U.S. Department of Energy

Lawrence Livermore National Laboratory

UCRL-TR-228089

POINT 2007: A Temperature Dependent ENDF/B-VII.0 Data Cross Section Library

by Dermott E. Cullen University of California Lawrence Livermore National Laboratory P.O. Box 808/L-159 Livermore, CA 94550

> Tel.: 925-423-7359 E. Mail: <u>cullen1@llnl.gov</u>

> > February 14, 2007

Approved for public release; further dissemination unlimited.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of california, and shall not be used for advertising or product endorsement purposes.

Work performed under the auspices of the U. S. Department of Energy by the University of California Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information P.O. Box 62, Oak Ridge, TN 37831 Prices available from (423) 576-8401 <u>http://apollo.osti.gov/bridge/</u>

Available to the public from the National Technical Information Service U.S. Department of Commerce 5285 Port Royal Rd., Springfield, VA 22161 http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory Technical Information Department's Digital Library <u>http://www.llnl.gov/tid/Library.html</u>

POINT 2007: A Temperature Dependent ENDF/B-VII.0 Cross Section Library

by

Dermott E. Cullen University of California Lawrence Livermore National Laboratory P.O. Box 808/L-159 Livermore, CA 94550

> Tel.: 925-423-7359 E. Mail: <u>cullen1@llnl.gov</u>

> > February 14, 2007

Overview

This report is one in the series of "POINT" reports that over the years have presented temperature dependent cross sections for the then current version of ENDF/B. In each case I have used publicly available nuclear data (the current ENDF/B data, available online at the National Nuclear Data Center, Brookhaven National Laboratory <u>http://www.nndc.bnl.gov/</u>) and publicly available computer codes (the current PREPRO codes, available on-line at the Nuclear Data Section, IAEA, Vienna, Austria <u>http://www-nds.iaea.or.at/ndspub/endf/prepro/</u>). I have used these in combination to produce the temperature dependent cross sections used in applications and presented in this report.

The preceding **POINT 2004** report [R1] presented results for the now frozen last version of ENDF/B-VI, Release 8. The current **POINT 2007** report is based on data from recently released ENDF/B-VII.0, which is the first release of ENDF/B-VII.

POINT 2007

The preceding version of ENDF/B, namely ENDFV/B-VI, Release 8, contained 328 evaluations [R2]; of the evaluations 13 elemental evaluations are not included in ENDF/B-VII.0 (these have been replaced by isotopic evaluations).

ENDF/B-VII.0 includes 315 evaluations from ENDF/B-VI and 78 evaluations for new isotopes, for a total of 393 evaluations in ENDF/B-VII.0. The contents of ENDF/B-VII.0 are defined in the Appendix A. The appendix includes a variety of what I hope are useful summaries of the VII.0, including,

- 1) Contents of ENDF/B-VII.0 (78 new + 315 old = 393 total evaluations)
- 2) Elemental Evaluations Replaced by Isotopic evaluations (16 new, 19 old)
- 3) New Evaluations for ENDF/B-VII.0 (78 new)
- 4) Summary of $\langle v(E) \rangle$ for all 65 fissile/fertile isotopes in ENDF/B-VII.0
- 5) Completeness of ENDF/B-VII.0 Evaluations
- 6) Same Evaluations in ENDF/B-VI and VII (315)

Introduction

The ENDF/B data library has recently been updated and is now freely available through the National Nuclear Data Center (NNDC), Brookhaven National Laboratory. This most recent library is identified as ENDF/B-VII.0; this is the first release of ENDF/B-VII. This release completely supersedes all preceding releases of ENDF/B.

As distributed the ENDF/B-VII.0 data includes cross sections represented in the form of a combination of resonance parameters and/or tabulated energy dependent cross sections, nominally at 0 Kelvin temperature.

For use in our applications the ENDF/B-VII.0 library has been processed into cross sections at eight neutron reactor like temperatures, between 0 and 2100 Kelvin, in steps of 300 Kelvin. It has also been processed to five astrophysics like temperatures, 1, 10, 100 eV, 1 and 10 keV. For reference purposes, 300 Kelvin is approximately 1/40 eV, so that 1 eV is approximately 12,000 Kelvin. At each temperature the cross sections are tabulated and linearly interpolable in energy.

All results are in the computer independent ENDF-6 character format [R2], which allows the data to be easily transported between computers. In its processed form the POINT 2007 library is approximately 8.6 gigabyte in size and is distributed on two DVDs.

PREPRO 2007 Codes

In addition to the changes in the ENDF/B-VII.0 evaluations, it should be noted that between the last version of this report, where the PREPRO 2002 codes were used, and the current version, where the PREPRO 2007 codes were used, there have been major improvements in the ENDF/B Pre-processing codes (PREPRO). The major improvements were both in terms of improving the basic methods used by the codes and in terms of incorporating the latest ENDF-6 Formats and Procedures used by the current evaluations. The result is more accurate cross section data throughout the POINT 2007 library.

WARNING – due to recent changes in ENDF-6 Formats and Procedures only the latest version of the ENDF/B Pre-processing codes, namely PREPRO 2007, can be used to accurately process all current ENDF/B-VII evaluations. If you fail to heed this warning and you use any earlier versions of these codes the results will be inaccurate.

The PREPRO 2007 codes run on virtually any computer, and will soon be available

FREE on-line from the Nuclear Data Section, IAEA, Vienna, Austria, website at,

http://www-nds.iaea.or.at/ndspub/endf/prepro/

Requesting POINT 2007 Data

Please do not contact the author of this report to request this data; I do not have the resources necessary to directly respond to requests for this data. This data has been distributed and is Internationally available from nuclear data/code centers throughout the World,

- Within the United States: contact the National Nuclear Data Center, Brookhaven National Laboratory, Mike Herman at, <u>services@bnlnd2.dne.bnl.gov</u>
- 2) Within Western Europe: contact the OECD Nuclear Energy Agency/ Data Bank (NEA/DB), Paris, France, Enrico Sartori at <u>Sartori@nea.fr</u>
- Otherwise: contact the Nuclear Data Section, International Atomic Energy Agency, Vienna, Austria, Alberto Mengoni at, <u>A.Mengoni@iaea.org</u>

Data Processing

As distributed the original evaluated data includes cross sections represented in the form of a combination of resonance parameters and/or tabulated energy dependent cross sections, nominally at 0 Kelvin temperature. For use in applications, this data has been processed using the 2007 version of the ENDF/B Pre-processing codes (PREPRO 2007) to produce temperature dependent, linearly interpolable in energy, tabulated cross sections, in the ENDF-6 format.

For use in applications this library has been processed into the form of temperature dependent cross sections at eight neutron reactor like temperatures, between 0 and 2100 Kelvin, in steps of 300 Kelvin. It has also been processed to five astrophysics like temperatures, 1, 10, 100 eV, 1 and 10 keV. For reference purposes, 300 Kelvin is approximately 1/40 eV, so that 1 eV is approximately 12,000 Kelvin. At each temperature the cross sections are tabulated and linearly interpolable in energy.

The steps required and codes used to produce room temperature, linearly interpolable tabulated cross sections, in the ENDF-6 format, are described below (the name of each code in given in parenthesis; for details of each code see reference [R3]).

Here are the steps, and PREPRO 2007 codes, used to process the data, in the order in which the codes were used.

