Purdue Hydrogen Technology Program

The Energy Center It will happen here.

J. Gore*, P. V. Ramachandran*, Y. Zheng*, R. Kramer**
A. Varma*, T. Fisher*, J. Patterson*, P. Maness***
B. E. Ting**, L. Pelter**, E. Shafirovich*, V. Diakov*

*Purdue University, West Lafayette, IN **Purdue University, Calumet, IN ***National Renewable Energy Laboratory May 18, 2006

This presentation does not contain any proprietary or confidential information

NREL/PR-560-41727 Presented at the 2006 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program

Xverv Park

Annual Merit Review in Washington, D.C., May 16-19, 2006.

#

The Energy Center It will happen here.

Overview (storage)

Timeline

- Start June 2006
- End May 2007

Budget

• \$825,000

Discevery Park

- \$660,000 (DOE)
- \$165,000 (Purdue)
- Funding for FY06: expected

Barriers

- Barriers addressed
 - Cost of ammonia borane
 - Formation of harmful compounds in combustionbased methods
 - Thermal Management
- Targets storage system

		2007	2010	2015
Specific Energy	kgH ₂ /kg (wt%)	(4.5%)	(6%)	(9%)

Partners

- **General Motors**
- General Atomics

Overview (bio-production)

The Energy Center It will happen here.

Timeline

- Start June 2006
- End May 2007

Budget

• \$415,500

Discevery Park

- \$330,000 (DOE)
- \$85,500 (Purdue)
- Funding for FY06: expected

Barriers

- Barriers addressed
- Hydrogen production levels
- Gas Separation
- System Efficiency

Targets

	2006	2010	2015
Hydrogen Production percentage	20	40	45+

Partners

- Cargill
- Grifffith Labs
- Advanced Power Technologies
- Innovene

The Energy Conter It will happen here.

Objectives (storage)

 Examine the dehydrogenation of ammonia borane at lower temperatures

Discovery Park

- New synthesis of ammonia borane to decrease the cost
- Develop a method for generating hydrogen from boron-hydrogen compounds with hydrogen yield >6 wt%, no catalyst and no harmful byproducts
- Design efficient thermal management subsystems to facilitate dehydrogenation and fastfilling processes

exverv Park

The Energy Center It will happen here.

Objectives (bio-production)

- Provide a renewable energy source to further DOE goals for development of a hydrogen energy economy
- Use biological organisms to produce hydrogen from waste using anaerobic process
- Use solar energy to preprocess the feed material
- Produce electricity in remote locations with the produced hydrogen used in either a fuel cell or reciprocating engine
- Consider ways to produce fertilizer
- Possibly separate/sequester carbon dioxide by use of organometallic nano catalysis

Approach (storage)

The Energy Center It will happen here.

 Mixtures of boron-hydrogen compounds with metal (Al or Mg) and gelled water, upon ignition, exhibit parallel reactions :

 $NaBH_4 + 2 H_2O \rightarrow NaBO_2 + 4 H_2$

Discevery Park

 $AI + 1.5 H_2O \rightarrow 0.5 AI_2O_3 + 1.5 H_2$

 $NaBH_4 + 2 H_2O \rightarrow NaBO_2 + 4 H_2$

 $Mg + H_2O \rightarrow MgO + H_2$

- The highly exothermic metal-water reaction assists hydrolysis of B-H compound, eliminating the need for catalyst.
- Water is an additional H₂ source.
- Solid byproducts are environmentally friendly materials.

Approach (storage)

The Energy Center It will happen here.

- Reviewed heat transfer issues in on-board hydrogen storage technologies, including compressed_H₂, LH₂, chemical hydrides and metal hydrides
 - Zhang et al., J. Heat Transfer, 127, pp1391 (2005).
- Studied SBH systems

cévery Park

- Heat of reaction measurement
- Kinetics measurement
- Sub-scale (1-kW_e) system design, construction and tests
- Sub-scale (1-kW_e) system modeling
- Investigating high-pressure metal hydride systems
 - Sub-scale (1/50) system design, construction and tests
 - Sub-scale (1/50) system modeling

Approach (bio-production)

The Energy Center It will happen here.

- Preliminary laboratory studies have verified the feasibility to use anaerobic digestion of organic waste for the production of hydrogen
- Determine the biological, chemical, and physical parameters that influence hydrogen production levels and develop a scheme to optimize production.
 - Individual organism

Discevery Park

- Consortium of organisms
- Develop an energy model that integrates design considerations with the research process
 - Heat flow modeling
 - Biological processes
 - Preliminary bio reactor concepts
 - Overall energy balance

The Energy Center It will happen here.

