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Abstract— In previous work, increased complexity of robot 
behaviors and the accompanying interface design often led to 
operator confusion and/or a fight for control between the robot 
and operator. We believe the reason for the conflict was that 
the design of the interface and interactions presented too much 
of the underlying robot design model to the operator. Since the 
design model includes the implementation of sensors, behav-
iors, and sophisticated algorithms, the result was that the op-
erator’s cognitive efforts were focused on understanding the 
design of the robot system as opposed to focusing on the task at 
hand. This paper illustrates how this very problem emerged at 
the INL and how the implementation of new metaphors for 
interaction has allowed us to hide the design model from the 
user and allow the user to focus more on the task at hand. 
Supporting the user’s focus on the task rather than on the de-
sign model allows increased use of the system and significant 
performance improvement in a search task with novice users. 

I. INTRODUCTION

Six years ago, researchers at the Idaho National Labora-
tory (INL) began developing a suite of behaviors that was 
intended to provide dynamic vehicle autonomy for robots in 
order to support human operators. A series of early experi-
ments showed the potential for these behaviors to improve 
performance by reducing human error and increasing various 
measures of task efficiency [2]. In addition to these benefits, 
these experiments also illustrated the opportunity for op-
erator confusion regarding robot behavior and robot initia-
tive. Early experiments showed that if operators were not 
able to predict robot behavior, a fight for control could 
emerge where the human tried to prevent or counteract robot 
initiative, which usually resulted in a significant decrease in 
performance.  

Participants in the experiments could often be divided into 
two groups. One group demonstrated that they understood 
and trusted the robot behaviors and robot initiative which 
resulted in significant performance improvements over a 
baseline system. The other group of participants demon-
strated that they were confused by the robot initiative and 
actually suffered a performance decrease when compared 
with their performance on a baseline system. This experi-
ment and subsequent ones like it illustrate that operator trust 
is a major factor in operational success and that this trust is 
significantly impacted when the user makes incorrect as-
sumptions about robot behaviors and initiative.  

A user’s assumptions about a system, as described by Nor-
man [9], are based on the user’s previous experiences and 
what the user perceives they can do with the system. Nor-
man’s description very closely coincides with Endsley’s 

three levels of situation awareness: namely, perception of
what the system offers, comprehension of how the system 
can be used, and projection of how the interaction will affect 
the system [4]. Taking Norman and Endsley’s descriptions in 
conjunction would suggest that fundamental elements of 
situation awareness are related to the accuracy of the user’s 
assumptions about how the system works. Throughout this 
discussion, we refer to the operator’s mental model as the 
operator’s assumptions and expectations of how commands 
are issued, acted upon, and visualized by the system. 

More specific to the mobile robot domain, Murphy has 
said that “More sophisticated mobility and navigation algo-
rithms without an accompanying improvement in situation 
awareness support can reduce the time spent on a mission by 
no more than 25 percent [10]. Another way to view this state-
ment in light of the current discussion is that even if robots 
are improved or made more intelligent we should not expect 
a significant increase in overall task performance unless 
there is also a correlating improvement in the user’s mental 
model of how to use the robot. 

The problem is that as the robot is endowed with more 
sophisticated behaviors, algorithms, and sensors, the inher-
ent complexity of the human-robot system increases which in 
turn increases the difficulty for the user to develop a correct 
mental model of the robot system. For example, Dennett 
points out that when interacting with intelligent systems the 
user needs to have a better understanding about the inten-
tional stance of the system [3]. With intelligent robots, this 
means that the operator must understand when the robot will 
perform actions of its own initiative, what those actions will 
be, and how those actions will affect the system, task, and 
environment. Even in systems that increase functionality and 
options without necessarily increasing “intelligence”, the 
operator is still required to understand how the various 
modes and settings of the system will affect the interaction.  

