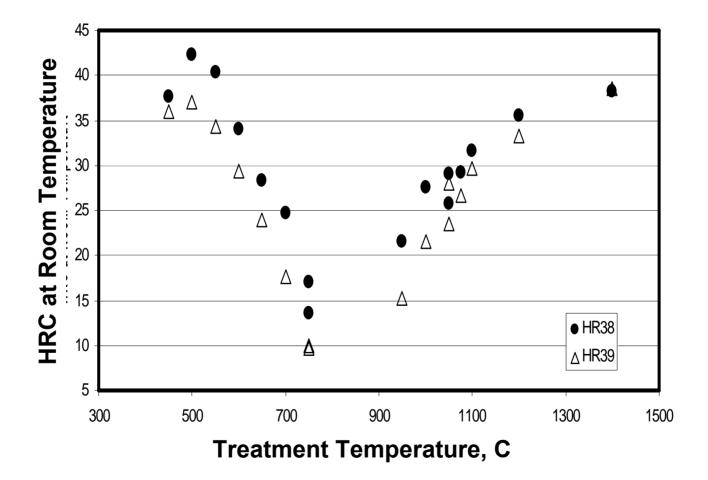
Martensite vs ferrite

Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

Albany Research Center

MS&T 2005, Pittsburgh, PA, September 25-28, 2005

Thermomechanical Treatment

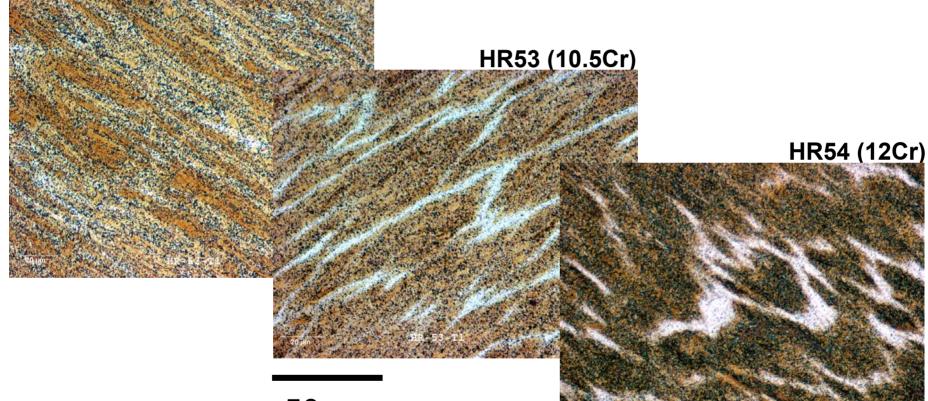

- Rolled at 750°C for 83% reduction in 14 passes
- Heat treated at 750°C for 1, 10, 100, and 1000 hours.

Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

Albany Research Center

MS&T 2005, Pittsburgh, PA, September 25-28, 2005

Choice of 750°C for heat treatment

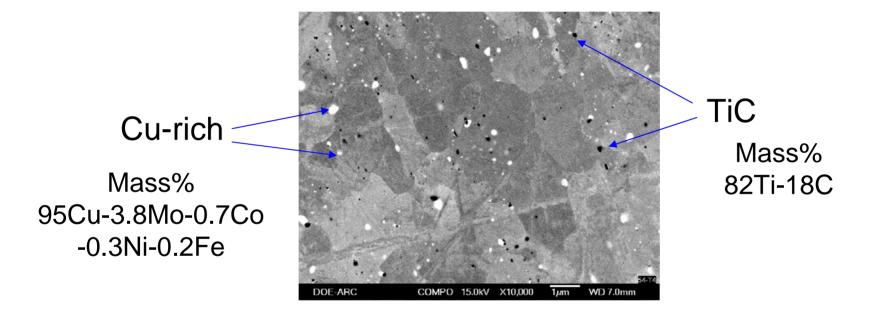


Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

Albany Research Center

MS&T 2005, Pittsburgh, PA, September 25-28, 2005

Microstructure of steels in the <u>as-rolled</u> condition HR52 (9Cr)

