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 Organization of the Final Report 
 This final report is organized in four sections.  Section 1 is the project summary 
(below), Section 2 is a submitted manuscript that describes the offline, or spinup 
simulations in detail, Section 3 is also a submitted manuscript that describes the online, or 
fully-coupled simulations in detail and Section 3, which is report that describes work 
done via a subcontract with UC Berkeley. 

Project Summary 
The goal of this project was to develop and apply a coupled regional climate, 

land-surface, groundwater flow model as a means to further understand important mass 
and energy couplings between regional climate, the land surface, and groundwater. The 
project involved coupling three distinct submodels that are traditionally used 
independently with abstracted and potentially oversimplified (inter-model) boundary 
conditions. This coupled model lead to (1) an improved understanding of the sensitivity 
and importance of coupled physical processes from the subsurface to the atmosphere; (2) 
a new tool for predicting hydrologic conditions (rainfall, temperature, snowfall, 
snowmelt, runoff, infiltration and groundwater flow) at the watershed scale over a range 
of timeframes; (3) a simulation of hydrologic response of a characteristic watershed that 
will provide insight into the certainty of hydrologic forecasting, dominance and 
sensitivity of groundwater dynamics on land-surface fluxes; and (4) a more realistic 
model representation of weather predictions, precipitation and temperature, at the 
regional scale. 

Regional climate models are typically used for the simulation of weather, 
precipitation and temperature behavior over 10-1000 km domains for weather or climate 
prediction purposes, and are typically driven by boundary conditions derived from global 
climate models (GCMs), observations or both. The land or ocean surface typically 
represents a bottom boundary condition of these models, where important mass (water) 
and energy fluxes are approximated. The viability and influence of these approximations 
on the predictions is not well understood because of the detail and complexity in land- 
and subsurface processes and the need for computational efficiency.  However, 
theoretical and experimental data suggest that these interactions may have a profound 
impact upon hydrologic and climatic budgets and weather predictions. 

Conversely, land-surface and groundwater models are typically applied on smaller 
domains (< 10 km in scale) to analyze runoff, streamflow, infiltration, evapotranspiration 
behavior, but are still influenced in many ways by couplings with the atmosphere (as in 
precipitation and temperature). Atmospheric inputs to these classes of models are 
typically represented as simplified "upper" boundary conditions, derived, in part, from 
coarse observations, uncoupled simulations, or other idealized simplifications.  

In this project, we developed a framework to couple these models by developing a 
new land-surface /subsurface model and coupling it to a regional climate model at the 
same temporal and spatial scales. We focused the coupling to examine the role of 
important mass and energy couplings between these models as a means to understand the 
difference between traditional and detailed approaches to this interconnection.  From this 
understanding of these interconnections, we were able to determine to what extent these 
connections need to be abstracted or preserved in modeling atmospheric, land-surface and 
groundwater interactions.  We have found a strong connection between groundwater 



dynamics (i.e. aquifer storage) and energy fluxes at the land surface and in the 
Atmospheric Bounday Layer (ABL).  The following papers outline this connection 
theoretically, demonstrate it with coupled modeling and propose strategies for better 
observing it in real settings.  
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1. Abstract 

The influences of groundwater dynamics on the energy balance at the land surface are 

studied using an integrated, distributed watershed modeling platform. This model includes the 

mass and energy balance at the land surface; variably-saturated subsurface flow; explicit 

representation of the water table; and overland flow. The platform is suitable for large scale, high 

resolution simulations, because it is parallel and designed for high performance computing. The 

model is applied to the Little Washita watershed in Central Oklahoma, USA and compared to 

runoff, soil moisture and energy flux observations. The connection between groundwater 

dynamics and the land surface energy balance is studied using a variety of conventional and 

spatial statistical measures. For a number of energy variables a strong interconnection is 

demonstrated with water table depth. This connection varies seasonally and spatially depending 

on the spatial composition of shallow soil moisture and water table depth. For this particular 

watershed a critical water table depth range is established between 1 and 5m in which the land 

surface energy budget is most sensitive to groundwater storage. Finally, concrete 

recommendations are put forth to characterize this interconnection in the field. 
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2. Introduction and Motivation 

Land surface processes are important as they control the transfer of water and energy 

between the lower atmosphere and subsurface. Characterization of these control mechanisms 

(e.g. evapotranspiration, ET, and recharge) are critical in the understanding and quantification of 

feedbacks between the atmospheric boundary layer (ABL), the land surface and the subsurface. 

This has been the subject of research for some time, both in the atmospheric community [Betts, 

et al., 1996] and the groundwater community [NRC, 2004; Sophocleous and Perkins, 2000; 

Sophocleous, et al., 1999]. The extent to which atmospheric and land surface processes are 

influenced by groundwater dynamics has been discussed previously [Liang, et al., 2003; 

Maxwell and Miller, 2005; Quinn, et al., 1995; Yeh and Eltahir, 2005; York, et al., 2002] though 

many aspects are still unresolved. 

Groundwater dynamics and storage influences surface soil moisture and surface water 

flow. As there has been recent evidence that shallow soil moisture has a pronounced affect on 

atmospheric processes and weather prediction [Chow, et al., 2006; Holt, et al., 2006; Patton, et 

al., 2005] groundwater may be an important part of this feedback. In this paper, we present a 

methodology to characterize and evaluate the effect of groundwater on land surface processes 

(such as surface soil temperature and ET) and shallow soil moisture. We postulate that there is 

more influence of the groundwater on land surface processes than previously thought and that 

zones of varying influence may be delineated within a watershed. In addition to this general 

methodology, numerical simulations in conjunction with traditional statistical analysis will be 

presented to quantify these effects. 

Originally developed as a lower boundary condition for global climate models [Manabe, 

et al., 1970], land surface models (LSMs) have steadily evolved and become more sophisticated 

 2



(see e.g. the review by [Betts, et al., 1996]). A large number of LSMs have been developed, with 

differing parameterizations [Chen, et al., 1997; Dai, et al., 2003; Henderson-Sellers and 

Henderson-Sellers, 1995; Lohmann, et al., 1998; Pitman, et al., 1999; Qu, et al., 1998; 

Schlosser, et al., 2000; Shao and HendersonSellers, 1996]. Until recently, LSMs have ignored 

the saturated zone (i.e. groundwater); though there has been recent work incorporating a 

groundwater component into LSMs [Liang, et al., 2003; Maxwell and Miller, 2005; Yeh and 

Eltahir, 2005]. Studies by [Liang, et al., 2003] and [Yeh and Eltahir, 2005] incorporated 

groundwater processes into a land surface model and demonstrated feedbacks. [Maxwell and 

Miller, 2005] explicitly coupled a saturated-unsaturated groundwater model to a land surface 

model and show feedbacks from the water table dynamics, particularly in shallow soil moisture. 

While these studies are promising they have not accounted for lateral subsurface and overland 

flow, nor has a study clearly demonstrated correlation between water table dynamics and surface 

processes. 

In this paper, a coupled numerical approach that realizes a fully-three dimensional, 

coupled land-surface, overland flow and subsurface model is presented. Using a simulation for a 

watershed in Central Oklahoma, USA, statistical tools are employed to establish the connection 

between groundwater and land surface processes and to delineate zones of spatial correlation. 

 

3. Conceptual Approach  

The underlying hypothesis in this work is that there exists a linkage between groundwater 

dynamics and the mass and energy balance at the land surface. This linkage occurs via the 

shallow soil moisture (< 2m below ground surface), which is directly impacted by processes at 

the land surface, such as ET, and the location of the water table. The question arises when does 
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the groundwater table exert control on the distribution of shallow soil moisture? Three different 

cases can be identified that are illustrated in Figure 1: (1) the depth to the water table, D, is small 

(D<100m); (2) the water table is at intermediate depth (D ~ 100m); and (3) the water table is far 

from the land surface (D>100m). 

In Case 1, processes at the land surface are not water limited and do not depend on small 

variations in the water table depth, i.e. the linkage between the groundwater dynamics and land 

surface processes can be weak. In Case 3, processes at the land surface are strongly water limited 

and again do not depend on small variations in the water table depth. Water transport is directed 

downward in case of recharge and there is no significant upward redistribution of soil moisture. 

Case 1 and Case 3 constitute two different end members in the functional relationship between 

groundwater dynamics and the energy balance. 

In Case 2, the water table is at, what we define as, the critical depth from the ground 

surface. Small changes in D cause significant vertical redistribution of soil moisture near the land 

surface resulting in changes of the mass and energy balance at the land surface. Since the energy 

and mass balance is expected to be continuous for finite D values, Case 2 characterizes the 

transition between Case 1 and Case 3.  

The above conceptual model is based primarily on vertical moisture distribution in a 

single soil column. Figure 2 expands on this concept, depicting an idealized hillslope transect 

with a stream on the left. This transect has been divided into region A) with shallow depth to 

groundwater; B) with an intermediate depth to groundwater; and C) with a large depth to 

groundwater. These three regions can be associated conceptually with the three soil columns in 

Figure 1 and are hydraulically connected via topographically driven groundwater flow. 
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In the case of topographically driven groundwater flow, the water table closely follows 

the topography, i.e. topographic lows coincide with groundwater discharge areas, whereas 

topographic highs coincide with recharge areas. Thus, the water table depth increases from the 

valleys to the hill tops. We then expect to find case 1 and case 2 in the valleys and at the hilltops, 

respectively, and case 3 in a transition zone along the hillslope extending from the valleys toward 

the hilltops. This conceptual approach is a simplification of real-world systems. For example, 

subsurface heterogeneity in the hydraulic properties, on a number of spatial scales, may result in 

a non-uniform moisture distribution and perched water lenses, which may influence the water 

and energy balance at the land surface. However, we believe that on intermediate to large spatial 

scales, our model provides insight into fundamental processes related to the linkage of the mass 

and energy balance at the land surface. This is similar to Toth’s classical analysis of watershed 

hydrodynamics using a simple analytical solution [Toth, 1963]. In this study we look at a real 

system, using numerical simulations, relaxing many of the simplifying assumptions in Toth’s 

approach. 