The challenge when developing human-robot systems is to 
increase the capabilities, behaviors, and initiative of the ro-
bot while supporting the development of a sufficient mental 
model [6, 9]. The development of sufficient mental models is 
facilitated when the robot design model is hidden from the 
operator and replaced with metaphors that the user readily 
understands.  These metaphors must support the complexity 
of the system design but only reveal necessary choices and 
information to the operator. This paper describes the solu-
tions that have been developed by the INL in collaboration 
with Brigham Young University (BYU) to allow the increase 
in design model complexity for more capable robots while 
supporting the operator’s development of correct as-
sumptions and expectations for the robot system.  
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II. INCREMENTAL COMPLEXITY

To begin, it is beneficial to illustrate how the incremental 
development of mobile robots can lead to more complex 
interfaces and interactions, thereby minimizing the advan-
tages of sophisticated systems by complicating the user’s 
interaction with the system. In this section, we review the 
iterative development of the INL robot intelligence kernel 
[2], which we imagine is similar to many robot development 
cycles. The discussion illustrates changes made to the robot 
and how those changes were reflected on the interface. As 
the robot and interface changed so did the operator’s cogni-
tive workload and mental model of the system.  

The first phase of development allowed the movement of a 
robot in response to joystick commands. The interface to the 
robot consisted of a joystick whose two main axes mapped to 
the forward and turn velocities on the robot. Information 
from the robot was shared with the operator from a video 
camera attached to the front of the robot. The operator’s 
mental model was that the robot would move in the direction 
that the joystick was pushed. Video provided some infor-
mation about how the robot moved and where the robot was 
within the environment however, the operator was required 
to remember previously visited areas of the environment.  

Next, a pan-tilt unit was added to the camera on the robot. 
The interface was augmented to allow the operator to view 
and control the pan and tilt angles of the camera. The pan-tilt 
angles of the camera were illustrated using iconic represen-
tations and the control of the pan-tilt camera was performed 
by buttons on the interface, a second joystick, or a more 
sophisticated joystick that could support both robot naviga-
tion and camera movement. The operator’s mental model 
now demanded support for how the camera’s movements 
will affect the representation of the interface particularly 
when the robot is moved while the camera is off-center. The 
cognitive workload added to the user includes remembering 
which commands control which aspects of the robot and 
camera and remembering the camera’s orientation relative to 
the robot.   

To support the operator in more difficult tasks, the robot 
was further equipped with a variety of sensors that were de-
signed to help the operator understand the robot’s situation 
within the environment. Some of the sensors were to provide 
information about the robot itself (e.g. heading; attitude; 
pitch; roll; forward velocity; turn velocity; battery power, 
communications activity, GPS, proximity sensors, IR, and 
overall health of the robot) and some were to provide in-
formation about the structure of the environment (e.g. laser 
range finder, sonar). Upon adding these sensors to the robot, 
the interface was also augmented to show the operator the 
measurements and status of all the sensors. The operator’s 
cognitive workload increased as the operator was required to 
interpret the meaning of the observed information. The op-
erator’s mental model also required an understanding of how 
the information could be used to effectively control the ro-
bot.  

In an effort to better support the performance of naviga-
tion tasks, the algorithms and robot capabilities were in-
creased to support behavioral intelligence. To utilize the 
behavioral modes of the robot, the interface provided a set of 
buttons that the user could select which would change either  

the level of initiative of the robot or the manner in which the 
robot was tasked by the operator. Some of the modes in-
cluded: teleoperation; safe; shared; autonomous; pursuit; 
escape; track; search region; patrol region; waypoints; and 
go-to. With the different behaviors, the operator’s mental 
model demanded an understanding of how each behavior or 
operational mode affected the movement of the robot, spe-
cifically, the idiosyncrasies between how the different modes 
respond to commands and the environment. 

The corresponding interface that was developed for this 
level of robot functionality included video, map, camera, 
vehicle status, sensor status, and obstruction modules. The 
interface is shown in Figure 1. 

As developers of the robot system design it seemed bene-
ficial to illustrate the new robot capabilities directly to the 
user, believing that flexibility was the key to supporting 
disparate users and enabling a variety of missions. Fur-
thermore, from the developer’s perspective, this type of in-
terface is helpful to verify the functionality of the low-level 
robot systems and to debug and solve technical difficulties 
with the system. Why should the development be done any 
other way?  