- 1) Linearly interpolable, tabulated cross sections (LINEAR)
- 2) Including the resonance contribution (**RECENT**)

- 3) Doppler broaden all cross sections to temperature (**SIGMA1**)
- 4) Check data, define redundant cross sections by summation (**FIXUP**)
- 5) Update evaluation dictionary in MF/MT=1/451 (**DICTIN**)

For the "cold" (0 Kelvin) data steps 1), 2) and 4), 5) were used (no Doppler broadening). For the data at other temperatures, after steps 1) and 2), the data was Doppler broadened to each temperature using step 3), and the results were then made consistent with the ENDF/B formats and conventions using steps 4) and 5), to produce the final distributed data.

The result is linearly interpolable in energy, tabulated, temperature dependent cross sections, in the ENDF-6 format, ready to be used in applications.

Note - this processing only involved the energy dependent neutron cross sections. All other data in the evaluations, e.g., angular and energy distributions, was not affected by this processing, and is identical in all versions of the final results, i.e., it is the same in all of the directories, ORIGINAL, as well as K0 through K2100, and 1ev through 10kev, on the DVD.

Accuracy of Results

Each of the codes described above that was used to process data to obtain tabulated, linearly interpolable in energy cross sections, processed the data to within a user defined accuracy, or allowable uncertainty. The ENDF/B Pre-processing codes (PREPRO 2007) are self-documenting, in the sense that the ENDF/B formatted output data that each code produces includes comments at the beginning of each evaluation defining the accuracy to which the cross sections were calculated. The combination of comments added by all of the codes defines the sequence and accuracy used by all of them. The accuracy is the same for all evaluations. Therefore, for exact details of the accuracy of the data, see the comments at the beginning of any evaluation. For use in Point 2007 all cross sections were reconstructed to within an accuracy of 0.01% in the thermal range, and 0.1 % at all other energies and temperatures; this is beyond the accuracy to which this data in known, so that I assume that the data processing does not add any significant additional error to the inherent error of the data.

Contents of the Library

This library **contains** all of the evaluations in the ENDF/B-VI.0 general purpose library. A table in the appendix summarizes the contents of the ENDF/B-VII.0 general purpose library. This library contains evaluations for 393 materials (isotopes or naturally occurring elemental mixtures of isotopes).

This library **does not contain** data from special purpose ENDF/B-VII libraries, such as fission products, thermal scattering, photon interaction data. To obtain any of these special purpose libraries contact the National Nuclear Data Center, Brookhaven National Laboratory,

ENDF@bnlnd2.dne.bnl.gov

In the POINT 2007 library each evaluation is stored as a separate file. The following table defines each material and the corresponding filename. The entire library is in the computer independent ENDF-6 character format, which allows the data to be easily transported between computers. The entire library requires approximately 8.6 gigabyte of storage and is distributed on two DVDs; see below for details of the DVDs.

This library contains data for some metastable materials, which are indicated by an "M" at the end of their descriptions.

The majority of these evaluations are complete, in the sense that they include all cross sections over the energy range 10^{-5} eV to at least 20 MeV. See the appendix for a list of all evaluations, plus a separate list of incomplete evaluations; there are now only a few.

DVD Format and Layout

The DVDs were written using DVD-R format that can be read on almost any computer that has a DVD reader. The DVDs is divided into fifteen (15) directories, across two DVDS,

Part A (first DVD)

DOCUMENT - A copy of this report in MSWord and PDF formats.

- ORIGINAL The original ENDF/B data before it was processed.
- K0 0 Kelvin cross sections
- K300 300 Kelvin cross sections
- K600 600 Kelvin cross sections
- K900 900 Kelvin cross sections
- K1200 1200 Kelvin cross sections

Part B (second DVD)

- K1500 1500 Kelvin cross sections
- K1800 1800 Kelvin cross sections
- K2100 2100 Kelvin cross sections
- 1eV 1 eV cross sections
- 10eV 10 eV cross sections
- 100eV 100 eV cross sections
- 1keV 1 keV cross sections
- 10keV 10 keV cross sections

With the exception of DOCUMENT, each of these directories contains 394 files, one file for each of the 393 evaluation, plus one HTML file to allow interactive data retrieval. Each file is a complete ENDF/B "tape" [R2], including a starting "tape" identification line, and ending with a "tape" end line [R2]. In this form, each file can be used by a wide variety of available computer codes that treat data in the ENDF/B format, e.g., all of the PREPRO codes.

Installation and Use of POINT 2007

I recommend that you create a directory named POINT2007 and copy the entire contents of **both** DVDs into this directory; this will allow you simple access to the data at all temperatures. These POINT 2007 directories include HTML routines to allow interactive retrieval of the data. The result will be a directory of about 8.6 gigabytes. To put that in perspective, today it costs less than \$1 U.S. to purchase, install, and maintain on-line one gigabyte of disk storage. Therefore the cost of maintaining this 8.6 gigabyte library on-line is trivial.

Acknowledgments

I thank **Said Mughabghab** for his detailed explanation of the use of his newly published resonance parameters [R4] in ENDF/B-VII.0 evaluations. I thank **Ramon E. Arcilla, Jr.**, of the National Nuclear Data Center (NNDC), Brookhaven National Laboratory, for supplying the original ENDF/B-VII.0, used in this project. I thank **Kevin McLaughlin** and **Andre Trkov**, of the Nuclear Data Section, International Atomic Energy Agency, for supplying the ENDF/B Pre-processing codes, PREPRO 2007, used in this project. I thank **Nancy Larsen, Bob MacFarlane**, **Maurice Greene**, and **Mike Dunn**, for their intercomparison of their cross section processing codes (SAMMY, NJOY and AMPX) against the PREPRO codes. These comparisons have led to significant improvements in the accuracy and reliability of the results produced by all four codes (SAMMY, NJOY, AMPX, PREPRO). I thank **Dave Heinrichs** for proofreading the draft of this report and making many helpful corrections and improvements, which I incorporated in the final report.

References

[R1] "POINT 2004: A Temperature Dependent ENDF/B-VI, Release 8 Cross Section Library", Lawrence Livermore National Laboratory, UCRL-TR-202284, April 2004.

[R2] Data Formats and Procedures for the Evaluated Nuclear Data File ENDF-6, BNL-NCS-44945, Rev. 11/95, edited by V. McLane, et al. National Nuclear Data Center, Brookhaven National Lab. <u>http://www.nndc.bnl.gov/nndcscr/documents/endf/endf102/</u>

[R3] now available, "PREPRO 2004: The 2004 ENDF/B Pre-Processing Codes," by D.E. Cullen, Nuclear Data Section, International Atomic Energy Agency, Vienna, Austria, IAEA-NDS-39, Rev. 12, Nov. 22, 2004; PREPRO 2007 will soon to publicly available. http://www-nds.iaea.or.at/ndspub/endf/prepro/

[R4] "Atlas of Nuclear Resonances", by S.F. Mughabghab, National Nuclear Data Center, Brookhaven National Laboratory, published by Elsevier, March 2006.

[R5] "Exact Doppler Broadening of Tabulated Cross Sections," by D.E. Cullen and C.R. Weisbin, Nuclear Science and Engineering 60, p. 199 (1975)

[R6] "THERMAL: A Routine Designed to Calculate Neutron Thermal Scattering," by D.E. Cullen, Lawrence Livermore National Laboratory, UCRL-ID-120560-Rev-1, Sept. 1995.

http://home.comcast.net/~redcullen1

[R7] "Verification of High Temperature Free Atom Thermal Scattering in MERCURY Compared to TART", by D.E. Cullen, Scott McKinley and Christian Hagmann, Lawrence Livermore National Laboratory, UCRL-TR-226340, August 1, 2006.

