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Non-linear Electron Transport Kinetics in Nanocrystalline TiO,-Based Solar Cells

J. van de Lagemaat and A.J. Frank
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ABSTRACT

An analytical model describing electron transport in
dye-sensitized nanocrystalline TiO, solar cells is shown to
account for the non-linear dependence of the electron
transport rate on the electron concentration. Equations
relating the influence of an exponential distribution of
surface states to electron transport are derived and verified
by intensity-modulated  photocurrent  spectroscopy
measurements. A slope of 69 meV is inferred for the

surface-state distribution curve.

1. Introduction

Injected electrons from optically excited dye can
either traverse the TiO, particle network and be collected at
the transparent conducting glass back-contact or can
recombine with redox species (e.g., I3") or dye molecules at
the particle/electrolyte interface. Because the collection of
electrons competes with recombination, slow electron
transport (with respect to recombination) leads to a low
charge-collection efficiency, and hence, to a low conversion
efficiency [1,2].

Recently, we introduced a statistical model relating
the time constants for recombination and charge collection
to the charge-collection efficiency (77..) and the incident
photocurrent conversion efficiency (IPCE) over a wide
range Electrical

of applied biases [2]. impedance

spectroscopy  and  intensity-modulated  photocurrent
spectroscopy (IMPS) were used to measure the time
constants for the recombination and collection of

photoinjected electrons. As the applied bias is varied from

short-circuit to open-circuit conditions at one-sun
illumination, recombination becomes faster, the collection
of electrons becomes slower, and the IPCE strongly
decreases. The drop-off of IPCE was shown to correlate
with the decline of the charge-collection efficiency as
calculated from the model. Although the strength of the
statistical model is its predictive value, it does not provide
detailed information on the mechanism of charge transport.
In this paper, we introduce an analytical model [3] to
understand quantitatively the mechanism of charge
transport. It is assumed that electrons undergo multiple
trapping-detrapping events, involving an exponential
distribution of surface states, during their transit through the
film. The predictions of this model are compared with

experimental results obtained by IMPS.

2. Results and discussion
The conduction-band electron concentration profile

nep(x) can be calculated by solving the continuity equation:

dn, (x)
dt

1 dJ (x)

= oan,J(x)+= U, (x)+ U,(x) (D
q

The concentration of electrons in surface states,
however, depends on the energy distribution of traps. A

single exponential describes the energy distribution of the
E— Ero

density of surface states (N (E)=Nge ™ ) in

nanocrystalline TiO, films [4]. From this equation, one can
calculate the concentration profile for trapped electrons

ny(x):
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Because the density of trapped electrons is much
larger than that of free electrons [1], the electron
concentration n(x) = ng(x) + n(x) in the film is essentially
equal to n(x) (Eq 2). Thus, ny(x) is related to n(x) by the
expression n (x)e< n(x)"<'*". Validation of the power-law
dependence of ny on n has been obtained by IMPS
measurements [1].

The total number of electrons in the film Q can be

obtained by integrating Eq. 2 with respect to x:

0= mNssoncb(O)kT(nm (0)] .“: axe

Q is, therefore, related to the incident light intensity by the

I R E)

relation Qo< (0)"'" . Alternatively, because the short-

circuit current density J;. depends linearly on the light

intensity, one can obtain the expression:
m

Sy o< Q1 4)
Figure 1 shows the relationship between J;. and Q,
IMPS, for a dye-sensitized

measured by typical

nanocrystalline TiO, solar cell.
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Fig.1 The relation between the short-circuit

photocurrent density and electronic charge for a typical dye-

sensitized cell. The dashed line is a fit to Equation (4).

Equation (4) describes well the experimental data in

Figure 1. From the fit of the data, the slope of the surface-

state distribution curve is obtained as m, = 69 meV, which is
in good agreement with values determined from time-of-
flight [5] and electrical impedance spectroscopy [2] in the

light intensity range (<1-sun) used in the present study.

3. Conclusions

Expressions that relate an exponential distribution of
surface states to electron transport are derived and verified
by intensity-modulated  photocurrent  spectroscopy
measurements. A slope of 69 meV is inferred for the
surface-state distribution curve.
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