The problem was that we were developing the system 
from the designer’s perspective, not from the user’s per-
spective. In fact, despite the capabilities of the robot, early 
criticism that we received from colleagues, domain experts, 
practitioners, and novice users was that the interface was 
simply too complex. There were too many options, too many 
disparate perspectives and too many separate perceptual 
streams. Even after describing the system to intelligent, 
competent individuals, they would often settle on a single 
mode of interaction that they understood well, regardless of 
the actual efficiency of the interaction for the specified task. 

While some may say that the interface could still be man-
ageable with training, we realized that in order to meet our 
research goals we required even more system complexity. 
The interface needed to be expanded to support multiple 
robots, which could require a replication of the complete 
display for each robot. Moreover, as we expand the domains 
and tasks, we would require the interface to support com-
munication with and control of multiple UAVs and unat-
tended ground sensors. In terms of information sets, the op-
erator may also require information relating to occupancy 
grids, chemical and radiological plumes, explosive hazards 

Figure 1. The original INL interface. 



detection, 3D range data, terrain data, building schematics, 
satellite imagery, real-time aerial imagery, and representa-
tions of movable mechanical arms. Clearly, even with train-
ing, the system would overwhelm users if we were to simply 
implement the new technology on the robot and naively 
show all the available information to the operator. 

The critical question that we have worked to solve is how 
to support an ever increasing number of perceptions, actions, 
and behaviors while hiding from the operator the details of 
the design of the system that are not necessary for a particular 
task. Such a solution should minimize the cognitive work-
load of the operator and support the operator’s development 
of an appropriate mental model of the robot capabilities by 
reducing the complexity of the interface and the hu-
man-robot interaction. In order to hide the robot design 
complexity from the user, we focus on three areas: using data 
abstractions on the robot, fusing data sets with the interface, 
and providing seamless autonomy interactions. 

III. USING DATA ABSTRACTIONS

Most mobile robots have a variety of sensors that can be 
used to relay information about the status of the robot or 
measurements about the environment. The user should not 
have to sift through this raw data or expend significant cog-
nitive workload to comprehend or correlate the information. 
The first step to facilitating efficient human-robot interaction 
is to provide an efficient method for the robot itself to com-
bine and filter the raw sensor data into basic meaningful ab-
stractions before the information is ever shared with the op-
erator. The combination and filtering that takes place can 
happen at multiple levels. For example, information about 
the status of the robot could be combined into a numerical 
value representing the health of the robot. Furthermore, in-
stead of conveying raw range data from various sensors, a 
map could be built and shared with the operator. The system 
used at the INL provides layers of abstraction that underlie 
all robot behavior and communication with the operator. The 
flow of information as it is received by sensors, abstracted, 
and sent to the operator is illustrated in Figure 2. 

To give an idea of the complexity that is being abstracted 
by the INL robot system before any information is trans-
mitted to the user, consider the list of previously mentioned 
sensors with inputs available to the robot. Information used 
to determine the robot pose could come from GPS, SLAM 
algorithms, inertial sensors, and wheel encoders. Range data 
(sonar, laser, IR) could be used to create an ego-centric robot 
abstraction that describes the proximity of obstacles around 
the robot from the robot’s perspective and can further be 
used to build an exocentric map and facilitate localization of 
the robot within the map. In these examples, it is much more 
beneficial to have the robot perform the data combination 
and correlation than the operator. 

IV. FUSING DATA SETS WITH THE INTERFACE

Even though much of the raw sensor information is ab-
stracted on the robot, there are still relationships that exist 
between the different sets of data that could be exploited with 
the user interface. Using the interface to combine different 

sets of information into a common reference frame is another  
way to reduce the operator’s mental model of the system.  
In collaboration with BYU, a pseudo-3D interface was de-
veloped that visually rendered video, map data and camera 
orientation into a seamless, scalable representation that could 
be zoomed in or out to support varying levels of operator 
involvement [11]. As shown in Figure 3, a traditional robot 
interface might have at least four different frames of refer-
ence that the operator must cognitively correlate in order to 
comprehend the relationships between the different sets of 
information. In contrast, the 3D interface (Figure 4) has a 
single reference frame from which all the information is 
viewed by the operator. Instead of illustrating to the operator 
the details of the system (that there are multiple sets of in-
formation that may or may not be related), the integration of 
video, camera pose, robot pose, and map tell the user how the 
information is related. The 3D interface has been shown to 
significantly increase the operator’s ability to navigate the 
robot through planar maze-like environments [7] while also 
supporting the use of a pan-tilt-zoom camera [8].  

