
This is a preprint of a paper intended for publication in a journal or
proceedings. Since changes may not be made before publication,
this preprint should not be cited or reproduced without permission of
the author. This document was prepared as an account of work
sponsored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, or any of
their employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any third party’s use,
or the results of such use, of any information, apparatus, product or
process disclosed in this report, or represents that its use by such
third party would not infringe privately owned rights. The views
expressed in this paper are not necessarily those of the United
States Government or the sponsoring agency.

INL/CON-05-00649
PREPRINT

Time-To-Compromise
Model For Cyber Risk
Reduction Estimation

Quality of Protection Workshop,
ESORICS

Miles A. McQueen
Wayne F. Boyer
Mark A. Flynn
George A. Beitel

September 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71312161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Time-to-Compromise Model for Cyber Risk Reduction
Estimation

Miles A. McQueen1, Wayne F. Boyer1, Mark A. Flynn1, George A. Beitel1,

1 Idaho National Laboratory, 2525 N. Fremont,
Idaho Falls, Idaho, U.S.A. 83415

{miles.mcqueen, wayne.boyer, mark.flynn,
george.beitel}@inl.gov

Abstract. We propose a new model for estimating the time to compromise a
system component that is visible to an attacker. The model provides an estimate
of the expected value of the time-to-compromise as a function of known and
visible vulnerabilities, and attacker skill level. The time-to-compromise random
process model is a composite of three subprocesses associated with attacker ac-
tions aimed at the exploitation of vulnerabilities. In a case study, the model was
used to aid in a risk reduction estimate between a baseline Supervisory Control
and Data Acquisition (SCADA) system and the baseline system enhanced
through a specific set of control system security remedial actions. For our case
study, the total number of system vulnerabilities was reduced by 86% but the
dominant attack path was through a component where the number of vulner-
abilities was reduced by only 42% and the time-to-compromise of that compo-
nent was increased by only 13% to 30% depending on attacker skill level.

1 Introduction

Control systems connected to public networks are at risk from cyber attack. Operators
of these control systems need a measure of the risk associated with potential attacks to
effectively manage their resources. Cyber security evaluations are traditionally quali-
tative in nature such that recommendations are given for remedial actions with no
quantitative measure of how the recommended actions reduce the risk of a successful
attack.

In April 2005 our risk analysis team was asked to perform a quantitative estimate of
the risk reduction on a partial Supervisory Control and Data Acquisition (SCADA)
system referred to as CS60. The baseline system had already undergone a security
review, been modified to enhance security, and then been retested. For this analysis,
we developed a methodology [13] for obtaining a quantitative risk reduction estima-
tion. The methodology applies a graph theoretical approach. The methodology is
briefly described by the following steps:

Step 1. Establish the system configuration.
Step 2. Identify applicable portions of the quantitative risk model.

Step 3. Identify and prioritize the security requirements of the primary target(s).
Step 4. Identify system component vulnerabilities.
Step 5. Categorize vulnerabilities on each component by compromise type.
Step 6. Estimate time-to-compromise each component.
Step 7. Generate compromise graph(s) and attack paths.
Step 8. Estimate dominant attack path(s).
Step 9. Do Steps 3–8 for baseline and enhanced system.
Step 10. Estimate risk reduction.

One could argue that all vulnerabilities should be fixed, e.g. by applying patches,
thus the enhanced system should have no known vulnerabilities. We assert that a sys-
tem with no known vulnerabilities continues to be at risk because of vulnerabilities
that exist but are currently unknown, and we would like to measure that risk. Also,
many real world systems operate with known vulnerabilities even after security up-
grades. The crux of our methodology is the estimation of the time-to-compromise for
each component in the system. Time-to-compromise is a measure of the effort ex-
pended by an attacker for a successful attack assuming effort is expended uniformly.
We believe that as the time-to-compromise is increased, the likelihood of successful
attack, and therefore risk, tends to decrease. The rest of this paper discusses the spe-
cific methods we used for step 6 of the methodology, estimating the time-to-
compromise.

The estimation of time-to-compromise is particularly difficult because of the lack
of reliable data. We recognize that some of the assumptions associated with our model
have not been validated but we have attempted to provide justification with real data
when data is available. We have used expert elicitation or have made simple assump-
tions when data is unavailable.