The conceptual model put forth above linking groundwater dynamics and the energy 

balance at the land surface is only one and two dimensional (i.e. a single-column representation 

of the linked surface-subsurface domain). Groundwater dynamics may have transient, three-

dimensional components, i.e. perturbations of the hydraulic potential in one location propagate 

through the system at a certain speed, which is mainly determined by the hydraulic diffusivity of 

the aquifer. Thus, an increase in the water table at one location due to e.g. recharge from a rain 

storm will cause a response throughout the entire system. These are well known principles of 

groundwater dynamics that have been reviewed recently by [Alley, et al., 2002]. In this study, we 

go a step further and argue that changes in groundwater levels in recharge areas along ridges and 
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hilltops will influence groundwater behavior in discharge areas along streams and seeps directly 

affecting the energy balance at these locations. This type of linkage is determined by the 

interrelationship of our 1D groundwater-energy linkage with 3D hydrodynamic effects on the 

watershed scale. 

 

 

 

Figure 1. Schematic of the interconnection between groundwater (GW), shallow soil moisture 

(SM) and land surface (LS) processes: shallow groundwater (Case 1); groundwater at 

intermediate aquifer depth (Case 2); and deep groundwater (Case 3).  
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Figure 2. Schematic cross-section of land surface and water table showing theoretical delineation 

of three zones of influence of groundwater on land surface processes as a function of 

groundwater depth. 

 

4. Coupled model approach 

ParFlow is variably saturated groundwater flow model with an integrated overland flow 

simulation capability. It solves the three-dimensional Richards equation using cell-centered finite 

differences in space and an implicit backward Euler scheme in time. ParFlow was designed for 

high performance computing applications and is, thus, parallel. It lends itself to large scale high 

resolution simulations that require the efficient use of large computational resources. To simulate 

fully-coupled surface-subsurface flow, a free-surface overland flow boundary condition is 

applied at the land surface and consists of the kinematic wave equation (Kollet and Maxwell, 
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2006). This equation is discretized using a finite control volume approach in space and also an 

implicit backward Euler scheme in time. The coupled equations are solved simultaneously using 

a Newton-Krylov method with multigrid preconditioning. An additional advantage of ParFlow is 

the use of an advanced octree data structure for the rendering of overlapping objects in 3D space, 

which facilitates geologic modeling of the subsurface, representation of the topography using 

information from digital elevation models and watershed boundaries. For details the reader is 

refereed to [Ashby and Falgout, 1996], [Jones and Woodward, 2001], and [Kollet and Maxwell, 

2006]. 

For this work, ParFlow has been extended to incorporate physical processes that are 

related to the energy and mass balance at the land surface. This was accomplished by integrating 

a land surface model, the Common Land Model (CLM), into ParFlow building on the approach 

by [Maxwell and Miller, 2005]. In their approach, ParFlow replaced the soil moisture module of 

CLM by replacing the soil column/root zone formulation and providing CLM with the moisture 

distribution at each time step. In turn CLM, provided ParFlow with the fluxes at the land surface, 

such as evpotranspiration and infiltration from precipitation. The passing of information between 

both models was performed via input and output files of each model. Additionally the coupled 

model was run in single column mode in undistributed fashion. 

In the study presented here, ParFlow still replaces the soil column/root-zone formulation 

in CLM [Maxwell and Miller, 2005] and CLM calculates the mass and energy balance at the land 

surface. Furthermore, CLM was incorporated into ParFlow in distributed manner as a module, i.e 

at each x,y location in the computational domain, an individual CLM tile coincides with the 

upper face of an individual cell at the top of the subsurface model in ParFlow. An additional 

difference from [Maxwell and Miller, 2005] is the replacement of the TOPMODEL based runoff 
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scheme in CLM with the integrated overland flow simulator in ParFlow. In this coupled model, 

CLM is also parallel including a parallel input and output file strucutre. Atmospheric data, such 

as temperature, precipitation, solar radiation, humidity, and barometric pressure, are used to 

force the model and can be applied in a distributed fashion as well. 

As aforementioned, ParFlow calculates the mass balance in the subsurface, while CLM 

calculates the mass and energy balance at the land surface [Dai, et al., 2003{Maxwell, 2005 

#107; Maxwell and Miller, 2005]. The latter include evaporation from canopy and the ground 

surface; transpiration from plants; ground heat flux; freeze-thaw processes and sensible heat 

fluxes. Since the governing equations have been discussed in the great detail in the literature, we 

will only briefly reiterate some fundamental equations to illustrate the intrinsic coupling of the 

mass and energy balance.  

At the land surface, the mass and energy balance can be written as  

( ) ( ) ( ) ( )θθθθ GLEHRn ++=  (1), 

where Rn is net radiation, H is the sensible heat, LE is latent heat, G is ground heat flux, and θ is 

the soil moisture at the land surface. Hence, all energy variables depend on the water content at 

or close to the ground surface. 

The mass balance of the subsurface can be written as follows  

( ) ( ) ( )θψθψθ ss qTq
tt

S +⋅∇=
∂

∂
+

∂
∂  (2), 

where, Ss is the specific storage, ψ is the soil pressure head, q is the water flux, T is temperature, 

t is time, and qs is a general source/sink term. At or near the land surface, qs can be expressed as 

( ) ( )θθ gs qLEq +=  (3), 

 9



where qg is the flux of water infiltrating at the land surface due to precipitation and canopy 

throughfall and/or surface runoff. 

Equations (1) through (3) illustrate the coupling a of the subsurface-land surface system 

that occurs mainly through the nonlinear source qs and the dependence of the energy variables on 

θ. The strength of coupling and the resulting non-linearity depends on the parameterization of the 

relationships Rn(θ), H(θ), qs(θ), G(θ), θ(ψ), and q(T) and the inherent assumptions and 

simplifications. Some simplifications applied in the coupled modeling approach include the 

independence of q on T (the hydraulic conductivity of the subsurface materials are independent 

of T); neglecting the convective component in G; and neglecting explicit vapor transport in the 

subsurface in the calculation of ground evaporation. 

A detailed discussion of parameterization schemes of components of the energy balance 

at the land surface will be given below. This will provide insight into the causes of the influence 

of ground water dynamics on the mass and energy balance at the land surface as calculated by 

CLM.  

 

4. Little Washita Watershed:  Description and Model Setup 

In the current work, the coupled ParFlow-CLM (PF.CLM) watershed model was applied 

to the Little Washita watershed, an approximately 600 square kilometer watershed located in the 

Southern Great Planes (SGP) region of the United States in Southwestern Oklahoma (Figure 3). 

The Little Washita watershed lies within the DOE Atmospheric Radiation Monitoring (ARM) 

facility. This case study illustrates the major aspects of the coupled model. The model inputs 

include atmospheric forcing, land and soil cover information, topography, and surface and 

subsurface geologic models.  
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The PF.CLM watershed model was constructed wiht a lateral spatial discretization 

(dx=dy) of 1km and a vertical discretization (dz) of 0.5m using 32x45x390 cells in the x,y and z 

dimension, respectively, resulting in a total of 561,600 rectilinear elements. The lower z-

coordinate originates at about 260m above mean sea level and the lower-left cell center latitude 

and longitude are 34.74 and -98.30, respectively. A preprocessed digital elevation model (DEM) 

was used to define the land surface boundary and thus the depth of the subsurface (defined as the 

topographic elevation to the bottom of the model) ranged from a minimum of 63m to a 

maximum of 191m. The model used no-flow boundary conditions for the subsurface on all sides 

and allowed overland flow out of the domain along all sides based upon the surface slopes. Note, 

the model domain extends beyond the watershed boundaries; therefore the location of the water 

divide of the Little Washita watershed develops naturally in the model. 

The model used RAWLS soil parameters for of the surface soil types shown in Figure 5 

and International Geosphere-Biosphere Program (IGBP) parameters for each land cover type, 

also shown in Figure 5. In the model, the first layer at the land surface contains the USGS soil 

cover information (Figure 5). The vanGenuchten parameters required for the soil moisture 

pressure head relationships were obtained from the RAWLS data base [Schaap and Leij, 1998]. 

The deeper subsurface was based on an effective representation using effective parameters 

values based on the analysis of public records of some 200 boreholes in the region. The 

properties of the effective subsurface are as follows: saturated hydraulic conductivity, Ksat=4.8 

m/d, porosity, φ=0.4, vanGenuchten parameters α=3.5 (1/m) and n=2, and the residual saturation 

Sres=0.2. 
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Vegetation cover information was obtained from the USGS (Figure 5). Corresponding 

vegetation parameters were obtained following the standard of the International Geosphere-

Biosphere Program (IGBP).  

In order to obtain a realistic initialization of all state variables  the model was run 

repeatedly over one year using the same forcing until a dynamic equilibrium was reached 

(commonly referred to as model spinup). Starting at the beginning of the spinup the water table 

was initialized 2m below ground surface everywhere and the model was run over successive 

years until equilibrium was reached, which was seven years. 

Figure 4 below shows an example soil moisture distribution in the Little Washita 

watershed in July after the spinup is completed. The non-uniform moisture distribution is a result 

of the topography and the non-uniform soil and land cover distributions, shown in Figure 5. 