[R8] "TART2005: A Coupled Neutron-Photon 3-D, Time Dependent, Combinatorial Geometry Monte Carlo Transport Code," by D.E. Cullen, Lawrence Livermore National Laboratory, UCRL-SM-218009, Nov. 22, 2005.

Appendix A: Contents of ENDF/B-VII.0 (78 new + 315 old = 393 total evaluations)

· ·					
1-н - 1	28-Ni- 60	44-Ru-100	54-Xe-123	63-Eu-155	90-Th-227
1-н - 2	28-Ni- 61	44-Ru-101	54-Xe-124	63-Eu-156	90-Th-228
1_U2	29 Ni 62	11 - 102	E4 Vo 106	62 - Eu - 1 5 7	00 mb 000
1-н - 3	20-INI- 02	44-Ru-102	54-Xe-126	63-Eu-157	90-Th-229
2-He- 3	28-Ni- 64	44-Ru-103	54-Xe-128	64-Gd-152	90-Th-230
2-He- 4	29-Cu- 63	44-Ru-104	54-Xe-129	64-Gd-153	90-Th-232
3-T-1- 6	29-01-65	44-Pu-105	51 No 120	64-Cd-154	
3-11- 0	29-Cu- 05	44-Ru-105	54-AE-130	64-Gu-154	90-Th-233
3-Li- 7	30-Zn-Nat	44-Ru-106	54-Xe-131	64-Gd-155	90-Th-234
4-Be- 7	31-Ga- 69	45-Rh-103	54-Xe-132	64-Gd-156	01 Do 221
1 Do 0		4E Db 10E	51 HC 102		91-Pa-231
4-BE- 9	31-Ga- 71	45-RII-105	54-Xe-133	64-Ga-157	91-Pa-232
5-в - 10	32-Ge- 70	46-Pd-102	54-Xe-134	64-Gd-158	91-Pa-233
5-B - 11	22-00-72	46-Pd-104	54-Xe-135	64-Gd-160	
	52-66-72	16 Dd 105	51 HC 100	CF mb 150	92-0 -232
6-C -Nat	32-Ge- 73	46-PU-105	54-Xe-136	65-1D-159	92-U -233
7-N - 14	32-Ge- 74	46-Pd-106	55-Cs-133	65-Tb-160	92-U -234
7-N - 15	32-00- 76	46-Pd-107	55-Cs-134	66-Dv-156	02_TT _ 22E
9 0 16	32-66-70	16 Dd 109	EE (12 12E	66 2 150	92-0 -235
8-0 - 10	33-AS- 74	40-F0-100	55-C5-135	00-DY-138	92-0 -236
8-0 - 17	33-As- 75	46-Pd-110	55-Cs-136	66-Dy-160	92-U -237
9-F - 19	21-50-71	47-Aq-107	55-Cs-137	66-Dv-161	0.2 11
11_No_ 22	34-38-74	$47 - \lambda \alpha - 109$	56-Pa-120	66 Dy 161	92-0 -238
11-Na- 22	34-Se- 76	47-Ag-109	50-Ba-130	00-DY-102	92-0 -239
11-Na- 23	34-Se- 77	47-Ag-110M	56-Ba-132	66-Dy-163	92-U -240
12-Mg- 24	34-50- 78	47-Aq-111	56-Ba-133	66-Dv-164	0.2 17 241
12-Mg- 25	51 50 70	48-04-106	EC De 134	67 Up 165	92-0 -241
12-Mg- 25	34-Se- 79	48-00-100	56-Ba-134	67-HO-165	93-Np-235
12-Mg- 26	34-Se- 80	48-Cd-108	56-Ba-135	67-но-166М	93-Np-236
13-41- 27	34-50- 82	48-Cd-110	56-Ba-136	68-Er-162	03 Nr 037
14 01 00	54-56-02	48-Cd-111	50 Da 130		93-NP-237
14-51- 28	35-Br- 79	40-00-111	56-Ba-13/	68-Er-164	93-Np-238
14-Si- 29	35-Br- 81	48-Cd-112	56-Ba-138	68-Er-166	93-Nn-239
14-si- 30	36 - Kr - 78	48-Cd-113	56-Ba-140	68 - Fr - 167	04 Dr. 226
15 0 21	30-KI - 70	48 - Cd - 114	50 Da 110	00-E1-107	94-Pu-236
15-P = 31	36-Kr- 80	40-00-114	57-La-138	68-Er-168	94-Pu-237
16-S - 32	36-Kr- 82	48-Cd-115M	57-La-139	68-Er-170	94-P11-238
16-5 - 33	36 - Kr - 83	48-Cd-116	57-La-140	71 1, 175	04 Du 230
16 6 94		49 - Tn - 113		/I-Lu-1/5	94-Pu-239
16-5 - 34	36-Kr- 84	40 7- 115	58-Ce-136	71-Lu-176	94-Pu-240
16-S - 36	36-Kr- 85	49-1n-115	58-Ce-138	72-Hf-174	94-Pu-241
17_01_ 35	36-Kr- 86	50-Sn-112	58-Co-139	72_4f_176	04 Du 242
17 C1 55		50 - 5n - 113	50-00-155	72-111-170	94-Pu-242
17-CI- 37	37-RD- 85	50 0 114	58-Ce-140	72-H±-177	94-Pu-243
18-Ar- 36	37-Rb- 86	50-Sn-114	58-Ce-141	72-Hf-178	94-Pu-244
18 - 2r - 38	37-Rb- 87	50-Sn-115	58-Ce-142	72-Hf-179	94-D11-246
10 11 50	20 Cm 04	50 - Sn - 116	50 CC 112		94-Fu-240
18-Ar- 40	30-51- 04	50 SH 110	58-Ce-143	72-HI-180	95-Am-241
19-к - 39	38-Sr- 86	50-511-11/	58-Ce-144	73-Ta-181	95-Am-242
10 - v = 40	38-Sr- 87	50-Sn-118	59-Pr-141	73-Ta-182	$0 = \lambda m = 24.2 M$
19-1 - 40	20 52 00	50-Sn-119	50 Dm 140	73 IG 102	95-Alli-242M
19-K - 41	30-31- 00	E0 Cm 120	59-Pr-142	/4-W -182	95-Am-243
20-Ca- 40	38-Sr- 89	50-511-120	59-Pr-143	74-W -183	95-Am-244
20 02 42	38-Sr- 90	50-Sn-122	60-Nd-142	74-W -184	95 - 3m - 244M
20-Ca- 42	20 V 90	50-Sn-123	CO NH 142	74 10 100	95-AIII-244M
20-Ca- 43	39-1 - 09	50 - 9n - 124	60-NG-143	74-W -100	96-Cm-241
20-Ca- 44	39-Y - 90	50-511-124	60-Nd-144	75-Re-185	96-Cm-242
	39-Y - 91	50-Sn-125	60-Nd-145	75-Re-187	96 - Cm - 243
20-Ca- 46	40 - 7r - 90	50-Sn-126	60 Nd 146	77 - Tr = 101	
20-Ca- 48	40 7- 01	51-Sb-121	00-INU-140		96-Cm-244
21 - 9c - 45	40-21- 91	51 60 121	60-Nd-147	77-1r-193	96-Cm-245
	40-Zr- 92	51-SD-123	60-Nd-148M	79-Au-197	96-Cm-246
22-11- 40	40-Zr- 93	51-Sb-124	60-Nd-150	80-Hg-196	06 0m 047
22-Ti- 47	10-712 04	51-Sb-125		00 19-190	90-CM-24/
22-Ti- 48	40-21- 94	51 Sb 126	61-Pm-14/	80-Hg-198	96-Cm-248
	40-Zr- 95	51-SD-126	61-Pm-148	80-Hg-199	96-Cm-249
22-11- 49	40-Zr- 96	52-Te-120	61-Pm-148	80 11 - 200	
22-Ti- 50	41_Nb_ 02	52-Te-122	61 Fm 140	80-Hg-200	96-Cm-250
23-V -Nat	41-MD- 93	E2 TO 122	61-Pm-149	80-Hg-201	97-Bk-249
24 Gm E0	41-Nb- 94	52-1e-123	61-Pm-151	80-Hg-202	97-Bk-250
24-Cr- 50	41-Nb- 95	52-Te-124	62-Sm-144		00 GE 040
24-Cr- 52	42-Mo- 92	52-Te-125	$62_{m-1}/7$	80-Hg-204	98-CI-249
24-Cr- 53	12 110 92	$52 - T_{c} = 1.26$	02-511-14/	82-Pb-204	98-Cf-250
24 - Cr = 54	42-MO- 94	27-16-T70	62-Sm-148	82-Ph-206	98-Cf-251
24-CI- 54	42-Mo- 95	52-1e-12/M	62-Sm-149		
25-Mn- 55	42-Mo- 96	52-Te-128	62 - 9m - 1 = 0	82-PD-207	90-CI-252
26-Fe- 54	12 Mc 07	52-Te-129M	02-5III-150	82-Pb-208	98-Cf-253
26-Fe- 56	42-MO- 97		62-Sm-151	83-Bi-209	98-Cf-254
20-12- 50	42-Mo- 98	52-re-130	62-Sm-152		
26-Fe- 57	42-Mo- 99	52-Te-132	62_9m_153	00-Ka-223	99-LS-253
26-Fe- 58	42 Mc 100	53-T -107	02-511-155	88-Ra-224	99-Es-254
27-00- 58	42-MO-TOO	FO T 100	62-Sm-154	88-Ra-225	99-Es-255
	43-Tc- 99	53-1 -129	63-Eu-151		100 5 055
27-Co- 58M	44-Ru- 96	53-I -130	63-Eu-152	88-Ra-226	100-Fm-255
27-Co- 59	44_P11_00	53-I -131		89-Ac-225	
28-Ni- 58	44-RU- 90	52_T 12E	03-EU-153	89-10-226	
70-MT - 20	44-Ru- 99	22-T -T32	63-Eu-154	03-AC=220	
28-N1- 28M				89-Ac-227	