2 Related work

Researchers are testing the viability of different approaches for dealing with control
system cyber security. Carlson et al. [8] describes a novel approach for applying Hid-
den Markov Models to an attack/defend scenario on an infrastructure system. The
approach, based on sound statistical models, is flexible, but requires both detailed
information about the system and significant set-up time. Madan et al. [11] apply a
stochastic model to computer network system. It is used to determine steady-state
availability of QoS attributes and also mean times to security failures based on prob-
abilities of failure due to violations of different security attributes. The theory used is
classic statistical stochastic modeling. Employing this type of model requires knowl-
edge of the system in detail. Furthermore, Haimes [10] applied Hierarchical Holo-
graphic Models, event trees, and fault trees to a variety of applications, both models
require specific details, are not dynamic, and rely on expert opinion.

Taylor et al. [15] provide an interesting cyber security assessment process that
combines techniques from Survivability System Analysis and Probability Risk As-
sessment. The proposed process has some significant advantages, but seems more

suitable to complete and operational systems so that costs, attack scenarios, and criti-
cal system objectives may be fully explored. Further, the process is dependent on
multiple iterations of expert elicitation, which are not available in many situations.

Dacier et al. [9] suggested the use of ‘privilege graphs’ to analyze security. Privi-
lege graphs require modeling of vulnerabilities at a very low level, and, for a nontriv-
ial sized system, would involve a graph of unmanageable size. Privilege graphs are
transformed into Markov chains. But the assumptions underlying Markov chains are
not necessarily applicable to an intelligent adversary.

Sheyner et al. [14] describe an automated technique for generating and analyzing
attack graphs. They use a model checker as the core engine to comprehensively gener-
ate every attack path sequence that could lead to an undesired system state. There is a
question of scalability in using a model checker to generate the attack paths, and the
level of attack and vulnerability abstraction may be at a lower level than optimal for a
quick estimate of risk reduction.

Byres et al. [7] describe how the attack tree methodology may be applied to the
common SCADA protocol MODBUS/TCP with the goal of identifying security vul-
nerabilities inherent in the specification and in typical deployments. Attack trees are a
promising technology but no method is provided for weighting the attack paths.

While a number of the above methods and techniques seem promising and merit fu-
ture research, none could provide a quantitative measure of time-to-compromise that
was necessary for our risk reduction estimation case study.

3. Estimate time-to-compromise

The time-to-compromise (Tpi) is defined as the time needed for an attacker to gain
some level of privilege p on some system component i. Tpi depends on the nature of
the vulnerabilities and the attacker skill level. Tpi is modeled as a random process
composed of the following three attacker subprocesses:
• Process 1 is for the case where at least one vulnerability is known on component i

that would achieve privilege level p, and the attacker has at least one exploit read-
ily available that can be successfully used against one of the known vulnerabili-
ties.

• Process 2 is for the case where at least one vulnerability is known on component i
that would achieve privilege level p, but the attacker does not have an exploit
readily available that can be successfully used against any of the known vulner-
abilities.

• Process 3 is the identification of new vulnerabilities and exploits. Process 3 is a
parallel process to processes 1 and 2, and is constantly running in the background.
The attacker of a particular system may use the results of process 3 or may be an
active participant in process 3. That is, the attacker may wait for new vulnerabili-
ties/exploits to be identified and announced, or probe for new ones.

Each of the above processes has a different failure probability distribution. Process
1 and 2 are mutually exclusive and Process 3 is ongoing and in parallel with the other
two processes.

3.1. Process 1 model

The Process 1 activities are shown in
flow chart form in Figure 1. Notice that
Process 1 always has a successful com-
pletion. The Process 1 model has two
parts: 1) the probability estimate that the
attacker has an exploit readily available
to use against one of the component’s
vulnerabilities, that is, the probability the
attacker is in Process 1, and 2) the time
estimation for Process 1.

3.1.1. Probability the attacker is in
process 1
The probability that the attacker is in
Process 1 is calculated by using search
theory in a similar fashion as has been
applied to physical security systems by
Major [12]. The following equation
makes use of the simplifying assumption that the available exploits are uniformly
distributed over all vulnerabilities:

P1 = 1 - e-vm/k. (1)

where P1 is probability that the attacker has an exploit readily available that will com-
promise the component, v is number of vulnerabilities on the component of interest, m
is the number of exploits readily available to the attacker, and k is the total number of
vulnerabilities. The value of k is 9447 and is defined to be the total number of nondu-
plicate-known vulnerabilities found in the ICAT database.