Note, groundwater naturally converges and discharges in the valley, forming the Little Washita 

River. 
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Figure 3. Location of the Little Washita watershed. The inset shows the location of the watershed 
in the state of Oklahoma.  The footprint of the DOE ARM site is shown in the inset. 
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Figure 4. Plot of relative soil saturation for the entire Little Washita watershed model for mid 
June, 1999. Note the watershed outline from Figure 3 is overlain on the land surface. 
 

 

 
Figure 4. Spatially distributed soil (left) and vegetation cover (right) information used in the 

simulations. 
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5. Comparison to field data 

The Little Washita watershed has been subject of many field campaigns in the ARM and 

SGP framework [Jackson, et al., 1999].. These field campaigns focused on measurements of 

shallow soil moisture, soil temperature, and variables of the atmospheric boundary layer and 

have produced a number of datasets the locations of which are shown in Figure 3. Remote 

sensing data (both from satellites and aircraft over-flights) are also available, because many of 

the field campaigns were directed at the application of remote sensing for measuring of land 

surface variables. Additionally, there are data available from the following sources: 1) USGS 

steam gauging stations; 2) the Oklahoma Mesonet; 3) Ameriflux tower; 4)Soil Climate Analysis 

Network (SCAN); and 5) the ARS Micronet. Thus, there are data from the shallow subsurface 

upward. Although there are a number of groundwater wells in the watershed, almost all are 

private and have only a single water-level measurement taken at the time of installation. 

Unfortunately, there is virtually no groundwater data available during the study period from 

September, 1998 until August, 1999 or any other time period that is also covered by the 

aforementioned data sources. 

Nevertheless, the available data can be used to demonstrate the fitness of the model to 

simulate the mass and energy balance in an integrated and distributed fashion on the watershed 

scale. Here we show a brief comparison of the simulated soil moisture with data from the SCAN 

station, simulated energy fluxes with the data from the Ameriflux tower, and simulated stream 

discharge with data from a USGS stream gauging station. Note that the model was not 

comprehensively calibrated to measured data as mentioned earlier. During the spinup process, 

the saturated hydraulic conductivity was adjusted slightly using limits established by effective 

theory to better match the measured hydrograph. 
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Comparison with the measured hydrograph from the USGS station 7327550 shows good 

agreement during baseflow conditions from September 1998 until the end of February 1998 

(Figure 6). After February 1999, the model dries out too quickly. Additionally the model 

generally matches the peak discharge rates during and after rainfall events, capturing the timing 

very well but overestimating the peak flow. From July until September, the model is not able to 

capture the low flow conditions, but soil moisture values are maintained at or close to saturation 

in the river valley during that time period. 
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Figure 6. Comparison of the simulated and measured hydrograph from the USGS gauging station 

7327550. 

 

Figure 7 shows the comparison with the soil moisture data from the SCAN site at about 20 and 

50 cm depths with averaged simulated values of the top model layer. The averaged simulated 

values were derived from equally weighted values of the four modeling cells closest to the 

SCAN site. Despite the fact that the comparison is based on a point measurement and simulation 
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results that use 1km lateral resolution, the results agree well. The model is able to capture the 

major wetting and drying cycles. The peaks are generally underestimated from December 1998 

until June 1999, whereas the model does not dry out quickly enough from June until August 

1999. Reasons for these discrepancies might include spatial grid resolution, application of 

uniform atmospheric forcing, and the choice of effective subsurface and land surface parameters. 
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Figure x. Comparison of simulated and measured soil moisture from the SCAN site. 

 

To evaluate the energy simulations we compared daily averaged estimates of latent heat (LE) 

from the model output to results from the Ameriflux tower in the domain (Figure 8). The model 

overestimates LE especially from September until December 1998, however the overall trend in 

LE is captured reasonably well. Other studies have shown the complexities and difficulties of 

comparisons with Ameriflux tower data that are related with, for example, fetch uncertainty 

[Twine, et al., 2000]. The large discrepancies especially in September 1998 may also stem from 

the spinup that assures that the energy balance at the end of August 1999 is the same as the 
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energy balance at the beginning of September 1998. Yet, the energy balance at the end of August 

1999 is not at all similar to the actual energy balance at the end of August 1998 that was 

recorded by the Ameriflux tower. 
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Figure 8. Comparison of simulated daily averaged latent heat with the data from the Ameriflux 

tower. 

 

Although the comparison shows discrepancies between simulated and measured data, the model 

reproduces major trends and large parts of measured time series reasonably well. Significant 

improvement of model performance could possibly be accomplished through a calibration 

exercise and parameter uncertainty study, which is outside the scope of the current work. Since 

the model is not used for prediction purposes, but for process identification and examination, we 

feel that the fitness of the model to capture major physical processes and behavior of the real 

system is adequate. 
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6. Model Results 

6.a Yearly averaged, spatially distributed data 

In this section, we present some yearly-averaged, summary results from the coupled 

model spinup mentioned in the previous section. Figure 9 shows plots of yearly averages of the 

energy balance, depth to groundwater level and ground surface temperature. These components 

are discussed below. 

The depth to the water table (Figure 9b) correlates strongly with topography (Figure 9a), 

i.e. the water table is shallow in the valley and deep along the hilltops. Inspection of the different 

components of the energy balance shows the impact of vegetation cover and the shallow water 

table (Figure 9e-f). The influence of the water table is especially pronounced for the ground heat 

flux (Figure 9h). While soil cover has surprisingly little influence on the average fluxes, 

vegetation cover is clearly a primary factor. Soil cover only plays a significant role in the 

distribution of the relative saturation (Figure 9c) 

What cannot be deduced from this Figure, however, is the contribution that different 

vegetation types impart on the water and energy flux variables to assess the impact of 

groundwater dynamics, i.e. water table depth. A more detailed analysis is performed in the 

following sections; first using scatter plots and then univariate and bivariate geostatistics.  
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Figure 9. Plots of yearly-averaged a) topography; b) depth to water table c) relative soil 

saturation; d) ground surface temperature; e) net radiation; f) latent heat flux; g) sensible heat 

flux; and h) ground heat flux. 
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6.b Scatter plots 

In this section, we use scatter plots to study the interdependence between different 

components of the land surface mass and energy balance and water table depth (and thus 

groundwater dynamics). Figure 10 shows scatter plots of yearly averaged values of a) net 

radiation, Rn; b) latent heat, LE; c) sensible heat, H; and d) ground heat flux, G as a function of 

yearly averaged water table depth, D. In these plots, each symbol represents an individual x-, y-

location in the computational domain with a corresponding yearly averaged energy and water 

table depth value. Because of the spatially varying vegetation, different symbols were used for 

grasslands, open shrublands, croplands, and deciduous forest to identify the vegetation cover at 

individual x-,y-locations. 

Preliminary inspection of the Figure 10 shows wide scatter that can be primarily 

attributed to the spatially varying vegetation types and secondarily to soil type. Well-defined 

relationships between D and the different components of the energy budget emerge for open 

shrublands, croplands, and deciduous forest, if the data is analyzed for each vegetation type 

individually. 

These relationships are characterized by a segmented behavior including two flat 

segments separated by a steep segment of positive or negative slope in the range 1<D<5m. The 

flat segments indicate no sensitivity of the energy variables to D and are formed by value pairs at 

locations with either relatively small or large D values, i.e. very shallow or deep water tables. 

The steep segments, which are particularly pronounced in the case of G (Figure 10d), form the 

range in which the energy variables are most sensitive to D. In case of Rn, LE, and G the 

correlations with D are negative. Thus the energy fluxes decrease with increasing water table 
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depth. In case of H, the correlation is positive. For grasslands, energy variables show generally 

very little dependence on D, except in the case of G. In the range 1<D<5m, energy fluxes can 

vary by up to a factor of two in the case of H and the vegetation type deciduous forest. 
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Figure 10. Semi-logarithmic scatter plots of yearly averaged a) net radiation; b) latent heat; c) 

sensible heat; and d) ground heat flux as a function of water table depth. The gray areas indicate 

the root zone depth. The dashed lines separate three segments that characterize the curves for 
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different vegetation types indicated that are plotted using different symbols. Note the different 

scales for the y-axes in this figure. 

 

6.c Spatial bivariat statistics 

In order to test whether the model captures the spatial structure of the shallow soil 

temperature appropriately, we developed omni-directional unit semivariograms using data from 

the Micronet network for June, July and August 1999 and compared those with the predicted 

semivariograms from the simulations. The comparison is shown in Figure 11 and reveals good 

agreement of the measured and predicted spatial structure in the shallow soil temperature. In 

both cases, the semivariances stabilize after about 6km lag size. However, for small lag sizes 

there is only a limited amount and, naturally, more noise in the unit semivariograms of the 

measured data. 
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Figure 11. Unit variograms for shallow soil temperature from the simulation and Micronet 

monitoring network in the Little Washita watershed.  
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In the model, the water table closely follows the topography. The water table exhibits a spatial 

structure that is influenced by the topography and characterized by relatively shallow water 

levels in the topographic depressions and relatively deeper water levels along the hilltops 

(Figures 4 and 9). Because the water table follows the topography, variograms of simulated 

water table depths, D, can be used to identify the scale of the spatial structure in D that arises 

from topographically-driven processes. Figure 12 shows the directional, unit semivariograms in 

the x- and y- directions for the yearly averaged D values. These semivariograms show 

differences in structure in the two directions. In the x-direction, which is aligned with the 

principal flow direction of the Little Washita, the sill is reached for a lag size of about 11km. In 

the y-direction which is mainly transverse to the Little Washita, the spatial correlation in water 

table depth appears to deteriorate at a smaller lag size of about 7km.  
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Figure 12. Semivariograms in the x and y direction for yearly averaged water table depths 

values. 
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In order to study the cross-dependence of the components of the energy balance and 

ground surface temperature Ts with water table depth, monthly cross correlograms were 

generated (Figure 13). The components of the energy balance are net radiation, Rn; latent heat, 

LE; sensible heat, H; and the ground heat flux, G. Ground surface temperature was included in 

the analysis, because it contributes to the energy balance and is a commonly monitored variable 

in the field.  