Elemental vs. Isotopic Evaluations

Successive versions of ENDF/B have replaced elemental evaluations by isotopic evaluations. Between ENDF/B-VI and VII **13 elemental evaluations were deleted** (included in ENDF/B-VI, but not included in ENDF/B-VII); the below table summarizes the elemental evaluations deleted and the isotopic evaluations designed to replace them. The only remaining elemental evaluations in ENDF/B-VII are:

6-C-Nat6-C-12 98.93%/ 6-C-13 1.07% missing23-V -Nat23-V-50 99.75%/ 23-V-51 0.25% missing**30-Zn-Nat5 isotopes, all missing**

All of these isotopes in VII.0 are complete, in the sense that they include major cross sections (elastic, capture, inelastic) over the energy range 10^{-5} eV up to at least 20 MeV. However, be aware that evaluating isotopes is difficult and the quality of minor isotopes may be poor. To my knowledge as yet the summing these isotopes to define equivalent elemental evaluations has not been verified against experimental measurements.

Element	Isotope	Element	Isotope	Element	Isotope
12-Mg-Nat	12-Mg- 24	22-Ti-Nat	22-Ti- 46	42-Mo-Nat	42-Mo- 92
	12-Mg- 25		22-Ti- 47		42-Mo- 94
	12-Mg- 26		22-Ti- 48		42-Mo- 95
14-Si-Nat	14-Si- 28		22-Ti- 49		42-Mo- 96
	14-Si- 29		22-Ti- 50		42-Mo- 97
	14-Si- 30	31-Ga-Nat	31-Ga- 69		42-Mo- 98
16-S -Nat	16-S - 32		31-Ga- 71		42-Mo- 99
	16-s - 33	40-Zr-Nat	40-Zr- 90		42-Mo-100
	16-s - 34		40-Zr- 91	49-In-Nat	49-In-113
	16-s - 36		40-Zr- 92		49-In-115
17-Cl-Nat	17-Cl- 35		40-Zr- 93	72-Hf-Nat	72-Hf-174
	17-Cl- 37		40-Zr- 94		72-Hf-176
19-K -Nat	19-к - 39		40-Zr- 95		72-Hf-177
	19-к - 40		40-Zr- 96		72-Hf-178
	19-K - 41				72-Hf-179
20-Ca-Nat	20-Ca- 40				72-Hf-180
	20-Ca- 42			74-W -Nat	74-W -182
	20-Ca-43				74-W -183
	20 - Ca = 44				74-W -184
	$20 - C_{2} - 46$				74-W -186
	20 - Ca = 40				
	20-Ca- 40				
1					

Elemental Evaluations	Replaced b	y Isotopic evalua	tions (<mark>16 new</mark>	, 19 old)
------------------------------	------------	-------------------	-----------------------------	-----------

New Evaluations for ENDF/B-VII.0 (78 new)

After six versions of ENDF/B over almost 40 years, most of the important isotopes have already been evaluated and included in earlier versions of ENDF/B. The new ENDF/B-VII evaluations were difficult to do, since usually there is little experimental data for rarer isotopes. Most of the new evaluations are complete in the sense that they include major cross sections from 10⁻⁵ eV to 20 MeV. The except is 4-Be-7 which only extends up to 8.1 MeV, and only includes elastic and charged particle reactions; this is a theoretical evaluation that should not have been included in ENDF/B-VII.0. Many of the other evaluations are pretty bad; better than nothing, but crude, so **CAVEAT EMPTOR!**

The below table includes a list of all 78 new evaluations. If there are no comments, I judge the evaluation to be o.k.

