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Ethanol Output
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•

 

System dynamics model

•

 

Dynamic implications of  how the 
marketplace behaves in response to 
new technology 

•

 

Models behaviors of:
• Investors
• Farmers
• Policymakers

•

 

Can test different strategies to see 
whether or not they lead to 
successful achievement of the 30 x 
30 goal

•

 

Drivers can be either technology 
price targets or policy incentives

30 X 30 Scenario Model-Developed



Five Critical Aspects to Achieving the 30 x 30 
Scenario

1.

 

Continue rapid deployment of  starch based ethanol 
technology in the next decade

2.

 

Achieve “$1.07/gallon”

 

production cost target in 2012

3.

 

Cost share deployment with industry to reduce risk hurdle

4.

 

Achieve the advanced technology target to reduce the 
conversion cost component of the ethanol production cost by 
addressing identified barriers in 2025 –

 

2030

5.

 

Continue tax incentive of $0.50/gallon and raise Renewable 
Fuels Standard ceiling to 20 billion gallons or develop more 
dynamic market driven incentive



Historic Fuel Ethanol Prices

0

50

100

150

200

250

300

350

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

¢ per gallon

Fuel Alcohol

Ethyl Alchohol

Specially Denatured Alcohol



Achieving the $1.07 Production Cost 
Target by 2012
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Technical Barrier Areas for $1.07 
Biochemical

 
Ethanol

*Hybrid Saccharification & Fermentation -

 

HSF

Pretreatment Conditioning

Co-

 

fermentation

 

of C5 & C6

 

Sugars

Product
Recovery Products
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Production
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microfibril

Summary: Biomass Recalcitrance

Impacts at many 
length scales 
(mm to nm)

corn stems vascular tubes

cell wallsmicrofibrils

cellulose



PretreatmentPretreatment
•

 
Converts hemicellulose to fermentable sugars

•
 

Makes cellulose susceptible to enzymatic hydrolysis



How Do Chemicals Penetrate Biomass?

Source: Himmel et.al.  
in collaboration
with the CSM EM Facility
(2004)

1 mm

Pretreatment 
chemicals and
enzymes 
penetrate corn 
tissue
through vessels 
and pits

SEM



SaccharificationSaccharification
•

 
Enzymatic hydrolysis of cellulose or starch to glucose

Buffer treated corn stover Enzyme treated corn stover 

Note: zone around vascular bundle is eroded compared to native
(suggests enzymes leak through pores in bundle)



Enzyme Costs Have Fallen Sharply
•

 

DOE Subcontracts to Genencor

 

and Novozymes

 

(cost-shared)
Focus: lower production cost, increase enzyme system efficacy
–

 

Enzyme cost ($/gallon EtOH) = Prod. Cost ($/kg) x Usage Req. (kg/gallon EtOH)

Cellulase cost reduced 20-30X reduction (by subcontract metric)

-1

+1

+2

-2

cellodextrin

Y82

CBH1 from T. reesei

E1 from A. cellulotiticus



Pentose Metabolism Pathway
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Technical Barrier Areas for $1.07 
Thermochemical
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Feed Handling and
Conditioning Gasification
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Thermochemical Route to Ethanol

Overall Stoichiometry:
nCO

 
+ 2nH2 CnH2n+1OH + (n-1)H2O

Optimal H2/CO ratio ~ 1 –

 

1.2 due to water-gas shift 
(WGS) activity of catalysts
Reactions largely kinetically controlled



Gasification R&D for “$1.07”
 Thermochemical Ethanol Target

•

 

Gas Cleanup and Conditioning –

 

Tar Reforming Catalyst Development
–

 

Consolidated tar and light hydrocarbon reforming to reduce capital and 
operating costs

•

 

Advanced Catalysts and Process Improvements for Mixed Alcohol 
Synthesis
–

 

Increase single pass conversion efficiency (38.5% to 50%)
–

 

Improve selectivity (80% to 90%)
–

 

Improve yields at lower synthesis pressure
•

 

Fundamental Gasification Studies
–

 

Technical validation of comparable syngas quality from biorefinery residues 
and wood residues

Tar Reformer Performance -

 

