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Abstract

INL LDRD funded research was conducted at MIT in collaboration with INL
personnel to experimentally characterize mixed convection heat transfer in gas-
cooled fast reactor (GFR) core channels. The gas-cooled fast reactor (GFR) for
Generation IV has generated considerable interest and is under development in the U.S.,
France, and Japan. One of the key candidates is a block-core configuration first proposed
by MIT, has the potential to operate in Deteriorated Turbulent Heat Transfer (DTHT)
regime or in the transition between the DTHT and normal forced or laminar convection
regime during post-loss-of-coolant accident (LOCA) conditions. The DTHT regime is
defined as a regime where the turbulent heat transfer deteriorates due to either a
streamwise flow acceleration effect or a high buoyancy effect.

This is contrary to most industrial applications where operation is in a well-defined and
well-known turbulent forced convection regime. As a result, important new need emerged
to develop heat transfer correlations that make possible rigorous and accurate predictions
of Decay Heat Removal (DHR) during post LOCA in these regimes.

Extensive literature review on these regimes was performed and a number of the
available correlations was collected in: (1) forced laminar, (2) forced turbulent, (3) mixed
convection laminar, (4) buoyancy driven DTHT and (5) acceleration driven DTHT
regimes. Preliminary analysis on the GFR DHR system was performed and using the
literature review results and GFR conditions. It confirmed that the GFR block type core
has a potential to operate in the DTHT regime. Further, a newly proposed approach
proved that gas, liquid and super critical fluids all behave differently in single channel
under DTHT regime conditions, thus making it questionable to extrapolate liquid or
supercritical fluid data to gas flow heat transfer.

Suggested upgrades for the experimental facility from the 2™ annual report were
successfully installed and the control and data reduction software for facility operation
was developed and tested. An extensive development of programming and controlling
techniques were introduced for the software development that allowed substantial speed
up of data collection and analysis process.

Experimental data were collected for three different gases (nitrogen, helium and carbon
dioxide) in various heat transfer regimes under a fully developed flow and reasonably
uniform wall heat flux conditions. The following ranges of non-dimensional numbers,
were covered in the experiment: (1) Reynolds number from 1,800 to 42,700 (2) Jackson'
buoyancy parameter up to 10~ (3) Acceleration parameter up to 5x10° and (4) wall
to bulk temperature ratio up to 1.88. The data were obtained at various pressures up to
IMPa.

Each gas unveiled different physical phenomena. All data basically covered the forced

turbulent heat transfer regime, nitrogen data covered the acceleration driven DTHT and
buoyancy driven DTHT, helium data covered the mixed convection laminar, acceleration
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driven DTHT and the laminar to turbulent transition regimes and carbon dioxide data
covered the returbulizing buoyancy driven DTHT and non-returbulizing buoyancy
induced DTHT. A newly observed phenomenon, namely "returbulization", occurs when
the buoyancy driven DTHT regime recovers back to the normal forced convection heat
transfer due to the strong dependency of gas properties on the temperature. The validity
of the data was established using heat balance and the uncertainty analysis. Based on the
experimental data, the traditional threshold for the DTHT regime was updated to account
for phenomena observed in the facility and a new heat transfer regime map was proposed.
Overall, substantial reduction of the heat transfer coefficient was observed in the DTHT
regime, which will have significant impact on the core and DHR design of passive GFRs.

The MIT data were compared to a large number of existing correlations. None of the
mixed convection laminar correlations agreed with the data. The forced turbulent and the
DTHT regime, Celeta et al.'s correlation showed the best fit with the data. However, due
to the larger L/D ratio of MIT's facility compared to Celeta et al.'s facility and the

returbuliziation due to the gas characteristics, the correlation sometimes under predicts
the heat transfer coefficient. Also, since Celeta et al.'s correlation requires information
about the wall temperature to evaluate the heat transfer coefficient, it is difficult to apply
this correlation directly for predicting the wall temperature.

Three new sets of correlations that cover all heat transfer regimes were developed. The
basic idea of the new correlation is to use the best available and most widely
recommended Gnielinski correlation for forced turbulent convection and modify its
empirically fitted constant (the Re-1000 part) by an empirically fitted function that
accounts for physical phenomena driving the DTHT regimes. Thus, the function is
dependent on the acceleration parameter or the buoyancy parameter depending on the
heat transfer regime. Type-1 correlation set is the most accurate fit suitable for scientific
applications, Type-2 simplifies the calculations by eliminating an iteration process on the
wall temperature and Type-3 is the simplest form suitable for industrial applications. The
first two types show very good fit with the data, while the third type exhibits slightly less
accuracy, which was traded off for simplicity. Three correlations cover most of the MIT
experimental data within £20% range.

Finally, it is noted that more data on the laminar-turbulent transition are required to
understand the flow phenomena more thoroughly. A number of research issues for future
work are listed, based on the phenomena uncovered in this project.
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Nomenclature

c,: specific heat at constant pressure (J/kg K')

g: gravitational acceleration (m” /sec)
h: heat transfer coefficient (W/m’K)

k: thermal conductivity of gas (W/m K)
m: mass flow rate (kg/sec)

q": heat flux (W/m?)

x : axial direction and distance (m)

y :radial direction

A area (m*)

D: pipe diameter (m)

E : electrical signal of hotwire (V)

G: mass flux (kg/m” sec)

H : enthalpy (J/kg)

L : length (m)

P: system pressure (MPa)

Q' volumetric flow rate (CFM=ft’ / min = 0.000471947m" / sec)
T temperature (K)

U: velocity (m/sec)

o thermal diffusivity = L (m2 /sec)

V4

: thermal expansion coefficient= —l(a—pj (K™
p\oT ),

4 dynamic viscosity (kg/m sec)
v : kinematic viscosity (m’ /sec)

p: density (kg/m’)

Non-Dimensional Number

' Gr
Bo : buoyancy parameter = W
T -T\D?
Gr,;: Grashof number = M
v
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G1rCl : Grashof number based on heat flux = Gr,,Nu = gﬂkq—w
v

. dUu, 4q"
K ,: acceleration parameter = Lz A
U, dx Re

Nu: Nusselt number = hTD

Pr: Prandtl number = Y
a

Ra: Rayleigh number = Gr, Pr

Re: Reynolds number = Q
v

” " ﬂ "
q W q w ~ q w
I~ ~

g": nondimensional heat flux=
H, GeT, Ge,

Subscripts

b: bulk

in: inlet

o: reference state

th: threshold

w: wall

F: forced convection
N : natural convection

oo: infinite from the inlet or the wall
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1 Introduction
1.1 Background and Motivation

The Gas-Cooled Fast Reactor (GFR) is one of the leading advanced reactor designs
among the Generation IV concepts, under development in the U.S., France, and Japan.
It is widely recognized that one of the major design challenges of this type of reactor is to
ensure sufficient decay heat removal in loss of coolant accidents, because gases have
inherently mediocre heat transfer coefficients and specific heat capacities at low pressures.
This shortcoming of gas coolants has been circumvented in gas-cooled thermal reactors
by reliance on conduction and radiation of decay heat through the solid matrix or pebble
bed core to the vessel and ultimately to the heat sink. Thus, no coolant is required to
maintain the core within acceptable temperature limits. Although this approach is also
possible for the GFR core, unacceptably high fuel cycle cost is unavoidable as a result of
higher enrichment and core heavy metal loading [Hejzlar et al. 2002], making it
extremely difficult to achieve good economy — an important Generation IV goal and the
key requirement of the current electricity generation market. Therefore, fast reactors must
be operated at significantly higher power densities than their thermal counterparts to
offset the cost associated with higher enrichment and heavy metal requirements. Because
the required power density is an order of magnitude higher than the typical 4 to 8 kW/1
for thermal rectors, use of the conduction and radiation heat transfer modes cannot solely
provide sufficient decay heat removal rates. Thus, different approaches for dissipation of
decay heat must be adopted.

Traditionally, active gas cooling loops using electrically driven blowers and heat
exchangers were used in earlier gas-cooled fast reactor designs [Gratton, 1981]. However,
in the last decade, an increased emphasis has been made on passive decay heat removal
systems due to their simplicity and higher reliability (since they do not depend on energy
sources). Also, there is a strong preference for passive systems for decay heat removal in
the Generation IV program. Therefore, there is a strong incentive for GFR designs having
the capability to dissipate decay heat by passive means. To ensure decay heat removal
from the GFR core using natural mechanisms is, however, a very ambitious and difficult
task, given the aforementioned need for high power density. The ongoing U.S.-French
International-Nuclear Engineering Research Initiative (I-NERI) Program of Generation
IV GFR design, which studies various options of post-LOCA passive decay heat removal
schemes, identified the convection loops connecting the core and elevated heat
exchangers that provide heat sinks as the most promising approach, if elevated pressure
inside the guard containment can be ensured after the primary system depressurization
[Garnier 2003]. Since, such a system requires very low core pressure drop, candidates for
low-pressure core are block type core with circular channels (MIT and Japanese design)
and plate-type core (CEA design). An example of GFR with block type core is shown in
Figure 1-1. Thermal-hydraulic performance of such naturally circulating system has been
evaluated at CEA and at MIT and it has been found that these loops can operate in
atypical heat transfer and flow regimes, which are challenging for currently available
system analysis codes because of the lack of appropriate correlations implemented in the
codes.
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Composite Ceramics
Fuel Element

- Core Vessel

Figure 1-1 GFR Configuration with Block-Type Core

Figure 1-2 shows an example of convection flow regimes along the heater (reactor core)
and cooler (heat exchanger providing ultimate heat sink) at various pressures in a
simplified Reynolds-Rayleigh' number map [Williams et al. 2003]. Figure 1-2 was
generated for a typical GFR core having hexagonal blocks with circular coolant holes,
shown in Figure 1-1. Both helium and CO; coolants were studied as the means for post-
LOCA decay heat removal. The operating pressure of the convection loop was varied to
explore how the flow regime changes with pressure. It can be observed that unlike in
most industrial applications, which operate in well defined and well-known turbulent
forced convection regime, the GFR loop operates in the mixed convection or in the
transition between the mixed and forced or laminar convection regimes.

! Rayleigh number is the product of the Grashof number and the Prandtl number.
13
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Figure 1-2 Convection Flow Regimes at Various Operating Pressures for both Helium

and CO; (from Williams et al. 2003)

To design the core and heat exchangers and to ensure that fuel and cladding limits are not
exceeded during post-LOCA, firm knowledge of heat transfer coefficients and friction
factors in these regions is necessary. In addition, system analysis codes need to have the
capability to simulate all the regimes with reasonably low uncertainties, hence the heat
transfer and friction factor correlations will have to be available in the codes and will
have to be implemented in such a way that code stability is ensured when transition
among individual regimes occurs. When the existing system analysis codes, such as
RELAPS5-3D, are applied to the analysis of the GFR convection decay heat removal loop,
three needs for additional research and development become apparent:

1.

Currently available system analysis codes do not cover the whole flow regime
map in terms of heat transfer and friction factor correlations, because they were
originally designed for active systems with forced convection cooling. For
example, RELAP5-3D employs forced convection correlations in the Dittus-
Boelter form where the user can supply heat transfer coefficients and natural
convection correlation. Clearly, there is a need to cover the whole flow regime
map, if the code is to be used for the analysis of the GFR passive decay heat
removal system.

Although a large number of heat transfer correlations for one-phase flow is
available in the literature [Kakac et al., 1987], a unified approach designed to
cover the entire range of possible flow regimes that can be implemented into the
computer code is missing. However, the boundaries between the regions cannot
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be always clearly defined, or if defined, large discontinuities in the heat transfer
coefficient correlations exist. Moreover, different authors use different non-
dimensional numbers to define these boundaries. For example Metais and Eckert
(1964) present a flow regime map in terms of a Grashof (Gr)-Prandtl number
group times diameter over length ratio and Reynolds (Re) number groups while
Tanaka et. al. (1987) use a Gr-Re plot. Transition criteria to define the boundaries
between forced, mixed and natural convection also vary among the investigators
(compare Aicher & Martin (1997) and Burmeister (1993)). Therefore, there is an
acute need to develop a robust set of heat transfer correlations that (i) covers the
entire flow regime map, (ii) has clearly defined boundaries using a consistent set
of dimensionless numbers for the whole map, and (iii) ensures continuous
transitions of correlations on regime boundaries if the real physical phenomena
occur continuously, which is a necessary condition for numerical stability of the
large system codes, such as RELAP5-3D.

3. There are nine possible heat transfer and flow regimes, as indicated in Table 1-1.
Heat transfer correlations are generally available for forced and natural
convection regimes in both turbulent and laminar flows and more recently mixed
convection regime correlations were also developed. However, there are gaps in
transition regions between various flow regimes, where no heat transfer
correlations are available. In some regimes, correlations have a small range of
validity that does not cover the whole region and require more experimental data
to extend their range or reduce large uncertainties. Therefore, there is a need to
obtain more experimental data to close the gaps in heat transfer prediction

capability.
Table 1-1 Possible Flow and Heat Transfer Regimes
Regime Turbulent Transition Laminar
Forced X X X
Transition X X
Mixed X X X
Transition X X
Free X X X

A collaborative INL/MIT project was initiated to satisfy the needs mentioned above,
since it has been recognized that GFR has a potential to operate in Deteriorated Turbulent
Heat Transfer (DTHT) regime, which will be explained in much detail in the following
section, or in the transition between the DTHT and normal forced turbulent or laminar
convection regime during post-loss-of-coolant accident (LOCA) conditions. This is to
acquire experimental data (to the extent possible) to develop heat transfer correlation that
would have a smooth transition at the boundaries and covers all regimes including the
transition regions to the largest extent possible. This final report summarizes the results
of this project.
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1.2 Technical Objective
To address the aforementioned needs the project has the following objectives:

1 Acquire experimental data needed to fill the gaps (to the extent possible) in heat
transfer correlations and identification of the boundaries for transitions between
individual flow regimes.

2 Develop heat transfer correlations for all regimes including the transition regions in
such a manner that there is a smooth transition on the boundaries to the largest extent
possible, so that it can be easily implemented into RELAP5-3D.

1.3 Report Organization

Earlier work throughout this 3-year project was documented in three reports. The first
report on scaling [Cochran et al., 2004a] documented how a proposed experimental loop
might encompass flow regimes as they go from laminar to turbulent flow and from free to
forced convection. Based upon non-dimensional analysis, the following dimensionless
parameters were chosen to characterize the flow regimes; Re for the transition between

laminar and turbulent flow, and Gr,,, Ra,,, Bo', and K, for the transition between

forced to free convection and laminar to turbulent flow. Using a steady state convective
loop heat transfer computer code LOCA-COLA, developed at MIT, it has been shown
that using a blower in the experimental loop, three coolants, helium, nitrogen, and carbon
dioxide in a range of system pressures between 0.1MPa and 1.0MPa and two test section
diameters, 16 and 32 mm, the transition between free and forced convection and laminar
to turbulent flow can be mapped. It was confirmed that the proposed experimental loop
could encompass the GFR prototype loop conditions for these parameters.

The first annual report focused on the assessment of measurement uncertainties and
identified that the heat transfer coefficients to be obtained from the proposed
experimental loop can have relatively large errors, especially in low flow rate cases. The
performed analyses have shown the need to reduce heat losses to environment and
proposed to implement guard heaters to minimize these losses.

The second annual report [Lee et al., 2005c] provided the first description of the
experimental loop as designed, and presented the preliminary test results. The first runs
were performed in the forced convection regime to verify facility operation against well-
established forced convection correlations. The results of the three runs at Reynolds
numbers 6,700, 8,000 and 12,800 showed good agreement with the Gnielinski correlation,
which is considered the best available heat transfer correlation in the forced convection
regime and is valid for a large range of Reynolds and Prandtl numbers. The very good
agreement between the experimental data with the Gnielinski correlation confirmed that
the loop facility and the instrumentation performed correctly. Improvements to further
reduce the uncertainty for the highest wall temperature case have been outlined and were
planned to be implemented early in this fiscal year together with the installation of the
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hot-wire calibration facility for velocity profile measurements for very low flow rate.

This final report does not detail the material covered in the above mentioned progress
reports. The major focus of this report will be the summary of the final experimental data
that were taken in all flow regimes and the correlation development to satisfy the project
objectives. The report is organized as follows: First, an expanded literature review that
was performed in addition to the review presented in the earlier reports is presented in
Chapter 2. The review mainly covers literature related to the gas flow in the Deteriorated
Heat Transfer (DTHT) regimes and the correlations that have been developed in the past.
Chapter 3 presents a preliminary analysis on GFR decay heat removal system, which is
performed using a different method in Williams et al., (2003). This chapter will show
more thoroughly why GFR system during accident situations can be susceptible to
operate in the DTHT regime. Chapter 4 will briefly summarize the upgrades that have
been made to the experimental facility and the software to resolve the problems that were
brought up in the second annual report. Chapter 5 will present the experimental data that
have been collected under various operating conditions and working fluids. Chapters 6
and 7 will compare the experimental data to the existing correlations in the literature and
present a new correlation set developed at MIT. Summary, conclusions and suggestions
for future work will be covered in Chapters 8 through 9.
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2 Literature Review

Extensive literature survey was performed and documented in the 2™ annual report [Lee
et al., 2005¢c]. The literature review in the 2" annual report was rather general with
respect to the heat transfer in deteriorated heat transfer regime and covered experimental
data available as well as the attempts of various investigators to express their
observations in correlations. In this chapter, literature review will be mainly focused on
the correlations in different heat transfer regimes in an effort to select the most relevant
correlations for comparison with our experimental data. Therefore, only a limited number
of references will be added to the extensive review of the 2" annual report. This chapter
is divided into two sections. The first section will address the studies of the forced
convection gas flow and will be divided into two sub-sections: laminar flow and turbulent
flow. The second section will be divided into three short subsections covering mixed
convection laminar, buoyancy force induced DTHT and acceleration induced DTHT
respectively. The literature will be presented with descending order in timeline to show
the historical development of the correlations.

2.1 Forced Convection

2.1.1 Laminar Flow

For laminar forced convection, selecting the best correlation is rather simple compared to
other regimes. This is because Seigel et al., (1958) solved the laminar forced convection
Nusselt number analytically and Kays & Crawford (1993) simplified the solution for the
case when uniform heat flux is applied, fluid properties are regarded as a constant and
thermal developing length was considered. The basic procedure for obtaining the
analytical solution employed the method of separation of variables and the Sturm-
Liouville theory to obtain an eigen-value solution. Simplified solution form is given in
Equation 2-1. It should be noted that y, and A, are an approximation to the true value.

1
2+

© eXp|\—V, X
uLaminar = L_l p(—y;") (2_1)
Nu, 2,3 A7,

oo 2x/D

where Nu, =4.364, ,
RePr

v, = 4m+§, A =0.4165y, 7"

However, for an actual engineering application, m needs to be truncated at some point.
Since the maximum Reynolds number for laminar case is 2,300 and the typical gas

Prandtl number is 0.7, setting x/D equal to unity will yield x* of ~0.001. If we set our
conditions for choosing maximum m such that the Nusselt number changes remain

below 1% after adding one more term at x* equal to 0.001, it can be found that one can
start to neglect the summation terms after m is larger than 10 (see Figure 2-1). This
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correlation, shown as Equation 2-2, will be used as a reference laminar forced convection
correlation for the data comparison purpose.

2 4\ 2 4\
1 I & SXpl—7nX 1 1 & expl(—7,X
NuLaminar =15 A5 ( 4 ) ~ __z ( 4 ) (2-2)
Nuoc 2 m=1 Amym Nuoo 2 m=1 Amj/m
10’ E
g
=
=
=
=E
z
T
=
=3
<
15" '
a 5 10 15
m

Figure 2-1 Determining Truncation Term for Laminar Correlation

2.1.2 Turbulent Flow

A large number of correlations for the heat transfer in forced turbulent flow exist. Since
the goal of this project is to obtain and correlate data in the transition regime between
forced turbulent convection and laminar flow to cover deteriorated heat transfer due to
suppressed turbulence, correlations that cover this transition region are of main interest.
Three correlations were identified as the most promising candidates for comparison with
our data. These include McEligot et al. (1966), Petukhov et al. (1973), and Gnielinski
(1976) and will be desribed next.

McEligot et al. (1966) correlation

In McEligot et al. (1966) work, the low Reynolds number gas flow experimental data
were used to develop a heat transfer correlation based on the Nusselt number power law
or the modified Dittus-Boelter formulation (Eq. 2-3).

NuDittu.s'fBuelter = 002’1 Reo-g Pr0-4 (2-3)

For a moderate heating case (q° ~ 0.004), Equation 2-4 was suggested for a better fit

19



with the data.

Nu

McEligot

-0.5
=0.021Re"® Pr®* [&j (2-4)

The correlation is valid for x/D>30, 4,000 <Re<15,000, 0 <g" < 0.004. The

experimental data used for developing this correlation were based on air, helium and
nitrogen gas flow at inlet Reynolds number from 1,500 to 45,000 and maximum wall to
bulk temperature ratio around four.

Petukhov et al. (1973) correlation

Petukhov et al. [1973] started to develop a correlation by questioning the power law form
of a heat transfer correlation, which can be found in various references. In his opinion,
the major problem with the power law form was that the leading constant (in case of
McEligot correlation, 0.021) and in the properties variation function can have multiple
combinations. He also noted that the power law formula only approximately expresses
the Nusselt, Reynolds and Prandtl numbers relationship. Therefore, Petukhov et al.,
developed a different correlation form (Eq. 2-5).

(%)RePr
1.07 + 90%6 —{0-6% +10Pr)} + 12.7\/%(1%”—1)

where 10,000 <Re, f =(1.82log,, Re—l.64)f2 (Filonenko formula)

Nu

(2-5)

Petukhov —

4,000 < Re < 10,000, £ =03 16%«3“5 (Blaisus Formula)

The properties variation and the thermal developing length effect for the Petukhov et al.
correlation are evaluated from Equation 2-6.