Table 1. Model parameters—number of readily available exploits by skill level.

Skill Level m (number of readily available exploits)

novice 50

beginner 150

intermediate 250

expert 450

The value of m is a function of the attacker skill level. The novice skill level is de-
fined as m = 50 because there is a Web site (metasploit) that has 50 exploits that are

component
compromised?

recognize a vulnerability with
an exploit readily available

study and tune the exploit

run the exploit

success

no

yes

Fig. 1. Process 1

trivial to use. The higher skill levels are defined by increasing the value of m for each
increase in skill level as shown in Table 1. The specific choices in Table 1 are based
on a postulated exponential growth in readily available exploits as a function of skill
level.

3.1.2. Time estimation for process 1
The probability density function (PDF) for Process 1 is expected to be zero at time
zero, rise rapidly then decrease to zero for times greater than some maximum time
value. The shape of the PDF for this process is anticipated to look something like the
beta distribution [3] shown in Figure 2.

The mean time for Process 1 was estimated as follows. Process 1 assumes that the
attacker is familiar with at least one of the available vulnerabilities and has experience
with at least one exploit to take advantage of the known vulnerabilities. Currently, the
time it takes for an expert or novice to compromise a component under these condi-

tions is considered to be
roughly similar. Thus, the
mean time-to-compromise
for Process 1 is not modi-
fied based on skill or any
other external factors.
Cohen [2] states: “It takes
a few days to program a
few new attacks into sys-
tems, test them out, and
prepare for a serious at-
tack if you are already in
the business of attacking
other people.” This sug-
gests that the mean should
be a few days. However,
experiments conducted by
Jonsson [4] suggest that a
team of two nonprofes-
sional attackers can exe-
cute a compromise in

approximately 4 hours, on average. Based on the specification of time used by Jons-
son, the 4 hours could represent the total time used for the attack or the time devoted
by each team member, for a possible total of 8 hours. Somewhat arbitrarily, we de-
cided to use 8 hours (one working day) as the mean time for a successful attack in
Process 1, since it is at least marginally more in line with Cohen’s comment.

3.2. Process 2 Model

The Process 2 activities are shown in flow chart form in Figure 3. Notice Process 2
can have multiple tries and may end in failure or success. The Process 2 model has

Fig. 2. PDF for Process 1. Time-to-compromise a com-
ponent for the case where the attacker has an exploit readily
available. This PDF is a ‘beta’ distribution with shape pa-
rameters == 1.3, 5.2; range == 0..5; mean = 1:

two parts: 1) the probability estimate that the attacker is in Process 2, and 2) the time
estimation for Process 2.

3.2.1. Probability the attacker is in process 2
Since Process 1 and Process 2 are mutually exclusive, when v > 0 the probability

that the attacker is in Process 2 is the complement of the probability that Process 1
applies. That is

P2 = e-vm/k = 1- P1. (2)

where P2 is the probability that the attacker does not have an exploit readily available
that will compromise the component and P1 is from Equation 1.

3.2.2. Time estimation for process 2
The PDF of Process 2 is expected to look similar to the gamma distribution [3]

shown in Figure 4. A gamma distribution was chosen because the PDF is zero at time
zero, and as time increases it peaks and then trends towards but never reaches zero.
We chose a PDF that is non-zero at infinity because Process 2 has no guarantee of
successful completion within any given time. The PDF in Figure 4 is a baseline PDF
for process 2 and represents the case where the attacker is expected to find or write a
usable exploit for the first vulnerability they try to exploit. As the expected number of

Fig. 3.. Process 2

pick an untried vulnerability

any untried
vulnerabilities

remain?

no
failure

start

search for an exploit component
compromised?

study & tune the exploit

run the exploit

success

no

yes

rework
exploit?

exploit
found?

write
exploit? write exploit

yes nono

yesno

pick an untried vulnerability

any untried
vulnerabilities

remain?

no
failure

start

search for an exploit component
compromised?

study & tune the exploit

run the exploit

success

no

yes

rework
exploit?

exploit
found?

write
exploit? write exploit

yes nono

yesno

vulnerabilities that an attacker must try to exploit before being successful increases,
the PDF will be modified according to the number of "tries" needed as explained
below. The average value of the baseline PDF for Process 2 was chosen as the average
time from vulnerability announcement to exploit code availability, which according to
[6] is 5.8 days.