78 New Evaluations

14 - 1	Common to a	Mark 1	Common the m
Material	Comments	Material	Comments
4-Be- 7	Useless partial	67-Ho-166M	Crude
11-Na- 22	Crude	68-Er-162	
12-Mg- 25		68-Er-164	
12-Mg- 26		68-Er-168	
16-S - 33		68-Er-170	
16-S - 34		80-Hg-196	Crude
16-S - 36	Crude	80-Hg-198	Crude, check capture
18-Ar- 36	Crude	80-Hg-199	
18-Ar- 38	Crude	80-Hg-200	
19-к - 39		80-Hg-201	
19-к - 40	Very crude	80-Hg-202	Crude, check capture
20-Ca- 40	o.k. to 20 MeV	80-Hg-204	Very crude
20-Ca- 42	n .	82-Pb-204	
20-Ca- 43	n .	88-Ra-223	Very crude
20-Ca- 44	u .	88-Ra-224	Very crude
20-Ca- 46	Very crude	88-Ra-225	Very crude
20-Ca- 48	o.k. to 20 MeV	88-Ra-226	
22-Ti- 49		89-Ac-225	Very crude
27-Co- 58	Very crude	89-Ac-226	Very crude
27-Co- 58M	Very crude	89-Ac-227	Very crude
30-Zn-Nat	Check (n,alpha)	90-Th-227	Very crude
31-Ga- 69		90-Th-228	Rubbish
31-Ga- 71		90-Th-229	(n,n') down to 100 eV
32-Ge- 70		90-Th-233	Very crude
33-As- 74		90-Th-234	Rubbish
34-Se- 79	Crude	92-U -239	Weird resonances
47-Aq-110M	(n,n') down to 3 eV?	92-U -240	
50-Sn-113	Resonance gap	92-U -241	Weird resonances
54-Xe-123	Very crude	93-Np-235	Very crude
56-Ba-130	-	94-Pu-246	Very crude
56-Ba-132	Crude	95-Am-244	Very crude
56-Ba-133		95-Am-244M	Very crude
57-La-138		96-Cm-249	-
58-Ce-136		96-Cm-250	Crude
58-Ce-138		97-Bk-250	Weird resonances
58-Ce-139		98-Cf-254	Very crude
64-Gd-153		99-Es-254	Very crude
66-Dv-156		99-Es-255	Verv crude
66-Dv-158		100-Fm-255	Very crude
			• · · · · ·

Summary of $\langle v(E) \rangle$ for all 65 fissile/fertile isotopes in ENDF/B-VII.0

For applications I require both prompt and delayed neutrons per fission. In the ENDF/B format the evaluator can optionally include: Total (T), Delayed (D) and/or Prompt (P). Below is a summary of all fissile/fertile materials in ENDF/B-VII.0, indicating the neutrons per fission data included for each isotope. In all cases the Total (T) is included, however in some cases no other data is included, so that we cannot define either Prompt (P) or Delayed (D). I will have to add the missing data before I can use these isotopes in my applications.

Isotope	<nu></nu>	Comments	Isotope	<nu></nu>	Comments
ZA088223	Т	No Delayed	ZA094241	ТDP	
ZA088226	Т	No Delayed	ZA094242	ТDP	
ZA089227	Т	No Delayed	ZA094243	Т	No Delayed
ZA090227	ТDP		ZA094244	Т	No Delayed
ZA090228	ТDP		ZA094246	ТDP	
ZA090229	ТDP		ZA095241	ТDP	
ZA090230	Т	No Delayed	ZA095242	ТDP	
ZA090232	ТDР		ZA095242.M	ТDP	
ZA090233	ТDP		ZA095243	ТDP	
ZA090234	ТDP		ZA095244	ТDP	
ZA091231	ТDP		ZA095244.M	ТDP	
ZA091232	ТDP		ZA096241	Т	No Delayed
ZA091233	ТDР		ZA096242	ТDP	
ZA092232	ТDP		ZA096243	ΤΟΡ	
ZA092233	ТDР		ZA096244	ТDP	
ZA092234	ТDP		ZA096245	ТDP	
ZA092235	ТDP		ZA096246	ΤΟΡ	
ZA092236	ТDР		ZA096247	ТDP	
ZA092237	ТDP		ZA096248	Т	No Delayed
ZA092238	ТDP		ZA096249	ΤΟΡ	
ZA092239	ТDP		ZA096250	ΤΟΡ	
ZA092240	ТDP		ZA097249	ТDР	
ZA092241	ТDP		ZA097250	ΤΟΡ	
ZA093235	ТDP		ZA098249	ΤΟΡ	
ZA093236	ТDР		ZA098250	Т	No Delayed
ZA093237	ТDP		ZA098251	ΤΟΡ	
ZA093238	ТDP		ZA098252	Т	No Delayed
ZA093239	Т	No Delayed	ZA098253	Т	No Delayed
ZA094236	ТDР		ZA098254	ТDP	
ZA094237	Т	No Delayed	ZA099254	ТDР	
ZA094238	ТDР		ZA099255	ТDР	
ZA094239	ТDP		ZA100255	ТDР	
ZA094240	ТDP				

Summary of all 65	fissile/fertile isotopes in	ENDF/B-VII.0 $< v(E) >$
-------------------	-----------------------------	--------------------------------

Completeness of ENDF/B-VII.0 Evaluations

For ENDF/B-VI.8, I judged that only about half of the 328 evaluations were complete and physically acceptable enough to be used in neutron transport calculations. In contrast in ENDF/B-VII.0, only a few evaluations are incomplete (10^{-5} eV to 20 MeV) or physically unacceptable (negative cross sections). Below is a summary (no comment = o.k.)

Material							Comments
ZA001001	mt=	50	no ine	elastic			
ZA001002	mt=	50	no ine	elastic			
ZA001003	mt=	102	no car	oture			
ZA001003	mt=	50	no ine	elastic			
ZA002003	mt=	50	no ine	elastic			
ZA002004	mt=	102	no car	oture			
ZA002004	mt=	50	no ine	elastic			
ZA004007	mt=	2	cross	section ends	8.1000D+06	eV	Incomplete only elastic
ZA004007	mt=	1	no tot	al			up to 8.1 MeV
ZA004007	mt=	102	no car	ture			
72004007	mt=	50	no ine	lastic			
ZA004009	mt=	50	no ine	lastic			
ZA005010	mt =	102	cross	section ends	5 0000D+05	eV	
ZA017035	mt =	2	cross	section start	1 4519D-05	eV	Negative elastic
ZA018040	mt =	2	cross	section <=0	9 7825D+05	eV	Negative elastic
ZA020040	mt =	2	cross	section <=0	5.0000D+05	eV	Negative elastic
ZA021045	mt=	102	cross	section ends	5.0000D+06	eV	
ZA026056	mt=	2	cross	section <=0	1.1971D+06	eV	Negative elastic
ZA027058	mt =	102	cross	section <=0	8 4925D+00	eV	Negative capture
ZA027058 M	mt =	51	level	energy > 0	2 4900D+04	eV	
ZA028059	mt=	50	no ine	lastic	2.19000.01	C V	Incomplete
72028061	mt =	2	aross	section $c=0$	7 43550+05	۵V	Negative elastic
77041093	mt -	2	aross	section <=0	2 3344D+03		Negative elastic
ZA041093	m+ -	51		energy > 0	1 1760D±05		Negacive erastic
ZA047110.M	mt =	52	level	energy > 0	1 0660D+05	ev ev	,
77048108	mt -	102	aross	section ends	1 0000D+05		,
ZA010100 ZA048110	mt =	102	CIOBB	section ends	1 0000D+07	eV	,
ZA040110 7X048112	m+ -	102	aross	section ends	1 0000D+07		,
77048115 M	m+ -	51		energy > 0	1 8100D+05		,
ZA040115.M	m+ -	102	TEVEL	section ends	1 0000D+07		,
77052127 M	m+ -	51		energy > 0	8 8260D+04		,
7X052127.M	m+ -	52	lovel	energy > 0	27140D+04		,
ZA052127.M	mt =	51	level	energy > 0	1 0550D+05	ev ev	,
72054130	mt =	102	arogg	section ends	1 0000D+07	eV	,
ZA051150 ZA061148 M	mt =	51	level	energy > 0	1 3790D+05	eV	,
ZA061148 M	mt =	52	level	energy > 0	6 2200D+04	eV	
ZA064152	mt =	2	cross	section <=0	3 3186D+01	eV	Negative elastic
ZA066160	mt =	2	cross	section <=0	3 3293D+02	eV	Negative elastic
ZA067166 M	mt =	51	level	energy > 0	5 9850D+03	eV	
72082207	mt =	2	arogg	section <=0	4 7500D+05	οV	Negative elastic
ZA090228	mt =	18	cross	section <=0	3 00000+03	eV	
ZA090230	mt =	2	cross	section <=0	1.2856D+00	eV	Negative elastic
ZA092240	mt=	2	cross	section <=0	2,2262D+00	eV	Negative elastic
ZA094238	mt =	2	cross	section <=0	5 9743D+01	eV	Negative elastic
ZA094242	mt =	2	cross	section <=0	2 2348D+00	eV	Negative elastic
ZA094244	mt =	2	cross	section <=0	2 0770D+01	eV	Negative elastic
ZA095242 M	mt =	51	level	energy > 0	4 8600D+04	eV	
ZA095242 M	mt =	52	level	energy > 0	4 5000D+03	eV	
ZA095244 M	mt =	51	level	energy > 0	8 8000D+04	eV	
ZA096241	mt =	102	cross	section ends	4.0000D+06	eV	
ZA096242	mt=	2	cross	section <=0	1.3448D+01	eV	Negative elastic
ZA096242	mt =	18	cross	section <=0	2 7600D+02	eV	
ZA096248	mt =	2	cross	section <=0	6.8142D+00	eV	Negative elastic
ZA098250	mt=	2	cross	section <=0	1.4329D+01	eV	Negative elastic
ZA098252	mt =	2	cross	section <=0	1.6674D+01	eV	Negative elastic
ZA098253	mt=	18	cross	section ends	1.1000D+04	eV	Incomplete only to 11 keV
ZA098253	mt=	102	cross	section ends	1,10000+04	eV	
ZA098253	mt=	50	no ine	lastic			
72090253	mt-	102	aross	section ends	1 10000+04	0 17	Incomplete only to 11 key
2110992333		102	01000	Section ands	1.100000704	24	THOOMPICCE ONLY CO II NOV