1
% n m.ssw%} 1og[ﬂ]
7
Nu _ Nu kw Cp w Tw ad
Petukhov PM & TDL — Petukhov

k, ||c T,

Py

(2-6)
0.48(1+3600/ Re/x/D )

x| 1+ BE
(x/D)”

exp(-0.17x/D)

where ®(x/D) is tabulated value in Table 2-1.
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Table 2-1 Tabulated Value of ®(x/D)

x/D| 10 [20] 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | «
® |011)04]1038|055/0.73]0.89[1.02|1.13]1.21]1.271.50

This correlation was tested against air, argon, carbon dioxide, nitrogen and ammonia. The
range of validity covers the Reynolds number above 7,000, ¢~ below 0.007 and wall to
bulk temperature ratio below 4.0 and above 0.5.

Gnielinski (1976)

Although the Petukhov et. al. correlation showed better agreement with a wide range of
experimental data than the power law correlations, its complicated form makes
industrial applications difficult. Gnielinski correlation is a simplified form of the
Petukhov et al. correlation with small modification to fit the experimental data better in
the transition regime (2,300 < Re <7,000). Correlation form is given in Equation 2-7.

2-7)

(% )(Re—lOOO)Pr 7\ )3
Nanie[im‘ki = [_Mj 1+( )
1+12.7,/%(Pr2/3—1) T,

where  f =(1.82log,, Re—1.64)"

The correlation is valid for Reynolds number above 2,300 and below 10°, Prandtl

number above 0.6 and below 10° and the wall to bulk temperature ratio is in between
0.667 and 2.0. However, Gnielinski did not discuss the limitation of the correlation in
terms of the non-dimensional heat flux ¢ . The Gnielinski correlation was tested against
water, oil, gasoline, kerosene, acetone, air, nitrogen and carbon dioxide. All these fluids'
heat transfer coefficients were successfully predicted with this correlation. Currently,
Gnielinski correlation is recommended in most heat transfer handbooks and the heat
exchanger design guidelines as the best correlation for the forced turbulent heat transfer.

Even though there are many more references that discuss correlations for the turbulent
forced convection heat transfer regime, only the above three correlations were selected
for further comparison with MIT data. This is because these three papers summarize the
forced turbulent convection correlation development history well and it is necessary to
limit the number of correlation for comparison.

In summary, the turbulent forced convection heat transfer correlation was developed first
based on the power law (e. g. McEligot et al.), the next step was to improve the
correlation based on the theoretical development of the turbulent boundary layer theory (e.
g. Petukhov et al.) and finally a simplification and an improvement on the transition
regime were made to the correlation (e. g. Gnielinski). Figure 2-2 shows the comparison
between these three correlations as a function of Reynolds number for fixed Pr=0.7. It
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is noted that only constant properties and fully developed part of the correlation are used
for the comparison purpose. Even though McEligot et al. and Petukhov et al. correlations
do not claim to fit the experimental data around Reynolds number 2,300, it is presented in
the figure only to show the difference between the fully turbulent heat transfer correlation
and the correlation that claims to cover the transition regime.

From the figure, it is clearly shown that due to (Re—lOOO) part in the Gnielinski

correlation, the correlation tends to bend towards the laminar Nusselt number than the
other two correlations and this makes this correlation to fit the experimental data better in
the transition regime and has smoother performance for the numerical analysis when the
flow regime is crossing from the laminar to turbulent flow. For fully turbulent flow, the
Gnielinski correlation approaches the McEligot et al. correlation value and stays with the
Petukhov et al. correlation within 5%. Since our experimental setup covers large range of
Reynolds number encompassing the laminar, transitional and turbulent flows, the
Gnielinski correlation is used to compare with the experimental data for the forced
turbulent heat transfer cases.

One interesting fact worthy of noting is that only few experimental data were used to
verify the correlations for the case of forced turbulent heat transfer near the transition
region in pressurized gas systems. Therefore, the MIT data will also contribute to the
technical community by extending experimental database for testing the well-known
forced turbulent correlation in relatively rare operating conditions.

—=— Petukhoy
—— hicEligot (Dittus-Boelter)
—8— Gnielinski

Fully Developed Laminar

Nu

10° 10t

Re
Figure 2-2 Turbulent Forced Convection Correlations Comparison

2.2 High Heat Flux Convection
When the heat flux is high enough to affect the flow pattern, the characteristic of the
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convective heat transfer starts to depart from the forced convection theory and correlation
predictions. High heat flux usually induces density change in the fluid and its transport
properties, such as viscosity and thermal conductivity, and affects a radial velocity and
temperature profile within the flow. However, multiplication of the forced convection
correlation by the wall to bulk temperature ratio with an appropriate power is typically
sufficient to account for the variation of transport properties due to heating. In contrast,
the axial change in density can cause more complicated phenomena.

The first major effect is the buoyancy effect. The buoyancy effect can have different
effects on the flow with different orientation of the flow and heating. Under GFR
condition, upward heated flow is the case that requires attention, thus from now on all the
buoyancy effects discussed here will be assuming upward heated flow and the literature is
selected based on this orientation.

The buoyancy effect can alter the heat transfer characteristics of both laminar and
turbulent flow. In laminar flow, since the buoyancy force results in a steeper velocity
gradient than the normal flow near the heated wall (See Figure 2-3), the amount of heat
that is convected near the wall increases; therefore the laminar heat transfer is enhanced
due to the buoyancy force. Typically, the situation where a strong buoyancy force is
acting on the forced convection flow is called "Mixed Convection".

Mixed Convection
Velocity Profile Heat

Slope Changes /

Forced Laminar Flow
Velocity Profile

Figure 2-3 Comparisons between Forced Laminar Flow and Laminar Flow with High
Buoyancy Effect Velocity Profile

For the turbulent flow, there are two theories for strong buoyancy effect on the turbulence.
One was introduced by Hall & Jackson (1969) and the other was introduced by Petukhov
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& Polyakov (1988). These two theories will be discussed in more details in the following
subsection. To summarize the phenomenon briefly, we will just say at this point that the
turbulent heat transfer deteriorates for moderate buoyancy effect, recovers back to the
normal turbulent heat transfer for higher buoyancy forces and finally the heat transfer is
enhanced above that of the forced turbulent heat transfer for very high-buoyancy flows
and asymptotically approaches the free turbulent convection heat transfer. Figure 2-4
depicts the buoyancy effect on the turbulent heat transfer. X-axis is the buoyancy number
(Bo"), which is the measure of the buoyancy effect and Y-axis is the ratio between the
measured Nusselt number and the forced turbulent flow Nusselt number. The buoyancy
number will be defined more thoroughly in the later part of this report.

2_
Forced
Na | Convection Free
1 Convection
Nu, \
Mixed
Convection
0
0 . . Gr,
Bo'=6x10" Bo =

Re;™ prf”

Figure 2-4 Buoyancy Effect on Turbulent Heat Transfer

One issue that has to be discussed before moving forward is the selection of appropriate
non-dimensional number for describing the buoyancy force in the channel. When one
attempts to non-dimensionalize the momentum equation, the temperature in the buoyancy
force term, written using the Boussinesq approximation (Eq. 2-8), is the most
controversial term for selecting the reference parameter. It is noted that only two-
dimensional steady state x-momentum equation is presented here for simplicity.

—tU—+V—=——— 4 V| —+——

+ gB(T-T 2-8
o ox oy pox ot o gh(T-T,) (2-8)

ou ou ou 1dp V(qu azuj
Boussinesq Approximation

From Petukhov et al. (1988) discussion (p. 20) the reference parameter for non-

dimensionalizing the temperature should be dependent on boundary conditions. Since we

are limiting ourselves with the prescribed heat flux boundary condition only, the heat flux

based non-dimensional group will be adopted for our study. Therefore, reference
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parameter for non-dimensionalizing the buoyancy force term will be Equation 2-9 and the
resulting non-dimensionalized momentum equation is presented in Equation 2-10.

q"D
T =2 2-9
ref k ( )
* . * . * * 2 * 2 * Gr .
O O O L fOu O Dy (2-10)
ot Ox oy ox Rel ox oy Re
. . K(T-T
Wheret*:;’ x*:i, y*:l’ u*zlj v*zl,p — pz’T — ( p ())
(D/U,) D D U, U, p.U, q,
" 4
Re — poUbD , Grq — gﬂqw2D
y7, kv

The other phenomenon, which is induced by fluid density change, is the acceleration
effect. As the flow temperature increases, gas density is reduced. Since mass is conserved,
density increase is accompanied by velocity rise and accelerating the flow along the
channel. The flow acceleration in axial direction decreases the turbulence in the flow.
Therefore, the turbulent flow can become laminar flow (some time it is called
"laminarization") and the heat transfer decreases drastically. Figure 2-5 shows the
laminarization of the turbulent heat transport. X-axis is the acceleration number (K ),
which is the measure of the axial acceleration of the flow and Y-axis is the ratio of the
measured Nusselt number to the laminar uniform-heat-flux forced-convection Nusselt
number.

Re>4000

Nu
Nu,

1

YU dx Re
Figure 2-5 "Laminarization" of the Turbulent Heat Transfer due to the Acceleration
Effect

0 K,=3x10° K v du, :ﬂ

The acceleration number was covered in detail in 2™ annual report [Lee et al., 2005¢].
The flow acceleration was well studied in the converging channels, where the mean
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velocity of the flow needs to increase due to the decrease in the flow area. The strongly
heated flow, where the density decrease due to the heating is accompanied by the increase
of the mean flow velocity, exhibits similar behavior as converging channels. Therefore,
strongly heated flow also can have acceleration effect and the turbulent flow can be
"laminarized". Figure 2-6 shows the similarity of the converging channel and the strongly
heated flow.

Laminarized Laminarized
Turbulent Flow Turbulent Flow
Average Velocity, Profile Average Velocity Profile

nentum
ary Layer
Heat
Velocity <,<;2
Fluctuation <:|
Turbulent Flow Turbulent Flow <):
Average | Avgrage . |
Velocity Profile | Velocity Profile 0
mentum
dary Layer
Velocity
Converging Nozzle Fluctuation

Figure 2-6 Acceleration Effect on the Turbulent Flow

The threshold values for both effects to move the forced turbulent heat transfer to the
DTHT regime are indicated in Figure 2-4 and 2-5 (Bo,, ~6x10”" and K, ~3x10™°) The

threshold values are adopted from McEligot and Jackson presentation (2004), which
summarizes the two different physical effects well: (1) Flow acceleration (2) Buoyancy
effect. The regime, where normal turbulent convective heat transfer is hindered by either
of these two phenomena to cause drastic reduction of the fluid’s heat transfer capability
(as shown in Figure 2-4 and 5), is called deteriorated turbulent heat transfer regime. Even
though the onset of this regime due to the acceleration and buoyancy effects is well
defined, the heat transfer coefficient for this regime did not reach agreement among the
researchers, as it will be shown in the following sections.

2.21 Laminar Convection with Large Buoyancy Effect

Hallman (1961)
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In his earlier paper [Hallman, 1955], Hallman solved the fully developed laminar velocity
and temperature profile analytically when the forced and free convection are combined.
Furthermore, he concluded that the governing non-dimensional number is the Rayleigh
number defined with the axial temperature gradient (Eq. 2-11). If we transform the axial
temperature gradient as a function of heat flux by applying heat balance, the Hallman's
definition of the Rayleigh number can be represented with the combination of the
following numbers (Eq. 2-11).

p’Bge,D* dr, _ p’Pec, D' zDq"

Ra, . =
louk  dx 16,1k pchpzDz
4 (2-11)
_pPaigD’ _gpq.D* pv: G,
4ukU, kv’ 4uUD 4Re

Hallman's work in 1961 presented some experimental data taken with water and a
modified heat transfer correlation based on his theoretical development in 1955 (Eq. 2-
12). The correlation is valid between 100<Ra, , =Gr, / 4Re<10,000.

Nu

Hallman

0.28
0.28 Grq
=140Ra,; ' =1.40) L (2-12)

Worsge-schmidt & Leppert (1965)

Worsge-schmidt and Leppert work is based on numerical analysis. They developed an
implicit finite difference scheme for solving the gas laminar flow in heated circular tube
with large variations of gas properties. Based on their numerical scheme the friction
factor and Nusselt number correlation were given for air as the working fluid (Eq. 2-13).
It is noted that they gave the heat transfer and friction factor correlation for uniform wall
heat flux and wall temperature condition, but since we are only interested in the uniform
heat flux case, only the uniform heat flux correlation is given here.

When 0<q <10

1 5
NuWorsoe-schmidl & Leppert = 436 1 - exp (_17x+ ) + ax+ } exp [_bx+ 4 j}

When 10<gq <20

N se-scmidt & Leppere = 4-36| 1—€XP (—17x+ ) +oxt? exp (—dx+ )

I ! } (2-13)

Dq, — .__2x/D
2kin’[;1m ’ Rein Pr/n

where q" = L a=153+0.11g"", b=20+5q"

c=1.74+0011¢", d=10+2.7J¢"
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Worsge-schmidt later performed calculation with this finite difference scheme for helium
and carbon dioxide and proposed a heat transfer correlation based on the calculation
results [Worsge-schmidt, 1966] (Eq. 2-14 & 15).

Air and Helium
When 3<Gz<1000, 0<q" <20
1
0.025¢™ (Gz-3)(Gz - 20)
Worsoe-schmidt — 436+ GZ3/2 (2_14)
When Gz<3

Nu Worsoe-schmidt — 43 6

Nu

Carbon Dioxide
When 10<Gz<1000, 0<g <5

1
0.07¢4" (GZ - 8)

Nu Worsoe-schmidt = 43 6 + GZl/z (2- 1 5)
When Gz <10
NuWnrme-xchmidt = 436
where Gz = QRe Pr
X
Churchill (1988)

Churchill presented a correlation for laminar mixed convection by combining a free
convection correlation with a forced convection correlation for uniform heat flux (Eq.2-
16).

Nu®  =Nuf+Nu$ (2-16)

Churchill

here N —48~4364 Nu, =0.846(R. %—0846 Gr, |
where uF_HN 364, Nu, =0. ( admdx) =0. 1Re

The correlation was tested against Hallman's experimental data and some numerical
analysis results.

It is rare to find in the vast amount of references different correlations from three
correlations presented above. Hallman's correlation (Eq. 2-12) is based on the analytical
solution and backed up with the experimental data and Worsege-schmidt correlations (Eq.
2-14 & 15) are based on the numerical results. Even for the laminar convection with a
significant buoyancy effect, which is relatively simpler than the turbulent flow, the
governing non-dimensional numbers are different among the various literature sources

(Hallman used Gr, / 4Re and Worsge-schmidt used x* and ¢"). This means that there

is no universal governing non-dimensional number that we can utilize to investigate the
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phenomenon. Thus, a different non-dimensional number can be proposed for the gas heat
transfer experiments, since it is hard to find a correlation based on the gas laminar heat
transfer experiment with high buoyancy effect.

2.2.2 Buoyancy Induced DTHT (Mixed Convection)

This section will be further divided into two subsections. The first section will describe
the theoretical development on mixed convection and the second section will briefly
summarize the experimental correlations that were identified for different working fluids
in the open literature.

2.2.2.1 Theories of Turbulent Mixed Convection

As mentioned in earlier section, there are two thorough theoretical developments in the
turbulent mixed convection theory. One is Jackson & Hall Theory (1969) and the other is
Petukhov & Polyakov theory (1988). However, we will try to focus more on the results
and conclusions from the theory rather than the mathematical detail. Figure 2-7 shows the
two theories conceptually.

Jackson & Hall first developed their theory to explain a heat transfer deterioration
observed in the super-critical fluid turbulent heat transfer. Their theory is based on the
fact that the turbulence is generated by the shear stress near the wall. Since the buoyancy
force accelerates the flow near the wall relatively higher than the bulk flow due to higher
temperature near the wall than the bulk fluid, the shear stress on the fluid element near
the heated wall starts to decrease due to the velocity profile change. As a result, the flow
starts to stabilize due to the reduction in the shear stress, which causes decrease in the
turbulence generation near the wall and turbulent heat transport. However, after body
force reaches certain point, it will start to induce larger shear stress into opposite direction,
since the maximum velocity point moves to near the heated wall and steeper velocity
gradient is achieved. Therefore, after certain point the buoyancy effect will start to
destabilize the flow and generates turbulence and enhances the turbulent heat transfer.
More details can be found in [Hall & Jackson, 1969].

The resulting governing non-dimensional number that was developed within Jackson &
Hall theoretical framework is the buoyancy parameter Bo™ (Eq. 2-17).

. Grq
Bo = Ro25 ppos (2-17)
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Buoyancy Force has two effects:
(1) External (2) Structural

Laminarized Low Density
Turbulent Flow —
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Figure 2-7 Conceptual Diagrams of Two Theories on the Turbulent Mixed Convection

On the other hand, Petukhov & Polyakov theory adopted concepts of the turbulence
interaction with the buoyancy force, which was developed in the meteorology area first
[Monin & Yaglom, 1979]. Petukhov & Polyakov explain that the heating for upward flow
can cause two effects. One is the external effect and the other is the structural effect. The
external effect is defined as the mean velocity field change due to the buoyancy force and
the structural effect is defined as an additional work for the turbulence to overcome the
stabilized density gradient for upward heated flow. For the intermediate heating power,
the structural effect is much stronger than the external effect, which leads to decrease in
the turbulent intensity due to the additional energy loss of the turbulence to work against
the stabilized density distribution. As heating power increases further, the external effect
starts to induce steeper velocity gradient and, as a result, more turbulence is generated
near the wall. The governing non-dimensional parameter developed within this
framework is the buoyancy number E (Eq. 2-18).

Grq
E=Re4 or (2-18)

As a summary, even though two theoretical frameworks have different explanation for the
mixed convection effect on the turbulent flow, the resulting non-dimensional number (Eq.
2-17 & 18) are not that far apart (only slight difference in the power of Reynolds and
Prandtl number). Therefore, Hall & Jackson non-dimensional numbers will be used for
explaining the MIT data for buoyancy force induced DTHT cases, since more literature
used to Hall & Jackson parameter to correlate the data to develop correlations. Therefore,
from here on, the buoyancy parameter will indicate Hall & Jackson's parameter.
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2.2.2.2 Experimental Correlations

Petukhov & Strigin (1968)

Petukhov & Strigin developed a correlation based on the water experiment. Their selected
non-dimensional number to capture the buoyancy effect was Ra, , . The experimental
data was taken at the Reynolds number from 300 to 30,000, the axial temperature
gradient Rayleigh number from 300 to 8x10°, the Prandtl number from 2 to 6 and x/D
below 99. Equation 2-19 gives the correlation. Ra, , is transformed in terms of the
heat flux based Grashof number and Reynolds number, according to Equation 2-11. All
the forced convection Nusselt numbers in this section ( Nu,. ) will be calculated from the
Gnielinski correlation, even though the original correlations for the mixed convection are
developed from different forced convection correlations. This is possible since most of
the general forced convection correlations overlie with each other within few percents (e.
g. Figure 2-2). However, since this correlation is developed from the forced convection

correlation for constant properties without any developing length, Equation 2-20 will be
used instead of Equation 2-7.

When Ra,, , [Re* =Gr, [4Re’ <107

, Gr, .
NuPetukhov-Stn'gin = NuF 1 + 1 . 1 5 X 10 4—

2-19
When 107 < Gr, /4Re’ <1 (2-19)
1
Gr, )
NuPetukhov-Sm'gin = NuF 10 4Re3
(% )(Re—lOOO)Pr
A (2-20)

) 1+12.7\/%(Pr2/3—1)

where  f =(1.82log,, Re—1.64)"

Herbert & Sterns (1972)

Herbert & Sterns obtained data with water in the range of the Reynolds number from
5,800 to 65,000, the wall to bulk temperature difference based Grashof number (Gr,, )

from 1.9x10" to 2.6x107, the Prandtl number from 1.79 to 2.22 and x/D below 80.
Equation 2-21 shows the correlation.

31



When Re > Re,, =3000+0.00027Gr,, Pr

NU s = 0-0225 R 795 py0:495-0.0225mn(Pr)
erbert-Sterns .

2-21
When Re<Re,, ( )
Nu Herbert-Sterns = 85 X 10_2 (GI‘AT Pr)1/3

Petukhov & Polyakov (1988)

From the theoretical development, which was presented in the previous section, semi-
empirical correlation (Equation 2-22) was developed. The validity of the correlation is the
Reynolds number above 3,000, the heat flux based Grashof number below 10" and
x/D above 40. The correlation was tested against experimental data from other literature

sources. However, some questions still remain, since the experimental data chosen to
validate the correlation were not tabulated in the original reference.

140.83¢?
-1
14+0.042¢° [E% log,, (Reg )}

0.72¢* (1+0.28ve 2
+12_7\/§ Pr% 1+ ( ) _1+0.58e

=1RePr

Nu Petukhov-Polyakov 8

(2-22)

-1

1+0.43¢" 1+0.83¢’
2
10° Gr 2
where e:Tq: f= 1+0.83e
Re“"” Pr 1.82 logm (R%) +0.0762E"
Jackson et al. (1989)

A review paper on mixed convection in vertical tubes written by Jackson et al. in 1989
summarizes the large body of research work performed in the area until then. Equation 2-
23 gives the correlation that was suggested in their review.