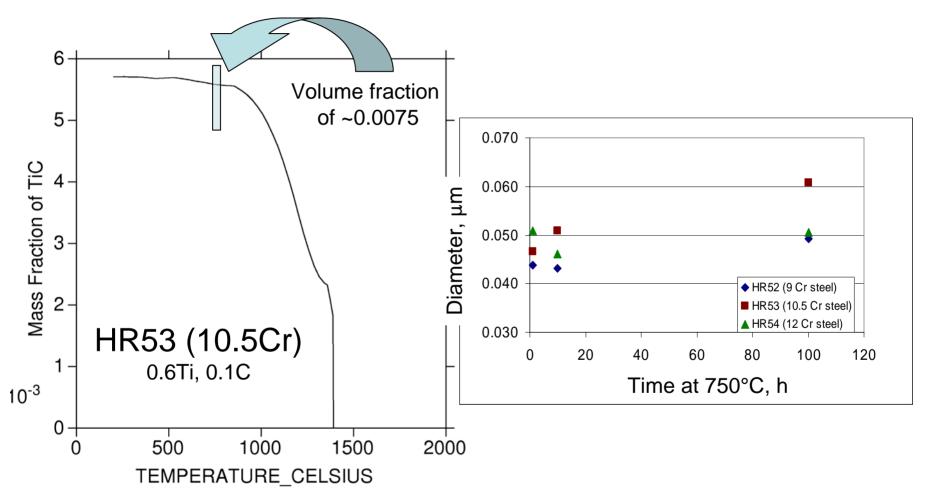


50 µm

Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

Albany Research Center

Microstructure Precipitates

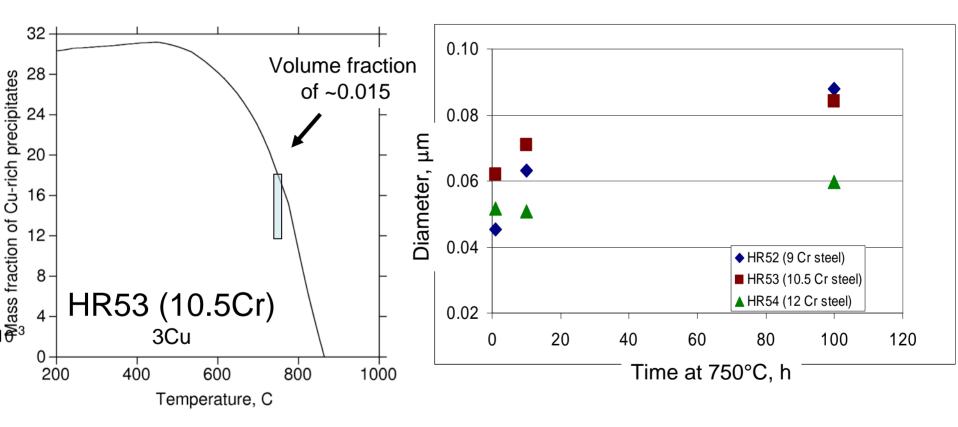


Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

Albany Research Center

MS&T 2005, Pittsburgh, PA, September 25-28, 2005

TiC Precipitates

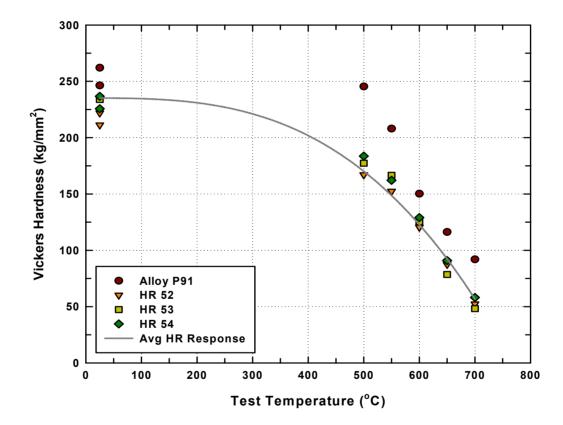


Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

Albany Research Center

MS&T 2005, Pittsburgh, PA, September 25-28, 2005

Cu-rich Precipitates


Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

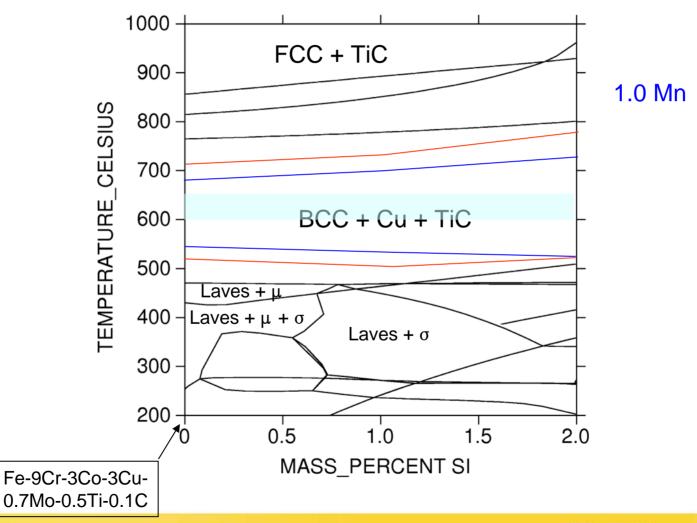
Albany Research Center

MS&T 2005, Pittsburgh, PA, September 25-28, 2005

Hot Hardness Tests

Albany Research Center

Nominal Composition of Alloys (wt%)


Alloy	Fe	Cr	Cu	Co	Mo	Ni	Ti	С	Mn	Si	Other
HR52	Bal	9	3	3	0.7	1	0.5	0.1	-	-	
HR53	Bal	10.5	3	4	0.7	1	0.5	0.1	-	-	
HR54	Bal	12	3	4	0.7	1	0.5	0.1	-	-	
HR58	Bal	9	3	3	0.7	1	0.5	0.1	-	0.25	
HR59	Bal	9	3	3	0.7	1	0.5	0.1	0.2	0.25	
HR60	Bal	9	3	3	0.7	1	0.5	0.1	0.6	0.25	
HR61	Bal	9	3	3	0.7	1	0.5	0.1	1	0.25	
P91	Bal	9	0.1	-	1	0.3	-	0.1	0.5	0.3	0.2V-0.08Nb

Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

Albany Research Center

MS&T 2005, Pittsburgh, PA, September 25-28, 2005

Effect of Mn and Si

Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

Albany Research Center

MS&T 2005, Pittsburgh, PA, September 25-28, 2005

Summary

• Thermodynamic calculations predict equilibrium phases as bcc-Fe, TiC, and Cu-rich phase at the possible application temperature range of 600-650C for the experimental 9-12Cr steels.

Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

Albany Research Center

MS&T 2005, Pittsburgh, PA, September 25-28, 2005

Summary continued

- In both the as cast and rolled conditions, these steels are primarily martensitic with some ferrite.
- As the Cr level increases from 9 to 12 wt%, amount of delta ferrite in the matrix increases.

Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

Albany Research Center

MS&T 2005, Pittsburgh, PA, September 25-28, 2005

Summary continued

- Both TiC and Cu-rich precipitates provide strengthening.
- After up to 100h treatment at 750C, the TiC precipitates do not coarsen significantly. On the other hand, the Curich precipitates coarsen at a faster rate.

Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

Albany Research Center

MS&T 2005, Pittsburgh, PA, September 25-28, 2005

Summary continued

• Effect of Si and Mn additions on the oxidation resistance and mechanical properties is being studied.

Microstructural Stability of 9-12%Cr Steels at Elevated Temperatures

Albany Research Center

MS&T 2005, Pittsburgh, PA, September 25-28, 2005