In addition to providing a single reference frame for the  

Figure 2. Information flow through the INL robot 
intelligence kernel. 

Figure 3. Frames of reference with a 2D interface.

Figure 4. Frames of reference with a 3D interface.



operator to view the information, we also believe that the 3D 
interface is successful in navigation tasks because it supports 
the development of an accurate mental model of the interac-
tion better than the traditional 2D interface. In particular, the 
3D interface supports what we term the “correlation of action 
and response” which is similar to Endsley’s 3rd

level of situation awareness (projection) [4]. In order for a 
novice user to develop an appropriate mental model about 
how the robot responds to commands, it is beneficial for the 
system to reinforce the user’s assumptions by behaving the 
same each time the operator issues the same command.  

What actually happens with the robot is likely to be the 
same irrespective of how the information is displayed on the 
interface, however, the manner in which the interface illus-
trates the movement of the robot can affect the operator’s 
trust and confidence with the system. For example, with the 
3D interface, when the user moves the robot forward it 
shows the robot moving “into” the display because the user’s 
perspective is tethered to the robot. In cases where the video 
is off-center, the robot still moves “into” the display (not 
“into” the video). In contrast, consider the 2D interface. 
When the video is in front of the robot, and the robot is 
moved forward, the robot appears to move “into” the video. 
However, if the video is to the side of the robot, movement 
forward appears to “slide” the video. In both cases the same 
action is performed however, the interface changes differ-
ently.  

Maps on traditional interfaces present similar challenges. 
When the robot is facing up with respect to the map, then 
forward motion moves the robot icon “up” with respect to the 
display. However, if the robot is facing any other direction, 
the illustration of the robot moves in the direction the robot is 
facing, not the direction the joystick was moved. This means 
that the operator is required to remember the details of the 
system, including the camera pose, robot pose, and map 
orientation in order to understand why the interface is not 
changing consistently each time. Trust in the system can 
erode when some of this information is forgotten and the 
interface appears to behave unexpectedly.  

Although the 3D interface was beneficial for teleoperation 
tasks, when the interface and robot system were tested by 
search and rescue personnel in a search task, the movement 
of the video around the robot icon on the interface was hard 
for them to use and they requested that the video be kept 
stationary [12]. The recommendation was taken and a hybrid 
2D-3D interface was developed (See Figure 5). To maintain 
as much support for the operator’s understanding of the ori-
entation of the camera with respect to the robot, we continue 
to render the field of view of the camera in the 3D portion of 
the display, but the video is placed in a static 2D perspective 
above the 3D map.  

Simplifying the interface by correlating and fusing related 
information is a step in the right direction, however sensor 
fusion is not sufficient to actually change the nature of the 
interaction itself or the fundamental inputs and outputs be-
tween the human and the robotic system. To reduce the in-
teraction complexity, we must be able to not only abstract the 
robot physical and perceptual capabilities, but also the ele-
mental behaviors and behavior combinations necessary to  
accomplish a sophisticated operation.  

V. PROVIDING SEAMLESS AUTONOMY

Earlier we mentioned that adding intelligent behaviors to 
the robot was challenging because on the one hand it seemed 
to improve performance on some tasks [5], but on the other 
hand it also made the system difficult to use because the 
operator had the responsibility of choosing the appropriate 
level of autonomy for the given situation. The problem with 
leaving the operator with the responsibility to change 
autonomy levels is that the operator may not recognize the 
need to switch modes of autonomy or may not understand 
how the autonomy level will relate to the task. In general, 
requiring the operator to have an understanding of the ap-
propriate context for each autonomy mode is cognitively 
challenging and prone to error [1]. Even when the robot is 
given the ability to automatically switch between the discrete 
autonomy modes based on its own assessment of the situa-
tion, the operator often feels frustrated and confused about 
what the robot is doing and why it usurped control, which 
leads to confusion and, often, a fight for control between the 
operator and the robot. This fight for control generally 
emanates from poor communications between the robot and 
the human as to why the decision was made and how the 
decision is being actuated.  