0.46
4 *
N, con 1 8x10" Bo : (2-23)
NuF (Nulackson /NuF)

The limitation of the correlation is not explicitly described in the paper. However,
experimental data with water, air, mercury and super critical carbon dioxide are presented

and the range of buoyancy parameter (Bo" ) spans from 10~ to 107. It should be noted
that the correlation is discontinuous near Bo ~3x10° and the correlation form is
implicit.
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Parlatan (1989)
Parlatan developed a correlation (Eq. 2-24) based on his experimental data. The
experiments were performed with water in the Reynolds range of 4,000~9,000 and

buoyancy number of Bo’ <1.25x107.

When Bo' <1.875x10°°

N;P_arlatan =1+6.104x10° Bo" —2.1768x10° Bo™
u
. * (2-24)
When 1.875x107° < Bo" <1.25x10°°
Nrsm _41.768x10° Bo' ~1.608x10" Bo™
Nu,.

Vilemas et al. (1992)

Vilemas et al. performed experiment with air in mixed convection regime and developed
correlation based on their data (Eq. 2-26). The experimental data range covers the inlet

Reynolds number from 3,000 to 50,000, inlet ¢g* from 0.00035 to 0.0024 and a new
buoyancy parameter defined in Eq. (2-25) from 8x10™° to 3.37x107 (inlet values).

__On (2-25)
4Re’ Pr
When K, <K,,
NuVil/emas = NuF
When K,, <K, <K,,
uVillemas = Nu(:?z 0.975
0.98+0.54K,"% (x/D)"

When K, , <K, <K,,
Not Available
When K, , <K,

in3

If 0<x/D<x

min

/D
_ ) ,
Ny = Nu, | 113K +(5.39><10'9 +5.12x10" In(K, ))(B_%j }

If x,,/D<x/D<x

max

/D

NUy = Nu, | 113K +(3.865x107 +3.672x107 1n(1(,.n))(%—x*n—“ﬂ

33



/D <x/D

max

0.46
2-26
NuVl/lemas NuF 14 5K1/3 3 555K092 026 ( x — 'xmdx j :l ( )

Iﬂ D D
where K, =2-4x10°, K,,=2.5x10", K,,=1.5x107¢;**

/D 5.19+0.0059/K?°, x,. /D =8.8+0.063/K.’

mm in 2

It should be noted that this correlation has a gap in the area of K,, <K, <K, , due to

in3
the high sensitivity of the flow for a small change in buoyancy parameter. Therefore,
when we evaluate the Nusselt number in this region to compare to the MIT data we will

take the K, <K, <K,, region Nusselt number as an approximate value for
K

in2

<K, <K, region.

Celeta et al. (1998) and Aicher & Martin (1996)

Celeta et al. correlation combined Aicher & Martin's work (1996) with Jackson & Hall
work. When Aicher & Martin were developing a correlation, they introduced rather a new
idea to this area, which was not shown in the previous works. They correlated the upward
heated flow Nusselt number with the downward heated flow Nusselt number to get a
smooth functional form. This idea is later adopted by Celeta et al. who modified Aicher
& Martin's correlation form to fit their data better and included x/D effect, which was
mentioned in Aicher & Martin's work but not included in their correlation. Aicher &
Martin's correlation is not shown here, since Celeta et al. correlation encompasses Aicher
& Martin's work as they collected larger amount of data than Aicher & Martin originally
did. After Celeta et al. obtained the functional form by modifying Aicher & Martin's idea;
they utilized the buoyancy parameter (Bo', developed by Jackson & Hall) as their
governing non-dimensional number. Equation 2-27 is the correlation form. It should be
noted that Celeta et al. originally developed the correlation by using the Dittus-Boelter
correlation with the water properties variation correction factor as a forced convection
Nusselt number. Therefore, within this study, we will use the Gnielinski correlation with
the gas properties variation correction factor as our forced convection Nusselt number
when we evaluate the Celeta et al. Nusselt number.

4 *
Nu,,, = Nu2+Nu? 1—(0.36+0.0065%)exp 0.81n X190 B0 _ (2-27)
569(%p)

where Nu,, =

(*%)(Re—IOOO)Pr [T j0.45 0.15(GrATW " )1/3
- , Nu, =

1+12.7\/%(Pr2/3—1) T, 1{0437}/6 Vi

Pr,

The limitation of the correlation is not explicitly described in Celeta et al. work. However,
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the experimental data covers the Reynolds number from 800 to 23,000, the buoyancy
parameter Bo <0.156 and x/D<60.

Symolon et al. (2005)

Symolon et al. correlation (Eq. 2-29) is also based on the water experiment. The range of
the data cover the Reynolds numbers from 2,600 to 70,000, x/ D up to 90 and a new
buoyancy number (Bo) (Eq. 2-28) below 10~. Since, the correlation was developed

from the Dittus-Boelter correlation without the thermal properties modification factor, Eq.
(2-20) will be used to evaluate the forced convection Nusselt number.

Gr
Bo = 3 p05 (2-28)
N1 102
B
NuSvmolan NuF 5 90 10—6 3174 + (76.08300'426 )5 (2_29)
”['XJ
Bo

As a brief summary of this section, eight correlations were selected from the literature
and will be tested against the MIT data to see which correlation performs the best with
the gas heat transfer. Interesting fact is that except for the Vilemas et al. and Jackson et al.
correlations (Villemas et al. used air and Jackson et al. showed some air data along with
the supercritical fluid and water data), most of the correlations in the turbulent mixed
convection regime are based on the liquid experiments. Another fact is that the buoyancy
parameter developed by Jackson & Hall is the most frequently used parameter for
explaining the turbulent mixed convection phenomenon (e .g. Jackson et al., Parlatan and
Celeta et al.). However, the correlation form is very different for each correlation
presented in this section and most of the time even the governing non-dimensional
parameter is different. This leads us to a conclusion that even though the turbulent mixed
convection was studied extensively, the investigators have not reached final agreement on
a correlation form or a governing non-dimensional number. This is more critical problem
for the gas heat transfer cases, since turbulent heat convection experimental data for
pressurized gas can be rarely found.

Literature search have shown that it is hard to find experimental heat transfer data for a
pressurized gas flow for any regime, i.e. forced, mixed and to free convection.
Therefore, the MIT loop data will also expand the database in the regions with lack of
data and hopefully will serve to further enhance the understanding of the forced
convection and mixed convection turbulent flow behavior and applicability of
correlations for the pressurized gas systems.
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2.2.3 Acceleration Induced DTHT

Even though the "laminarization" process was known for a half century, heat transfer
correlation that has explicit acceleration effect and can successfully predict the Nusselt
number in this regime is rarely found. This is because most literature sources focus more
on the threshold value for the acceleration driven laminarization process, rather than on
the development of heat transfer correlations. Since, most of the literature for the
development of the acceleration parameter threshold was covered in the 2™ annual report
[Lee et al., 2005c¢], this section will just add few more heat transfer correlations that have
a potential to be related to the acceleration induced DTHT. This means that any heat
transfer correlation that was developed with a gas heat transfer experiment, with high
heat loads and relatively low Reynolds number are going to be covered in this short
section as much as possible.

McEligot (1963)

The experimental data were collected in the Reynolds number from 1,500 to 200,000 and
g up to 0.006. For the low Reynolds number runs this is equivalent to K, ~107°,

which is near the threshold value for the acceleration induced DTHT. In his report, a
preliminary correlation was developed for such cases (Eq. 2-30).

NU, 0o, = 0.021Re;,7 Re? Pr™ (2-30)
This correlation is valid for the Reynolds number between 1,500 and 8,000, ¢* from
0.004 to 0.006 and x/D from 15 to 49. If we transform this validation range in terms of
the acceleration effect by using the definition of acceleration parameter, the range of K
is from 5x107 to 4x10°°. For the Reynolds number higher than 15,000 and ¢ lower

than 0.004, the Nusselt number can be successfully predicted with Eq. 2-4. The data were
obtained with air, helium and nitrogen.

Perkins & Worsee-schmidt (1965)

The experimental data were obtained at maximum wall to bulk temperature ratio up to
7.5 and minimum exit Reynolds number 4,300 with nitrogen. This indicates that the heat

load was exceptionally high, even though they didn't indicate ¢* value. Thus, it is

reasonable to think that their data might have entered acceleration DTHT regime. The
correlation that was developed with the data is shown in Eq. 2-31.
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When x/D <40

T -0.7 ~0.7 T 0.7
NUp e porsoe s = 0.024Re% Pro| 2| {1 2| | 2w
Perkins—Worsoe—schmidt 7—,b D 7—;

When x/D > 40

(2-31)

-0.7
T
NuPerkins—Wnrsoe—schmidt = 0024 Reo‘s PrOA [%\J

b

This correlation is valid for the inlet Reynolds number from 4,300 to 359,000 and x/D
below 144.

Taylor (1965)

Taylor's work was also selected, since the maximum wall to bulk temperature ratio that
he had achieved is around eight and the Reynolds number range was from 5,700 to
48,400. He used pre-cooled hydrogen and helium as working fluids. The correlation
developed from the experimental data is shown in Equation 2-32.

Nu (2-32)

Taylor

. —[0.29+0.0019x/D]
=0.021Re"* Pr"* (7}

b

The validity of the correlation holds for x/D below 250.
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3 Preliminary Analysis of GFR DHR system

In this chapter, the two effects responsible for heat transfer deterioration will be briefly
discussed in addition to Chapter 2. A newly developed methodology for the preliminary
analysis will be presented first. This will be followed by an analysis of GFR decay heat
removal (DHR) system to evaluate which effects would play key role in the GFR DHR
system performance. Lastly, some observations of the behavior of different fluids using
the analysis methods developed in this chapter will be presented.

3.1 Onset of DTHT Regime

3.1.1 Acceleration Effect

The Acceleration effect is also known as a “laminarization due to the favorable pressure
gradient”. The decrease in turbulence transport occurs whenever a flow directional
acceleration exceeds a certain value. The stream wise acceleration can be quantified by

v dU,

2
b

acceleration occurs from gas expansion due to heating. This effect is different from the
buoyancy effect, since the effect is not related to the gravitational force. When a flow
condition satisfies the onset of laminarization due to the acceleration, the heat transfer
coefficient of the fluid quickly drops to the laminar heat transfer coefficient value (see
Figure 2-5), even though the Reynolds number is well above the adiabatic turbulent flow
criterion. Applying energy balance and continuity equation with perfect gas and constant
cross section assumptions to the original definition of K , an alternative definition of

using the definition of acceleration parameter, K = . In a heated system, the

acceleration parameter can be obtained for the heated case in the form of non-

+

dimensional number K ~ 4;] [McEligot et. al., 1969].
e

Based on McEligot & Jackson work (2004), we can normalize the non-dimensional
number that represents acceleration effect with the onset criterion (NK, =K, / 3x107%).
This is done in order to determine that whenever the normalized value exceeds one, it
indicates that the heat transfer regime is changing from normal forced convection regime
to the DTHT regime due to the acceleration effect (Eq. 3-1). Equation 3-1 also separates
the normalized acceleration parameter into two groups. We will designate the first one as
the controlled group (CK), because it involves geometry, heat flux and the volumetric
flow rate. The second one will be called the fluid properties group (PK,), because it

depends on system conditions, such as system pressure and operating temperature and it
is not controlled directly. Later in this chapter, analysis will be focused on the properties
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group to determine which system pressure and operating temperature will have higher
impact on the heat transfer fluids entrance into the DTHT regime.

K=—to 44 _[q4F Hh |- ck Pk, (3-1)
3x10 3x10™ Re 0 3x107¢,p

3.1.2 Buoyancy Effect

Buoyancy effect originates from the density gradient due to heating, and reduces the
turbulent heat transport when the flow direction is the same as the Buoyancy force. Hall
& Jackson (1969) explained the decrease in turbulence by the shear stress re-distribution
in the flow. Contrary to Hall & Jackson (1969), according to Petukhov & Polyakov
(1988) the phenomenon is governed by two terms that are competing in the turbulent
energy equation. One is the velocity gradient and the other is the turbulence work that
needs to be provided to work against stable density gradient. Two theories were explained
in more detail in Chapter 2. Nevertheless, the onset of buoyancy induced DTHT criterion
form is similar in both cases. Therefore, in this report we will follow McEligot and
Jackson presentation (2004), which is an extended version of Hall and Jackson (1969)
discussion.

Similar to the acceleration effect, the buoyancy group will be normalized with the onset
criterion (NBo" = Bo” / 6x1077). Similarly as for the case of acceleration effect, the

buoyancy effect can be viewed as a multiplication of control group (CBo") and properties

group (PBo") (Eq. 3-2). The buoyancy properties group will be used to provide
information on which system pressure and operating temperature combination will have a
stronger influence on the system to operate in DTHT regime.

. Bo Gr,
NBo = = 1
6x107  6x107 Re** Pr’*

qﬂA4 gﬂObZSﬂ . .
= =CBo -PBo
( Q3.425Pw0,575 j[ 2704 x 1077 Cp().SkO.Zpl 425

(3-2)

3.2 Simple Analysis of GFR DHR System Design

Using Equations (3-1) and (3-2), one can perform a simple parametric study without
exact design parameters (e. g. geometry, heat flux, flow rate etc.) and only with the gas
properties to investigate general trend of the gases in various operating conditions. Since
two GFR coolants under consideration are helium and carbon dioxide, the two gases are
evaluated. Figure 3-1 and Figure 3—2 show both helium and carbon dioxide acceleration
properties groups and buoyancy properties groups for different pressures and
temperatures, respectively.
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Figure 3-2 Buoyancy Properties Group

It is clear from the figures that as temperature increases and pressure decreases, helium
and carbon dioxide properties groups increase. This indicates that the normal gas
turbulent heat transfer has stronger tendency to fall into DTHT regime when the system
depressurizes and the operating temperature increases. This situation occurs in the GFR
system during the loss of coolant accident. Therefore, both acceleration and buoyancy
DTHT criteria need to be checked when designing the GFR DHR system.

40



The above figures also show that for the same controlled variable group, helium is more
susceptible to the DTHT regime than carbon dioxide. Thus, more attention is needed
when designing a helium-cooled system.

Figure 3-3 shows one of the possible operating ranges of a GFR DHR system calculated
with an in-house code LOCA-COLA [Williams et al., 2003]. The details on LOCA-
COLA simulation and the results of GFR DHR are documented well in the scaling
analysis report [Cochran et. al., 2004a].

The Reynolds number is normalized to 4,000 where fully developed adiabatic turbulent
flow regime starts, and normalized DTHT parameters are NK, and NBo . Curves in

Figure 3-3 show the axial variation of NK, and NBo" in a channel for given system

pressure and heated diameter of the hot channel with helium and carbon dioxide as an
operating fluid.

Figure 3-3 shows that there is a possibility for GFR DHR system to operate not only in
the DTHT regime but also in the laminar to turbulent transition regime. The laminar to
turbulent transition criteria is not fully understood even in the adiabatic flow situation and
a complete set of study for heated flow is rarely found [Lee at al., 2005b].
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Figure 3-3 GFR DHR Operation Range

As was mentioned before, the general heat transfer coefficient and friction factor in
DTHT regime and all the transitions from normal turbulent flow to the DTHT regime is
not well defined yet. Therefore, experimental studies in these heat transfer regimes are
necessary to develop reliable correlation for the design of GFR DHR system.
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3.3 Behavior of Bo and K, for Different Fluids

In this subsection, behavior of the buoyancy parameter and the acceleration parameter
during the experimental runs will be discussed. Since, the MIT experimental facility is a
single channel, Equation 3-1 and 3-2 needs to be rearranged to fit for the single channel
analysis. This is because along the channel the mass flow rate is constant due to the mass
conservation, rather than the volumetric flow rate. Equation 3-3 and 3-4 are the
rearranged equations of Eqgs. 3-1 and 3-2.

. qNA4 ngﬂ0625ﬂ . .
NBo = =C.Bo -P.Bo 3-3
£m3.425PWO.575 J[2704X107 Cp0.8k0.2 m m ( )
Nk, =[LAEN _HB |k pk (3-4)
m 3x107¢,

Figure 3-4 and 3-5 plot the buoyancy properties group and acceleration properties group
behaviors of nitrogen at three different pressures with varying temperature. Since, most
of the gas thermal properties behave similarly with the temperature, nitrogen is chosen as
an exemplary case.

First observation is that if we compare Figure 3-1 to 3-4 and Figure 3-2 to 3-5, the trend
is reversed. This is because the density term in the properties group moved to the
controlled group side (since = pQ). Since bulk temperature of the fluid will increase
as it flows toward the downstream due to the heating, it can be predicted from the figures
that both the buoyancy parameter and the acceleration parameter of the gas flow will
decrease along the downstream. Therefore, it can be concluded that the maximum
buoyancy number and acceleration number for the gas flow will be at the inlet of the
channel when the control group is fixed as a constant. The control group is a constant for
the MIT facility since the test section has circular tube shape with the same diameter
along the channel and is operated with uniform heat flux.

Another interesting observation is that the buoyancy parameter properties group of
nitrogen increases with the pressure while the acceleration parameter properties group is
pressure-independent. This indicates that by increasing the operating pressure of the
facility, the buoyancy effect will increase relative to the acceleration effect.
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As it was summarized in Chapter 2, various correlations were developed from the
experimental data collected with working fluid of water and super critical phase fluid.
Thus, it is of interest to check how these fluids behave compared to gases. Figures 3-6 to
3-9 show the properties group trends for liquid water and super critical CO,.

43



10°

] — 5 P=0.1MPa
- —O— P=0.5MPa
P=1.0MPa
j A ARATATA A AT AT ATA A AT
AT
‘8 10°4 a
o ] d/
104 T T T T T T T T T T 1
280 300 320 340 360 380
Temperature (K)
Figure 3-6 Liquid Water Buoyancy Properties Group
2.2x10° 7
2.0x10°
1.8x10° 7 S SN
1.6x10° - // h
1 I —0— P=0.1MPa
5 1.4x10° H —0O— P=0.5MPa
o 1 P=1.0MPa
1.2x10° A
1.0x10° - ’
8.0x10°
6.0x10° . . :

T T 1
280 300 320 340 360 380

Temperature (K)
Figure 3-7 Liquid Water Acceleration Properties Group

44



PBo

PKv

10°4 —0— P=7.4MPa
3 —O— P=8.0MPa
P=9.0MPa
10° E
10°* E
10° T T T T T T 1
300 400 500 600
Temperature (K)
Figure 3-8 Super-Critical CO; Buoyancy Properties Group
2E-4 -
—1—P=7.4MPa
;E-g - —O— P=8.0MPa
8E.5 J P=9.0MPa
7E-5 -
6E-5 -
5E-5 -
4E-5 -
3E-5 -
PANS
2E-5 - =/
Sy e Qg\/ﬁ:
1E-5 T T T T T T 1
300 400 500 600

Temperature (K)

Figure 3-9 Super-Critical CO, Acceleration Properties Group

45



From the liquid water buoyancy properties group behavior (Figure 3-6), one can see that
the trend is totally different from that of the gas. The liquid water buoyancy parameter
will increase or stay the same downstream the channel, since the properties group
increases with the fluid bulk temperature. This is because water is incompressible fluid
and the thermal properties variation due to the temperature change in the low-pressure
range is insignificant compared to gas. One can also conclude from the figures that the
order of magnitude for the water buoyancy properties group is four times higher than that
of the low-pressure gas. Therefore, it can be predicted that water experiment can reach
buoyancy induced DTHT regime relatively easier than in the gas experiment if the
control group is the same. In addition, the channel wise behavior due to the buoyancy
force will be different also.

If we compare the acceleration number properties group between water and nitrogen
(Figure 3-5 & 3-7), their behavior is also different. The nitrogen case shows steady
decrease with increasing temperature, but water shows parabolic behavior with the
temperature. However, in contrast to the buoyancy parameter case, since the order of
magnitude in acceleration property group is the same for both water and nitrogen cases,
the integral performance of both fluids will be the same.

When we compare the super critical carbon dioxide to nitrogen, situation is different from
the comparison of water to nitrogen case. The trend is the same with the temperature for
both fluids but the order of magnitude change with the temperature is different. This is
because of a dramatic jump in both property groups for the super critical CO, near at the
critical point (Figure 3-8 & 3-9), where the properties undergo a steep change. Therefore,
it can be predicted that the experiment using a super critical fluid will usually enter the
DHTH regime, induced by either buoyancy effect or acceleration effect, where the
temperature is near the critical point.

From the comparison of each fluid, the following observations can be made:

1. The channel behavior of buoyancy number will be very different between liquid,
gas and super critical fluids.

2. For the gases, both maximum buoyancy number and acceleration number will
occur at the inlet of the heated channel.

3. For water, the maximum buoyancy number will be at the outlet of the heated
channel and the maximum acceleration number will depend on the bulk fluid
temperature.

4. For the super critical carbon dioxide, both maximum buoyancy number and
acceleration number will be at the point where the bulk temperature is near
critical point.

5. By pressurizing the gas, buoyancy effect can be more pronounced while the
acceleration effect is immune to the pressure change for the same control group.
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4 Description of Experiment

In the 2™ annual report [Lee et al., 2005¢], several upgrades of the experimental facility
were suggested after obtaining preliminary data. This section will describe major
upgrades of the facility in detail and the facility performance after their implementation.

4.1 Test section

It was suggested at the end of the first year of the project that to reduce an uncertainty in
the heat transfer coefficient measurement, guard heaters should be installed to minimize
heat loss from the test section and maintain natural circulation potential in the chimney
section [Cochran et al., 2004b]. Moreover, preliminary runs at the end of second year
indicated that more insulation thermocouples are needed to quantify the heat loss more
accurately [Lee et al, 2005c]. Therefore, in the third fiscal year, more insulation
thermocouples were installed along the test section, between the guard heaters and
secondary insulation. Figure 4-1 shows the test section cross-section with the new
thermocouples installed.