 Examined the transition-metal catalyzed dehydrogenation of ammonia borane in solution at lower temperatures

Discovery Park

- Examined the transition-metal catalyzed alcoholysis and hydrolysis of ammonia borane
- Achieved several new syntheses of ammonia borane (and amine boranes) that should decrease the cost of ammonia borane

Discovery Park

The Energy Center It will happen here. PURDUE

New Synthesis of Borane-Ammonia

Unpublished results, patent applied 10

Discevery Park

The Energy Center It will happen here. PURD

Technical Accomplishments (storage)

Comparison of Procedures for the Synthesis of BH₃NH₃

Existing Methods:

 $B(OMe)_3 \rightarrow NaBH_4 \rightarrow LiBH_4 \rightarrow BH_3NH_3$

New Method: One-pot Reaction

 $B(OMe)_3 \rightarrow BH_3NH_3$ Yield: 86%, Purity: > 95%

Unpublished results, patent applied 11

The Energy Center It will happen here. PUR

Dehydrogenation of Borane-Ammonia

Other transition metal salts used: $NiCl_2$, $CoCl_2$, etc. Similar results were obtained with all other TM salts.

Unpublished results, patent applied 12

The Energy Center It will happen here. PUR

One-pot Synthesis and Dehydrogenation of Borane-Ammonia

PdCl₂ $3 \text{LiBH}_4 + 3\text{NH}_4\text{Cl}$ → $B_3N_3H_6 + 3 \text{ LiCl} + 9 \text{ H}_2$ THF, reflux 6 h

Other transition metal salts used: NiCl₂, CoCl₂, etc. Similar results were obtained with all other TM salts. Various other ammonium salts gave similar results.

Discovery Park

The Energy Center It will happen here.

- Mixtures of NaBH₄ with water, metal (Al or Mg) and additional minor ingredients (gellant, stabilizer) were developed.
- The developed mixtures exhibit stable combustion and 7 wt% H₂ yield, with safe solid byproducts.

Technical Accomplishments, (storage) Combustion of mixture

Example: NaBH₄ : nanoAl : $H_2O=1:2:3$ (mass ratio). Sample diameter: 10 mm t=1 s t=4 s t=7 s t=10 s

• The reaction wave propagates uniformly along the sample.

• The gaseous products flow in the reverse direction through the combustion products towards the open top end of the sample.

Discevery Park

The Energy Center It will happen here. Technical Accomplishments (storage)

Hydrogen generation

- Evolved gas: H₂ (>99%).
- Efficiency of H₂ generation:

The maximum observed H_2 yield is ~7 wt%.

The Energy Center It will happen here.

Technical Accomplishments (storage)

Heat of reaction (SBH) •

- Widely cited: 75 kJ/molH₂
- This study: 52.5 kJ/molH₂ ____

Kinetics (SBH) commercially available 3% Ru on 2mm carbon extrude

$$r_{SBH} = -A \exp\left(\frac{-E_a}{R_u T}\right) \frac{KC_{SBH}}{1 + KC_{SBH}}$$

Zhang et al., *Int. J.Hydrogen Energy*, in press, (2006)

The Energy Center It will happen here.

 1-kW_e SBH reactor measurements

Discevery Park

1-kW_e SBH reactor modeling

 $\rho u C_{p,eff} \frac{dT}{dx} = k_{eff} \frac{d^2 T}{dx^2} - h_r^o \dot{\omega}_f M W_f - h_{fg} \dot{m}_v$

PURDUE

The Energy Center It will happen here.

High-pressure metal hydride sub-scale system modeling

$$\rho C_p \frac{\partial T}{\partial t} = -\frac{[H]_m}{2} \Delta H_r \frac{\partial F}{\partial t} + \lambda_{eff} \nabla^2 T \qquad F = \frac{x}{x_m} \qquad x = \frac{[H]}{[M]}$$

$$\frac{\partial F}{\partial t} = k(1 - F)$$

Discevery Park

$$k = C_a \exp\left(-\frac{E_a}{R_u T}\right) \ln \frac{P}{P_{eq}}$$

$$P_{eq} = P_o \exp\left[\frac{\Delta H_r}{R_u} \left(\frac{1}{T} - \frac{1}{T_o}\right)\right]$$

The Energy Center It will happen here.

• High pressure metal hydride sub-scale system modeling (3D)

Discevery Park

$$P_{charging} = 400 \text{ bar},$$

 $T_{max} = 82 \circ C, t_{ss} = 6 \text{ min},$
 $\kappa_{eff} = 1 \text{ W/mK}$

The Energy Center It will happen here.

Technical Accomplishments (bio-production)

Preliminary laboratory studies have verified the feasibility to use anaerobic digestion of organic waste for the production of hydrogen

cevery Park

Vial #	Treatmen t	Initial pH	Final pH	H ₂ (µmol)	Digestion fraction
25	Inoc	6.8	6.17	933.63	.529
26	Inoc	6.8	6.17	1989.67	.512
27	Inoc	6.8	6.15	0	.479
28	Inoc	6.8	6.07	0	.444
37	Inoc, Boil	6.8	6.18	7323.00	.624
38	Inoc, Boil	6.8	6.19	5435.99	.466
40	Inoc, Boil	6.8	6.19	9144.62	.469
43	Inoc, Boil	6.8	6.16	6706.92	.372
21	Uninoc	6.8	6.5	0	.250
41	Uninoc	5.8	5.74	0	.245

Note: Inoc = inoculated with anaerobic waste water treatment effluent

Boil = boiled for 10 minutes before start Uninoc = not inoculated

The Energy Center It will happen here.