In Figure 13, the net radiation, Rn, does not show cross dependence with D over the entire 

year on all spatial scales. Latent heat, LE, shows weak negative cross dependence in December, 

January, and February. Sensible heat, H, shows weak positive cross dependence in July, August, 

and September. The largest cross dependence was observed for the ground heat flux, G, with 

maximum values of about 0.7 and -0.7 in January and July respectively. The cross correlation 

values are positive in the cool months of the year (November until March) and become negative 

in the warmer months from April until September. The transition from positive to negative 

values occurs quite abruptly from March to April. This is in contrast to the reverse case, when 

the cross dependence changes more gradually from negative to positive values from September 

to October. 

Cross correlations were also calculated for the ground surface temperature, Ts, which 

shows positive cross correlation from July until September and negative values for December 

and January. For lag sizes larger than 7km, the cross correlations for all variables are close to 

zero over the entire year. In cases of significant cross correlation, the scale of the cross 

correlation structure appears to be 6 to 7km. Thus, the scale of the cross correlation structure is 

comparable to the hillslope scale depicted in Figure 12.  
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Figure 13. Cross correlations of the components of the energy balance and ground surface 

temperature with water table depth (Rn, net radiation; LE, latent heat; H, sensible heat; G, ground 

heat flux; Ts, ground surface temperature). 

 

Because strong cross dependence was observed for ground heat flux and water table 

depth, unit directional semivariograms in the x- and y-directions were calculated for each month 

of the year (Figure 14) The directional semivariograms for monthly-averaged water table depths 

show directional variation (Figure 14), which was also true for the semivariograms of the yearly 
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averages in case of D (Figure 12). There is also very little variation in semivariograms from 

month to month. 

In most months, the semivariograms of G also show a directional dependence. This 

dependence is very similar to the directional dependence of the semivariograms of D with 

smaller correlation lengths in the x- than in the y-direction. The overall shape of the 

semivariograms of G and D are very similar as well over most of the year. However, there is a 

shift in the semivariograms of G toward slightly smaller correlation lengths that is especially 

apparent in January. 

In March and April, and from August until October, the directional dependence weakens 

in the G semivariograms. In these months the semivariograms in the y-direction approach the 

semivariograms in the x-direction and it appears that the spatial structure in G becomes self-

governing, i.e. independent of D. The correlation length decreases to approximately 5km in the 

x- and y- direction. The disappearance of the directional dependence and apparent decoupling of 

the structure of G from D coincides with transition in the cross correlation from positive to 

negative in March and April, and from negative to positive from August until September (Figure 

13).  
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Figure 13. Directional semivariograms for ground heat flux, G, and water table depth, D, for 

each month of the year. 

 

7. Discussion of Results 

7.a Scatter Plots 

The scatter plots (Figure 10) illustrate the correlations of the components of the energy balance 

of the land surface with water table depth and, thus, groundwater dynamics. The three segments 

of the curves in Figure 10 are characterized by two flat segments for the ranges 0.001<D<1m and 

D>5m that are separated by a steep segment with positive or negative slope for the range 
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1<D<5m.  We explain this behavior as follows: in the range 0.001 < D < 1m, the water table is 

very close to land surface and the system is never water limited. This is true even during the very 

dry months of the year, because moisture is easily redistributed vertically upward from the 

shallow water table. The shallow water table is maintained in the valleys by topographically 

driven flow. Thus the first segment corresponds to Case 1 in Figure 1 and Zone A in Figure 2 as 

discussed in Section 3. 

In the range D>5m, the water table is far enough below the root zone that the system is 

water limited. This is true in general, except during and shortly after precipitation events. In 

areas where D>5m (primarily on the hill tops), soil moisture is not distributed vertically upward 

from the water table toward the land surface; transport of moisture is solely downward. This 

range is equivalent to Case 3 in Figure 1 and Zone C in Figure 2 of Section 3. 

In the range 1<D<5m, both negative and positive correlations exist between the different 

energy variables and D. This range is equivalent to Case 2 as defined in Figure 1 and designates 

a critical water table depth for this system (as defined in Section 3) between 1 and 5m below the 

ground surface. The distinct correlations for different vegetation types and energy variables stem 

from the parameterizations of the different processes in the land surface model and from variably 

saturated groundwater flow above the water table. This will be discussed in detail by inspecting 

the physical components of latent heat, LE: ground evaporation and transpiration. 

In CLM [Dai, et al., 2003], ground evaporation, Eg is defined as a conductance or a 

resistance in the form  

( )
d

ag
ag r

qq
E

−
= ρ  (4), 

where ρa is the intrinsic density of air; qg is the air specific humidity at the ground surface; qa is 

the air specific humidity at reference height zq obtained from atmospheric forcing; and rd is the 
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aerodynamic resistance of evaporation between the atmosphere at zq. In CLM, the specific 

humidity of the ground surface, qg, is parameterized as  

⎟
⎠
⎞

⎜
⎝
⎛

= RT
gM

satg eqq
ψ

 (5), 

where ψ is the soil total potential [L], g is the gravity constant [LT-2], M is the molar weight of 

water [M]; R is the gas constant [JM-1K-1]; and T is the temperature at the ground surface [K]. 

The aerodynamic resistance, rd, is based on the Monin-Obukhov similarity principle and 

is also a function of qg. In general, evaporation from the ground decreases with decreasing qg, 

which explains much of the negative correlation of LE and D in the range 1<D<5m. Yet, LE 

includes transpiration, Etr, which competes with Eg for the amount of available moisture (and 

thus energy) in the shallow subsurface. In CLM, Etr is parameterized as follows  

( )
sb

b
d

pot
fSAIftr rr

r
LELE

+
= δσ  (6), 

where σf is the vegetation fraction; LSAI is the stem plus leaf area index; δ is the step function; 

 is the potential evaporation from wet foliage; Ld is the dry fraction of foliage surface; rb is 

the conductance of heat and vapor flux from leaves; and rs is the stomatal resistance. 

pot
fE

In Equation 6, rs dependends on ψ(θ) and increases with decreasing water content. This 

dependency is weak as transpiration may still occur even under very dry conditions. The result is 

small contribution of Etr to the correlation between LE and D in the range 1<D<5m. Other LSMs 

use different stomatal resistance parameterzations ([Qu, et al., 1998], Table 1) and the 

correlation between LE and D is, of course, very sensitive to this parameterizaton.. 

For LE, the critical depth is between about 1 and 5m. Modifications in the 

parameterization schemes (e.g. a stronger dependence of Etr on ψ(θ)) would change the range of 

the critical depths at which water table effects are significant. However, the overall behavior, i.e. 
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the segmentation of the curves for the different vegetation types, would not be affected. Thus, the 

underlying hypothesis that there exist some critical depths at which the water table cannot be 

neglected appears to be valid in general terms. 

It is also expected that the critical depth depends on the soil type, because the parameters 

of the pressure-saturation relationship vary with soil type. In the PF.CLM model as applied to the 

Little Washita watershed, the upper layer contains the distributed pedology from STATSGO, 

while the rest of the subsurface is approximated as a uniform, effective continuum (as described 

in Section 4). The scatter plot analysis (Figure 10) exposes that variation in soil type had little 

influence on the energy balance at the land surface. This is reflected by the small scatter of the 

data for each individual vegetation type. While the insensitivity of critical depth to soil type 

might seem counterintuitive, a more in-depth analysis using LE shows the consistency of this 

result. Although, in the model, the parameterization of LE depends on ψ(θ), it is most sensitive 

to ψ(θ) when the soil is very dry, i.e. when Eg is reduced. For these ψ(θ) values θ  is at or near 

the residual water content. This is true regardless of soil type and results in a homogenization of 

ψ(θ) and thus the energy fluxes. A more pronounced effect of the soil type would be expected at 

intermediate water contents, when the sensitivity of θ to ψ is largest. But in that ψ(θ) range, the 

sensitivity of the energy variables to soil moisture is relatively small. The ground evaporation-

pressure, Eg(ψ), functional relationship described by Equation 5 is shown in Figure 15.  This 

Figure indicates that ground evaporation is most sensitive to ψ in the range -102<ψ<-105m. The 

upper limit of this range (ψ ≈ -102m) coincides with the wilting point threshold used in the 

calculation of Etr in CLM [Dai, et al., 2001]. For 32 1010 −>ψ , the sensitivity of θ to changes 

in ψ is small also for structured soils, such as clay, and θ is rapidly approaching the residual 
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water content. Thus the overlap of the sensitivity ranges of the energy variables and θ on ψ(θ) is 

relatively small. 
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Figure 15. Semi logarithmic plot of relative humidity, hr, and relative saturation, SE, versus soil 

pressure head as predicted by Gibbs’ and vanGenuchten formulae. A wilting point value of 150m 

is indicated with the dotted line. 