Test Section
Welded on
Thermocouple

2nd Insulation
Guard Heater

Test Section Stainless Steel Foil

Sheathed
Thermocouple

Insulation
Thermocouples

Figure 4-1 Test Section Cross Section

Three insulation thermocouples were installed azimuthally at corresponding test section
axial thermocouples locations facing the wall thermocouples. Since, there were twenty
test section thermocouples axially, a total of sixty insulation thermocouples were installed
at the surface of the test section primary insulation. A greater number of thermocouples
are required on the insulation material (glass wool) due to poor heat conduction of the
insulation. As a result greater azimuthal temperature variations are possible within the
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insulation than on the stainless steel test section, with its higher heat conductivity.

In addition, two thermocouples have been attached to the power taps inside the primary
insulation. These power taps are made from a solid copper block on the inlet to the test
section and a stainless steel block on the test section outlet. Each tap is affixed directly
to the test section resulting in a significant test section heat loss due to heat conduction
into the power tap. Measuring the temperature of each power tap is important for
evaluating axial heat losses more accurately.

A thin stainless steel foil, shown in Figure 4-1, is wrapped around the outer surface of the
primary insulation to conduct the heat from guard heater coils more uniformly into the
outer surface of primary insulation material. The foil is wrapped along the entire height of
both the test section and the chimney section. This is a necessary measure to provide a
uniform heating to the largest extent possible, since the insulation is a weak conductor
and the guard heater is a tape heater that coils around the test section creating hot and
cold spot (non-uniform heating).

The guard heater is powered by 240 VAC and controlled by an OMEGA six-zone PID
temperature controller and two single zone PID temperature controllers from the same
company. Test section guard heaters are divided into four zones and connected to the six-
zone controller and the chimney section guard heaters are separated into two zones and
each zone is connected to the single zone controller respectively. Since, the guard heaters
on the test section were wrapped around more finely than the guard heaters on the
chimney section’, different PID settings were necessary. Thus, multiple PID temperature
controllers were used and each controller is controlled by PC. Figure 4-2 shows the
simplified wiring diagram of the guard heater and its controllers. The actual wiring is
more complicated since three-phase 209 VAC was used to power 240VAC guard heater
and combining six solid-state relays with controllers are wired together.

" This is because the chimney section requires only minimum heat input to compensate for heat
losses to maintain sufficient buoyancy for the natural circulation runs, while the heating section
has axially variable temperature profile and heating losses. Thus, the heating section requires
finer tuning axially.
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Figure 4-2 Simplified Wiring Diagram of Guard Heaters and Controllers

Finally, the secondary insulation was installed to minimize any heat loss from the guard
heaters and to provide a safety measure to the operator when high temperature operation
was necessary.

Photographs of the facility are provided in the Appendix-1.
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4.2 Circulator Section

Preliminary facility tests during the second fiscal year showed that operation at higher
system pressure requires higher power motor to operate all three cylinders of the
compressor. At higher pressures, gas density lowers the volumetric flow rate required to
reach desired Reynolds numbers. Therefore, for the high-pressure operation only one or
two compressor cylinders are required to generate the needed flow. To make possible
easy and fast disconnection of the cylinders from the compressor with minimum moving
parts, multiple valve systems were designed and installed to the compressor section.
Figure 4-3 shows the final arrangement of the valve system used in all runs to gather data.

In addition, flow measurement instrumentation was upgraded from a single rotameter
system to combined rotameter and turbine meter system. Addition of the turbine flow
meter reduced the amount of signal processing necessary to produce accurate flow
readings, the turbine meter being less sensitive to operating fluid, system pressure and
temperature. After installation of the turbine meter the rotameter was used for
approximate indication of flow when setting up the experimental conditions. In this
experimental facility, two turbine meters are installed to accurately match measurement
ranges to system operating conditions. One turbine meter is from OMEGA and it can
measure volumetric flow rate between 1 and 10 cubic feet per minute (CFM), and the
second turbine meter, manufactured by FLOWMETRICS, measures flow from 0.2 to 2
CFM. Photographs of the facility are provided in the Appendix-1.

ﬁ High Flow From Chimney Section @
To Test Section Turbine Meter

Low Flow
Rotameter Turbine Meter
[l
|(x)| Valve
ﬁ Needle
Bypass Line |_ '| '::> vawe

Pressure
Relief Valve

Pressure
Transducer

Compressor
Cylinders

Figure 4-3 Flow Measurements and Circulator System
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4.3 Hotwire Probe

Very small flow rates of low density gas are very difficult to measure reliably.
Therefore, we evaluated potential of using hot wire probe to measure velocity profile in
the downcomer adiabatic flow region with fully developed flow and obtain flow rate by
integration of the velocity profile. The major challenge of such system is how to place the
wire probe in a pressurized system and how to calibrate it without need of frequent
dismantling the probe when conditions in the loop change. Since all hot wire probe
measurements we could find in the literature occurred in open flow systems, the concept
of online calibration facility using the mini Pitot tube proposed in this project is a first
such attempt to obtain velocity profile in pressurized system. Figure 4-4 shows a
conceptual diagram of assembly piece that was manufactured for the hotwire online
calibration system and installed in the down comer section (see Figure 4-6 for its

placement in the loop).
Flow

Static Mixer
Main Loop
Downcomer
Side Honey—-Comb

E Hot—wire & Traversing System
To dPXducer

Pitot Tube

Figure 4-4 Close-up of Assembly Piece for Calibration Loop

To calibrate the hotwire, output from the hot wire needs to be correlated to the Pitot tube
velocity measurement. To minimize temperature gradient and flow turbulence entering
the calibration stage, a static mixer and a flow straightener are installed upstream of the
hotwire and Pitot tube. Both the main loop side and the calibration loop side have 2.35
cm inner diameter. The hotwire and Pitot tube are separated from each other by 2cm. This
distance was selected based on the analyses described in the 2" annual report [Lee et al.,
2005c] that strived for the minimization of developing velocity profile effect and
upstream effect using FLUENT and simple experiments.

In operation the hot wire is positioned within the calibration flow stream and after
calibration completion, the probe traverses to the main loop downcomer, where
measurements of the flow rate are performed. A Smm hole drilled between the calibration
and main flow channel allowed the hot wire probe to extend into the main flow channel.
Hole size was chosen to accommodate passage of the hotwire support, yet minimize flow
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disturbance in both the calibration section and main flow channel.

Before installation of the calibration stage into the main loop, preliminary experimental
runs with air and using a small compressor outside the loop were performed. This was to
check if the King's law (Eq. 4-1) can be used as an interpolation scheme between the
lookup table values and if the Pitot tube can successfully measure the true velocity with a
differential pressure transducer (see more details on calibration in the 1% Annual report
[Chochran et al., 2004b]). Figure 4-5 is the result.

E! =A+BU” (King’s Law) 4-1)

Figure 4-5 clearly shows that the King's law is valid and even the King's law alone shows
a reasonable agreement with the data since R-square value is near unity.

—m— Measured Value
Linear Fit: U *°=1.51+0.29E, *, R*=0.9991

2.00
1.95—-
1.90 —
1.85—-
1.80 —
1.75—-
1.70 —

1.65

Square Root of Velocity (m*%/s”®)

1.60

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

EZ

Vv

Figure 4-5 Pitot Tube vs. Hotwire Signal

Another engineering challenge we faced was how to know the exact position of the
hotwire when traversing. Since the actuator is a stepper motor and can move with
accuracy of 1/2400 inch per step, step count from the fully retracted position was used as
information of the hotwire position. Thus, the number of steps was converted into the
position inside the calibration loop and the main loop by checking the position optically
before the assembly piece was integrated into the facility.

Figure 4-6 shows the online calibration loop of the hotwire measurement system after it
was installed into the facility. The hotwire was calibrated by following the next procedure
during the experiment: First, the system pressure is set to the experimental condition with
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the working fluid. Next, the downcomer section of the main loop side is isolated and the
calibration loop side is connected to the system by utilizing the four ball valves on the
loop (see Figure 4-6). After starting the circulator, the hotwire measures the electrical
signal at the middle point and returns back to the fully retracted position to minimize the
down stream effect for the Pitot tube measurement. This procedure is repeated for
different flow rates by controlling the circulator system. During the process, average and
variance of the hotwire signal is recorded to the computer with the flow temperature,
since hotwire is sensitive to the temperature change.

After the calibration is finished, a lookup table is produced to correlate a hotwire signal to
a true velocity value. Four valves will be operated to isolate the calibration loop side and

reconnect downcomer section to the main loop.

Photographs of the facility are provided in the Appendix-1.
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Figure 4-6 Schematic Diagram of Online Hot Wire Calibration System

A few sample runs were performed with air for different flow rates after the installation
of the hotwire calibration system to check if the calibration procedure can yield
acceptable result. Figure 4-7 shows the data.

Figure 4-7 data were taken by measuring the hotwire signal for every 10 steps (1/240
inch) inside the calibration loop to check if the optimization procedure used to establish
the balanced distance between the mini-Pitot tube and hotwire could provide good results.
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It should be noted that the markers in the figure are only to help the understanding of the
readers do not represent actual data. The data are all connected through the line.

1 Inside the Calibration Loop
2.4 4
1 —=— 2.3 CFM
2.3 —e— 2.6 CFM
1 —A— 3.0 CFM
221 —v— 3.5 CFM
S ] Hye @ 3.8 CFM
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Hot Wire Position (mm)

Figure 4-7 Hotwire Calibration Results at Different Flow Rate

Figure 4-7 shows that for high flow rate cases the upstream effect of the Pitot tube is
significant. It is noted that the high flow rates in these cases are higher than the range of
conditions used in the 2™ annual report for optimum distance identification. These results
were unexpected, since from the 2™ annual report analysis, if the flow becomes turbulent
when the flow rate is high, the upstream effect decreases compared to the laminar flow
due to the turbulent mixing. However, as the flow rate decreases the upstream effect
diminishes in the experiment. Therefore, from the experimental data, it can be concluded
that the hotwire flow transducer system can be valuable when the flow rate is small
enough.

Another drawback on this hotwire arrangement is that when operating in high flow rate,
some flow penetrates sideways through the opening for hot wire stem to the calibration
loop and induces asymmetric velocity profile in the main loop. Figure 4-8 shows this
problem of sideway leakage. Again, same note should be made that the markers are added
to aid the readability of plots, not actual data. In Figure 4-8 legend, "Main Loop Flow"
depicts the case when only the main loop side is connected to the facility (and the hot
wire was measuring also inside the main loop) and "Calibration Loop Flow" means that
the hotwire signal was measured when only the calibration loop was connected to the
loop.
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Figure 4-8 Some Problems with Hotwire Calibration Scheme

Sideway penetration of the hotwire to the main loop is inevitable if the facility is to be
built for operating at elevated pressure. Even though the penetration hole was small, the
skewed velocity profile can be readily observed from the figure. This can cause a
significant error when the total volumetric flow rate is measured by measuring the one
dimensional velocity profile, since the flow rate is calculated from the integration of the
velocity profile. Two or Three dimensional asymmetric velocity distributions can't be
captured by one-dimension velocity measurement. However, one can predict that the
effect of asymmetric velocity profile effect will be less for the low velocity flow cases,
since the skewed maximum velocity will be smaller for those cases and smaller error can
be achieved due to the asymmetric velocity profile integration.

Thus, it was concluded that due to the upstream effect of the Pitot tube and inducing
asymmetrical velocity profile, the hotwire system is not a reliable measurement device in
a high flow rate pressurized loop operation cases. However, the hotwire system may have
a potential to provide more accurate measurements for low flow rates, but it would have
to undergo thorough time-consuming validation process.

However, the low flow rate turbine meter was selected as the primary flow rate
measurement device due to time constraints and the low flow turbine meter from the
FLOWMETRICS can cover flow rates down to 0.2 CFM. In addition, since most of the
data will be taken with circulator operation, high pressure drop is not a major concern in
this case. In the future, after resolving the problems discussed above, the hotwire system
could be utilized to measure the flow rate in the facility reliably.
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4.4 Instrumentation Calibration

Since all the signals collected by the data acquisition system are voltage signals, the
digital volt meter (DVM) on the data acquisition system required a calibration check to
ensure accuracy of voltage readings and thus of correct conversion from temperatures,
pressures and all other voltage-related signals. Figure 4-9 is the result of this calibration.
Universal voltage source calibrated from the NIST was used to supply voltage to the
HP3852 digital voltmeter. The digital voltmeter readings agree with the supplied voltage
within 0.004% (maximum error).

10
—m— Measured
Y=X Line
8 4
>
o 6 -
o
>
(2]
3
s 41
2 -
0 -
T T T T T T T T T T T
0 2 4 6 8 10

Universal Voltage Source (V)
Figure 4-9 Digital Volt Meter Calibration Results

Calibration of the output current signal from the DC power supply, used for heating the
test section, was checked using a 2 kiloamp calibrated shunt connected across the output
terminals of the DC supply. For this calibration procedure bus bars to the loop experiment
were disconnected from the DC supply. Voltage drop across the shunt was compared to
the current signal from the DC supply at different current levels. Figure 4-10 displays the
results of this calibration

The figure clearly shows that a current value calculated from the voltage measurement
agrees well with the current value read from the voltage signal of the power supply. The
maximum error between the measured value and the voltage signal readings is below
0.8%.

The turbine flow meter and differential pressure transducer were calibrated by their
manufacturers. For each instrument, manufacturer provided calibration table, which were
used in the data reduction program using lookup table method. The interpolation between
the table values was automatically done by the facility operation software, which is
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presented in the next section.
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Figure 4-10 Power Supply Current Signal Calibration Results

4.5 Software for Facility Operation and Data Acquisition

Facility operation and data acquisition were all done using a Visual Basic program,
developed by MIT for this project. The advantage of writing our own program for the
facility operation and data acquisition is that it can significantly reduce the load on the
computer compared to general commercial programs, such as LABVIEW. In addition,
writing an in-house code gives more flexibility than just utilizing existing programs.
Figures 4-11 to 13 are screen captures of the operation and data acquisition program.

The most complicated issues in designing the software are: (1) selecting measurement
quantities that need to be averaged and integrated, (2) filtering the raw data to extract
meaningful information, (3) displaying selection of the data representation, and (4)
integrating online calibration capability. For example, system pressure is integrated over
"integration time" (see Figure 4-11) and displayed in a time vs. system pressure graph.
Also, since system pressure transducer needed to be calibrated for every experiment, the
online calibration was also possible with this software. The other example is the
temperature display. Since, spatial temperature profile is an important indicator for the
heat transfer deterioration and temperature history is an important indicator for the steady
state, both were displayed on the same screen. The software is also capable of monitoring
the primary insulation surface temperature and setting the guard heater temperature.

As explained in the 2™ annual report [Lee et al., 2005¢], the data were taken when the
power supply was off for the short time to minimize the electrical noise on the
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ungrounded T/Cs (welded T/Cs). Therefore, a steady state indicator was necessary to
decide if the system reached the steady state or not and turn off the power supply to take
data. This indicator is designed to compare previous time averaged temperature of the
sheathed T/Cs, which can be measured at all times due to their invulnerability to the
power supply electrical noise, to the current time averaged temperature. The temperature
variation rate is calculated for each sheath T/C using an averaging scheme, which reduces
electrical noise induced to the sheathed T/C's signal. The averaging time is decided by
changing the integration time. The default averaging time is 30 seconds and steady state
temperature readings are taken when the maximum temperature variation ratio was below
6 °C per hour.

The differential pressure is measured by a MKS Type 120A high accuracy pressure
transducer and the raw signal is filtered to eliminate pressure pulses introduced by the
circulating compressor. Both raw data and filtered signal are displayed. All flow
measurement data, rotameter, turbine meter and hotwire is displayed on screen in real
time.

The software saves data to two files. One file contains all the data of sheathed T/Cs and
flow thermocouples gathered while the power supply is on, and the other file includes all
the data taken when the power supply is off.

For safety purposes, the heating DC power supply is automatically turned off when any
sheathed T/C reading is above 1050K. Additional safety functions include interrupting
DC heating current when the data acquisition system is not operating or there is some
difficulty in acquiring data.

The software provides a dedicated summary tab for display of key operating parameters
such as power, heat flux, flow rate and system pressure. In addition inlet non-dimensional
numbers are displayed providing easy determination of the current loop operational flow
regime.

The hotwire calibration tab consists of four sections. First section is for measuring and
setting the hotwire characteristic parameters such as probe resistance and the aspect ratio.
The second tab is the motion tab, which provides stepper motor control. The third tab is
for the calibration. In this tab the hotwire signal and velocity measured by the Pitot tube
are correlated automatically and saved to a file. Fourth tab measures the flow rate with
calibrated hotwire and stores the measured signal to a different file and displays the
velocity profile inside the main loop.
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4.6 Experimental Procedure

This section provides a step-by-step description of the method for acquiring data during
each experiment.

1.

2.

o

10.
11.
12.
13.
14.

15.

Five hours prior to testing turn on the differential pressure transducer for
warm up period.

After the warm up period, connect both ports of the differential pressure
transducer to each other to create zero differential pressure. Execute “auto
zero” function for the differential pressure transducer. Auto zero sets the
transducer output at a known zero differential pressure.

Start the facility operation and measurement software.

Calibrate the pressure transducer for zero gage pressure, by insuring that the
transducer is exposed to atmospheric pressure, then measuring the transducer
output for 20 seconds and averaging the readings. This value is subtracted
from the pressure transducer signal during the test.

Isolate the compressor from the main loop. This procedure is necessary, since
the compressor sealing is not designed to withstand vacuum condition.

Open all the valves in main loop and start the vacuuming process.

After vacuum state is reached, charge the loop with the gas required for the
experiment: nitrogen, helium or carbon dioxide.

Set the system pressure with the pressure regulator on the gas bottle and
monitor the system pressure with the calibrated pressure transducer.

Valve in the compressor and select the number of cylinders required for
proper loop operation. Gas volume required to fill the compressor is made up
automatically from the gas supply bottle.

Start the compressor and turn on the heat exchanger water supply.

Measure the flow rate to check if desired operating condition is achieved.

Set the DC current supply value and start the power supply.

Set the guard heater temperature value.

Set the steady condition and monitor the temperature history and profile to
check the steady state and the operating flow regime. Also a lot of
information can be obtained from the operation summary tab.

Obtain steady state data five times and move to next case. The data reduction
program averages five data points and reduces raw data.

4.7 Data Reduction Program Design

There was no major upgrade for the data reduction program in terms of the reduction
procedure in comparison to the 2" annual report. Minor upgrades in the procedure were:

1.

Zoning process of the insulation for estimating a radial heat loss is eliminated.
The zoning process was necessary, since number of axial insulation T/Cs (6 axial
T/Cs) were smaller than the test section T/Cs (20 T/Cs) last year. After the
additional thermocouples were installed within the insulation adjacent to the test
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section, each axial point on the test section has three corresponding primary
insulation T/Cs at the same axial point.

2. The thermal resistance of the insulation is after the update dependent on test
section outer wall temperature. Therefore, lookup table method is used to
evaluate the thermal resistance of the insulation as a function of outer wall
temperature.

3. Stainless steel conductivity is now linearly dependent on temperature. This affects
the calculation for the inner wall temperature from the measured outer wall
temperature value.

4. The flow rate does not require system pressure dependent corrections, since
turbine meter measures the actual volumetric flow rate while pressure
modification is needed for the rotameter readings.

5. Various non-dimensional numbers, such as buoyancy parameter, acceleration
parameter, non-dimensional heat flux and so forth are calculated during the
process.

6. Helium and carbon dioxide properties are added to the gas properties database.

This year major upgrades of the data reduction program focused on code modularity.
These involved addition of the gas properties function, thermal resistance database of the
insulation material, geometrical features and the main processor, which were all separated
and can be called as an intrinsic function in MATLAB. In addition, format of output file
was designed in such a manner that the reduced data can be easily used to verify various
existing correlations and produce new correlations.

4.8 Thermal Characteristic of Insulation

Before we present the experimental data, thermal resistance of the insulation needs to be
determined. Measurements of thermal resistance will be presented in this section.
Thermal resistance is measured by (1) vacuuming the main loop, (2) applying heat flux to
the test section, (3) measuring the temperature of the test section outlet wall temperature
and the outer surface of the primary insulation, and (4) calculating the thermal resistance
from the data. The measurement procedure is documented in more detail in the 2™® annual
report [Lee et al., 2005c].

It was pointed out in the 2™ annual report that to estimate the radial heat loss more
accurately, the thermal resistance of the insulation needs to be temperature dependent.
Therefore, six measurements with different average test section wall temperatures were
performed. The results are presented in Figure 4-14. In the figure, number indicates the
axial position (e. g. '0" is the inlet of the test section and '19' is the outlet of the test
section) and different markers are for different azimuthal sections (e. g. circle is for 0
degrees, cross is for 120 degrees and square is for 240 degrees T/C positions). Since three
azimuthal T/Cs are placed on twenty different axial positions, the insulation is divided
into three azimuthal sections and twenty axial sections (total 60 sections).

However, one interesting observation can be made from the figure. The '0', '1', '18" and

'19" axial insulations have different trend versus temperature compared to the rest of the
insulation sections ('3' to '17'). Since, the same material is used for all the insulation, the

64



discrepancy in the behavior is mainly due to the uncertainty in the axial conduction
estimation rather than the difference in the insulation itself. Even by installing T/Cs on
the power tap improved the accuracy of the axial heat loss estimate, the heat flux
calculations at this position is not as reliable as for other positions. This can be observed
by comparing '0' to 'l' and '19' to '18' insulation data, since as soon as the insulation
moves further from the inlet or the outlet (from '0' to '1' and from '19' to '18"), where the
axial heat loss is maximum due to the power tap, the behavior becomes similar to the rest
of the insulation. Therefore, insulation '0' and 'l' data will be substituted with "2'
insulation data and '18' and '19' will be substituted with '17' data. This will provide better
estimation of the heat flux and the bulk temperature than using the insulation data itself.