ZA099253 mt= 50 no inelastic

Same Evaluations in ENDF/B-VI and VII (315)

Above I stated that ENDF/B-VII.0 includes 315 evaluations from ENDF/B-VI. By this I mean that there are evaluations for the same 315 elements or isotopes in both VI and VII. The contents of these evaluations may be identical to ENDF/B-VI, or completely different. Below I provide a brief, one line summary comparing the contents of ENDF/B-VII.0 to VI.8. These summaries are based only on my comparing major cross sections (total, elastic, capture and fission) for the 315 same evaluations. For more details of any given evaluation the reader can use the COMPLOT code [R3] to "see" comparisons.

The intent here is to hopefully save users time and effort by telling them which evaluations have or have not changed. For example, many metals and fissile isotopes have not changed. There are also materials where the cross sections are what I call "similar", but which I mean similar resonance structure, but actual cross section values may be quite different.

- Many single level Breit-Wigner (SLBW) resonances have been changed to multilevel (MLBW). In many case this eliminates negative elastic cross sections, and results in what I identify in the following table as "similar". WARNING – because of the use of non-physical average J values, switching from SLBW to MLBW does not always eliminate negative cross sections. WARNING – "similar" here means similar resonance structure; the actual energy dependent cross sections may be very different.
- 2) Many incomplete ENDF/B-VI evaluations have now been extended up to 20 MeV and are now complete in VII.0. Also the high energy range of many other evaluations were re-done using nuclear model code calculations; this has changed some high energy cross sections by 10 to 20%.
- 3) Many evaluations now include resonance parameters from the latest 2006 version of the atlas of nuclear resonances, BNL-325 [R4]; this has allowed many resonance regions to be extended to higher energies. However, in many cases no additional evaluation was performed to eliminate resonance gaps in the experimentally measured resonance parameters, and many isotopes do not included an unresolved resonance energy range.
- 4) I try to identify evaluations where the major cross sections differ substantially; roughly speaking my criteria was differences of at least ~ 1%.
- 5) I also compared <nu>, where smaller differences can be important. For the major fuel, U-233, U-235, and Pu-235, there have been minor ~ 0.5% changes in <nu> which may be reflected in calculated integral parameters, such as K-eff. Some minor fissile/fertile have changes in <nu> of 5 to 10%

315 Same Materials (1-H - 1 to 44-Ru- 99)

1-H - 1	Elastic 0.3% lower < 10 keV	32-Ge- 73	New - completely different
1-н - 2	Same	32-Ge- 74	New - completely different
1-н - 3	Elastic 30% higher < 1 MeV	32-Ge- 76	New - completely different
2-Не- 3	Same	33-As- 75	New - resonances > 2 keV
2-He- 4	Same	34-Se- 74	Different
3-Li- 6	Elastic 7% higher < 0.1 eV	34-Se- 76	Different
3-Li- 7	Same	34-Se- 77	Different
4-Be- 9	Elastic 10% different > 10 eV	34-Se- 78	Different
5 - B - 10	Elastic 8% higher ~ 100 keV	34-Se- 80	Different
5-B - 11	Same	34-Se- 82	Different
6-C -Nat	Same	35-Br-79	Different
7 - N - 14	Same	35 - Br - 81	Different
7 - N - 15	Same	36-Kr- 78	Different
8 - 0 - 16	Flastic 7% higher 4 to 9 MeV	36 - Kr = 80	Different
8 - 0 - 17	Same	36 - Kr = 82	Different
0 - 5 - 10	Different regenended < 1 MeV	36 - Kr = 02	Different
9 - F = 19 11 - No - 22	Samo	30 - KI = 83	Different
11 - Na - 23 12 Ma 24	Same	30-KI- 04	Different
12-M9- 24	Different recommended (1 MeV	30-KI - 05	Different
13-AI- 27	Different resonances < i Mev	30-NI- 00	Different foren werenenger
14-SI- 28	Same	37-RD- 85	Different - fewer resonances
14-S1- 29	Same	37-RD- 86	Different
14-S1- 30	Same	37-RD- 87	Different - fewer resonances
15-P - 31	Same	38-Sr- 84	Different
16-S - 32	Different resonances	38-Sr- 86	Different
17-CI- 35	Different - resonances > 200 keV	38-Sr- 87	Different
17-Cl- 37	Different - resonances > 200 keV	38-Sr- 88	Different
18-Ar- 40	Completely different	38-Sr- 89	Different - both rubbish
19-к - 41	Same	38-Sr- 90	Different – both rubbish
21-Sc- 45	Same	39-Y - 89	Different
22-Ti- 46	Same	39-Y - 90	Different - old rubbish
22-Ti- 47	Same	39-Y - 91	Different - both rubbish
22-Ti- 48	Same	40-Zr- 90	Different – fewer resonances
22-Ti- 50	Same	40-Zr- 91	Different - similar resonances
23-V -Nat	Same	40-Zr- 92	Different – fewer resonances
24-Cr- 50	Same	40-Zr- 93	Different - old rubbish
24-Cr- 52	Same	40-Zr- 94	Similar
24-Cr- 53	Same	40-Zr- 95	Different - both rubbish
24-Cr- 54	Same	40-Zr- 96	Similar
25-Mn- 55	Same	41-Nb- 93	Same
26-Fe- 54	Same	41-Nb- 94	Different - both rubbish
26-Fe- 56	Same	41-Nb- 95	Different - both rubbish
26-Fe- 57	Same	42-Mo- 92	Verv different > 20 keV
26-Fe- 58	Same	42-Mo- 94	Verv different > 6 keV
27-Co- 59	Same	42-Mo- 95	Same < 2 keV - 40% higher energy
28-Ni- 58	Same	42-Mo- 96	Verv different > 4 keV
28-Ni- 59	Very narrow resonance differences	42-Mo- 97	Different
28-Ni- 60	Same	42-Mo- 98	Different - old rubbish
28-Ni- 61	Same	42-Mo- 99	Different - both rubbish
28-Ni- 62	Same	42-Mo-100	Very different $> 4 \text{ keV}$
28-Ni- 64	Same	43-TC- 99	Very different > 1 keV
29-011- 63	Same	44_R11_ 96	Different - both rubbish
29-Cu- 03	Same	44_R11_ 90	Different - both rubbish
29-Cu- 05	New - completely different	44_P11_ 00	Different > 100 eV
32-Ge- /2	Mew - comptetety attratent	44-Ku- 99	DITIETEIN > IND EN