The mean time estimation
for Process 2 should be de-
pendent on the number of
known vulnerabilities and the
probability the attacker will be
able to find or write their own
exploit code to take advantage
of the weakness. This was
modeled as a serial process in
which the attacker randomly
selects one of the known vul-
nerabilities and then tries to
find or create an exploit for it.
The average time it takes for
each of these tries is consid-
ered constant and is the base-
line mean of the hypothesized
gamma PDF (5.8 days). The
mean time of Process 2 is
modeled as the expected value

of the number of tries times 5.8 days; that is:

t2 = 5.8 ET. (3)

where t2 is expected value of Process 2 and ET is the expected number of tries.

The expected number of tries may be written as:

��
�

�
��
�

�
�
�

	

�

�
�
�
�

�
�
�

+−
+−+=
 ∏

+−

= =

1

2 2 1
2

1
AMV

tries

tries

i iV

iNM
tries

V

AM
ET (4)

where AM is the average number of the vulnerabilities for which an exploit can be
found or created by the attacker given their skill level, NM is the number of vulner-
abilities that this skill level of attacker won’t be able to use (V-AM), and V is the
number of vulnerabilities on the component of interest. See appendix for derivation of
equation 4.

Equation 4 was obtained by assuming each try is an independent sample from the
list of vulnerabilities where the unusable vulnerabilities are randomly distributed
among the list.

Fig. 4. Baseline PDF for Process 2. Time-to-compromise
for the case of at least one vulnerability but the attacker
has no exploit readily available. The PDF is a gamma
distribution. Shape parameters == 2, 2.9; Mean == 5.8.

Table 2. Fraction of vulnerabilities exploitable by attacker as a function of skill level.

Skill Level Fraction of Vulnerabilities that
are Exploitable (AM/V)

20 vulnerabilities from ICAT da-
tabase judged by expert to be ex-
ploitable by this and lower levels.

novice .15 CAN-2003-0004
CAN-2001-1039
CAN-2002-1048

beginner .30 CAN-2004-1306
CAN-1999-1457
CVE-2000-0359

intermediate .55 CAN-2004-0893
CAN-2005-0416
CAN-2002-0053
CAN-2003-0345
CAN-2004-0206

expert 1.00 CAN-2003-0897
CAN-2004-0117
CAN-2004-0208
CAN-2004-0575
CAN-2003-0724
CAN-2004-0118
CAN-2004-0119
CAN-2004-0123
CAN-2004-0897

To determine the values of AM/V as a function of skill level, we sampled 20 vul-
nerabilities to assess the availability of corresponding exploits. See table 2 for list of

vulnerabilities. If our team ex-
pert assessed the vulnerability as
requiring no code, or the code
was available and trivial, it was
then assumed a novice attacker
could make use of the vulner-
ability/exploit pair. This criteria
was met by three (15%) of the
20 vulnerabilities that were as-
sessed. If our team expert as-
sessed the vulnerability as being
available to the novice or that it
required exploit code that was
readily accessible (and appeared
easy to understand), it was as-
sumed a beginner attacker could
execute the code and take advan-
tage of the vulnerability. Three
additional vulnerability/exploit
pairs also met this criteria, bring-

ing the total to six pairs (30%) available to the beginner attacker. If, in addition to the
above six vulnerability/exploit pairs, our team expert found the exploit code to be

novice

expert

intermediate

beginner

Fig. 5. Average number of attempts to compromise a
component for Process 2 as a function of number of
known component vulnerabilities and the attacker skill
level. (Equation 4)

difficult to understand, found only example code conveying the essence of the exploit,
or assessed from experience that it was not easy to get the type of required exploit to
work properly, it was assumed it would require an intermediate level attacker to take
advantage of the vulnerability/exploit pair. Five additional pairs met this criteria so
that 11 pairs (55%) were available to the intermediate attacker. If, in addition to the 11
exploits above, no exploit code was readily available or what code there was required
significant modification to adapt, we assumed that it would require an expert attacker.
All of the remaining vulnerabilities fit into this category for a total of 20 vulnerabil-
ity/exploit pairs (100%) available to the expert. The results of this exercise are sum-
marized in Table 2 and were used as part of the time-to-compromise model.