From the insulation '3' to '17' behavior, most of the insulations respond linearly to the test
section outer wall temperature. Thus, when the test section outer wall temperature rises
slightly higher than the calibration cases for the insulation, the thermal resistance is
evaluated with an extrapolation based on the linear fitting of the data.

a0
—=—0
35t —&—1
& 18
£ 1
'-g —a— 317
O X5+
[ &
[
E 0k
[F)
Lui]
o 15k
™
E 1l
o
L
-
D 1 1 1 1 1 1 ]
300 400 500 GO0 700 a0 300 1000

Temperature (K)

Figure 4-14 Thermal Resistance of the Insulation for Different Outer Wall Temperatures
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5 Experimental Data

This chapter presents experimental data obtained from the loop facility operation. The
chapter will be divided into six sections. First three sections show the experimental data
for each gas: nitrogen, helium and carbon dioxide, and fourth last section will summarize
the entire set of experimental data. The last two chapters are to show the validation of the
data and present a newly proposed heat transfer map.

The data presented in this chapter will be all given in non-dimensionalized form, as
obtained through the data reduction process, except for few cases where temperature
profile can provide some insight. Since, the thermal resistance of insulation locations '0',
'T', '18' and '19' could not be determined with sufficient accuracy due to axial heat
conduction, four data points at these channel inlet and outlet locations are all omitted
from the heat transfer data presentation, even though the data of these points are used for
calculating the fluid bulk temperature and the heat balance. Thus, one case provides 16
Nusselt numbers along the channel. All the data presented here was taken with 15.7mm
small diameter test section only.

Before describing the experimental data obtained at the lop facility, all the operating
conditions are summarized in Table 5-1. Within this work, when we present the data, each
regime is defined as:

1. The laminar regime and mixed convection laminar regime are when the inlet
Reynolds number is smaller than 2,300 (yellow in Table 5-1).

2. The transition regime is when the inlet Reynolds number is higher than 2,300 but
the outlet Reynolds number is lower than 2,300 (green in Table 5-1).

3. The turbulent regime is when both the inlet and outlet Reynolds number is above
2,300 (light blue in Table 5-1).

4. The DTHT regime is when both the inlet and outlet Reynolds number are above
2,300 and the reduction in the heat transfer coefficient is over 20% (red in Table
5-1).

It should be noted that all the gases were operated far from the critical point.

Table 5-1 Operating Conditions

case|Gas|P(MPa)|CFM| ¢" (W/m®)| Inlet Re| Inlet ¢*| Tw/Tb | max Bo'| max K,

1 |IN2j 033 | 1.1} 7987 9046 ]0.0021221.40~1.11} 9.50E-07 | 1.11E-06
N2| 0.5 1.2 13940 | 14359 [0.002446(1.52~1.16| 7.72E-07 || 7.67E-07
N2| 053 || 1.2 7485 15232 [0.001277(1.29~1.11}| 3.80E-07 ||3.66E-07
N2| 0.14 |22 | 12121 7197 0.0035811.64~1.08| 5.07E-07 |2.64E-06
N2| 0.14 ] 22| 7855 7175 ]0.0025091.44~1.08)| 3.46E-07 | 1.73E-06
N2| 0.13 || 1.8 | 8220 5538 [0.0028891.52~1.14 8.07E-07 |3.01E-06
N2 0.13 | 1.8 | 5919 5334 ]0.0023471.40~1.06| 6.22E-07 |2.34E-06
N2| 0.13 ] 6.0 | 5095 18470 [0.000736|1.17~1.07|| 8.00E-09 | 1.68E-07
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Table 5-1 Operating Conditions (continued)

case|| Gas [P(MPa)|CFM q" (W/m?)| Inlet Re| Inlet g'| TW/Tb | max Bo | max K,
9 [N2] 0.13 [ 2.2] 10640 | 7025 [0.003245]1.58~1.07] 4.88E-07 [[2.43E-06
10 [N2]| 0.17 [l6.1 | 3051 | 23619 [0.000337]1.09~1.03| 3.00E-09 | 6.00E-08
11 [N2| 0.17 | 3.1] 3161 | 12352 ]|0.000636]1.14~1.05] 3.20E-08 ||2.28E-07
12| N2 0.17 [ 55| 5014 | 21704 | 0.0006 [1.15~1.06] 7.00E-09 [|1.16E-07
13 N2 | 0.17 [[48 | 5067 | 18768 [0.000693]1.17~1.07] 1.20E-08 [|1.57E-07
14 N2 | 059 [ 1.2 11282 | 16895 [|0.001696[1.40~1.15] 4.92E-07 ||4.42E-07
15 N2 | 059 [ 1.2] 15742 | 16767 [0.002356]1.54~1.19] 6.97E-07 ||6.26E-07
16 N2 | 059 [ 1.2 ] 21040 | 16806 [0.003098]1.71~1.17] 9.21E-07 ||8.31E-07
17 [ N2 0.57 [[0.9| 17043 || 11887 [0.003271]1.78~1.13] 2.15E-06 ||1.34E-06
18 [ N2 0.58 [0.7 ] 12119 || 10023 [0.002509]1.73~1.20] 3.06E-06 ||1.35E-06
19 N2 | 058 [J0.5] 9341 | 7563 [[0.002398]1.74~1.18] 6.06E-06 ||1.82E-06
20 [N2| 0.58 | 05| 6552 | 7534 [0.001723]1.60~1.13] 4.35E-06 ||1.29E-06
21| He| 0.17 [ 6.1 2141 | 3184 [0.000314]1.05~1.02] 7.00E-09 |[4.17E-07
22| He| 0.18 | 6.1] 4200 | 3196 [ 0.00061 [1.10~1.03] 1.40E-08 |[8.11E-07
23 | He| 0.18 | 6.1| 8313 | 3235 [0.001178]1.19~1.07] 2.70E-08 | 1.57E-06
24| He| 0.18 [ 6.2 11047 | 3302 [0.001516]1.24~1.08] 3.30E-08 [[2.00E-06
25 | Hell 0.18 6.0 | 14401 || 3205 [0.002009]1.29~1.10] 4.80E-08 ||2.76E-06
26 | He|l 0.18 || 6.2 | 20512 || 3381 [0.002677]1.41~1.14| 5.50E-08 ||3.52E-06
27 | He | 0.18 | 6.2 | 24814 | 3413 [0.003193]1.48~1.16] 6.50E-08 |4.18E-06
28 | He| 0.19 [ 3.4 ] 17346 | 1894 [0.003876[1.41~1.05| 3.57E-07 [|9.48E-06
29 |He | 0.19 | 3.4 | 11778 | 2001 [0.002543]1.31~1.11] 2.15E-07 |5.79E-06
30 |He || 0.18 |34 7617 | 1817 [0.001807]1.24~1.08| 1.79E-07 |4.54E-06
31 |He| 04 [3.7] 7502 | 4383 [0.000814[1.13~1.05| 4.20E-08 | 7.68E-07
32| He| 04 [3.7] 19270 | 4434 | 0.00201 [1.32~1.12] 1.04E-07 |1.92E-06
33| He | 04 [3.7] 27944 | 4516 [0.002787]1.44~1.16| 1.36E-07 |2.69E-06
34 | He| 039 | 2.5] 20810 | 2889 [0.003143]1.42~1.15] 4.34E-07 | 4.88E-06
35| He| 038 [ 2.5] 15741 | 2833 [0.002453]1.34~1.12] 3.38E-07 ||3.85E-06
36 |co2| 0.13 | 6.0 10740 | 33461 [0.000609]1.31~1.13] 1.10E-08 ||8.30E-08
37 co2| 0.13 | 4.1 | 11200 | 22916 [0.000903[1.40~1.17] 4.10E-08 ||1.81E-07
38 co2| 0.14 | 5.3 10812 | 31282 [0.000656[1.32~1.14| 1.50E-08 [9.60E-08
39 Jco2| 0.14 3.5 11300 | 21339 [0.000971]1.41~1.16] 5.70E-08 [2.10E-07
40 [co2| 0.14 | 2.8 | 11626 | 17015 [0.001222[1.48~1.14) 1.28E-07 ||3.37E-07
41 co2| 0.14 2.7 20776 | 16382 [0.002224[1.74~1.09| 2.46E-07 | 6.55E-07
42 |co2] 0.14 [ 2.1 | 16670 || 12930 [0.002197]1.70~1.07| 4.91E-07 ||8.25E-07
43 |co2| 0.26 [ 3.7] 22012 | 42691 [0.000996]1.49~1.22] 3.70E-08 | 1.08E-07
44 |co2| 0.26 [ 2.1 ] 19270 | 24316 [|0.001464[1.59~1.17) 2.18E-07 ||2.83E-07
45 |lco2l 0.26 | 1.1] 16782 | 12832 [0.002234[1.73~1.06| 1.73E-06 ||8.47E-07
46 |Cco2| 0.55 | 1.1] 28359 | 28333 [|0.001887]1.76~1.15 9.21E-07 |3.13E-07
47 |co2| 0.53 | 1.2 10891 | 28518 [|0.000733]1.36~1.15] 3.57E-07 | 1.17E-07
48 Jco2| 0.52 [ 1.2 20005 ]| 28075 [0.001355]1.61~1.20] 6.62E-07 [2.26E-07
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Table 5-1 Operating Conditions (continued)

case|| Gas IP(MPa) CFM|q" (W/m®)| Inlet Re| Inlet ¢*| Tw/Tb | max Bo'| max K,
49 [CO2[ 0.52 || 0.9 || 15840 || 20933 |[0.001395]1.61~1.18| 1.44E-06 |[3.13E-07
50 "COZ 0.52 | 0.9 || 20921 20757 [0.001837(1.76~1.16| 1.77E-06 ||4.18E-07
51 ||CO2 0.52 || 0.8 | 18372 19208 [[0.001731[1.72~1.16| 2.07E-06 ||4.25E-07
52 ||C02 0.53 || 0.7 | 17593 17265 || 0.00178 |[1.78~1.15| 2.95E-06 ||4.94E-07
53 ||C02 0.57 || 0.6 | 13789 16548 | 0.00146 |[1.69~1.16| 3.36E-06 |[4.21E-07
54 ||C02 0.57 || 0.6 | 15248 16658 [0.001528(1.75~1.25| 3.66E-06 |[4.60E-07
55 ||C02 0.66 || 0.4 11379 12545 [0.001408[(1.85~1.23( 9.80E-06 ||6.06E-07
56 ||C02 0.65 || 0.4 7642 12089 || 0.00098 [[1.68~1.16| 7.22E-06 ||4.36E-07
57 ||C02 0.67 |04 11614 12249 [10.001436(1.88~1.25[ 1.11E-05 |6.49E-07
58 ||C02 0.58 || 0.6 | 12816 14791 [[0.001372(1.83~1.22( 4.71E-06 ||4.91E-07

5.1 Nitrogen Data (Cases 1 through 20)

Table 5-2 briefly summarizes the operating condition for the nitrogen data.

Table 5-2 Summary of Nitrogen Runs

Total number of Runs 20
Operating Pressure Range 0.13 - 0.59 MPa
Operating Power Range 291 — 1989 Watts
Operating Volumetric Flow Rate Range | 0.5-—6.1 CFM
Inlet Temperature ~302 K
Inlet Reynolds Number Range 5,300 — 23,600

Inlet ¢° Range

0.0003 — 0.0036

Inlet Bo" Range

3x107 — 6x10°°

Inlet K, Range

6x10° — 3x10°

From Table 5-1, it can be observed that the nitrogen runs are all in the turbulent flow heat
transfer regime and some high heat fluxes cases are in the DTHT regime, since the
buoyancy and acceleration parameters were clearly above or near the threshold indicated
by McEligot & Jackson's work (2004).

Figure 5-1 plots the measured Nusselt number versus the Reynolds number for all the
nitrogen runs. It can be observed that most of the nitrogen data agreed well with the
Nusselt number predicted by the Gnielinski correlation. However, significant heat
transfer deterioration began at the Reynolds number of about 10,000. Runs number 4, 6,
17, 18, 19 and 20 showed significant deterioration from the forced turbulent convection

heat transfer.
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As it was described in Chapter 3, the Reynolds number, buoyancy parameter and
acceleration parameter all decrease from inlet to outlet for the gas flow due to its thermal
properties dependence on the temperature change. Figure 5-1 shows the inlet to outlet
direction.
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Figure 5-1 Nitrogen Nusselt Number vs. Reynolds Number

Figures 5-2 and 5-3 plot the temperature profile of the DTHT case along with the normal
forced turbulent heat transfer case. Selected runs for the comparison purposes have
numbers 6, 7, 16 and 17 per Table 5-1, and were chosen so that the operating pressure be
nearly the same between Case 6, 7 and 16, 17.

In Figure 5-2, black dotted line is the predicted wall temperature using the Gnielinski
correlation for the turbulent heat transfer. . It can be clearly seen that the measured wall
temperature of Case 6 is significantly higher than the estimated wall temperature
(maximum 164°C difference). If we compare measured and predicted wall temperatures
for Run 6 to those of Run 7, it is obvious that Case 6 was operating at the DTHT regime
and significant reduction in the heat transfer coefficient occurred. Since Case 6 was

operated at K, ~3x107°, it can be deduced that the deterioration of heat transfer

occurred because of significant acceleration effect due to high heating.
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Figure 5-2 Case 6 and 7 Wall, Bulk and Predicted Temperature Profiles

In Figure 5-3, again black dotted line is the predicted wall temperature using the
Gnielinski correlation. The measured wall temperature of Run 17 is significantly higher
than the predicted wall temperature (maximum 165°C difference). Such a large difference
between measured and predicted wall temperatures of Run 17 in comparison to Run 16 is
a consequence of significant reduction in the heat transfer coefficient of Run 17. Thus,
Run 17 was operating at the DTHT regime. Since Run 17 had large Bo number,
Bo, ~2x107°, this deterioration is likely caused by buoyancy effect due to high heat flux

in this test.

Interesting observation that can be made from Figures 5-2 and 5-3 is that the temperature
profile differs between the acceleration induced DTHT and the buoyancy induced DTHT.
The acceleration effect driven DTHT seems like a steady laminarization of the turbulent
flow toward the down stream, while the buoyancy effect driven DTHT has a maximum in
the middle of the channel. Since, the buoyancy parameter decreases along the channel for
heated gas flow, the buoyancy effect is decreasing along the channel. After certain
reduction of the buoyancy force occurs, the turbulent flow seems to regain its turbulent
intensity to return back to the normal turbulent flow, "re-turbulization" so to speak. This
phenomenon will be addressed in more detail when carbon dioxide data are discussed.
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Figure 5-3 Case 16 and 17 Wall, Bulk and Predicted Temperature Profiles

Figures 5-4 and 5-5 plot the ratio of measured Nu over predicted Nu using Gnielinski
correlation versus buoyancy and acceleration parameters, respectively. These figures
confirm that six DTHT cases either operated in the DTHT regime due to the high
acceleration effect or the buoyancy effect. The maximum reduction in the local heat
transfer coefficient, compared to the Gnielinski correlation is 76% (Run 20). This is a
substantial reduction of heat transfer capability.
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Before we start the discussion on which effect is responsible for inducing the DTHT
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regime, one point needs to be thought through thoroughly. The acceleration parameter
threshold is set when the turbulent flow becomes fully laminarized and the heat transfer
coefficient decreases from the turbulent flow value to the laminar flow value. The
minimum reduction in the fully acceleration driven DTHT can be calculated for this case
by taking the ratio of the laminar Nusselt number (Nu=4.364) to the turbulent Nusselt
number at the Reynolds number 2,300 (Nu=7.211 at Pr=0.7 with Eq. 2-20), which
yields 4.364/ 7.211=0.605. Therefore, the minimum reduction, when the acceleration

parameter exceeded the threshold, is 40%.

In contrast, the buoyancy parameter threshold is set when the measured Nusselt number
is reduced from the forced convection turbulent flow Nusselt number by 5% [Jackson et
al.,, 1989 & McEligot & Jackson, 2004]. Therefore, it is unreasonable to treat both
thresholds equally, since the acceleration parameter threshold impact is much greater than
the buoyancy parameter threshold and either one of the parameter thresholds needs to be
modified.

To have a comparable buoyancy parameter threshold to the acceleration threshold, the
buoyancy threshold is redefined as the buoyancy number that gives the same fractional
reduction of the Nusselt number compared to the acceleration threshold. This can be
calculated using Jackson's heat transfer correlation (Eq. 2-23). Thus, the equivalent
buoyancy parameter threshold per Eq. (2-23) is Bo  ~3x10°, which gives 40%
reduction in the Nusselt number. Therefore, Bo  ~3x10° will be used as a measure for
the buoyancy threshold and this threshold value will be used for comparing the relative
strength of the buoyancy effect versus the acceleration effect.

Figure 5-6 plots inlet buoyancy parameter and the acceleration parameter for all the
DTHT runs with nitrogen and compares them with the threshold value for each parameter.
It can be concluded that Runs 4 and 6 were operating at the DTHT regime driven
primarily by flow acceleration, while the remaining cases were primarily buoyancy
driven, as Runs 4 and 6 are closer to the acceleration effect threshold than to the
buoyancy effect threshold and other runs have opposite trend.

By comparing the operating conditions between Case 4, 6 and Case 17 to 20, this
observation can be validated further. Case 17 to 20 were operating at relatively high
system pressure compared to Cases 4 and 6. The discussion in Chapter 3 has shown that
when the gas is pressurized the buoyancy effect becomes stronger than the acceleration
effect. Thus, our observation seems reasonable. In other words, no interference between
the buoyancy effect and the acceleration effect was observed.

To summarize the nitrogen runs, the following can be stated:

1. Nitrogen forced convection turbulent heat transfer data confirmed that the facility
could produce reliable forced convection having very close agreement with well-
established Gnielinski correlation. This validated correct operation of the facility
and instrumentation.

2. Six cases operated at the DTHT regime, 2 cases operated at the DTHT regime
due to the acceleration effect and 4 cases were due to the buoyancy effect.
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5.2 Helium Data (Cases 21 through 35)

Table 5-3 briefly summarizes the operating condition for the helium data.

Table 5-3 Summary of Helium Runs

Total number of Runs 15
Operating Pressure Range 0.17 — 0.40 MPa
Operating Power Range 200 — 2630 Watts
Operating Volumetric Flow Rate Range 2.5-6.1 CFM
Inlet Temperature ~304 K
Inlet Reynolds Number Range 1,800 — 4,500

Inlet ¢° Range

0.0003 - 0.0039

Inlet Bo' Range

7x107° — 4x1077

Inlet K, Range

4x107 — 5x10°°

From the table, it is shown that the helium runs have potential of covering the laminar,
mixed convection laminar, transition between laminar and turbulent, turbulent and the

acceleration driven DTHT regime.
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Figure 5-7 presents the helium runs in the Nusselt number vs. Reynolds number plot..
The Gnielinski correlation (Eq. 2-7) and the forced convection laminar correlation (Eq.2-
2) were used to show the predicted forced Nusselt number in both regimes. However, it is
important to note that the Gnielinski correlation range does not extent below local
Reynolds number of 2,300, but even if the local Reynolds number is lower than 2,300
still the Gnielinski correlation was used to predict the Nusselt number if the inlet local
Reynolds number is higher than 2,300. This scheme is applied to have continuous heat
transfer coefficient in single channel.

The figure clearly shows that helium operated in the mixed convection laminar, transition,
turbulent and DTHT regime. Runs 28 through 30 are in the mixed convection laminar
flow regime, Runs 25 through 27 and 34 through 35 are in the transition regime, Runs 21

through 24 and 31 through 32 are in the turbulent regime and finally Case 33 is in the

DTHT regime.
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Figure 5-7 Helium Nusselt Number vs. Reynolds Number.

Figure 5-8 and 5-9 shows the ratio of the measured Nusselt number to the Nusselt number
predicted by Gnielinski correlation versus the buoyancy parameter and the acceleration
parameter. Three regimes presented in the figures involve turbulent, DTHT and transition
regimes.
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It is obvious from the figures that the DTHT run was due to the acceleration effect, since
the K, ~3x 10° while Bo, ~1x107. Interesting phenomenon is that even though the

several runs in the transition flow category have stronger acceleration effect than the
DTHT run the heat transfer coefficient is not deteriorated. One possible explanation is in
the application of the transition criteria that were discussed in 2™ annual report. Since
there is a possibility of having laminar to turbulent transition earlier than at the Reynolds
number of 2,300 in the heated flow where the heating causes instability of the stable flow
[Lee et al., 2005 a-c], this "turbulization" process can become stronger than the
acceleration-driven "laminarization" process. From Figure 2-3, since the turbulence is
generated from the velocity gradient, steeper gradient at the wall and two maximum
points of the velocity profile due to the high heating can create flow instability strong
enough to maintain the turbulence even though the acceleration effect is strong. On
Figure 5-8, the enhancement of the transition regime heat transfer coefficient compared to
the Gnielinski correlation follows the increase of the buoyancy parameter, which supports
this hypothesis.

Another unexpected behavior from the figures is that the helium turbulent forced
convection heat transfer is significantly enhanced compared to the Gnielinski correlation
prediction when both the buoyancy effect and the acceleration effect are small. For a
logical explanation, more data to check the reproducibility of the data and theoretical
development should be followed in this regime.