 

Although the analysis thus far has been based on yearly averaged relationships of energy 

variables and D, the scatter plots suggest a transient effect of D over the critical depth range. A 

transient effect would be marked by temporal variations in the energy balances that are prompted 

by temporal variations of D. The time scale of the transient effect will depend on how quickly 

the pressure head profile adjusts to perturbations in D and is thus, influenced by the soil type, 

subsurface heterogeneity, vegetation cover, ambient moisture conditions, and the magnitude and 

duration of the perturbation. Whilst the analysis of transient effects requires additional work in 

future, it is obvious that large scale trends in D might cause significant changes in the energy 
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balance at the land surface. This might be important in regions such as the Great Plains, where 

large scale groundwater mining has resulted in a decline of previously shallow groundwater 

levels. 

 

7.b Spatial bivariat statistics 

The semivariograms of the yearly averaged water table depths (D) (Figure 12) show a 

strong directional dependence. The x-directional semivariogram is closely aligned with the 

principal flow direction of the Little Washita from west to east and therefore captures the larger 

scale of processes that are associated with the longitudinal river architecture. Because the y-

direction is aligned normal to the principal flow direction of the Little Washita River, the scale of 

the D structure in the y-direction semivariogram is smaller than in the x- direction,. This means 

the semivariogram in the y direction mainly captures hillslope processes from the center of the 

valley to the hilltops. Thus, the main process captured here is groundwater flow from recharge 

areas along the hillslope and hilltops toward discharge areas along the river corridor and the 

associated spatial variation in D. 

In the analysis of cross correlations shown in Figure 13, it is important to keep in mind 

that nonlinearities in the dependence between water table depths and the energy variables are not 

captured. Thus, small cross correlations do not necessarily entail the absence of cross 

dependence. Additionally, cross correlations were calculated over the entire domain without 

distinguishing between vegetation and soil type. This was done to obtain an integrated measure 

of cross dependence at the watershed scale. On the other hand, large cross correlations do not 

necessarily suggest a mechanistic dependence. However, because a process-based model was 

used, this study is able to address this ambiguity inherent in statistical analysis. 
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The cross correlograms of variables with significant cross dependence exhibit distinct 

seasonality both in the values and in structure. This will be discussed using the ground heat flux, 

G, which exhibits the strongest linear cross correlation with water table depth, D. 

During the summer months, G is directed from the atmosphere into the subsurface. This 

is shown in Figure 13 by negative cross correlations. G decreases with increasing water table 

depth, because drier conditions reduce the thermal conductivity of the soil, which in turn reduces 

G. The cross correlation reverses in September and October and remains positive during the 

winter months. This reversal is caused by a switch in the direction of G which is from the 

subsurface into the atmosphere during the winter. The positive cross correlation only indicates a 

reversal in the direction of G, the magnitude of G is still negatively correlated with D. 

Juxtaposition of the G cross correlograms and semivariograms (Figures 13 and 14) shows 

that the spatial structure of G is very similar to the water table structure during most of the year. 

The scale of the G structure is 6 to 7km, which can be inferred from the cross correlograms and 

semivariograms, and is similar to the hill slope scale in the y-direction. Changes in the structure 

of G (Figure 14) occur when the cross correlograms are in transition from positive to negative 

values (Mach and April) or vice versa (September and October). Therefore, the change in the 

structure of G coincides with a change in its direction from the subsurface toward the atmosphere 

or vice versa. In the transition months the correlation scale decreases to about 5km and does not 

show directional dependence. That has implications for the design of field studies, which will be 

discussed below, because it demonstrates during which time periods process interactions are 

expected to be detectable. 

The good agreement of the structure in G and D stems from their interdependence. This is 

reflected in the scatter plots and cross correlograms (Figure 10 and 13) and is most pronounced 
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when the subsurface equilibrates to the prevalent seasonal atmospheric conditions at the land 

surface. The scale of the G structure is shifted to slightly smaller values, mainly because of the 

influence of vegetation and soil cover. Additionally, hydraulic pressure perturbations from, for 

example, precipitation and recharge events propagating through the system on relatively small 

time scales also affect the spatial structure. This effect could be more pronounced for non-

uniform atmospheric forcing, which is not taken into account in this study. 

 

8. Recommendations for Future Field Studies 

The simulation results suggest that PF.CLM is a useful tool in the design of field 

campaigns, because it affords the selection of important parameters, measurement locations and 

time periods. Based on the findings of this study, we recommend collecting co-located 

measurements of at least groundwater level, soil temperature and pressure head profiles, as well 

as the basic atmospheric variables. These co-located measurements should be collected at 

locations where the water table is in the range of the critical depth, 1-5m in this work. In cases of 

larger or very shallow (D< 0.5m) water table depths, water level measurements appear to be 

secondary. Figure 16 shows the scatter plot of average ground surface temperature versus water 

table depths at each x-,y- location in the domain for the month of June 1999. For deciduous 

forest, croplands and open shrublands, water table depth affects ground surface temperature in 

the range of 2K and should be detectable from simple field measurements. For these vegetation 

types water table effects are on the order of land cover effects, i.e. neglecting water table effects 

may have the same impact as simulating open shrublands instead of croplands. 
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Figure 16. Scatter plot of average ground surface temperature versus water table depth for the 

month of June 1999. The depth of the root zone is indicated with the gray area. 

 

Figure 13 and 14 also suggest that cross dependence of groundwater dynamics and 

energy variables might only be detectable in the field for the ground heat flux, G, and ground 

surface temperature. Since the cross correlations and the similarity of the spatial structure of G 

and D are strongest in the months when the seasonal direction of G is well established, 

measurement campaigns should avoid the transition months from winter to summer and vice 

versa. In our case, this transition occurred during March and April and September and October, 

respectively, though regional and yearly variations must also be taken into account 

We also believe that shallow soil moisture data from the first few centimeters below the 

ground surface, often inferred from remote sensing data, might be inherently difficult to interpret 

and might not reflect the intrinsic spatial composition of the system especially under dry 
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conditions. Soil moisture directly at the land surface does not necessarily represent the moisture 

availability of the underlying system. At the surface, the moisture availability and, thus, mass 

fluxes, are governed by the structure of the soil and the vertical gradient of the soil water 

pressure head throughout the soil column. Therefore the soil moisture value at the land surface 

does not suffice to characterize the system and is not a measure of the “true dryness” or moisture 

state of the system.  

This point is illustrated using a simple analytical solution for steady evaporation at the 

ground surface for a structured soil for two different evaporation rates. Figure 17 shows depth to 

the water table versus relative saturation for two water table - evaporation rate (E) 

configurations. At the land surface and right below it, saturations for both configurations are very 

similar and close to the residual water content. Thus, application of Gibbs equation in 

conjunction with boundary layer theory to calculate E will result in identical values. 

However, Figure 17 shows that in case of water table A, the system is able to maintain an 

evaporation rate that is two times larger than in case of water table B, because of increased 

moisture transport toward the land surface. From this analysis, it is obvious that the saturation 

value at the land surface does not allow inference of E or the “true drynesss” of the subsurface if 

no information of θ(z) and the depth to the water table is available in the case of a homogeneous 

soil profile. The analysis is further complicated in the case of a heterogeneous subsurface, 

because knowledge of θ(z) does not suffice to infer fluxes and thus E. Knowledge of θ(z,ψ) of 

the material of the soil profile or direct measurements of ψ are required. 

The latter also has implications for parameterizations of E in commonly applied land 

surface models (e.g. NP etc) that incorporate empirical resistance terms based on the shallow soil 

moisture profile. Knowledge of vertical soil heterogeneity and θ(ψ) relationships would be 
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required to make the application of these parameterization schemes warranted, though this type 

of data is rarely available on the watershed scale. 
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Figure 17. Depth below ground surface for two evaporation rate – water table configurations. 

Water table A corresponds to evaporation rate E = 0.035 mm/h and water table B corresponds 

two E = 0.07 mm/h. 

 

The above analysis might also explain the spatially random soil moisture patterns from 

remote sensing after long drying periods that tend to exhibit no spatial structure, because θ at the 

land surface is homogenized close to the residual value. This does not mean, however, that the 

moisture fluxes do not show spatial patterns under dry conditions, θ simply might not be the 

correct indicator. We suggest humidity close to the ground surface as a better indicator for the 

moisture state of the system, because this parameter is directly determined by the moisture fluxes 

at the land surface interface. 
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9. Summary and Conclusions 

In this study, simulations were performed to examine the influence of groundwater 

dynamics on the energy and mass balance at the land surface. ParFlow, a 3D variably saturated 

groundwater flow model was coupled to the Common Land Model (CLM) to simulate water and 

energy fluxes in the subsurface and at the land surface including saturated flow in the deeper 

aquifer. The coupled model, PF.CLM, was applied to the Little Washita watershed, Oklahoma, 

USA. Continuous atmospheric time series from the North American Regional Reanalysis data set 

were used to force the model uniformly in space over one entire year from September 1998 to 

August 1999. A dynamic equilibrium, commonly referred to as spinup, was established in which 

the average mass and energy balance does not change over the simulation period. The simulation 

results were compared to measured data from a USGS stream gauging Station, an Ameriflux 

tower and the Soil Climate Analysis Network. The comparison showed reasonable agreement for 

stream discharge, latent heat and soil moisture without calibration. 

The results of this study show that components of the energy balance are sensitive to 

groundwater dynamics, if the groundwater level is in the range of, what we define as, the critical 

depth that extents 1 to 5m below the ground surface. This critical depth coincides with the root 

zone defined in the model. Therefore, the sensitivity of the energy variables on groundwater 

dynamics also depends on the land cover. Although, the connection of groundwater dynamics 

and surface processes clearly is a function of the parameterizations in the coupled model, we 

believe that the connection generally exists but can be of varying strength depending on the 

applied model or physical conditions. 