% Conversion
Compound Current Goal
Methane (CH4

 

) 20% 80%
Ethane (C2

 

H6

 

) 90% 99%
Ethene

 

(C2

 

H4

 

) 50% 99%
Tars (C10+) 95% 99.9%
Benzene (C6

 

H6

 

) 70% 99%
Ammonia (NH3

 

) 70% 90%



Pros & Cons of Mixed Alcohol Catalysts
Catalyst 

Class Benefits Negatives LIkely

 

C2+ alcohol
STY g/L/hr possible

Std MeOH
Cu-Zn-Al

Excellent performance &
commercial record

Highly sensitive to  reduction,
sintering, Cl-

 

& S Very low

Modified
Methanol
(Cu/Zn/Al + X)

Easy to make &
retrofit into existing units 

Low overall yields, same sensitivity
as parent Cu-Zn-Al, branched prods
may dominate.

> 50, < 500

Molybdenum
Sulfide 

Good linear alcohol
selectivity is claimed

S required in feed, &  S  is  in
product,  highly sensitive to the
activation process & O2 
HC yield possibly  high 

500-1000

Molybdenum
Oxide + XYZ

No S required, good linear 
product yield 

Composition not optimized,
HC yield higher than desired 800-1200

Rhodium
based +XYZ Good ethanol selectivity

Composition not optimized,
high costs for  Rh,  HC  yields are
too high

500-1000

Fischer-
Tropsch + 
modifiers

Good activity &  many
opportunities for
improvement 

Composition is not optimized
alcohol selectivity may be  too low
HC yields may be high?

400-1000

Mixed 
Composite
Catalysts

(Inui claims)

Good reported C2+ yields
reported, many possible
improvements &
refinements

Very complex system, optimization
difficult,, yields of HC, acids & 
aldehydes

 

are too high 
600 -

 

>1000

X, Y, Z = various modifiers or promoters



ALTERNATE SYNGAS ROUTES 
Using “Already Developed”

 
Technology

 (Syngas fermentations not considered) 

Catalytic
Step 1

Catalytic
Step 2

Catalytic
Step 3 + -

Syngas to DME + 
MEOH in one step 
over Cu-Zn-Al  
combined w/ 
dehydration cat 

DME + MEOH to 
mixed C2-C4  
Olefins over ZSM-5  
MTO* catalyst

Olefins hydration 
to mixed C2-C4 
alcohols over 
H2PO4 catalyst

DME defeats 
MeOH

 

equilibrium 
limit, DME+MeOH

 

is ideal feed for 
MTO

3 steps (but all are 
highly efficient)

Syngas to MeOH

 

over std. Cu-Zn-Al
MeOH

 

+CO to 
Acetic acid, 
w/homogeneous 
Rh, Ir

 

& Ru

Acetic acid 
hydrogenation to 
ethanol

All steps highly 
efficient, only EtOH

 

produced

3 steps (possibly can 
combine #2 & #3 with 
development)

Syngas to DME + 
MEOH in one step 
over Cu-Zn-Al  
combined w/ 
dehydration cat 

DME + MEOH to 
gasoline 
hydrocarbons   
over a ZSM-5  
MTG* catalyst

none All steps 
Claimed highly 
efficient, gasoline 
produced

No Ethanol, possibly 
some olefin co-

 

product, high 
aromaticity

*MTO = Methanol to Olefins   MTG = Methanol to Gasoline, 
Catalysts are variants of modified ZSM-5



From DOE GTL Bioenergy Roadmap



2030 Target for a Large Cellulosic  
Biorefinery to Integrate BC & TC Paths

Ethanol via 
Bioconversion

Ethanol
1,035,000 gpd

Lignin-rich Residue   
1,500 ton/day

Steam &
Power Lignin 

CHP Plant

Gasification
Alcohol

Synthesis

Higher Alcohols
29,700 gpd

Syngas Ethanol
133,500 gpd

Ethanol
1,168,000 gpd
409 MM gal/yr

Lignin-rich Residue   
1,400 ton/day Yield: 117 gal/ton

Lignocellulosic 
Feedstock

10,000 ton/day

S. Phillips and J. Jechura 



Questions?
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