Figure 5-10 shows the correlation between the non-dimensional number that we have
selected from Chapter 2 and ratio of the measured Nusselt number to the Nusselt number
predicted by laminar flow heat transfer correlation. Figure 5-10 indicates that the non-
dimensional number that was chosen seems to correlate the enhancement of the laminar
convection. The enhancement is due to the buoyancy force, which drives a steeper wall
velocity gradient and enhances the heat transfer process. However, to verify if the flow is
truly laminar or not, the information of velocity and temperature profiles of the flow are
required.

To summarize the helium runs:

1. Helium runs covered mixed laminar, transition, turbulent and DTHT regimes
together.

2. The DTHT regime was due to the acceleration effect.

3. Some unexpected behavior in the transition regime was observed and more
investigation will be needed to understand the physics behind it.

4. Laminar heat transfer was enhanced due to the buoyancy effect and the selected
non-dimensional number seems to correlate the enhancement up to certain degree.
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Figure 5-10 Helium Laminar Nusselt Number Ratio vs. Laminar Buoyancy Parameter

5.3 Carbon Dioxide Data (Runs 36 through 58)

Table 5-4 briefly summarizes the operating condition for the carbon dioxide data.

Table 5-4 Summary of Carbon Dioxide Runs

Total number of Runs 23
Operating Pressure Range 0.13-0.67 MPa
Operating Power Range 720 — 2690 Watts
Operating Volumetric Flow Rate Range 0.4-6.0 CFM
Inlet Temperature ~303 K

Inlet Reynolds Number Range

12,000 — 42,700

Inlet ¢° Range

0.0006 — 0.0022

Inlet Bo' Range

1x10®* — 1x10°

8x10® — 8.5x107

Inlet K, Range

From the table, it is shown that the carbon dioxide runs operated in the turbulent and
buoyancy induced DTHT regime.

Figure 5-11 shows the carbon dioxide data versus the Reynolds number. Runs 52 through
58 operated in the DTHT regime and rest of the runs operated in the turbulent regime.
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Figures 5-12 and 5-13 clearly show that the all the DTHT regime runs with the carbon
dioxide is due to the buoyancy effect. However, new phenomenon that was not fully
covered in the nitrogen runs was found in the carbon dioxide runs. The temperature
profile of "re-turbulization" and the non re-turbulizing flow are shown in Figure 5-14 and
5-15 respectively. Runs 50 (inlet Bo" =1.77x10") and 52 (inlet Bo =2.95x10™°) are
compared to show the re-turbulizing flow and Runs 50 and 57 (inlet Bo" =1.11x107)
are compared to show the non re-turbulizing flow. By comparing Figure 5-14 and 5-15, it
can be concluded that as the buoyancy parameter increases the wall temperature
maximum moves toward down stream of the channel.

To summarize the carbon dioxide runs:

1. Carbon dioxide runs were operated at the turbulent and the buoyancy induced
DTHT regime.

2. Seven carbon dioxide runs were operated at the DTHT regime.

New regimes were observed in the buoyancy induced DTHT, which is

turbulizing" regime and "non re-turbulizing" regime.
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5.4 Data Summary

This section will summarize all the data. Table 5-5 summarizes all the experimental runs

Table 5-5 Summary of All the Experimental Runs

Total number of Runs 58 (N, He, CO»)
Operating Pressure Range 0.13-0.67 MPa
Operating Power Range 200 — 2690 Watts
Operating Volumetric Flow Rate Range | 0.4 —6.1 CFM
Inlet Temperature 300 —305 K
Inlet Reynolds Number Range 1,800 — 42,700
Inlet ¢° Range 0.0003 - 0.0039
Inlet Bo" Range 3x107° — 1x107
Inlet K, Range 6x107° — 5x10°°

The operating flow regimes were mixed convection laminar, transition from laminar to
turbulent, turbulent, the buoyancy induced DTHT and the acceleration induced DTHT
regimes. Table 5-6 summarizes the case number for each regime. This can be also found
in more detail in Table 5-1.

Table 5-6 Cases for Each Regime

Heat Transfer Regime Case # Total
Mixed Convection Laminar 28 —-30 3
Transition from Laminar to Turbulent | 25-27, 34, 35 5
Buoyancy Induced DTHT 17-20, 52-58 11
Acceleration Induced DTHT 4,6,33 3
Turbulent Heat Transfer Remaining Cases | 36

Figure 5-16 depicts the local Nusselt number versus Reynolds number along with the
Gnielinski correlation (Eq. 2-7) and the laminar correlation (Eq. 2-2) predictions. As it
was mentioned in the nitrogen experimental data summary, even though the Gnielinski
correlation is valid above the local Reynolds number of 2,300, the correlation is used for
the case when the inlet Reynolds number is higher than 2,300 regardless of the local
Reynolds number.

Figures 5-17 and 5-18 show the ratio of the measured Nusselt number to the predicted
Nusselt number by the Gnielinski correlation versus the buoyancy parameter and
acceleration parameter. Four regimes are marked differently in each figure to show the
different behavior of each regime.
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Figure 5-18 Nusselt Number Ratio vs. Acceleration Parameter

From the nitrogen data and carbon dioxide data, it was shown that the buoyancy induced
DTHT regime needs to be further divided into "re-turbulizing" and "non re-turbulizing"
regimes. If we further divide the buoyancy induced DTHT into two sub-regimes, which is
re-turbulizing flow and non re-turbulizing flow, the boundary between the two can be
found from Figure 5-19. Figure 5-19 shows the inlet buoyancy number of DTHT runs
with the location of maximum heat transfer reduction. From Figure 5-19,
Bo" ~3.5x10°° is identified as a boundary between the re-turbulizing flow and non re-
turbulizing flow. Blue markers are re-turbulized runs, where the maximum reduction
occurred at the middle of the test section, while red markers are non re-turbulized flow
towards the outlet of the test section.

Figure 5-20 is the plot of DTHT cases for the inlet buoyancy number and the acceleration
number. Figure also shows the original threshold value indicated in [McEligot & Jackson,
2004] and the new thresholds identified from the MIT experimental data. Table 5-7
summarizes thresholds for the DTHT regime.

Table 5-7 Threshold Values for Each Regime

Heat Transfer Regime Original MIT
Acceleration Induced DTHT | K, =3x10"° | K, =2x10"
Buoyancy Induced DTHT | Bo" =6x107 | Bo, =2x10"°
Re-turbulization Boundary N/A Bo, =3.5x10°
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5.5 Validity of Experimental Data and Uncertainty Analysis

It is essential to check the validity of the data and quantify their uncertainty before
comparing the data to the existing correlations. One of the key validity checks can be
made from the heat balance between added heat input and gas enthalpy rise. This chapter
will discuss the heat balance error and present the results of uncertainty analysis.

Figure 5-21 shows the power error and the maximum reduction in the Nusselt number in
terms of the inlet Reynolds number. The power error is defined as the normalized
difference between the heat input to the gas flow, which is calculated from the power
input and the heat losses measurement, and the enthalpy difference between the inlet and
outlet temperatures measured by the inlet and outlet flow thermocouples. The maximum
reduction on the figure is defined as the percentage reduction in the measured Nusselt
number when it is compared to the Gnielinksi correlation or the laminar correlation for
turbulent and laminar flow, respectively. As shown in the last section, the mixed
convection laminar and some cases of low Reynolds number turbulent flow showed
enhancement over the correlation. In these cases, the maximum reduction is not shown on
Figure 5-21.

Since, the Gnielinski correlation claims to have agreement with the experimental data
within 20%, the reduction below 20% can not be seen as the turbulent heat transfer
reduction. Figure 5-21 shows that when the maximum reduction is significant the power
error is also large. This is because the outlet flow thermocouple measures the temperature
near the centerline, so when the flow laminarizes the centerline temperature is much
smaller than the bulk temperature due to its inverse parabolic profile.

This could be also confirmed by observing some of the DTHT cases that had higher heat
exchanger inlet temperature than the test section outlet temperature even though there is
no heat provided in the chimney section and heat loss in the chimney occurs. When the
gas flow is laminarized, the test section outlet thermocouple measures the centerline
temperature of the inverse parabolic temperature profile, which is smaller than the bulk
temperature and since the heat exchanger thermocouple measures fully mixed
temperature, the heat exchanger inlet temperature is measured higher than the test section
outlet temperature.

This indicates that the power error in the DTHT cases is not only due to the measurement
device uncertainties but it is also due to the characteristic of the DTHT regime. Also,
when the forced convection has the same inlet Reynolds number with a DTHT case the
power error is below 10%, which reconfirms that the flow measurement and power
measurement devices do not have problem.

Therefore, the heat balance error is not only due to the uncertainties in the facility heat
losses and instrumentation, but also due to the characteristic of the DTHT regime. In fact,
the comparison of heat exchanger outlet temperature with heated section outlet
temperature was another indicator of entrance into DTHT regime. An approach to reduce
the increase in power error when operation falls within DTHT regime is to install an
effective mixer after the test section outlet and to measure the temperature when the gas
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is fully mixed. However, this would lead to higher pressure drop in the loop and impair
the natural circulation operation. It is noted that all the data presented here were taken
with nominally forced flow by using the compressor but preservation of natural
circulation capability of the loop is important for code benchmarking and investigation of
the effects of natural circulation coupling to the DTHT regime.
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Figure 5-21 Inlet Re vs. Heat Balance and maximum Reduction in Nusselt Number
Observed

Methodology of uncertainty analysis was presented in the 2" Annual report [Lee at al.,
2005c¢]. Therefore, only the results of uncertainty analysis will be reported here. Figure 5-
22 shows the maximum uncertainty of the measured Nusselt number for different inlet
Reynolds number runs for two cases: one with properties uncertainties accounted for and
one without considering properties uncertainties. Typically, uncertainties on gas
properties are not included, but since the bulk temperature is calculated using heat
balance, the uncertainties of gas thermo-physical properties, in particular on specific heat,
can build up and become an important uncertainty source. Thus, the overall uncertainty
was calculated both including and excluding the thermo-physical properties uncertainties
to identify their impact on the overall uncertainty.

The low Reynolds number runs, which are performed with helium, have higher
uncertainty (up to 25%) than other runs and the thermo-physical properties consideration
does make some differences due to the specific heat uncertainties build up. This means
that the measurement device uncertainty is the measure source of the total uncertainty
most of time, but some low Reynolds number runs uncertainty are affected by the gas
properties uncertainties.
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The reason why some runs have higher uncertainty than the others is because the wall to
bulk temperature difference is small for the high uncertainty runs along with the gas
properties uncertainties. Small temperature difference means the relative uncertainty of
the temperature rise since the thermocouple uncertainty is given as +1K. Eq.4-15 in 2™
year report is presented again to show the major uncertainty source (Eq. 5-1). As the
temperature difference wall to bulk decreases the highlighted terms in Eq. 5-1 increases.
Therefore, the total uncertainty in the heat transfer coefficient measurement increases. To
mitigate this problem, T/Cs with smaller uncertainty (less than £1K) will be necessary to
lower the total uncertainty for high uncertainty runs. Figure 5-23 shows the inverse
temperature difference versus inlet Reynolds number, which clearly shows that the trend
is similar with Figure 5-22.
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Figure 5-22 Uncertainty of Experimental Measurement considering the properties
uncertainty and without considering the properties uncertainty vs. Inlet Re
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In conclusion, most nitrogen and carbon dioxide runs have low uncertainty (below 10%)
and are thus reliable data. But even helium data, which are difficult to obtain with high
accuracy due to small wall to bulk temperature difference (due to high helium
conductivity) and small flow rates (due to low density) have relatively low uncertainty
with most of runs below 15% and only one run reaching 25%. The individual
measurement device uncertainty, which was used for calculating the uncertainty
propagation, was all tabulated in 2" annual report [Lee et al., 2005¢]. Table 5-8 shows
the thermo-physical properties uncertainties per NIST properties database, which was
used to calculated properties of all gases in this experiment. However, it is noted that this
NIST reference gives 5% uncertainty for helium specific heat. Since helium properties in
NIST database [Lemmon et al., 2002] are available for a large temperature range from
almost absolute zero to 1500°C, and variation of c, uncertainty over various ranges of
temperatures and pressures is not given, we contacted NIST experts regarding helium c,
uncertainty for the range of temperatures and pressures in our experiment. The value of
much smaller uncertainty of 0.5% for the range between 300K and 1000K and pressure
between 0.1 and 1MPa was confirmed [Arp, 2006].

Table 5-8 Thermo-Physical Properties Uncertainty (from Lemmon et al., 2002)

Thermo-Physical Properties | Nitrogen | Helium | Carbon Dioxide
Thermal Conductivity 20% | 5.0% 5.0%
Density 0.02% | 0.1 % 0.05 %
Viscosity 2.0% 10 % 0.3 %
Specific Heat 03% | 0.5% 0.15%
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5.6 Newly Proposed Heat Transfer Map

The heat transfer regime map was continuously under development by various
researchers starting from work by Metais & Eckert [1964]. This section will update the
heat transfer regime map with newly proposed non-dimensional numbers and thresholds
for the gas heat transfer. The basic non-dimensional number that will be used for our

project will be the non-dimensional heat flux ¢* and the Reynolds number.

The thresholds for acceleration driven DTHT and the buoyancy driven DTHT were
tabulated in Table 5-7 and these thresholds can be translated into the relationship between

+

q" and Re using Equations 5-2 and 5-3.

K, =‘K] —2x10° = ¢* =5x10"Re (5-2)
th e
* Gr — + — gD3 E

Bo,, = ms pros = 2X107 = ¢7=2x10 6(0[0,2‘/1.8}1‘62425 (5-3)

. nD4 ” D C D3 + R D3
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It should be noted that there are different versions of non-dimensional heat flux ¢* such
as q,,/GH,,q,/Ge,T, and Bq; /Gc, . For the ideal gas situation, these definitions are all

the same but for real gas such as nitrogen or carbon dioxide, different definitions can
result in small differences in calculated values. In the data reduction process and the
correlation development process, the first definition was always used, since it is directly
the ratio of the wall heat flux to the flow enthalpy flux, which has a physical meaning
while the others are the approximation to the first definition. Also, when performing
numerical calculations, generally the bulk temperature is estimated from the mixing cup
enthalpy, use of the first definition allows one to skip one step making calculations easier
and faster. However, during the transformation of the equation, the second or third
definition will be also used since it is a reasonable approximation to the first definition
and can be useful when transforming one non-dimensional number to the other.

The buoyancy effect threshold has another variable other than ¢ and Re, which is a
new non-dimensional number ( gD’/ ao'zvl'g). This new non-dimensional number is a

function of temperature and pressure, since the thermal diffusivity and the kinematic
viscosity are gas properties and they vary with temperature and pressure. Since gas
properties can generally be approximated with p~PT~, k~T", ¢, ~T* and u~T"",
a rough estimate of the non-dimensional number can be derived and the following
equation shows the result (Eq. 5-4). This indicates that the buoyancy number threshold on

+

q" and Re map will have larger slope when the pressure increases and temperature

decreases. Within the MIT experimental data the ( gD’ /ao‘zvl‘g) value at inlet varies

from order of 6,000 to 2x10’ depending on the operating pressure. The temperature
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influence is not shown in MIT experiment, since the inlet temperature was kept nearly
constant.

3 0.2 1.8
(—ff) _ j - C(ﬁj (ﬁj ~cpT (5-4)
a“ve k y7,

Sample heat transfer map is generated and shown in Figure 5-24. The "ND" in the legend
depicts the new non-dimensional number ( gD’/ ao‘zvl‘g) value. Three different values

are shown in the figure to show the buoyancy threshold changes with ( gD’ / 0:0'21/1‘8)

number variation. This heat transfer regime map should be used with the inlet condition,
since all the thresholds are proposed with the inlet buoyancy number and the inlet
acceleration number and there is only one map when the operating pressure, temperature
and working fluid are kept the same.

If we compare Figure 5-24 to Figure 1-2, there are some significant differences between
these two maps. First of all, the original map (Figure 1-2) covers only the buoyancy effect
of the turbulent heat transfer regime while the new map (Figure 5-24) covers the
acceleration effect as well. This is because the Rayleigh number, which is the major
variable on the original map, cannot reflect the acceleration effect directly. To cover the
acceleration effect on the original map would require transformation of the Rayleigh
number in a similar manner as the buoyancy parameter was transformed (Eq. 5-3).

Secondly, the original map demarcates the boundary with the local Reynolds number and
Rayleigh number while the new map evaluates the boundary with the inlet Reynolds
number and inlet non-dimensional heat flux. The reason why we shifted from the local
parameters to inlet parameters is due to the experimental observation. As it can be clearly
seen from Figures 5-17 and 5-18, various Nusselt numbers can co-exist for the same local
buoyancy or acceleration parameter. However, if one selects the inlet condition for the
boundary, the boundary between the turbulent flow and DTHT regime can be clearly
demarcated throughout the channel (Figure 5-20). Therefore, our experiments seem to
suggest that using inlet conditions as boundaries between different heat transfer regimes
are more reasonable approach than the use of non-dimensional numbers evaluated at local
conditions. We expect this to hold not only within the MIT experimental data set but also
for broader range of gas flow heat transfer experiments since this is the nature of the gas
DTHT, which not just based on the specific characteristics of the MIT experimental
facility.

Lastly, the free convection regime for either laminar or turbulent flow from the original
map is missing in the new map. In a laminar flow case, the buoyancy effect does not
induce abrupt change in the heat transfer coefficient compared to the DTHT regime,
which can be also observed from the work of other researchers [Hallman, 1961]. Thus,
drawing a clear line between the laminar and the mixed-laminar regimes did not seem
reasonable when comparing the characteristics of the DTHT boundaries to the laminar
mixed convection boundaries. Also the free convection turbulent boundary is not shown
in the new map due to the lack of gas experimental data.
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The limitation of the new heat transfer map is: (1) it can be used only for a gas flow (2) it
should be applied only when the flow orientation is upward heated flow, and (3) if the
non-dimensional heat flux is outside the MIT experimental data set then a great caution is
needed for evaluating the heat transfer coefficient based on the new heat transfer map.
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Figure 5-24 Newly Proposed Heat Transfer Map

Figure 5-25 shows the experimental conditions on the proposed heat transfer map.
"NDmax" and "NDmin" are the maximum and minimum values of ND = ( gD’/ ao'zvl'g)
in the MIT experimental data set. To avoid confusion, it is noted that even though some
data are taken in between the maximum and minimum buoyancy threshold, the data did

not fall in the DTHT regime, since the operating pressure and gas were different for each
case.
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6 Data Comparison with Earlier Correlations

This chapter is separated into two sections. First, the mixed convection laminar
correlations will be compared against the helium mixed convection data. Next, the DTHT
correlations for the buoyancy effect and the acceleration effect will be compared to our
experimental data.

Before presenting the comparison of the correlations to the experimental data, two
indicators to measure how well a correlation can fit the experimental data will be defined.
One is the R-square and the other is the 20% indicator. The R-square is defined by Eq. 6-
1.

Z (Nu EXP NuCon'elation )2
2
Z (NuEXP - NuEXP )

R’=1- (6-1)

The 20% indicator is simply defined as a fraction of the experimental data included in
+20% band of the correlation. Therefore, good fitting correlation will show both R-
square and 20% indicator values close to unity. Any negative value for R-square indicates
that all the predicted Nusselt numbers are either higher or lower than the measured
Nusselt numbers.

All the comparison result will be depicted on a plot that has X-axis as the correlation
predicted Nusselt number and Y-axis as the measured Nusselt number. Therefore, the
more data are concentrated near Y = X line, the better the performance of a correlation,
making the value of the two indicators closer to unity. Also when most of the points are
on the upper side of ¥ =X line the correlation under predicts the Nusselt number while
most points being on the lower side will be the opposite case.

6.1 Mixed Convection Laminar Correlations Comparison

This section will only compare the mixed convection laminar data to the correlation for
mixed convection laminar case (Eq. 2-12, 13, 14 and 16). Equation 2-15 is not compared
since there is no carbon dioxide laminar heat transfer data. Subscript, "Laminar" is
Equation 2-2, "Hallman" Equation 2-12, "Worsoe-schmidtl" Equation 2-13, "Worsoe-
schmidt2" Equation 2-14 and "Churchill" Equation 2-16.

Figure 6-1 to 6-5 plot the comparison of these correlations predictions with data.
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Figure 6-4 Experimental Nu vs. Worsge-schmidt Correlation Predicted Nu
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Figure 6-5 Experimental Nu vs. Churchill Correlation Predicted Nu

Table 6-1 summarizes the two indicators for the above five correlations.

Table 6-1 Mixed Convection Laminar Correlation Fitness Indicators

Correlation R-square 20% fraction
Laminar -3.7577 0.0000
Hallman -29.7585 0.0000

Worsoeschmidtl -6.5282 0.0000
Worsoeschmidt2 -4.8404 0.0000
Churchill -4.8489 0.0000

The figures and Table 6-1 show that the predictions using mixed convection laminar
correlations available in the literatures are not satisfactory in comparison to the gas
experimental data obtained at MIT loop. This is mainly because selected correlations
were either based on the water experiments , which did not necessarily aspire to fit the
mixed convection laminar 'gas' flow. However, it is surprising that the correlations of
Worsge-schmidt do not fit the data even though the numerical analyses were performed
with the gas properties and the data were within the numerical analyses range. This may
be due to high uncertainty in the helium measurement or the effect of surface rougness
that could not be captured by numerical simulations. Any final conclusion would be too
early to make at this point, since these data sets are small and this is the first attempt to
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compare the mixed convection laminar correlation to gas data. Moreover, because power
error of these runs was relatively large, the reproducibility of the helium data needs to be
checked.

6.2 DTHT Correlations Comparison

This section presents the comparison of the DTHT correlations against the MIT data.
Table 6-2 summarizes the correlations tested together with equation numbers in this
report. Correlation names in the first column will be used as Nusselt number subscripts.