In a second step, the spatial structure and cross dependence of the energy variables and 

water level was analyzed. Unit semivariograms from measured soil temperature data from 
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Micronet stations in the Little Washita watershed agreed well with simulated semivariograms 

(Figure 11), which suggest that (1) there exists spatial structure in the energy variables and (2) 

the model is able to realistically capture this structure. 

The underlying mechanism that generates the structure is lateral subsurface flow from 

recharge areas along hilltops to discharge zones along the Little Washita river corridor. 

Directional dependence of the structure stems from the geometry of the watershed and flow 

direction of the Little Washita which is predominantly from west to east. Semivariograms of 

depth to the water level and ground heat flux suggest two spatial scales of correlation, 7 and 

11km, which are the result of the aforementioned watershed geometry and the hillslope scale. 

Structure in the ground heat flux is predominantly determined by the underlying water table 

structure, but deteriorates during the transition from warm to cold months and vice versa. 

Spatial cross dependence derived from cross correlograms is significant only in the case 

of ground heat flux, ground surface temperature and possibly latent heat. Cross dependence 

exists on a scale similar to the hillslope scale, which suggests lateral subsurface flow toward the 

Little Washita river as the underlying mechanism. 

This study calls attention to the need for co-located measurements of groundwater level, 

soil pressure head, soil temperature and standard atmospheric variables, which are virtually non-

existent. These co-located measurements are needed in spatially distributed fashion to identify 

the interconnection of groundwater dynamics and the mass and energy balance at the land 

surface as well as any spatial structure and cross dependence that potentially exists. This study 

also points to the usefulness of the applied coupled model in process identification, measurement 

network design and data analysis. 
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A deeper analysis of shallow soil moisture using a simple analytical solution for steady 

evaporation reveals the limited information content of this variable about the moisture state of 

the system in the case of shallow groundwater. This should be taken into consideration in studies 

related to the interactions of the land surface and the lower atmospheric boundary layer. 

Additionally, the model is useful in providing realistic soil moisture initial conditions for 

atmospheric models that do not account for groundwater dynamics [Maxwell, et al., 2007].  
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Abstract 

This study combines a variably-saturated groundwater flow model and a mesoscale atmospheric 

model to examine the effects of soil moisture heterogeneity on atmospheric boundary layer 

processes. This parallel, integrated model can represent spatial variations in land-surface forcing 

driven by three-dimensional (3D) atmospheric and subsurface components. The development of 

atmospheric flow is studied in a series of idealized test cases with different initial soil moisture 

distributions generated by an offline spin-up procedure or interpolated from a coarse-resolution 

dataset.  These test cases are performed with both the fully-coupled model (which includes 3D 

groundwater flow and surface water routing) and the uncoupled atmospheric model.  The effects 

of the different soil moisture initializations and lateral subsurface and surface water flow are seen 

in the differences in atmospheric evolution over a 36-hour period.  The fully-coupled model 

maintains a realistic topographically-driven soil moisture distribution, while the uncoupled 

atmospheric model does not.  Furthermore, the coupled model shows spatial and temporal 
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correlations between surface and lower atmospheric variables and water table depth.  These 

correlations are particularly strong during times when the land surface temperatures trigger shifts 

in wind behavior, such as during early morning surface heating, 

 

1. Introduction 

The characteristics of the land surface determine sensible and latent heat exchange with 

the atmosphere, thus affecting the evolution of the atmospheric boundary layer. Mesoscale 

atmospheric models currently rely on parameterized land-surface model (LSM) to provide fluxes 

of heat, momentum, and moisture from the land surface to the atmosphere. Land-surface models 

have evolved from so-called leaky-bucket parameterizations (Manabe et al. 1965) to more 

sophisticated parameterizations (see e.g. the review by Betts et al. 1996). Commonly-used 

models have been summarized and evaluated in the literature associated with inter-comparison 

studies (the Project for Intercomparison of Land-Surface Parameterization Schemes, e.g. 

Henderson-Sellers and Henderson-Sellers 1995; Shao and Henderson-Sellers 1996; Chen et al 

1997; Qu et al 1998; Lohmann et al 1998; Pitman et al 1999; Schlosser et al 2000; Luo et al. 

2003). While improvements have been made by tuning land-surface model parameters for a 

variety of test cases, LSMs are all limited to vertical transport in the soil column. They are thus 

unable to capture topographically-driven lateral variations in soil moisture and limited in their 

ability to provide spatial variability in predicted land surface fluxes. Current mesoscale 

atmospheric models are therefore not provided with realistic boundary conditions at the surface 

because LSMs cannot represent surface and subsurface lateral transport due to topography or 

moisture gradients. This can lead to errors in model predictions during periods when thermal 

forcing dominates the diurnal development of the boundary layer (see e.g. Chow et al. 2006a).   

 2



The focus of this work is to understand the influence of soil moisture variability on 

atmospheric boundary layer forcing. This requires the development of a three-dimensional, fully-

coupled groundwater-atmospheric flow model, as described in this paper. 

Soil moisture and ground surface temperature variability effects on the atmospheric 

boundary layer have been shown through several previous studies both in idealized and realistic 

cases. Ookouchi et al. (1984) and Banta and Gannon (1995) showed that changes in soil moisture 

affect thermally-forced winds on a sloped surface, because the soil wetness determines land 

surface thermal conductivity and hence surface heat fluxes. Patton et al (2005) used idealized 

striped wet-dry soil moisture patterns to show that the development of convective cells in the 

atmospheric boundary layer directly relate to the wet-dry soil patterns. The influence of the land 

surface on the boundary layer extends further than the development of convection cells, because 

these then influence the development of clouds and precipitation. Indeed, Chen and Avissar 

(1994) showed that a soil moisture discontinuity affects wind, cloud and precipitation dynamics 

in a two-dimensional idealized domain.  Clark et al. (2004) used a three-dimensional model to 

demonstrate that rainfall locations and intensities are affected by the locations and size of a wet 

soil patch and that these interactions may persist on scales as small as 10-15 km.   

Real case studies also indicate the extent of the influence of soil moisture variability on 

the atmosphere. Taylor et al. (1997) used observational data to study land-atmosphere 

interactions in semiarid conditions.  They provide evidence that boundary layer variability is 

linked to antecedent rainfall and suggest that soil moisture patterns play a role in rainfall 

locations. Such observational evidence has led to modeling studies which attempt to improve 

representation of soil moisture processes. The effect of improved soil moisture data and land-

surface parameterizations in simulations of conditions during the Southern Great Plains 

 3



experiment in July 1997 was examined by Desai et al. (2005), who showed mixed results on the 

extent of the influence of soil moisture changes on dry sunny days.  Chow et al. (2006a) found 

that soil moisture initialization was a crucial factor in accurate simulations of thermally-forced 

valley wind systems in the Swiss Alps using the ARPS (Advanced Regional Prediction System) 

mesoscale model. An off-line hydrologic model was used to more accurately represent spatial 

variability of soil moisture in the valley, significantly improving prediction of wind transitions in 

the valley. Holt et al. (2006) investigated the effects on weather prediction of different initial soil 

moisture distributions and land surface parameterizations over the IHOP domain.  They found 

that both the different soil moisture initializations and different land parameterizations 

significantly altered the forecasts. 

As LSMs have traditionally ignored the deeper soil moisture processes and the saturated 

zone (i.e. groundwater), there has been recent interest in incorporating a groundwater component 

into LSMs to improve the representation of soil moisture at the land surface. Liang et al. (2003) 

and Yeh and Eltihir (2005) incorporated groundwater processes into a land surface model at 

larger scales and demonstrated feedbacks on the land surface.  Maxwell and Miller (2005) 

coupled a variably saturated groundwater model to a land surface model and showed the 

importance of including an explicit representation of the water table on shallow soil moisture 

distribution. 

There has also been work to examine the coupling between the deeper subsurface and the 

atmosphere.  Quinn et al. (1995) coupled the simplified, single-column SLAB boundary layer 

model to the TOPMODEL land-surface model to investigate the role of groundwater on 

boundary layer development.  They studied wet and dry conditions and identified cases where 

increased physical complexity of the subsurface is warranted.  York et al. (2002) studied the 
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effects of a single-column atmospheric model connected to a single layer groundwater model 

through a reservoir-type land surface scheme. They focused on a small watershed in Kansas and 

found an effect of water levels on surface evapotranspiration.   These studies all point to the need 

for better understanding of physical processes that occur at the interfaces between the deeper 

subsurface and land surface, and between the land surface and the atmosphere. LSMs are the 

current numerical mechanism which represents the latter. While LSMs have grown in 

sophistication, until this current study lateral flow (subsurface and overland) has not been 

explicitly accounted for.  

The full effects of lateral surface and sub-surface flow and, consequently, land-surface 

properties on the development of the atmospheric boundary layer remain unknown. Open 

questions remain regarding the effect to which land-surface heterogeneity is reflected in 

atmospheric heterogeneity, the time and spatial scales over which the effect of soil moisture 

variations persist in the atmosphere, and how best to represent these processes for numerical 

simulations of atmospheric flow and transport over a watershed, and eventually over a larger 

region.  

This paper describes the development and application of a dynamically coupled, variably-

saturated groundwater, overland-flow, mesoscale atmospheric model (see also Chow et al. 