The average number of tries as described by Equation 4 is plotted in Figure 5. For
an expert, the average number of tries is one, because an expert is expected to have
access to an exploit for every vulnerability. As the skill level decreases, the average

number of tries increases as
expected.

3.3. Time estimation for
process 3

The Process 3 activities are
shown in flow chart form in
Figure 6. Notice Process 3 con-
tinues until "success". The time
to the discovery of a new usable
vulnerability is modeled as a
constant rate of new vulnerabili-
ties/exploits occurring on a
component. This model is the
same form as the classic expo-
nential distribution for constant
failure rates as shown in Figure
7.

This exponential distribution
was chosen for its simplicity and
because research by Rescorla [5]
indicates that the hypothesis
stating that the vulnerability
discovery rate is constant over
time could not be rejected for
the operating systems he studied.
Using data from the same

source, it also appears that a reasonable estimate for the mean time between vulner-
abilities (MTBV) is 30.42 days. In addition to a vulnerability, an exploit would be
needed. The time between the announcement of a vulnerability and the release of a
corresponding exploit is now approximately 5.8 days [6]. The vulnerability rate esti-

component
compromised?

wait for or discover
a vulnerability

study & tune the exploit

run the exploit

success

no

yes

start

wait for or write exploit

rework
exploit?

yesno

Fig. 6. Process 3

mate will be scaled by V/AM according to the portion of vulnerability/exploit pairs
each attacker level can use (see Table 2). For example, the beginner attacker will on

average require 1/(0.3)
vulnerability/exploit pair
occurrences before one
becomes usable. To deter-
mine the expected time-to-
compromise for Process 3,
the MTBV was multiplied
by the scaling factor then
half the MTBV was sub-
tracted because, on the
average, the midpoint of
the fault cycle is the start
point, and the mean time to
create an exploit (5.8 days)
is added. Thus:

t3 = ((V/AM) - 0.5) 30.42 + 5.8 (5)

where t3 is the expected time-to-compromise of Process 3, and V/AM is the appropri-
ate value from Table 2.

One might assume that development and release of patches might be effective in
mitigating the window of opportunity for an attacker, but as indicated by [1] the hy-
pothesis of ‘poor system administration’ seems to be confirmed. In other words, it
takes quite a long time for administrators to actually apply patches, and although there
are some indications that the time between release of a patch and its application may
be decreasing in the IT domain, control systems may be slower.

3.4 Overall compromise time estimation

Given the three attacker processes for compromising a component, their probabilities,
and their time-to-compromise probability distributions we can now generate an overall
time-to-compromise probability distribution for the component. For now, the analysis
only uses the expected value of the time-to-compromise. The expected value of the
overall distribution is approximated as a weighted sum of the expected values of each
of the three attacker processes, where each weight is the probability that the respective
process is operative.

Fig. 7. PDF for probability of discovery of a new us-
able vulnerability. (Process 3).

expert

intermediate

beginner

novice

expert

intermediate

beginner

novice

Although Process 3 is a parallel process continually running in the background, we
simplify the estimation of time-to-compromise and obtain a good first order approxi-

mation by assuming that
Process 3 only applies if
Processes 1 and 2 do not
apply or are unsuccessful.
This approximation is valid
because the PDF for Process
3 is much more dispersed
than the other processes,
therefore its contribution to
the composite PDF is small
when Processes 1 or 2 are
active. The following for-
mula is valid under the
assumption that all three
processes are approximately
mutually exclusive.

T = t1 P1 + t2 (1-P1)(1-u) + t3 u(1-P1). (6)

where

T is the expected value of time-to-compromise
t1 is the expected value of Process 1 (1 day)
t2 is the expected value of Process 2 (from Equation 3)
t3 is the expected value of process 3 (from Equation 5)
u = (1 – (AM/V))v

� probability that Process 2 is unsuccessful (u=1 if V=0)
V is number of vulnerabilities, P1 from Equation 1, AM/V from Table 2.

Equation 6 is plotted in Figure 8 where the number of known vulnerabilities for a
component range from zero to 30 and attacker skill levels range from novice to expert.
The time-to-compromise the component increases as the skill level decreases. Time-
to-compromise decreases as the number of vulnerabilities increases, but for skilled
attackers the time-to-compromise is not a strong function of the number of vulnerabili-
ties. The shape of the curves shown in Figure 8 is consistent with intuition, although
the numerical values are only approximations.