Our solution to the fight for control is to support seamless 
levels of interaction based on the operator indirectly con-
trolling the intent of the robot as opposed to directly con-
trolling the movement of the robot. The indirect control is 
performed by allowing the operator to define the desired 
intent from a human-centered reference frame. Instead of 
selecting between “discrete levels of autonomy” the operator 
uses locally defined intentions to exert more direct control 
over the robot while more globally defined intentions aug-
ment robot initiative and reduce the operator’s navigational 
requirements. The advantage of indirect control through 
specifying intent is that the “fight-for-control” problem with 
direct control is eliminated because issues with com-
munications latency and bandwidth requirements are miti-
gated. Furthermore, the interaction methodologies do not 
change for higher or lower levels of robot-initiative. 

The metaphors we used are to allow the user to point to the 
desired area of interest and allow the operator to tell the robot 
to “go here” or “look here”. From the interface, this meta-

Figure 5. Illustration of the "look here" and "go 
here" metaphors. 



phor is actuated by using a mouse and placing either a target 
icon (for “go here”) or a look-at icon (for “look here”) at the 
place of interest. Figure 5 illustrates the interface as the robot 
starts a complex task of: “look-at this place while moving to 
that place”. What these metaphors really do for the user is to 
hide the “how” of the underlying system and replace it with a 
powerful and easily understood metaphor that supports the 
operator’s development of a correct mental model of the 
interaction.

VI. EVALUATING THE NEW METAPHORS

To determine whether or not the new metaphors actually 
improve performance on a complex task a user-study was 
performed using visitors to the 2006 INL Science Expo. 

A. Experiment Design 

The purpose of the experiment was to test different modes 
of human-robot interaction in a search and identify task. 
Participants used an ATRV-mini robot equipped with a 
pan-tilt camera, laser range finder, and the INL robot intel-
ligence kernel to search an environment for nine hidden 
stuffed animals. The environment was a simple maze as 
shown in Figure 6. The animals were hidden at the places 
indicated by circles and the robot start location is represented 
by the rectangle on the map. The starting orientation of the 
robot alternated between participants, so every other par-
ticipant explored the map differently than the previous par-
ticipant. The animals were hidden on the ground such that 
they generally could not be stumbled upon by simply driving 
through the maze; rather the camera or the robot needed to be 
rotated from side to side for the operator to see the animals. It 
was not necessary to use the tilt of the camera to see the 
animals. 

In accordance with a between-subjects experimental de-
sign, each participant was given one of three conditions for 
the experiment. In the first condition (which we term the 
“joystick” condition), operators were asked to drive the robot 
and operate the camera with a joystick. By moving the joy-
stick the operator controlled the navigation of the robot. The 
pan-tilt camera was controlled by moving the hat on top of 
the joystick. This condition amounted to controlling the 
camera and the robot through traditional teleoperation. 

In the second condition (the “icon+video” condition), 
operators used the mouse to drag the target icon to specify 
navigational goals. To control the movement of the camera, 
operators used the mouse to drag and drop the video image at 
the top center of the screen. The joystick was not available to 
participants in this condition. In this condition the camera 
controls were teleoperated, like the joystick condition, 
however the navigation of the robot was performed with the 
new “move here” metaphor. 

In the third condition (the “icons” condition), operators 
controlled the movement of the robot by using the computer 
mouse and dragging the target icon to the desired robot des-
tination. The pan of the camera was controlled similarly by 
dragging the look-at icon. In this condition the tilt of the 
camera was disabled. The joystick was not used by partici-
pants in this condition. In this condition both the camera and 
navigation of the robot utilized the new “look here” and 
“move here” metaphors. 

In each of the conditions, the participants had the same 
perspective of the robot’s environment, the same interface, 
and the same software and algorithms running on the robot. 
The only difference between conditions was how the par-
ticipants interacted with the interface according to the 
aforementioned conditions. Participants were given an a 
priori map of the environment because we did not want to 
test how well operators could discover the structure of the 
environment; rather, we wanted to test how well they could 
find the hidden items. Each participant was told how to 
control the robot with the condition they would be using and 
that they had two minutes to find as many of the stuffed 
animals as possible. Participants did not control the robot 
prior to the experiment.  