2006b). This model is used to study the effects of soil moisture heterogeneity and water table 

depth on boundary layer processes. In particular, we have coupled ParFlow, a three-dimensional, 

parallel, variably saturated groundwater flow model (Ashby and Falgout 1996; Jones and 

Woodward 2001), with the Advanced Regional Prediction System (ARPS) mesoscale 

atmospheric model (Xue et al. 2000, 2001, 2003). ParFlow includes an integrated overland flow 

component (Kollet and Maxwell, 2006), and thus provides ARPS with soil moisture information 
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that includes the effects of ponding, runoff, and subsurface flow, including an explicitly-resolved 

water table.  In turn, ARPS, through its land-surface model, provides ParFlow with precipitation 

and evapotranspiration rates, usually not available in groundwater studies. This leads to a fully-

coupled model which can represent spatial variations in land-surface processes and feedbacks, 

driven by physical processes in the atmosphere and the subsurface.  

Our test case is the Little Washita watershed in Oklahoma, which has been the subject of 

numerous studies and provides a unique source of shallow subsurface, surface, and atmospheric 

data for validation (e.g. Jackson et al. 1999; Vine et al. 2001; Guha et al. 2003). We use this 

domain to conduct a series of idealized simulations with quiescent initial winds and no lateral 

forcing to effectively isolate land-surface forcing from other influences on the development of 

the boundary layer. These simulations are performed with two different soil moisture 

initializations based on model spin-up and interpolation of regional datasets. While this paper 

focuses on idealized simulations, the Little Washita test case was chosen for future fully-coupled 

studies where synoptic forcing and grid nesting will be incorporated.  

 

2. Model components and coupling 

We begin with a description of the individual model components for the atmospheric 

boundary layer, the land surface, and the subsurface and then describe the fully-coupled model.  

a. Atmospheric model: ARPS 

ARPS was developed at the Center for Analysis and Prediction of Storms at the University of 

Oklahoma, and is formulated as a parallel, large-eddy simulation (LES) code that solves the 

three-dimensional, compressible, non-hydrostatic, spatially-filtered Navier-Stokes equations. 

ARPS was developed for storm-scale atmospheric simulations and has been extensively tested in 

 6



idealized and field applications (Xue et al. 2000, 2001, 2003). ARPS uses fourth-order spatial 

differencing for the advection terms and second-order schemes for other forcing terms. Temporal 

discretization is performed using a mode-splitting technique to accommodate high-frequency 

acoustic waves. The large time steps use the leapfrog method; first-order forward-backward 

explicit time stepping is used for the small time steps, except for terms responsible for vertical 

acoustic propagation, which are treated semi-implicitly. For this study solid wall lateral boundary 

conditions and zero-wind initial conditions are used to isolate the effects of the land-surface on 

boundary layer development. Initial conditions are provided from NOAA North American 

Regional Reanalysis (NARR) data as described further below. Full physics parameterizations 

(e.g. radiation and moisture processes) and land-surface schemes are used as would be done for 

simulations with realistic synoptic forcing.  

The standard (uncoupled) land-surface soil-vegetation model used by ARPS solves 

energy and moisture budget equations in shallow, two-layer soil columns, as described in detail 

in Xue et al. (2001) and Ren and Xue (2004). The total soil column extends 1 m below the land 

surface, and is divided into a 1 cm thick surface layer and a 99 cm thick deep soil layer. Energy 

and moisture budgets are computed using a force-restore model to allow for vertical transport in 

each column. One soil column is used for each horizontal grid cell but these columns do not 

communicate and hence do not allow for surface or subsurface lateral transport. A separate 

canopy layer is used to account for interception of precipitation and transpiration processes. 

Clapp and Hornberger (1978) pedotransfer functions are used to describe the variation of soil 

moisture with pressure.  Excess precipitation when the soil is fully saturated is ignored and does 

not contribute to surface runoff.  

 7



ARPS uses 13 soil types (including water and ice), and 14 vegetation classes (following 

the United States Department of Agriculture classifications). Land use, vegetation, and soil type 

data are obtained from United States Geological Survey (USGS) STATSGO 30 second global 

data. Elevation data obtained from the USGS are given at 3 arc second intervals and sampled at 1 

km resolution. Initial soil temperature is set equal to the air temperature in the first adjacent grid 

cell at the surface. Initial soil moisture is obtained either from the NARR data set at 32 km 

resolution or from an offline spinup process explained in Section 4.2.  

b. 3D variably saturated groundwater model: ParFlow  

ParFlow is a parallel, variably saturated groundwater flow model, and is described in 

detail by Ashby and Falgout (1996) and Jones and Woodward (2001). In the mode employed 

here, it solves the Richards equation in three dimensions using a parallel, globalized Newton 

method. ParFlow has been modified to optionally include the Common Land Model (CLM) (Dai 

et al. 2003), as described in Maxwell and Miller (2005), as well as an integrated overland flow 

module (Kollet and Maxwell 2006), which solves the kinematic wave equation. Thus ParFlow 

has the unique capability to explicitly resolve streamflow without the use of parameterized river 

routing subroutines. For the groundwater flow solution, ParFlow employs an implicit backward 

Euler scheme in time, and a cell-centered finite-difference scheme in space. At the cell 

interfaces, the harmonic averages of the saturated hydraulic conductivities and a one-point 

upstream weighting of the relative permeabilities are used. For the overland flow component, 

ParFlow uses an upwind finite-volume scheme in space and an implicit backward Euler scheme 

in time. ParFlow requires specification of subsurface hydraulic properties, such as the saturated 

hydraulic conductivity Ksat, porosity, φ, and the van Genuchten parameters for the pressure-

saturation relationships. 
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d. Coupling approach: PF. ARPS 

The fully-coupled simulations require the simultaneous solution of the 3D groundwater 

flow equations (provided by ParFlow) and the 3D atmospheric flow equations (provided by 

ARPS). The original ARPS land surface model constitutes the interface between ParFlow and 

ARPS to pass surface moisture fluxes between the two models. This approach is shown in Figure 

1. The coupling has been performed by integrating ARPS as a subroutine into ParFlow and 

creating a numerical overlay of the two soil layers of the land surface model in ARPS with the 

two soil layers at the land surface in ParFlow.  The general solution procedure begins with the 

explicit advancement of ARPS.  An operator-splitting approach is employed allowing the 

ParFlow model to honor the ARPS internal timestep (1 second for this application), or to take 

larger timesteps, such as 1 h. Using the operator-splitting approach, surface fluxes that are 

relevant to ParFlow, such as infiltration and evaporation rates are integrated within ARPS over 

the entire ParFlow timestep (e.g. 1 hour) and used to provide surface fluxes at the new time for 

implicit time advancement of ParFlow. For the simulations presented here both atmospheric and 

subsurface timesteps are set to 1 s (and both the large and small ARPS timesteps are set to 1 s).  

The subsurface moisture field calculated by ParFlow is passed directly to the land-surface model 

within ARPS and is used by the land surface model in ARPS in the next time step. The land-

surface model is advanced for each internal ARPS time step to provide all the surface fluxes, but 

the soil moisture values are now specified by ParFlow.  

3. Model domain and setup 

3.1 Little Washita watershed domain and grid 
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The Little Washita watershed is located in central Oklahoma and has been the focus of 

several studies (e.g. Jackson et al. 1999; LeVine et al. 2001; Guha et al. 2003), with the result 

that it is the source of an extensive observational dataset. Figure 2 shows a map of the watershed. 

The soil and vegetation cover, shown in Figure 3, is predominately grass with shrubs and trees 

interspersed, underlain by mostly loamy sand, sand, and smaller coverage of sand and silt loam.  

A resolution of 1 km is used to represent the watershed area using a grid of 45x32 in the 

horizontal. ARPS uses 50 grid points in the vertical, with 40 m spacing near the ground and 

stretched above to give an average spacing of 400 m over the 20 km domain height. ParFlow 

uses 390 grid points in the vertical with 0.5 m resolution for a subsurface depth of 195 m. We 

focus on the time period from the Southern Great Plains 1999 experiment (SGP99; LeVine et al. 

2001; Guha et al 2003) from 7 am CST on July 9, 1999 to 7 pm CST on July 10, 1999.  

 

3.2. Surface-subsurface input data  

The land surface constitutes the upper boundary of the groundwater flow model and is 

obtained from a processed digital elevation model. The maximum depth of the aquifer below the 

subsurface is approximately 195 m, with a no-flow boundary condition at the bottom of the 

computational domain. This results in a variable numbers of grid points in the subsurface. The 

maximum depth value was chosen from borehole information and results from other studies in 

the region (e.g. Davis 1955) and facilitates modeling of deep groundwater flow. The large depth 

of the model domain also ensures that the lower boundary condition does not influence the 

results at the land surface. The hydraulic properties of the deeper subsurface are average values 

derived from approximately 200 borehole logs collected in the region. The regionally uniform 

porosity value of φ =0.4 [-] corresponds to the arithmetic average of the borehole data. The 
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average value of Ksat was set to be 10 m/day initially, but was adjusted during spin-up to better 

match the measured hydrographs along the Little Washita River. The adjusted value is Ks = 5 

m/day, which is about a factor of five larger than the arithmetic mean from the borehole 

information. This discrepancy can be explained by the quite limited and uncertain information 

obtained from the borehole logs and the smoothed topography at 1 km resolution, which results 

in generally smoother water table relief and thus smaller pressure gradients.  

The top two 0.5-m thick layers in ParFlow extending to 1 m depth below the ground 

surface are considered topsoil. The soil information was derived from the soil cover categories 

used by ARPS (as shown in Figure 3) and matched to the van Genuchten parameters for each 

corresponding soil type using the data and analysis in Schaap and Leij (1998). Topographic 

slopes were derived from the digital elevation model after filling sinks (areas of local 

convergence in the topography) by locally smoothing the topography. In this study, the 

Manning’s coefficient used in the overland flow module is applied uniformly in space, though it 

can also be distributed to reflect non-uniform surface roughness. The van Genuchten parameters 

specified in the deeper subsurface correspond to a sandy loam, which we consider representative 

for the watershed. 