4. Case study

Our risk reduction methodology was applied to a small SCADA system (CS60) con-
sisting of 8 generic component types connected to a local Ethernet LAN. The only
potential attack target component identified was the RTU because it controls the
physical state of equipment in the field. The system was tested as delivered from the

novice

begin

interm

expert

Fig. 8. Expected time-to-compromise a component for
various numbers of vulnerabilities and attacker skill levels.
(Equation 6 plotted)

manufacturer and did not include a firewall. The only perimeter component for the
CS60 system is the Ethernet switch that connects the system to the internet. For the
purposes of testing, this perimeter component was assumed to be a simple switch that
prevents locally addressed packets from external observation and prevents flooding of
the local network from external sources.

Both the baseline and enhanced, more secure, versions of the CS60 system were
tested with a variety of commercial and freeware scanning tools (including Nessus),

password crackers and
local tools. Tests of the
baseline system revealed
potential vulnerabilities in
every component. The
network scans found a
total of 298 open ports,
and 79 unknown services.
Nessus vulnerability scans
found 174 warnings and
154 holes. A ‘hole’ is a
vulnerability that has the
potential to allow an at-
tacker to gain a foothold
on the component. We
were only concerned with
holes that were noted by
Nessus as high severity to
increase confidence that
they were significant
vulnerabilities. High se-
verity implies that the hole

might allow one to run ‘arbitrary code’ on the component to gain user or root access.
The password testing found weak passwords on virtually all of the componentss. Net-
work scans of the enhanced system found 95 open ports and nine unknown services.
Nessus vulnerability scans of the enhanced system found a total of 101 warnings and
21 holes. Some of the vulnerabilities identified by the tools were validated for the
enhanced system. INL expertise was used for the identification and validation of addi-
tional vulnerabilities. The passwords in the enhanced system were found to be much
stronger than for the baseline system. We identified additional potential vulnerabilities
by searching vulnerability identification libraries.

The time-to-compromise was calculated using Equation 6 and the number of vul-
nerabilities we identified that could be used to gain root access for each component in
the CS60 system. Component APPS1 had the highest number of vulnerabilities in the
baseline system (19) and in the enhanced system (11) for the type compromise that
allows root access from a launch site, therefore the path through component APPS1 is
considered to be the dominant attack path. The time to compromise APPS1 for vari-
ous attacker skill levels is shown in Figure 9 for the baseline system, the enhanced
system and for the hypothetical case of no known vulnerabilities. The total number of

Fig. 9. Estimated compromise time of the most vulner-
able component of the CS60 baseline system, enhanced
system, and for hypothetical case of no known vulner-
abilities.

0

50

100

150

200

Attacker Skill Level

C
o

m
p

ro
m

is
e

T
im

e
(d

ay
s)

baseline 55.5 13.2 6.5 2.9

enhanced 79.1 15.2 7.6 3.8

zero know n
vulner.

193.4 92.0 45.9 21.0

Novice Beginner Intermed. Expert

CS60 system vulnerabilities was reduced by 86% but the number of vulnerabilities for
the component APPS1 was reduced by only 42% and the time-to-compromise APPS1
was increased by only 13% to 30% depending on attacker skill level. For the hypo-
thetical case of 100% reduction in known vulnerabilities, the time-to-compromise is
estimated to increase by 240% to 624% depending on attacker skill level.

These estimates of time-to-compromise have not been validated but simply show
how the model may be applied to a real system. The numbers can be interpreted as a
measure of risk and therefore may be used to trade off the value of cyber security
mitigation actions versus the cost.

5. Alternative simplistic time-to-compromise models/metrics

Consider some simplistic alternative time-to-compromise models/metrics. One
such model is the binary open/closed door model in which any known vulnerability is
considered an open door that a determined attacker will enter as easily as if there were
many other open doors. The application of this model to the case study yields a time-
to-compromise reduction of zero on the APPS1 component because there are known
vulnerabilities (open doors) remaining that lead to a successful attack, even though
many doors have been closed. This model has some merit, particularly if the attacker
is highly skilled and is determined to attack that particular site, but is considered too
pessimistic and too simplistic because it does not take into account the various types
of potential attackers, and the difficulty associated with the attacker in exploiting
different sets of vulnerabilities is not considered.