Table 6-2 Tested Correlations with Equation Numbers

Subscripts | Equation Number
"Gnielinski" 2-7
"Petukhov1" 2-19

"Herbert" 2-21
"Petukhov2" 2-22

"Jackson" 2-23

"Parlatan" 2-24

"Vilemas" 2-26

"Celeta" 2-27
"Symolon" 2-29
"McEligot" 2-30

"Perkins" 2-31

"Taylor" 2-32

Figures 6-6 through 6-17 present the comparisons. The Gnielinski correlation was just
selected to show how forced convection correlation performs in the turbulent, DTHT and
transition regimes compared to the other correlations.
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Tables 6-3 and 6-4 summarize the comparison to the experimental data in terms of R-
square and *20% band for all the data and each heat transfer regime separately,
respectively. In the R-square table, values over 90% are highlighted with yellow and the
best fitting correlation for each regime is highlighted with light blue color. Similarly in
the 20% band table, values over 75% are highlighted with yellow and the highest
correlation for each regime is highlighted with light blue color.

Table 6-3 R-square Value for Various Correlations

Correlation All Turbulent | Bo" DTHT | K, DTHT | Transition
Gnielinski 0.9275 0.9357 -0.1649 0.7138 0.6785
Petukhovl 0.9207 0.9469 -0.5950 0.4710 0.6623
Petukhov?2 0.8873 0.9489 -1.3321 -2.0029 -3.3808
Herbert 0.8527 0.8801 -1.0010 -0.9451 -7.4225
Jackson 0.9330 0.9326 0.0858 0.7098 0.6711
Parlatan 0.9260 0.9361 -0.2230 0.7144 0.6797
Vilemas 0.4917 0.2009 -0.4386 -0.4416 -0.0787
Celeta 0.9405 0.9323 0.3425 0.7097 0.7059
Symolon 0.9155 0.9512 -0.8558 0.4652 0.6718
McEligot 0.9082 0.8872 0.1416 0.6136 0.6434
Perkins 0.9376 0.9385 0.1333 0.6376 0.6336
Taylor 0.8780 0.8328 0.1828 0.6112 0.6089

Table 6-4 20% Band Value for Various Correlations

Correlation All Turbulent | Bo" DTHT | K, DTHT | Transition
Gnielinski 0.6909 0.8482 0.2216 0.6250 0.6667
Petukhov1 0.6739 0.8464 0.1705 0.4167 0.7188
Petukhov?2 0.6114 0.8946 0.1250 0.1250 0.0938
Herbert 0.5261 0.7554 0.1648 0.2292 0.0000
Jackson 0.7011 0.8429 0.2898 0.6250 0.6667
Parlatan 0.6898 0.8482 0.2159 0.6250 0.6667
Vilemas 0.3080 0.3429 0.0966 0.1875 0.5521
Celeta 0.6898 0.8196 0.2841 0.6250 0.7083
Symolon 0.6830 0.8625 0.1534 0.4167 0.7396
McEligot 0.5739 0.6589 0.2898 0.6042 0.5833
Perkins 0.6886 0.8464 0.2500 0.6250 0.6042
Taylor 0.4489 0.4661 0.2784 0.5417 0.6146

Examining the figures and tables, the best correlation in terms of R-square is Celeta et al.
correlation followed by Jackson et al. correlation which is the best correlation in terms of
20% band indicator. Surprisingly, both Celeta et al. and Jackson et al. correlations
perform better in the acceleration driven DTHT regime (see Table 6-3 and 6-4). However,
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the problem with Celeta et al. correlation is that since the correlation was developed with
a smaller maximum L/D test section than the MIT facility, the predicted Nusselt

number is much smaller (even smaller than the forced convection laminar Nusselt
number 4.364) than the measured value at the buoyancy induced DTHT regime when
L/D value is large (see Figure 6-12). The other reason is due to the characteristic of the

gas flow; the re-turbulizing cases cannot be captured with the water experiment.
Therefore, Celeta et al. correlation can under predict the heat transfer coefficient in
certain situations when it is applied to the gas heat transfer.

Most of the correlations over predict the Nusselt number in both acceleration and
buoyancy driven DTHT except for Vilemas et al. and Celeta et al. correlations. This
indicates that those correlations cannot be applied for designing a gas heat transfer system,
since it gives non-conservative value of heat transfer coefficient. However, Vilemas et al.
correlation tends to under predict the heat transfer coefficient too much, even for the
turbulent heat transfer regime and also Vilemas et al. correlation poorly fits data
compared to the other correlations.

Key points from the correlation comparison with the data is that since gases have
different property behavior with the temperature compared to liquids or super critical
fluids, most of the DTHT correlations that were fitted with liquids or super critical fluids
tend to over predict the Nusselt number, except for Celeta et al. correlation. However,
Celeta et al. correlation under predicts the heat transfer coefficient for "re-turbulizing
flow" due to the same reason why other correlations over predicts. In addition, since
Celeta et al. correlation involves wall temperature based properties when it is estimating
the free convection Nusselt number (Eq. 2-27), it is not an easy correlation to utilize for
estimating the wall temperature.

Therefore, a new correlation that can successfully fit the gas DTHT regime with a
reasonable agreement to the turbulent, transition and laminar heat transfer data is
necessary. In addition, required wall temperature information should be minimized to
simplify calculation, even though the power law of wall to bulk temperature ratio can
capture the radial properties variation has been well known and was used extensively
among various investigators.
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7 MIT Correlation Development

This section will discuss the new correlations that were developed for each regime.
However, to enhance the user's flexibility in the choice of the correlation sets depending
on the computational power and specific engineering application, three correlation sets
were developed. The first section will discuss the basic ideas for developing each
correlation. The second to fourth section will discuss three correlation sets that were
developed at MIT. Next section will show the correlation performance compared to the
experimental data and the correlations described in Chapter 2. The last two sections will
discuss the limitation of the correlation application and the smoothness of the developed
correlation.

7.1 Correlation Development Criteria and Basic Ideas

The new correlation should include the following characteristics:
1. It should reflect the physical phenomena that are occurring in the physical world.
2. It should be simple and easy to apply in engineering calculations.
A. Most of the physical properties should be evaluated at bulk temperature.
B. Any kind of iteration should be minimized.

3. It should cover all heat transfer regimes including turbulent, laminar and
deteriorated turbulent as well as mixed convection laminar regimes with good
accuracy.

4. It should be relatively smooth between different flow regimes in order to
minimize numerical treatment between the flow regimes if the real experimental
data behaves smoothly, when crossing the heat transfer regime boundary.

Beginning with the laminar flow correlation development, one can see from Figure 5-6
that the normal laminar correlation under predicts the Nusselt number. When the heat flux
is high and the flow is laminar, the major effect that changes the laminar heat transfer is
the buoyancy effect. As explained in the previous section, the buoyancy effect tends to
make a steeper velocity gradient near the wall and increase the laminar heat transfer. This
1s called laminar mixed-convection, since the forced and natural convections are "mixed"
together in the laminar flow.

It is noted that the acceleration effect only laminarizes the turbulent flow and has no
effect on the laminar flow, thus the acceleration effect is not considered for the laminar
flow. From the non-dimensional form of Navier- Stokes equation the main non-

dimensional number that measures the strength of the buoyancy effect is Gr, / Re® (itis

also called the Richardson number) for heat flux boundary condition (refer to Eq. 2-10).
Also, from Figure 5-10, Gr, / Re’ successfully shows a correlation with the ratio of the

measured Nusselt number to the Nusselt number predicted by laminar forced convection
correlation. Therefore, Gr, / Re’ will be selected as the governing non-dimensional

parameter for the laminar mixed-convection regime.

107



For the DTHT regime correlation development, one can observe on Figure 5-6 that the
pattern for the DTHT correlation should be branching out from the Gnielinski correlation
or the forced convection correlation when certain criteria are met. The functional form for
the DTHT regime with such characteristics can be found by changing the constant in the
Gnielinski correlation to functional form (Eq. 7-1). This technique is following the
Gnielinski approach to fit the data better, near the laminar to turbulent flow transition.

w |

Nu

(% )(Re—lOOO)Pr Y 2

Giclinsky — = 1+—
1+12.7\/%(Pr2/31)(TJ '

(% )(Re— F(x))Pr T ~045 o

(7,,] "D

1+12.7\/%(Pr2/3—1)

Figure 7-1 depicts the example form of the modified Gnielinski correlation. If F(x) is

different from 1,000 and can be correlated to a non-dimensional number that is relevant
to a particular case for capturing the key physical phenomena, then one can expect that
the predicted Nusselt number will behave similarly to the experimental data. Since, major
turbulent heat transport deterioration in the current MIT data is due to the acceleration
effect and buoyancy effect, the relevant non-dimensional parameters for F(x) are

(7-1)

- Nu,,, =

selected to be the acceleration parameter and buoyancy number.
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Figure 7-1 Functional Form for the New Correlation
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The other important characteristic for the new correlation is that the condition for
determining each regime (laminar, turbulent, DTHT and so forth) should be based on the
inlet non-dimensional numbers such as the Reynolds number or the buoyancy parameter.
This kind of correlation selection based on the inlet condition can be found from Vilemas
et al. (Eq. 2-26). For example the turbulent and laminar flows are primarily determined
first in the developing length where there is no heating. The decrease in the Reynolds
number due to heating (this is true only for the gas flow since the viscosity of the gas
increases with the temperature rise while water decreases which leads to increased
Reynolds number) and the deterioration of the turbulence due to the buoyancy and
acceleration effects are responsible for reducing the turbulent heat transport in the
turbulent flow if the flow enters the heated test section as turbulent flow. Therefore, the
new correlation is designed to select the correlation from a correlation set based on the
inlet non-dimensional numbers.

Basic procedure for developing a correlation starts from correlating F(x) to a non-

dimensional number for each regime with a test function. Two functional forms are
usually tested to minimize the number of coefficients to fit (Eq. 7-2).

F(x)=C,(NonD)*  or  F(x)=Clog, (C,NonD) (7-2)

Since the governing non-dimensional numbers (the buoyancy parameter and acceleration
parameter) vary by on order of magnitude while the function response is much slower
than the changes in non-dimensional numbers, the power law form and the logarithmic
form were chosen. These two functional forms have an advantage over other polynomial
functional forms as they accommodate large variation of a variable to yield a small
functional response.

Before proceeding to the correlation sections, the second re-turbulization threshold has to
be also decided. Figure 7-2 shows the re-turbulizing cases only. From the figure, most of
the cases begin to recover to the normal turbulent heat transfer after exceeding the local
buoyancy parameter of Bo ~6x107 . It should be noted that the channel inlet is on the
right in the figure and the outlet is on the left, since the gas buoyancy number decreases
as the flow proceeds to the down stream of the channel.

This condition will be used for developing the correlation and further dividing the heat
transfer regime.
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7.2 Type-1 MIT Correlation

After extensive exploration of correlation forms having incorporated the underlying
phenomenological effects discussed above and data fitting, the form of the correlation
covering turbulent, laminar, the DTHT and laminar mixed-convection regimes was
developed. The correlation form is shown next.

Type-1 MIT Correlation

If K, ,.<20x10°, Bo",  <20x10° and Re,  >2300 (Turbulent)
(% )(Re—lOOO)Pr Y s 2
Nu,,, = ? 1+ B = Naniclinsky
1+12.7,74 (P -1\ T
If K, ,.>20x10"°, Bo",,  <20x10° and Re, >2300 (K, DTHT)

NuMITl—Iemp =

(% )(Re—O.lSSK‘,m)Pr ( T j—w 1+1%
1+12.7\/%(Pr2/3—1) T, D

110



Nu,;;, = max (Nu MIT | ~temp > NU L inar )

If K

Y e<2.0x107°, 3.5x10° > Bo’,,, >2.0x10° and Re,

If Bo >6.0x107 (Re-turbulizing Bo" DTHT)

(V) (Re-145x107 B0 )Pry yoss (2
NuMITl —temp — [%j 1+—
1+12.71/ 8 Pr”—l b

Nu MIT1 = max (NuMITl—temp > Nu Laminar )

>2300

inlet

else Bo" <6.0x107 (Re-turbulizing Bo' DTHT)

(% )(Re—8.34><107B0*°'69)Pr r Yo 2

N7 1oy = o 1+—

emp D
1+12.71/%(Pr2/3—1)

Nu,r, = max ( Nu MIT \~temp > NUL e )

>3.5x10° and Re

inlet — inlet

If K, ,,<20x10°, Bo' >2300 (Bo DTHT)

(V ) (Re-79.4B0™ "% )Pr . -0 2
w X 3
NuMITl —temp [ J 1+B
1+12. 7,/ Prm

Nu MIT1 = max (NuMITl—temp ’ Nu Laminar )

b

If Re,, <2300 (Mixed Convection Laminar and Forced Convection Laminar)

GI' 0.11
NuMT—Laminar =max {1 > 3 0[ Reqz ] j NuLaminar

f=(1.82log,, Re-1.64)

NU e =[ ! —lIZOZeXp (-7 'if)}l

Nuoo 2 m=1 A }/4

mé-m

2x/D

where Nu, =4.364, x" = ,
RePr

7, = 4m+§, A =04165y, 7"

In the DTHT and laminar convection regimes a few characteristics of the correlation
should be discussed. First, since the deteriorated turbulent heat transfer coefficient cannot
be lower than the laminar convection, the DTHT regime heat transfer coefficient will be
the maximum between the modified Gnielinski correlation and the laminar convection
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correlation. This will provide a lower bound for the correlation.

The heat transfer correlation for the transition regime is not separately developed. This is
because the Gnielinski correlation fits the transitional regime data reasonably well (see
Tables 6-3 and 6-4). Also since the governing parameter is not well defined in the laminar
to turbulent transition regime the correlation for this regime is not separately developed.

For the laminar mixed-convection, the multiplication factor to forced convection laminar
correlation was developed with the governing non-dimensional number of Gr, / Re’.

The power and the leading coefficient are also determined from the empirical curve
fitting. To give a lower bound to the correlation, the multiplication factor is a maximum
value between unity, which means it can cover both the normal forced laminar convection
and the mixed-convection laminar. All properties and non-dimensional numbers are
evaluated at local bulk temperature.

Figure 7-3 shows the performance of the Type-1 MIT correlation set. The discussion of
the two indicators will be presented in section 7.5.
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Figure 7-3 Experimental Nu vs. First Kind MIT Correlation Predicted Nu

The Type-1 MIT correlation requires iteration on wall temperature due to the Gnielinski
temperature modification factor of (TW /T, )70'45 to predicting a heat transfer coefficient.

Therefore, Type-2 correlation set will be developed that has (T,/T,)" as the

modification factor to minimize the iteration. This will be discussed in the next section.
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7.3 Type-2 MIT Correlation
The motivation for developing 2™ kind correlations is to consider the following points.

1. Term (Tw /T, )_0‘45 in the original Gnielinski form makes the prediction of heat
transfer coefficient more difficult, since it requires iteration on unknown wall
temperature. To avoid iterations, correlations with (7, /7, )70'5 were developed.

(Eq. 7-3) shows how to even eliminate any iteration process for predicting the
wall temperature.

T -0.5
By = hep| 22
PV CP(Y;)J

PV hCP b
”2
T —[2Tb +‘1—2) T +T7 =0 (7-3)
CP *b
”2 "2 2
<:>TW=l 2T, + q2 +\/[2b+ q2 ] — 4T}
2 hCP b hCP b

1 qnz qﬂ2 2 anz
T =T, +— S+ 5 +—
2 hCP ];7 hCP T;; hCP

2. The friction factor that is used for the Gnielinski correlation is valid only for
Re >10,000 (Filonenko correlation). Therefore, the friction factor needs to be

reconsidered when the Gnielinski correlation is applied to Re <10,000. The
Blasius friction factor is commonly used for lower Reynolds number turbulent
flow friction factor, which is valid for Re>4,000. Between Reynolds number
4,000 and 2,300 the friction factor will be estimated from the interpolation
between the friction factor at 4,000 with Blasius correlation and the laminar
friction factor at 2,300.

The following set of correlations is the Type-2 correlation developed at MIT. It should be
noted that power law of the governing non-dimensional number fitted better in the Type-1
correlation while the logarithmic function of the governing non-dimensional number
performed better in the Type-2 correlation. Again the transition regime was not separated
and the laminar correlation is the same, since it is not affected by the temperature
modification factor change.
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Type-2 MIT Correlation
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If Re,

1

e < 2300 (Mixed Convection Laminar and Forced Convection Laminar)

GI' 0.11
NuMlT—Laminar =max {1 > 3 0 [ Rec; j j NuLaminar
If Re>10,000

7 =(1.82log,, Re-1 .64)_2 (Filonenko)
If 10,000>Re > 4,000

f=0314/Re"* (Blasius)
If 4,000>Re > 2,300

£=0.012+686x10" Re

(Interpolation between Laminar Friction Factor at 2,300 and Blasius at 4,000)
If 2,300>Re

f=64/Re

-1
1 1 exp(-yox)
NuLaminar = A 4
Nu, 2.5 Ay,
. 2x/D
X = bl ym
RePr

where Nu, =4.364,

=4m +§ , A, ,=04165y,7"

The Type -2 MIT correlation performance is shown in Figure 7-4.

Dividing many heat transfer regimes and having separate correlation for each regime can
easily induce frequent jumps in the Nusselt number when the correlation is applied for
actual engineering problems, due to a frequent regime change. To reduce this problem
and simplify the correlation form as much as possible, the Type-3 MIT correlation is

developed, which is presented in the next section.
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Figure 7-4 Experimental Nu vs. Second Kind MIT Correlation Predicted Nu

7.4 Type-3 MIT Correlation

The Type-3 MIT correlation utilizes a new non-dimensional number that can combine the
acceleration effect and the buoyancy effect. The new non-dimensional number is
developed from a purely empirical standpoint. The basic idea of new non-dimensional
number is finding the best ratio between non-dimensional heat flux (¢") and the

Reynolds number, since the acceleration effect and the buoyancy effect both have the
ratio of the heat flux to bulk flow velocity. The resulting new non-dimensional number is

¢ /Re™* . Figure 7-5 shows the experimental Nusselt number over predicted Nusselt

ratio versus the new non-dimensional number. The new non-dimensional number pushes
the buoyancy induced DTHT and the acceleration induced DTHT data to overlap with
each other. This makes possible to correlate both effects with one non-dimensional
number and derive a simplified correlation.

Another advantage of the Type-3 MIT correlation is that the interference between the
acceleration effect and the buoyancy effect is automatically addressed by using only one
non-dimensional number. The flow regime that overlaps over the buoyancy induced
DTHT and the acceleration effect was not covered in our experiments, thus the regime is
still unknown. Since most of the literature deal with only one effect at a time, the DTHT
regime with overlapping acceleration and buoyancy effects is a new regime that requires
further attention. However, the new non-dimensional number bypasses this problem, as
both effects are combined in one non-dimensional number.
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Following set of equation is the Type-3 MIT correlation. The comparison of the
correlation to the experimental data is shown in Figure 7-6. It should be noted that the
friction factor was calculated by Filonenko's correlation only for simplicity purpose and

for the normal turbulent heat transfer, the Gnielinski correlation with (7, /7, )70‘5 is used.

Type-3 MIT Correlation

If K,,.<20x10°, Bo’,,  <2.0x10"° and Re, >2300 (Turbulent)
(%)(Re—lOOO)Pr AR T
Nu,;ps = F 1 B
1+12.7,/%(Pr2/3—1) b
If K, ,,>20x10° or Bo",, >2.0x10° and Re,, >2300 (DTHT)
. -1.16
q
(% )[Re—o.ou(Reo_M] }Pr N B
T, X3
NuM[T?)ftemp = [?j 1+5
1+12.7J%(Pr“—1) b
Nu,;;; = max (NuMIT3ftemp s NU i )
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If Re,,, <2300 (Mixed Convection Laminar and Forced Convection Laminar)

GI' 0.11
NuM[T—Laminar =max {1 s 30(R qZ ) JNuLaminar

(&

f =(1.82log,, Re~1.64)"

-1
11 exp(—7ax)
NuLaminar = A 4
Nu, 2,2 Ay,

2x/D 4
where Nu, =4.364, x' = x/ .y, =d4m+—, A, ,=04165y,7"
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Figure 7-6 Experimental Nu vs. Third Kind MIT Correlation Predicted Nu

7.5 MIT Correlations Comparison

Table 7-1 summarizes the MIT-Laminar correlation performance in terms of the two
indicators. Compared to the other four mixed convection laminar correlation, the MIT-
Laminar correlation fits the experimental data successfully. All the mixed convection
laminar experimental data are within +20% band. However, as mentioned in Chapter 6,
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more experimental data for the mixed convection laminar regime will be required to
make final conclusion. The future experiment should be performed with other gases such
as nitrogen or carbon dioxide at low flow rate.

Table 7-1 Summary of MIT-Laminar Correlation Performance

Correlation IR—square 20% Fraction|
Laminar -3.7577 0.0000
Hallman -29.7585)  0.0000

'Worsoeschmidtl| -6.5282 0.0000
'Worsoeschmidt2) -4.8404 0.0000
Churchill -4.8489]| 0.0000
MIT 0.8911 1.0000

Tables 7-2 and Table 7-3 summarize the performance of the all three types of MIT
correlations and compare them to other DTHT correlations. Again, correlation's value is
highlighted with yellow when the R-square value is over 90% and 20% band value over
75%, and light blue is used to highlight the best result in each regime for both indicators.