B. Analysis Methods 

Analysis in this experiment consisted primarily of task per-
formance. Specifically, how many items each participant 
found as indicated by their verbal acknowledgment that they 
observed the item. Secondarily, we measured average ve-
locity, distance traveled, and how much the camera was used 
as a means to understand how the operator utilized the sys-
tem to achieve their performance. The significance of results 
are based on an unpaired t-test with a sample size of n = 51 
unless otherwise specified. 

C. Results 

There were 153 students that participated in the 
user-study. Most of the participants were between the 5th 
and 7th grades.  Results indicate that operators with the 
“icons” condition found, on average, 27% more items than 
operators with the “joystick” condition (Xicons =5.12, Xjoystick
=4.02, p< 0.01) and 20% more items than operators with the 
“icon+video” condition (Xicons =5.12, xicon+video = 4.24, p< 
0.05). There was not a significant difference in the number of 
items found between the joystick and icon+video conditions 
(p =0.622). Figure 6 shows the comparison between the 
numbers of items found with the different conditions. 

There was not a significant difference between the aver-
age velocities or the distance traveled with any of the three 
conditions (p> 0.20). However, there was a significant dif-
ference in how much the camera was moved. Specifically, 
the camera was moved 308% more with the icons condition 

Figure 6. The average number of items found for the 
experiment (95% confidence). 



than with the joystick condition (Xicons = 11.38 degrees/s, 
Xicon+video =2.79 degrees/s, p< 0.001), and 112% more with 
the icons condition than the video+icon condition (Xicons = 
11.38 degrees/s, Xicon+video =5.35 degrees/s, p< 0.001). Fur-
thermore, the camera was used 92% more with the 
video+icons condition than the joystick condition (Xicon+video

=5.35 degrees/s, Xjoystick =2.79 degrees/s, p< 0.005). Figure 7 
shows the comparisons of the camera use with the different 
conditions. 

D. Discussion 

The joystick condition for this experiment required the 
most complex mental model to operate the robot.  The user 
had to remember how the robot and camera responded to 
individual joystick commands which lead to the poorest 
performance and the least utilization of the camera.  When 
the design of the movement of the robot was abstracted and 
hidden from the user via the “move here” metaphor, the user 
was able to spend nearly double the time operating the 
camera as shown by the icon+video results.  Although this 
approach improved use of the camera, it did not significantly 
improve the task performance. In the icons condition how-
ever, the design of the movement of the camera was also 
abstracted which allowed for significant improvements in the 
use of the camera over the other two conditions which also 
supported improved task performance. By abstracting and 
simplifying the camera and robot controls, the operator was 
better able to utilize the system for the search task.  

This experiment was performed with novice participants 
and it should not be assumed that the observed results will 
immediately transfer to more domain-specific applications.  
Future work will use domain specific end-users to explore 
how similar metaphors could be applied to domains such as 
urban search and rescue or hazardous material detection.

VII. CONCLUSIONS

When designing human-robot systems, it is important to 
support the user’s development of a sufficient mental model 
of how the robot system should be used. When too much 
information about the underlying robot design is presented to 
the operator it can be overwhelming and lead to frustration 
when the operator does not remember all the details and 
idiosyncrasies of the system design. We have found that a 
better approach, in terms of task performance, is to hide the 

design complexity and instead allow the user to focus on the 
requirements of the task by providing more powerful meta-
phors for the interaction. Such a solution will help engender 
user’s trust and confidence in robots as the interaction re-
quirements are simplified and come more in line with the 
goals and demands of the user and less prominently associ-
ated with the goals of the system developer.  

We have shown that simplifying the interaction by using 
new metaphors can lead to significant improvement in per-
formance in a search task as compared to more traditional 
interactions. The results achieved to date illustrate viable 
solutions for single robots and fairly simple tasks. Future 
work will focus on supporting more complex single robot 
tasks such as mobile manipulation and will address the op-
erator’s ability to command, control, and visualize informa-
tion from multiple unmanned ground and air vehicles. 
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