Another alternative time-to-compromise metric for components may be obtained by
counting the reduction in number of vulnerabilities. This can be done in several ways.
For example: the total number of vulnerabilities for each component (before and after
system enhancements) may be counted. An alternative view of vulnerabilities is the
number of open TCP services rather than CVE entries. For this case study, the total
holes found by Nessus (http://www.nessus.org) was reduced from 154 to 21 (86%),
the number of vulnerabilities on the most vulnerable component was reduced from 19
to 11 (42%), and the total number of open TCP services was reduced from 298 to 95
(68%). This model is also believed to be too simplistic and too optimistic because it
implies a linear relationship between number of vulnerabilities and the time-to-
compromise a component, and ignores other important considerations such as skill of
attacker.

6. Conclusions

We proposed a model for estimating the time-to-compromise a system component
that is visible to an attacker. The model can be used as part of a risk reduction estima-
tion methodology for control systems. Time-to-compromise was modeled as a func-
tion of known vulnerabilities and attacker skill level and was applied to a specific
SCADA system and for a specific set of control system security remedial measures.

The nature of the numerical results obtained show that time-to-compromise is re-
lated to system attributes in ways consistent with intuition, and reinforces the types of
remedial actions that truly reduce risk. For example, the model emphasizes the dy-
namic nature of cyber security such that the time-to-compromise a component de-
creases over time, unless there is constant effort to install patches or disable services
as soon as new vulnerabilities are discovered.

The model also suggests some new strategies for reducing the risk of cyber threats:
the publication of false exploits or government restrictions on the publication of valid
exploits could theoretically increase the time necessary for an attacker to compromise
components. Software that spoofs vulnerability scanning tools could trick potential
attackers into trying exploits that would not be successful, but would raise alarms.

The time-to-compromise model has the following drawbacks. The model does not
currently take into account dependencies between vulnerabilities on different compo-
nents. For example, if two components are not identical but have some of the same
vulnerabilities, compromising them are not independent events. Whether the number
of available exploits is representative of the skill level of an attacker and estimates of
the number of exploits available to various skill levels were not validated. The as-
sumption that exploits are uniformly distributed over vulnerabilities is incorrect. It is
our hypothesis that certain exploits are far more likely to be in the hands of an at-
tacker, since the vulnerability is found on many more systems. The PDFs were not
validated for Processes 1 and 2.

The proposed model for estimating time-to-compromise provides a quantitative as-
sessment mechanism that fits within an overall methodology of risk assessment. The
level of abstraction is high enough to avoid detailed analysis of each known vulner-
ability but detailed enough to provide useful security and defensive information for
guiding risk assessments and mitigation strategies.

7. Future Work

The time-to-compromise model needs to be validated through experiments and
measurement where possible. We plan to run realistic tests to collect information
about attacker processes. We would like to perform a sensitivity analysis to determine
how sensitive the model is to changes in our underlying assumptions.

The kind of data needed to effectively estimate control system cyber security risk
is currently lacking. For example: the industry needs a vulnerability library specific to
control systems similar to the existing IT CVE vulnerability library. The existing CVE
libraries do not always clearly identify where vulnerabilities apply, nor do they indi-
cate how difficult it is to exploit a given vulnerability. Existing vulnerability scanning
tools do not clearly identify which vulnerabilities are tested and which are not. We
would like to run experiments that measure the statistics associated with Processes 1
and 2. Validated statistical models may allow for a measure of the error bounds asso-
ciated with future time-to-compromise estimates.

When dealing with a system many components will have common vulnerabilities.
A method should be developed to account for such dependencies. Also, many com-

ponents may be of equal use to an attacker. In such a case it may be more appropriate
to aggregate the appropriate components into a higher level meta-component with the
union of all its components vulnerabilities. This needs to be assessed.

References

1. Browne, H. K., McHugh, J., Arbaugh, W.A. and Fithen, W.L., “A trend Analysis of Exploi-
tations,” technical report CS-TR-4200, University of Maryland and Software Engineering
Institute, November 2002.