Table 7-2 Summary of MIT Correlations Performance (R-square)

Correlation All Turbulent Bo" DTHT K, DTHT Transition
Gnielinski 0.9275 0.9357 -0.1649 0.7138 0.6785
Petukhovl1 0.9207 0.9469 -0.5950 04710 0.6623
Petukhov?2 0.8873 0.9489 -1.3321 -2.0029 -3.3808
Herbert 0.8527 0.8801 -1.001 -0.9451 -7.4225
Jackson 0.9330 0.9326 0.0858 0.7098 0.6711
Parlatan 0.9260 0.9361 -0.2230 0.7144 0.6797
Vilemas 0.4917 0.2009 -0.4386 -0.4416 -0.0787
Celeta 0.9405 0.9323 0.3425 0.7097 0.7059
Symolon 0.9155 0.9512 -0.8558 0.4652 0.6718
McEligot 0.9082 0.8872 0.1416 0.6136 0.6434
Perkins 0.9376 0.9385 0.1333 0.6376 0.6336
Taylor 0.8780 0.8328 0.1828 0.6112 0.6089
MIT1 0.9573 0.9331 0.8810 0.8710 0.8096
MIT2 0.9761 0.9659 0.8813 0.9032 0.6864
MIT3 0.9475 0.9193 0.8151 0.9319 0.7873
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Table 7-3 Summary of MIT Correlations Performance (20% band)

Correlation All Turbulent Bo" DTHT K, DTHT Transition
Gnielinski 0.6909 0.8482 0.2216 0.6250 0.6667
Petukhovl1 0.6739 0.8464 0.1705 0.4167 0.7188
Petukhov?2 0.6114 0.8946 0.1250 0.1250 0.0938
Herbert 0.5261 0.7554 0.1648 0.2292 0.0000
Jackson 0.7011 0.8429 0.2898 0.6250 0.6667
Parlatan 0.6898 0.8482 0.2159 0.6250 0.6667
Vilemas 0.3080 0.3429 0.0966 0.1875 0.5521
Celeta 0.6898 0.8196 0.2841 0.6250 0.7083
Symolon 0.6830 0.8625 0.1534 0.4167 0.7396
McEligot 0.5739 0.6589 0.2898 0.6042 0.5833
Perkins 0.6886 0.8464 0.2500 0.6250 0.6042
Taylor 0.4489 0.4661 0.2784 0.5417 0.6146
MITI1 0.8045 0.8089 0.7273 0.8750 0.8854
MIT2 0.8682 0.9393 0.7273 1.000 0.6458
MIT?3 0.7420 0.7571 0.6023 0.9792 0.7917

Overall MIT1 and MIT2 correlations perform the best in the entire heat transfer regime
set and MIT3 shows satisfying performance as well. Comparing the three MIT
correlations against the best correlation from Chapter 6, i.e. Celeta et al. correlation, they
all perform better than or are equivalent to Celeta et al. correlation in all regimes.
Therefore, it can be concluded that all three correlations can be applied for gas heat
transfer engineering calculation. One can choose a correlation set among the three sets by
considering the available computational resources, the character of the problem and the
desired accuracy of the calculations in view of the application requirements.

7.6 Limitation of MIT correlations

The limitation of MIT correlation is the range of covered area thorough the experiments,
since the correlation is fitted with MIT data only. Table 7-4 shows the non-dimensional
number range of all the experimental data. However, one should keep in mind that the
upper limit of the Reynolds number could always be extended up to the Gnielinski
correlation, which is Re <10° for the forced normal turbulent heat transfer regime. This
is because only slight modification or no change was made to the Gnielinski correlation
when developing three types of MIT correlation for the normal turbulent heat transfer
regime.

The other restrictions for applying the developed correlation are:
1. Since liquids and super critical fluids behave very differently from the gas

(Chapter 3), the developed correlation is applicable only to the gas heat transfer
cases.
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2. The interference between the acceleration effect and the buoyancy effect is not
fully covered, where the operating conditions are above both the acceleration
threshold and the buoyancy threshold at the same time. MIT1 and MIT2 are not
capable of dealing with this regime since the experimental data did not cover this
overlapping regime and the conditions for choosing the flow regime does not
cover the mixture regime at all. MIT3 also have a validity problem due to the
same reason but does not have a problem with obtaining a heat transfer
coefficient value for this regime. In short, the relative influence of the buoyancy
effect and acceleration effect on the turbulent flow are not fully covered yet.
More experimental data and theoretical development should be followed to cover
this regime. Some theories, such as one that was presented by Petukhov &
Polyakov (1988) covers both effect at the same time but authors agree that the
theory for this regime is not fully capable of understanding regime.

3. Since there is a potential of having different governing physical phenomena
depending on the geometrical conditions, applying a correlation to a problem,
which has large discrepancy of geometrical features from the experimental
facility, is not recommended (such as smaller or larger diameter, larger L/D
value etc.). This is because the gas turbulent heat transfer for the DTHT regime
cannot be determined with the local parameter solely, which indicates that the
channel geometry and the inlet conditions are very important. Therefore, when
applying a developed correlation to a sample problem, the geometrical similarity
and inlet condition similarity should be close to the actual experimental setup to
have a high confidence in the calculation result.

It is obvious that to expand the correlation application limits, more data on these regimes
with gases as working fluids is necessary.

Table 7-4 Summary of All the Experimental Runs

Inlet Re Range 1,800 — 42,700

Inlet ¢° Range | 0.0003 —0.0039
Inlet Bo" Range | 3x10° — 1x107°
Inlet K, Range | 6x10° — 5x10°

Maximum L/D 116
Maximum 7, /T, 1.88
Inner Diameter 15.7 mm
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7.7 Smoothness of Developed Correlations

In the last section, it was shown that MIT correlations satisfy the first three objectives for
a ‘good’ correlation. The non-dimensional numbers that were chosen for the correlation
reflected the physical phenomena, all the physical properties are evaluated at bulk
temperature and the only necessary iteration required (for MIT1 only) is the original
iteration for the properties variation term in the Gnielinski correlation. However, the last
objective requires some discussion for testing the MIT1, MIT2 and MIT3 correlations,
respectively.

The main problem with validating the last objective is that there is no general relationship
between K, Bo',q" and Gr, . In other words, it is impossible to analytically

differentiate the laminar correlation, turbulent correlation and the DTHT correlation with
respect to the Reynolds number and match both slopes and the values at the each
boundary to check the smoothness of the correlation, when the operating conditions are
passing through the flow regime boundary.

However, the physical phenomena, which were observed through the experiment, showed
that the reduction in the turbulent heat transfer coefficient when it is crossing the
threshold is very abrupt phenomena. Figure 5-17 and 5-18 are presented here again as
Figure 7-7 and Figure 7-8 to show the acute change in the Nusselt number when the
threshold is crossed along the channel.
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Figure 7-7 Nusselt Number Ratio vs. Buoyancy Parameter
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Both figures clearly show that when the operating condition is crossing the buoyancy
induced DTHT boundary or the acceleration induced DTHT boundary the Nusselt
number on the down stream changes steeply while the heat transfer reduction of the inlet
is smooth. This indicates that the inlet Nusselt number variation with the flow regime
should be smooth, but forcing the correlation to perform smoothly even at the
downstream does not reflect the real physical world and it would fail to predict actual
experimental data. Therefore, correlations will be checked for smoothness only in terms
of inlet parameters.

Figures 7-9 through 7-11 show the calculated inlet Nusselt number of three MIT
correlations for:

Three gases: nitrogen, helium and carbon dioxide
Heat flux from 2,000 to 30,000 W/m’K

Pressure from 0.1 to 0.9 MPa

Volumetric flow rate from 0.2 to 3.0 CFM

Maximum Buoyancy Parameter: 3.36x107

IR

Maximum Acceleration Parameter: 5.95x107°
Figures show that all three correlations have a smooth inlet Nusselt number transition

from the normal turbulent flow to the acceleration driven DTHT. MIT1 and MIT3 exhibit
rapid transition from the mixed convection laminar to turbulent or mixed convection
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laminar to DTHT compared to the MIT2 correlation. Therefore, it can be concluded that
MIT2 has the best performance in terms of the smoothness of correlation over the regime
changes. However, the figures also show that the mixed convection laminar heat transfer
regime and laminar to turbulent heat transfer regime requires more attention to
understand the physical phenomenon of the transition thoroughly. At this point it is not
clear if the sudden change of heat transfer coefficient is a real phenomenon. More
transition data will have to be obtained to resolve this transition region and update the
proposed correlations to predict the experimental Nusselt number in this region more
accurately.
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Figure 7-9 MIT1 Inlet Nusselt Number vs. Reynolds Number
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8 Summary and Conclusions

This chapter will summarize the main activities performed during the third year of the
project and the results achieved, as documented throughout this report and main
conclusions. To summarize:

1.

The gas-cooled fast reactor (GFR) for Generation IV has generated considerable
interest and is under development in the U.S., France, and Japan. One of the key
candidates is a block-core configuration first proposed by MIT, has the potential
to operate in Deteriorated Turbulent Heat Transfer (DTHT) regime or in the
transition between the DTHT and normal forced or laminar convection regime
during post-loss-of-coolant accident (LOCA) conditions. This is contrary to most
industrial applications where operation is in a well-defined and well-known
turbulent forced convection regime. As a result, important new need emerged to
develop heat transfer correlations that make possible rigorous and accurate
predictions of Decay Heat Removal (DHR) during post LOCA in these regimes.

Additional literature review was performed and documented in Chapter 2. It
summarizes most of the available correlations in: (1) forced laminar, (2) forced
turbulent, (3) mixed convection laminar, (4) buoyancy driven DTHT and (5)
acceleration driven DTHT regimes. The physics behind each regime was
explained and the gap of experimental work was identified also.

In Chapter 3, preliminary analysis on the GFR DHR system was performed and
using the literature review results and GFR conditions. It confirmed that the GFR
block type core has a potential to operate in the DTHT regime. Also, the
difference in the performance in the DTHT regime between various working
fluids was identified using a new approach. The newly proposed approach
separates the non-dimensional number into a properties dependent group and an
operator controlled group. This approach proved that gas, liquid and super critical
phase fluids all behave differently in single channel under DTHT regime
conditions. Therefore, the water and super critical fluids data cannot be directly
applied to the gas heat transfer case due to this characteristic.

Description of upgraded parts in the experimental facility and of the control and
data reduction software were presented in Chapter 4 along with the procedure,
data reduction program and the thermal characteristics of the insulation material.
Upgraded parts were successfully installed and a substantial amount of
programming and controlling techniques were developed and incorporated into
the control and data reduction software. A few problems with the measurement of
the thermal resistance of the insulation material were identified and resolved with
a reasonable effort.

Experimental data were presented in Chapter 5. Each gas data namely: (1)

nitrogen, (2) helium and (3) carbon dioxide were presented and each gas covered
different physical phenomena. All data basically covered the forced turbulent heat

126



transfer regime, nitrogen data covered the acceleration driven DTHT and
buoyancy driven DTHT, helium data covered the mixed convection laminar,
acceleration driven DTHT and the laminar to turbulent transition regimes and
carbon dioxide data covered the returbulizing buoyancy driven DTHT and non-
returbulizing buoyancy induced DTHT. The validity of the data was established
using the heat balance and the uncertainty analysis. Based on experimental data,
the traditional threshold for the DTHT regime was updated to account for
phenomena observed in the facility and a new heat transfer regime map was
proposed. Overall, it can be stated that substantial reduction of heat transfer
coefficient was observed in DTHT regime, which will have significant impact on
the core and DHR design of passive GFR. Figure 8-1 and 8-2 show the inlet
conditions for all experimental data on a newly proposed heat transfer regime
map. Figure 8-1 markers are different for different operating gases while Figure
8-2 markers distinguish between different flow regimes.
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Figure 8-1 Inlet Experimental Conditions (Markers Depict Different Gases)
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6. The MIT data were compared to the existing correlations in Chapter 6, which
were presented in Chapter 2. None of the mixed convection laminar correlation
agreed with the data and some correlations exhibited large discrepancies. For the
forced turbulent and the DTHT regime correlation, Celeta et al. correlation
showed the best fit with the data. However, due to larger L/D ratio of MIT

facility compared to Celeta et al. facility and the returbuliziation due to the gas
characteristics, the correlation sometimes under predicts the heat transfer
coefficient. Also, since Celeta et al. correlation requires the information of the
wall temperature to evaluate the heat transfer coefficient, it is difficult to apply

this correlation directly for predicting the wall temperature.

7. Three new sets of correlation that cover all heat transfer regimes were developed.
The basic idea is to use the best available and most widely recommended
Gnielinski correlation for forced turbulent convection and modify its empirically
fitted constant (the Re-1000 part) by empirically fitted function that accounts for
physical phenomena driving the DTHT regimes. Thus, the function is dependent
on the acceleration parameter or the buoyancy parameter depending on the heat
transfer regime. Type-1 correlation set is the most accurate fit suitable for
scientific applications, Type-2 simplifies the calculations by eliminating iteration
process on wall temperature and Type-3 is the simplest form suitable for
industrial applications. The first two types show very good fit with the data, while
the third type also exhibits slightly less accuracy, which was traded off for
simplicity. Smoothness of the correlation when correlation is transitioning from
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one regime to another was evaluated for each correlation. The turbulent to DTHT
regime transition is relatively smoother than the turbulent to the mixed
convection laminar heat transfer regime. More data on the laminar-turbulent
transition are required to understand the flow phenomena more thoroughly.

In conclusion, the Gas-cooled Fast Reactor Decay Heat Removal system have a potential
to operate in (1) forced laminar, (2) forced turbulent, (3) mixed convection laminar, (4)
buoyancy induced deteriorated turbulent heat transfer and (5) acceleration induced
deteriorated turbulent heat transfer regimes during a transient. However, due to the lack
of knowledge with gas heat transfer in (3) to (5) regimes, an experimental facility was
built to uncover theses gaps and enhance understanding of gas heat transfer in these
regimes. Obtained experimental data show in some cases substantial reduction in heat
transfer capability of down to 30% of the forced turbulent convection values, which will
impact core and decay heat removal system design of passive GFRs. The existing
correlations were found to fit these new experimental data poorly and confirmed the need
for better correlation. Thus, three new correlation sets were developed to cover (1) — (5)
regimes and provide flexibility of choice to the user between in terms of accuracy versus
simplicity of use and they all showed a good agreement with all the data and to have good
characteristics of a desirable correlation.
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9 Future Work

This section will briefly discuss the potential of the MIT facility to explore the next
interesting topics in the gas heat transfer area.

Test Section Modification

Unfortunately, the data that were presented in this report were only obtained from one test
section diameter size due to the time limit. The larger or smaller size test section diameter
will change the governing physical phenomena significantly. Figure 10-1 shows the effect
of the test section size variation. This calculation is performed with: operating pressure of
1 atm, nitrogen as a working fluid, inlet temperature at 300K, heat flux at 1 kW/m?* and
volumetric flow rate at 1.0 CFM. Y-axis shows the acceleration and Jackson's buoyancy

parameters normalized to the threshold value of 2x10™° for both cases.
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Figure 9-1 Governing Physical Phenomena Variation with the Test Section Diameter Size

Figure 9-1 clearly shows that when the test section size gets smaller the acceleration
effect is pronounced and when the situation is opposite, the buoyancy effect is higher
than the acceleration effect. The reason is obvious, since the acceleration parameter is
inversely proportional to the diameter while the buoyancy parameter is proportional to
the diameter. This figure also explains the reason why most of the acceleration effect
experiments, which were summarized in 2" annual report, were all done with a small size
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test section (~3mm) while the buoyancy effect studies usually used large diameter test
section (~10cm). Since, the current test section size is in between the two extremes, it
will be interesting to reproduce two extreme cases in the MIT experiment by changing
the test section diameter size. Changing the shape of test section will be also an
interesting topic to investigate, especially in view of the fact that the GFR under
development in France at CEA has currently plate type geometry.

Different Heat Flux Shape and Flow Orientation

Another proposed future work will be studying the effect of the applied heat flux shape.
Since, the results from this report clearly show that the gas heat transfer depends more on
the inlet condition than the local conditions, the heat flux shape will clearly change the
single channel heat transfer characteristic. This is because the buoyancy parameter and
the acceleration parameter will start to behave differently from the uniform heat flux
cases.

The downward heated flow is another topic of interest since there are designs with heated
down flow (for example GT-MHR and older GCFR). Generally it is accepted that the
downward heated flow heat transfer coefficient is enhanced due to the buoyancy effect,
but Figure 10-1 shows that when the test section is small enough the acceleration effect
will prevail over the buoyancy effect. Since the acceleration is not affected by the
orientation of the flow (no gravitational acceleration in the acceleration parameter) the
deterioration due to acceleration can be also predicted. However, because buoyancy effect
is now contributing to increased heat transfer, the interference between buoyancy-
enhanced heat transfer in the down flow and acceleration driven deterioration is not clear.
Thus, a small size test section with the downward heating experiment can provide
surprising results.

Differential Pressure Measurement and Friction Factor Correlation
Development

From the Reynolds analogy, the friction factor and the heat transfer coefficient tend to
vary together. There is a large uncertainty on the effects of buoyancy forces on friction
factor, in particular in the DTHT regime. A modest data set and some publications that
were identified suggest that friction factor can either be increased or decreased by
buoyancy assisting mixed convection. Petukhov and Strigin [Petukhov and Strigin, 1968],
[Petukhov, 1977] developed the correlation that predicts significant increase of friction
factor with Rayleigh number. Other data were found to exhibit decrease in friction factor
as buoyancy forces increase, followed by an increase with Grashof number or buoyancy
force [Carr, et. al., 1973]. These correlations and data only pertain to the turbulent mixed
convection regime, at the current time no data or correlations have been found that
pertains to laminar mixed convection effects. Therefore, friction factor correlation that
can reliably predict friction factor in buoyancy affected flows needs to be developed.
This is particularly important for GFR decay heat removal applications where
deterioration of friction factor can substantially impair decay heat removal under natural
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circulation and its impact is expected to be higher than that of heat transfer coefficient.

Thus, measuring a friction factor for DTHT regime is key future work to be performed.
This activity was originally planned in the initial stages of the proposal for this project,
but was removed from the work scope because of funding limitations.

Natural Circulation

After implementing a newly developed correlation to a system analysis code, such as
RELAPS5-3D, an experimental validation will be necessary to check the code
performance. Up to date, all of the data presented in this report were obtained using the
forced circulation situation. Since the GDR DHR operates under natural circulation, it is
of high interest to test natural circulation operation and benchmark RELAP5-3D code
under natural circulation regime. The loop, which was built with natural circulation
capability and prototypical heated channel dimensions provides good opportunity for
such tests. Furthermore, it is of interest to investigate how the transition to DTHT regime
affects natural circulation and validate if the loop operation maintains stable mode of
operation. The current loop facility setup is a valuable source of information to the
numerical analysis community.

Hot-wire Measurement

Due to the time constraint, the issues of hot-wire facility operation could not be resolved
during the project. Few problems were identified with the current design in this report
and this is mainly due to lack of experience of operating hotwire in the pressurized
system. After fixing the identified problems and installing a few more upgrades to the
facility, the hotwire flow transducer could be made fully operational. By having a reliable
flow measurement with the hotwire, a lower flow rate than the low limit of turbine meter
could be measured allowing the data sets to extend lower flow rates.

Since the DTHT regime and mixed convection laminar regime heat transfer characteristic
changes due to the local flow structure, it will provide an insight for measuring the
velocity profile, temperature profile and turbulent kinetic energy profile in the test section.
The hotwire technology can be applied to measure these quantities after accumulating the
operating knowledge with the flow transducer hotwire.
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Appendix-2 (Table of Data)

This appendix documents data for all 58 runs in the form of tables. These data range is
shown in Table A2-1.

Table A2-1. Summary of All the Experimental Runs

Total number of Runs 58 (N, He, CO,)
Operating Pressure Range 0.13-0.67 MPa
Operating Power Range 200 — 2690 Watts
Operating Volumetric Flow Rate Range | 0.4 — 6.1 CFM
Inlet Temperature 300 —305 K
Inlet Reynolds Number Range 1,800 — 42,700
Inlet ¢° Range 0.0003 — 0.0039
Inlet Bo" Range 3x107° — 1x107
Inlet K, Range 6x10° — 5x10°

The first two rows in the following tables summarize experimental conditions for each
run. Next 21 rows show L/D, wall temperature, bulk temperature, heat flux, heat transfer
coefficient, uncertainty on the heat transfer coefficient, the Nusselt number, uncertainty
on the Nusselt number, the Reynolds number, non-dimensional heat flux (based on the
enthalpy), the heat flux based Grashof number, the Prandtl number, buoyancy number
and acceleration number from left to right column respectively. All the non-dimensional
numbers are evaluated at the fluid bulk temperature including the inlet non-dimensional
numbers. Temperature unit is Kelvin (K). Symbols used in the data tables are summarized
on the next page.
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Appendix-2 Nomenclature

c,: specific heat at constant pressure (J/kg K)

g: gravitational acceleration (m” / sec)
h: heat transfer coefficient (W/m’K)
k: thermal conductivity of gas (W/m K)
q": heat flux (W/m?)

D: pipe diameter (m)

G: mass flux (kg/m’ sec)

H : enthalpy (J/kg)

L : length (m)

P: system pressure (MPa)

T,,: wall temperature (K)

7,: bulk temperature (K)

a: thermal diffusivity = Kk (m?/sec)

f: thermal expansion coefficient=— l(ﬁ_pj (K™
p\aT Jp

2 dynamic viscosity (kg/m sec)

v : kinematic viscosity (m*/sec)

p: density (kg/m®)

gBq,D"*

k 2

Grq . Grashof number based on heat flux =
v

Gr

q
Re3.425 PrO.X

: dUu, 4q*
K, : acceleration parameter = Lz b 24
U, dc Re

Bo': buoyancy parameter =

Nu: Nusselt number = hTD

Pr: Prandtl number = Y
a
Re: Reynolds number = @
14

"

qw

b

¢": nondimensional heat flux=
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