PUR

Technical Accomplishments (bio-production)

An initial computer • simulation model of the proposed system has been developed

Discovery Park

Model will be used • to consider possible design and process alternatives as well as means to optimize the process

Future Work (storage)

The Energy Center It will happen here.

 New formulation of ammonia-borane (AB) doped with transition metal salts

scherv Park

- Thermolysis of AB in the presence of water vapor
- Thermal management for AB systems
 - Thermo-chemical property measurements
 - Hydrogen generator and AB regenerator modeling
 - Sub-scale hydrogen generator and AB regenerator tests

Future Work (storage)

scivery Park

The Energy Center It will happen here.

- Insight into combustion mechanisms of B-H compounds mixed with metals and water.
- Optimization of mixture compositions and process conditions
- Focus on ammonia borane, with the goal to further increase hydrogen yield
- Design and construction of power system demonstration unit

The Energy Center It will happen here.

Future Work (bio-production)

6/1/2006

6/30/2007

V

ID	Task Name	Start	Finish	Duration	Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun
1	Develop Initial Plan Details	6/1/2006	6/15/2006	11d	
2	Conduct Literature Search	6/8/2006	7/21/2006	32d	
3	Establish Interface With Industry Contacts	6/30/2006	9/29/2006	66d	
4	Construct Test Device	7/3/2006	11/1/2006	88d	
5	Conduct Evaluation of Innoculum and Conditions to Maximize H Production	6/15/2006	6/1/2007	252d	
6	Conduct Energy Evaluation	11/1/2006	6/1/2007	153d	
7	Prepare Final Report	4/17/2007	6/29/2007	54d	

Summary (storage)

The Energy Center It will happen here.

- All on-board hydrogen storage technologies involves heat transfer challenges
- Unknown thermo-physical properties need to be measured or modeled
- Designs of reactors and other components need to be tested and modeled at appropriate sub-scales
- Mixtures of boron-hydrogen compounds with metal and water can be used for hydrogen generation by combustion
 - high specific energy

civery Park

- no catalyst for H_2 generation
- safe reaction byproducts, which can be recycled

Summary (bio-production)

Verv Park

The Energy Center It will happen here.

- Anaerobic production of hydrogen holds promise as a viable source of energy
- Waste streams provide a low cost source of feed for the energy production process
- Initially this approach holds promise to provide an environmentally friendly means to produce electricity in remote or third world applications
- As the technology is developed there is the opportunity to scale up the size of the energy production

Publications and Presentations

The Energy Center It will happen here. PURDUE

Patents

Discxverv Park

Shafirovich, E., Diakov, V., and Varma, A., "System and Method for Generating Hydrogen," U.S. Patent 1. application 60/663,238 (March 18, 2005).

Archival Journal Articles

- Shafirovich, E., Diakov, V., and Varma, A., "Combustion of Novel Chemical Mixtures for Hydrogen Generation," *Combustion and Flame*, Vol. 144, 2006, pp. 415-418. 1.
- Shafirovich, E., Diakov, V., and Varma, A., "Combustion-Assisted Hydrolysis of Sodium Borohydride for 2 Hydrogen Generation," International Journal of Hydrogen Energy, in review.
- 3. Zhang, J., Fisher, T. S., Ramachandran, P. V., Gore, J. P., and Mudawar, I., "A Review of Heat Transfer Issues in Hydrogen Storage Technologies," Journal of Heat Transfer, Vol. 127, 2005, pp. 1391-1399
- 4. Zhang, J., Fisher, T. S., Gore, J. P., Hazra, D., and Ramachandran, P. V., "A Review of Heat Transfer Issues in Hydrogen Storage Technologies," International Journal of Hydrogen Energy, 2006, in press.

Conference Presentations

- "Hydrogen Generation via Combustion of Metal Borohydride/Aluminum/Water Mixtures," Preprints of 1. Symposia - American Chemical Society, Division of Fuel Chemistry, Vol. 50(2), 2005, pp. 450-451. "Novel Chemical Mixtures for Hydrogen Generation by Combustion," 2005 AIChE Annual Meeting,
- 2. October 30-November 4, 2005, Cincinnati, OH.
- "Novel Chemical Mixtures for Hydrogen Generation by Combustion," 44th AIAA Aerospace Sciences Meeting and Exhibit, January 9-12, 2006, Reno, NV, AIAA Paper 2006-1445. 3.
- "Combustion-Based Methods to Generate Hydrogen for Fuel Cells," NSF Workshop on Research 4. Frontiers for Combustion in the Hydrogen Economy, March 10, 2006, NSF Headquarters, Arlington, VA.
- Zhang, J., Zheng, Y. Fisher, T. S., and Gore, J. P., "Modeling of Packed-bed Reactor in a Sodium 5. Borohydride-based Hydrogen Storage System," SAE paper 06P-612, 2006.