315 Same Materials (44-Ru- 100 to 61-Pm-148)

44-Ru-100	Old Rubbish - new poor	52-Te-126	More resonances > 6 keV
44-Ru-101	50% higher < 10 eV	52-Te-127M	Different - both rubbish
44-Ru-102	Similar	52-Te-128	More resonances > 3.5 keV
44-Ru-103	Old Rubbish - new poor	52-Te-129M	Different - both rubbish
44-Ru-104	Different > 1 keV	52-Te-130	Different
44-Ru-105	Similar - both rubbish	52-Te-132	Different - old rubbish
44-Ru-106	Similar - both rubbish	53-I -127	More resonances > 1 keV
45-Rh-103	Same < 4 keV - 40% higher energy	53-I -129	More resonances > 150 eV
45-Rh-105	Different - both rubbish	53-I -130	Different - old rubbish
46-Pd-102	Old rubbish - new poor	53-I -131	Different - both rubbish
46-Pd-104	Different - old rubbish	53-I -135	Different - both rubbish
46-Pd-105	Same < 2 keV - 20% higher energy	54-Xe-124	Similar
46-Pd-106	Different - old rubbish	54-Xe-126	Different resonances
46-Pd-107	Very similar	54-Xe-128	Similar
46-Pd-108	Different - old poor	54-Xe-129	Similar
46-Pd-110	Different - old rubbish	54-Xe-130	Similar
47-Aq-107	Different > 3 keV	54-Xe-131	Same
47-Aq-109	Similar < 5 keV - 7% > 100 keV	54-Xe-132	Different
47-Ag-111	New - old rubbish	54-Xe-133	Different - both rubbish
48-Cd-106	No resonances 600 eV - 3 keV	54-Xe-134	Different
48-Cd-108	No resonances 350 eV - 2.6 keV	54-Xe-135	Same - both rubbish > 10 eV
48-Cd-110	Similar	54-Xe-136	New - old rubbish
48-Cd-111	Different < 1 eV 60% lower	55-Cs-133	Same - 14% > 100 keV
48-Cd-112	Similar < 2 keV	55-Cs-134	Similar
48-Cd-113	Similar < 2 keV	55-Cs-135	Similar
48-Cd-114	Same	55-Cs-136	Different - new rubbish
48-Cd-115M	New - old rubbish	55-Cs-137	Similar - both rubbish
48-Cd-116	Similar	56-Ba-134	Similar < 10 keV
49-In-113	New resonances > 50 eV	56-Ba-135	Similar < 1 keV
49-In-115	Very different > 1 keV	56-Ba-136	Different
50-Sn-112	Similar	56-Ba-137	Different
50-Sn-114	Different - more resonances	56-Ba-138	Similar
50-Sn-115	Different - both poor	56-Ba-140	Different - old rubbish
50-Sn-116	New resonances > 2 keV	57-La-139	Different
50-Sn-117	Different	57-La-140	Different - old rubbish
50-Sn-118	Similar	58-Ce-140	Different - old rubbish
50-Sn-119	Different	58-Ce-141	Different - old rubbish
50-Sn-120	New resonances > 15 keV	58-Ce-142	Different - old rubbish
50-Sn-122	New resonances > 900 eV	58-Ce-143	Different - old rubbish
50-Sn-123	Different - both rubbish	58-Ce-144	Different - both rubbish
50-Sn-124	New resonances > 700 eV	59-Pr-141	Similar
50-Sn-125	New - old rubbish	59-Pr-142	Different - old rubbish
50-Sn-126	Different - both rubbish	59-Pr-143	Different - old rubbish
51-Sb-121	More resonances > 2.5 keV	60-Nd-142	Different
51-Sb-123	More resonances > 2.5 keV	60-Nd-143	Similar - 4% > 100 keV
51-Sb-124	Different - both rubbish	60-Nd-144	Different
51-Sb-125	Different - both rubbish	60-Nd-145	Similar - 5% > 100 keV
51-Sb-126	Different - old rubbish	60-Nd-146	Different
52-Te-120	Different - both rubbish	60-Nd-147	Different > 30 eV
52-Te-122	More resonances > 4 keV	60-Nd-148	Different
52-Te-123	More resonances > 500 eV	60-Nd-150	Different
52-Te-124	More resonances > 6 keV	61-Pm-147	No resonances > 100 eV
52-Te-125	More resonances > 1 keV	61-Pm-148	Different - both rubbish