2. Cohen, F., “Managing Network Security The Millisecond Fantasy,”
http://all.net/journal/netsec/1999–2003.html, 2003.

3. Evans, M., Hastings, N. and Peacock, B., “Statistical Distributions,” Second Edition, 1993.
4. Jonsson, E., “A Quantitative Model of the Security Intrusion Process Based on Attacker

Behavior,” IEEE Transactions on Software Engineering, Vol 23 No 4, April 1997.
5. Rescorla, E., “Is Finding Security Holes a Good Idea,” IEEE Security & Privacy, January-

February 2005.
6. Turner, D., ed., “Symantec Internet Security Threat Report,” Volume VI, September, 2004,

http://enterprisesecurity.symantec.com/content.cfm?articleid=1539, 2004.
7. Byres, E. J., Franz, M. and Miller, D., “The Use of Attack Trees in Assessing Vulnerabilities

in SCADA Systems”, International Infrastructure Survivability Workshop (IISW '04), IEEE,
Lisbon, Portugal, December 4, 2004

8. Carlson, R. E., Turnquist, M. A. and Nozick, L. K., Expected Losses, Insurability, and
Benefits from Reducing Vulnerability to Attacks, SAND2004-0742, Sandia National Labo-
ratories, Albuquerque, New Mexico, 2004.

9. Dacier, M., Deswarte, Y. and Kaaniche, M., “Quantitative Assessment of Operational Secu-
rity: Models and Tools” Information Systems Security, ed. by S. K. Katsikas and D. Grit-
zalis, London, Chapman & Hall, p.179-86, 1996.

10. Haimes, Yacov Y., “Accident Precursors, Terrorist Attacks, and Systems Engineering,”
Presented at the NAE Workshop, 2003.

11. Madan, B. B., Goševa-Popstojavova, K., Vaidyanathan, K. and Trivedi, K. S., “Modeling
and Quantification of Security Attributes of Software Systems,” International Conference on
Dependable Systems and Networks, Washington, DC,, 2002.

12. Major, J. A., “Advanced Techniques for Modeling Terrorism Risk,” Journal of Risk Fi-
nance, Fall 2002.

13. McQueen, M. A., Boyer, W. F., Flynn, M. A. and Beitel, G. A., "Quantitative Cyber Risk
Reduction Estimation for a SCADA Control System", INL/EXT-05-00319, Idaho National
Laboratory, CSSC Report, prepared for U.S. Department of Homeland Security, May 17,
2005.

14. Sheyner, O., Haines, J., Jha, S., Lippmann, R. and Wing, J. M., “Automated Generation and
Analysis of Attack Graphs,” Proceedings of the IEEE Computer Society Symposium on Re-
search in Security and Privacy, Berkeley, California, May 2002, 273–284.

15. Taylor C., Krings, A. and Alves-Foss, J., “Risk Analysis and Probabilistic Survivability
Assessment (RAPSA): An Assessment Approach for Power Substation Hardening,” Proc.
ACM Workshop on Scientific Aspects of Cyber Terrorism, (SACT), Washington DC, No-
vember 21, 2002.

Appendix A

Derivation of Equation 4.
E(X) is expected value of X where X is a discrete random variable:

kk pxXE
V

k

*)(
1

=
=

where xk are the possible values of X (outcomes) and pk is the probability of out-
come k.

kp
V

k

=
=

1

1

p1 = Probability of matching an available exploit to the first vulnerability chosen.
p1 = AM/V, because of uniform distribution of exploits over vulnerabilities. AM is

number of usable exploits available, V is number of vulnerabilities.
p2 = Probability of matching an available exploit to the 2nd vulnerability chosen.
p2 = (probability of matching an available exploit to a vulnerability chosen from

those remaining after first try)*(probability exploit not matched on the first try)
p2 = (AM/(V-1))*((V-AM)/V)
p2 = (AM/V) * (V-AM)/(V-1)
p3 = (AM/(V-2))*(probability exploit not matched on the first two tries)
pk = (AM/(V-k+1))*(probability exploit not matched on the first k-1 tries)

pk = ��
�

�
��
�

�
��
	

�
�

+−
+−∗ ∏

=

k

i iV

iNM
VAM

2 1
2

)/(; 2 � k � V-AM+1

pk = 0; k > V-AM+1 (because there are AM usable exploits available, therefore
there are no untried vulnerabilities with exploits available to the attacker for these
cases. Attacker is successful for some previous value of k.)

kp*)(
1

1

+−

=
==

AMV

k

kXEET

��
�

�
��
�

�
�
�

	

�

�
�
�
�

�
�
�

+−
+−+=
 ∏

+−

= =

1

2 2 1
2

1
AMV

tries

tries

i iV

iNM
tries

V

AM
ET