315 Same Materials (61-Pm-148M to 99-Es-293)

61-Pm-148M	Similar - not great	77-Ir-191	Very similar
61-Pm-149	Different - both rubbish	77-Ir-193	Similar
61-Pm-151	Different - old rubbish	79-Au-197	Similar
62-Sm-144	Similar	82-Pb-206	Very similar
62-Sm-147	Similar > 10 eV	82-Pb-207	Very similar, 3% ~ 10 MeV
62-Sm-148	Different - old rubbish	82-Pb-208	Very similar
62-Sm-149	Very similar	83-Bi-209	Same
62-Sm-150	Very similar	90-Th-230	Same
62-Sm-151	Same - 15% > 10 keV	90-Th-232	Different resonances
62-Sm-152	Similar	91-Pa-231	Similar < 15 eV
62-Sm-153	Different - old rubbish	91-Pa-232	Similar
62-Sm-154	Different	91-Pa-233	Similar < 40 eV
63-Eu-151	Very similar	92-U -232	Same < 200 eV
63-Eu-152	Same - 30% > 100 eV	92-U -233	Similar to 60 eV
63-Eu-153	Same - 16% > 100 eV	92-U -234	Similar
63-Eu-154	Different	92-U -235	Same - 1% ~ 20 MeV
63-Eu-155	Very similar	92-U -236	Same - 6% ~ 500 keV
63-Eu-156	Different - both rubbish	92-U -237	Similar - weird resonances
63-Eu-157	Different - old rubbish	92-U -238	Similar < 10 keV
64-Gd-152	Different < 10 eV	93-Np-236	Same
64-Gd-154	Similar	93-Np-237	Similar < 150 eV
64-Gd-155	Same - 20% > 200 eV	93-Np-238	Different - both rubbish
64-Gd-156	Different	93-Np-239	Same - both rubbish
64-Gd-157	Similar, same < 400 eV	94-Pu-236	Same
64-Gd-158	Different	94-Pu-237	Same
64-Gd-160	Different	94-Pu-238	Same
65-Tb-159	Different > 100 eV	94-Pu-239	Same
65-Tb-160	Different - old rubbish	94-Pu-240	Same
66-Dy-160	Very similar	94-Pu-241	Same
66-Dy-161	Similar	94-Pu-242	Same
66-Dy-162	Similar < 5 keV	94-Pu-243	Same
66-Dy-163	Similar	94-Pu-244	Same
66-Dy-164	Similar < 7 keV	95-Am-241	Same
67-Ho-165	Different	95-Am-242	Different - old bad
68-Er-166	Similar < 2 keV	95-Am-242M	Similar - 30% > 3.5 eV
68-Er-167	Similar < 500 eV	95-Am-243	Same
71-Lu-175	Same	96-Cm-241	Same
71-Lu-176	Same	96-Cm-242	Same
72-Hf-174	Same	96-Cm-243	Same
72-Hf-176	Same	96-Cm-244	Similar < 500 eV
72-Hf-177	Same	96-Cm-245	Same
72-Hf-178	Same	96-Cm-246	Same
72-Hf-179	Same	96-Cm-247	Different
72-Hf-180	Same	96-Cm-248	Same - negative elastic
73-Ta-181	Same	97-Bk-249	Same
73-Ta-182	Same	98-Cf-249	Same
74-W -182	Same	98-Cf-250	Same
74-W -183	Same	98-Cf-251	Same
74-W -184	Same	98-Cf-252	Same
74-W -186	Same	98-Cf-253	Same - partial to 11 keV
75-Re-185	Same	99-Es-253	Same – partial to 11 keV
75-Re-187	Same		

Appendix B: The Effects of Temperature and Doppler Broadening

For those readers who are not familiar with the effects of temperature and Doppler broadening on neutron cross sections and transport, for details I suggest that you read references [R5] and [R6], listed below. Here I will give a brief description of these effects. Users of neutron cross sections should be aware that there are several important effects of temperature and Doppler broadening,

1) There is the well known effect in the neutron resonance region, where as the temperature increases resonances become broader, hence the name Doppler broadening. Figure 1 below illustrates the effect of temperature on the U^{238} capture cross section for neutron reactor like temperatures, and figure 2 illustrates this effect for astrophysical like temperatures. These figures each contain four sub-figures, with each sub-figure comparing cross sections at two progressively higher temperatures. In both figure 1 and 2 each sub-figure shows exactly the same energy and cross section range. From these figures we can see that as temperature increases the peaks of the resonances become lower, and the minima between resonances become higher. At extremely high temperature the entire resonance structure disappears and the cross section approaches a simple 1/v shape (where v is the neutron speed). This temperature effect will have a very important effect on resonance self-shielding in any neutron transport calculation. You should note from these figures that due to the large resonance spacing in U^{238}

To understand the importance of considering temperature we should consider reaction rates, such as captures/second, in various systems. In optically thin systems (few mean free paths dimensions) the flux will be unshielded, and our reaction rates will be defined by a simple cross section average,

Unshielded Capture = $\int_{E_1}^{E_2} [\Sigma c(E)\phi(E)] dE$ = capture cross section times neutron flux

In optically thick systems (many mean free paths dimensions) the flux will be shielded (the flux is suppressed by the total cross section) and our reaction rates must include the effect of self-shielding on the cross section average,

Shielded Capture =
$$\int_{E_1}^{E_2} [\Sigma c(E)\phi(E)/\Sigma t(E)] dE$$
 = including one over total cross section

Consider for example the U238 capture cross section between 1 and 10 keV as shown in fig. 1 and 2. If we calculate the unshielded and shielded average capture cross section for the energy interval over the range of temperatures shown in figs. 1 and 2, we obtain the results shown below in table 1.

What we see from these results is that the unshielded average capture cross section is virtually independent of temperature, being about 1 barn over the entire temperature

range. In contrast the shielded average cross section varying by over a factor of three between the 0 K average (0.293 barns) and the 10 keV average (0.939 barns). The point to learn from this is that without including the effect of self-shielding in multi-group calculations, temperature has very little effect on the average cross sections, which is quite simply wrong for optically thick systems.

Ter	np.	Unshielded (barns)	Shielded (barns)
0	K	0.996	0.293
300	K	0.966	0.526
600	K	0.996	0.576
1,200	K	0.996	0.630
12,000	K (1 eV)	0.996	0.799
10	eV	0.998	0.905
100	eV	1.000	0.933
1	keV	1.004	0.935
10	keV	1.007	0.939

Table 1: Effect of Temperature on Average Cross Sections

2) Another, less well known, effect of Doppler broadening is at lower energies where as temperature increases the low energy constant scattering cross section increases and at very low energies approaches a simple 1/v shape (where v is the neutron speed); this effect is explained in detail in ref [R5]. Figure 3 illustrates the effect of temperature on the hydrogen total cross section. From this figure we can see that starting from a "cold" (0 Kelvin) cross section that is constant at about 20 barns, as temperature increases the cross section increases. Compared to the "cold" 20 barn cross section, at thermal energy the Doppler broadened cross section is about 30 barns, i.e., 50 % higher. Note also from this figure that this effect extends well above thermal energy. For example, at 300 Kelvin the thermal energy is 0.0253 eV, but we can see this effect up to about 1 eV; a factor of 400 higher in energy. From the lower half of figure 2 we can see that at very low energy the cross section approaches a simple 1/v shape (where v is the neutron speed) and the cross sections at various temperatures become proportional to one another. This effect on the cross sections at low energy is very important for thermal and low energy neutron systems.

3) Yet another important effect of temperature is that at lower energies neutrons do not slow down in energy as quickly and neutron scatter can even result in the upscatter of neutrons, i.e., when neutrons scatter they can gain, rather than lose, energy. This is a well known effect at low energies, where thermal scattering law data or a free gas model is used to model the interaction of neutrons with target atoms that are moving about with thermal motion. Figure 4 illustrates the effect of temperature on the neutron spectrum over a wide range of temperatures [R7]. This effect can also be important at higher energies, particularly near narrow resonances, where thermal motion of the target atoms can cause neutrons to slightly upscatter, but even slight upscatter can cause a neutron to scatter from below to above the energy of a very narrow resonance. See reference [R6], below for a routine designed to be used in conjunction with the SIGMA1 method of Doppler broadening [R5], to handle neutron thermal scattering. This routine [R6] is completely compatible for use with the cross sections included here, since these cross sections were Doppler broadened using the SIGMA1 method [R5]. The combination of

SIGMA1 [R5] Doppler broadened cross sections and THERMAL [R6] to handle thermal scattering, is currently used in the TART Monte Carlo transport code [R8].

Fig.1: Effect of Doppler Broadening on Resonance Cross Sections

Fig.2: Effect of Doppler Broadening on Resonance Cross Sections

Fig.3: Effect of Doppler Broadening on Low Energy Cross Sections

Fig.4: Effect of Doppler Broadening on Neutron Spectrum

University of California Lawrence Livermore National Laboratory Technical Information Department Livermore, CA 94551