 

4. Test Cases 

4.1. Configuration of test cases 

Idealized simulations of the Little Washita watershed are used to study the sensitivity of 

the evolution of the atmospheric boundary layer to spatial variations in soil moisture and water 

table depth. While the actual watershed topography and soil and vegetation types are 

incorporated, we initialize the simulations with zero winds and use solid wall lateral boundary 
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conditions to isolate the effects of the land surface forcing. Initial potential temperature and 

humidity are specified with sounding observation data from nearby Norman, OK at 7 am on July 

9, 1999.  Boundary layer development is driven by the diurnal variations in incoming solar 

radiation and the consequent land surface fluxes. Three different idealized cases with different 

soil moisture initializations are performed.  

1. First, the stand-alone ARPS model is used with soil moisture interpolated from 

the NARR dataset; Case 1- referred to as ARPS(narr) for ARPS using NARR soil 

moisture initialization.  

2. Second, the fully-coupled PF.ARPS model is run with the initial soil moisture 

derived from the offline spin-up procedure described below; Case 2- referred to as 

PF.ARPS.  

3. Finally, to distinguish between the effects of soil moisture initialization and soil 

moisture evolution, the stand-alone ARPS model is run using the same initial soil 

moisture provided in Case 2 but without any dynamic coupling to ParFlow; Case 

3- referred to as ARPS(os), for ARPS-Offline Soil moisture initialization.  

Note that Cases 2 and 3 have identical initial soil moisture, Cases 1 and 3 are identical models, 

and that all cases have identical initial soil temperature distributions.  The offline spinup used in 

Case 2 and 3 is explained in more detail in the following section. 

4.2. Offline spin-up 

An offline, model spin-up is used to generate realistic initial soil moisture distributions 

for use in test cases 2 and 3 described above. Spin-up is defined as the dynamic equilibrium of 

the mass and energy balance over a certain time period over which a time series of atmospheric 

data is used to repeatedly force the model. To generate the offline spin-up data for initialization, 
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ParFlow is run coupled with the more advanced land surface model CLM (Dai et al, 2003) 

driven by atmospheric forcing provided by the NARR reanalysis dataset. The forcing data are for 

the 1998-1999 water year and include wind speed and direction, surface air temperature, 

incoming radiation, precipitation, pressure and humidity.  This configuration is used for spin-up 

(rather than using ParFlow with the ARPS land surface model) to more accurately represent 

thermal, snow and biogeophysical processes in a more sophisticated way (Noilhan and Planton, 

1989; Dai et al, 2003).  Though no comprehensive calibration process is used, good comparisons 

with observed time series of streamflow, soil moisture and land energy balance were obtained 

after repeated application of this meteorological forcing from September 1998 to October 1999 

(not shown, Kollet and Maxwell, 2007).  As mentioned above, both the Case 2, the fully-coupled 

PF.ARPS, and Case 3, the uncoupled ARPS(os) simulations, are initialized by the soil moisture 

fields from July 9, 1999 provided by this spin-up processes.  This offline model used for spin-up 

incorporates more and better process descriptions in contrast to other methods that might 

calibrate, or tune, land surface parameters, or assimilate land surface data. 

 

4.3. Test case comparisons 

Figure 4 shows the soil moisture fields from PF.ARPS, ARPS(os) and ARPS(narr) at 12 

hour intervals over the simulation period. The PF.ARPS and ARPS(os) soil moisture fields show 

the distinct signature of the Little Washita River, with wetter conditions along the river corridor 

and drier conditions in the uplands. This is due to the convergence of deeper groundwater water 

flow at discharge zones that are the Little Washita River valley and its tributaries during the 

offline spin-up processes. Additional variability is a result of the influence of the distributed soil 

and vegetation cover (as shown in Figure 3), which is, however, less pronounced than the impact 
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of groundwater dynamics. In contrast, the soil moisture field from the uncoupled ARPS(narr) run 

shows small spatial variability, due to the use of interpolated coarse-resolution soil moisture data 

from NARR. Because of the land-surface parameterization in ARPS, the soil moisture values at a 

given grid cell can only be affected by shallow soil properties at that x, y location, the land 

cover, soil type, and the atmospheric conditions.  Thus the patterns of variability in soil moisture 

in the ARPS(narr) simulation track closely the variations in soil type and to a lesser extent the 

variation in vegetation type, as seen by comparing Figure 3 and the last column in Figure 4. The 

ARPS land surface model is not able to account for topographically-induced lateral groundwater 

flow and, thus, cannot develop spatial patterns like those from PF.ARPS; the soil moisture field 

in ARPS(narr) tends to dry out uniformly over the simulation period until isolated precipitation 

events develop after about 24 hours of simulation (discussed further below). 

Even though the PF.ARPS and ARPS(os) models are initialized with the same soil 

moisture distribution (shown at time zero, in the top panels of Figure 4), the soil moisture in 

these models begins to show differences as early as 12 hours of simulation time (second panel).  

These differences are most notable in the upper river valley (west and center part of the domain), 

in the headwaters (x = 0-15 km, y = 15-25 km), and along the hilltops. This is due, as pointed out 

above, to the inability of the soil model in ARPS to account for groundwater storage, lateral flow 

and surface water routing.  Over the first 12 hours of simulation time the PF.ARPS model 

maintains the wet conditions in the river valley by a combination of groundwater storage below 

the root zone (non-existent in ARPS) and lateral redistribution of water due to topographically 

driven subsurface flow. These effects are more pronounced later in the simulation (12 h and 24 h, 

bottom two panels in Figure 4) after rainfall occurs.  With no processes to maintain topographic 

surface and subsurface flow, the rainfall (see Figure 8 later) begins to significantly change the 
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initial soil moisture distribution, particularly in the ARPS(os), but also the ARPS(narr) case, 

unlike the PF.ARPS case, which routes rainfall over the surface and in the subsurface.  This is 

seen by the distinct circular patterns of soil moisture for the ARPS(narr) and ARPS(os) 

simulations in the bottom panel of Figure 4, directly due to the areas of convective rainfall 

(shown in Figure 8, below). 

Figures 5, 6 and 7 plot the soil temperature, latent heat flux and potential temperature 

(respectively) for the three models for a time series covering early morning on the second 

simulation day, t = 24, 26 and 27 h (7 am, 9 am and 10 am local time).  This time series was 

chosen because it corresponds to early morning land heating which drives convection.  Soil 

moisture has been shown to play an important role in thermally-forced flows (see e.g. Patton et 

al. 2005, Chow et al. 2006a).  Figure 5 shows that the soil temperature for PF.ARPS and 

ARPS(os) is quite different than that of the ARPS(narr) case.  The soil temperatures exhibit 

patterns similar to the soil moisture, showing temperature variations between the river valleys 

and hill tops.  For t = 26 and 27 h, cooler temperatures are predicted in the wetter river valleys 

and warmer temperatures on the drier hill tops. At time t = 24 h, the opposite is true, with 

warmer temperatures in the river valleys and colder temperatures on the hill tops.  The 

temperature plots show more influence of soil and vegetation cover than the soil moisture 

profiles.  The ARPS(narr) case, again, only shows variation in temperature due to variations in 

soil and vegetation cover with some slight variations in incoming radiation due to local surface 

slope changes.    

The soil temperatures for PF.ARPS and ARPS(os) in Figure 5 show some minor 

differences, despite the more significant differences in surface soil moisture shown in Figure 4.  

The soil temperature determined by the ARPS land surface model comes directly from the 
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formulation of Noilhan and Planton (1989).  In this formulation the surface soil temperature 

depends on soil moisture from the second, or deeper, soil layer (Noilhan and Planton, 1989; see 

their Eq. 10), not the upper soil moisture used in other formulations (see e.g. Dai et al, 2003).  

Soil and vegetation cover are also a factor (see Eq. 8 and Table 2 in Noilhan and Planton, 1989) 

but as these parameters are the same in all simulations and the deeper soil layer responds more 

slowly than the upper soil layer, the soil temperatures between PF.ARPS and ARPS(os) are quite 

similar.  The limitations of this aspect of the Noilhan and Planton (1989) approach have been 

previously discussed by Pleim and Xiu (1995; see their Section 2a) and requires further 

investigation. 

Figure 6 plots the latent heat flux for the three model runs, showing patterns of both soil 

and vegetation type and soil moisture. While most of the domain is grasslands over loamy sand, 

a line of open shrub and croplands over loam along the river valley, and an area of crop and 

shrublands over silt loam in the headwaters area of the watershed are particularly visible.  Even 

though vegetation and soil cover play a large role, soil moisture is a significant moderator of 

latent heat as demonstrated by the different results from the three simulations.  The latent heat 

flux for the ARPS(narr) simulation is significantly different than for PF.ARPS and ARPS(os).  

The PF.ARPS and ARPS(os) simulations also show local differences in energy fluxes up to 25%.  

These differences correspond to both the aforementioned areas of different vegetation cover and 

soil moisture differences seen in Figure 4.  The bare ground evaporation and vegetation 

transpiration formulations used to determine the latent heat flux in ARPS are described by 

Noilhan and Planton (1989) and Noilhan and Mahfouf (1996).  Soil moisture moderates both 

processes.  Both relationships assume that soil moisture values greater than field capacity (taken 

as a fraction of saturation which is a function of soil type) present no resistance to evaporation 
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and transpiration, making the latent heat flux less sensitive in wetter regions. Below field 

capacity, bare soil evaporation depends upon a sinusoidal relationship to soil moisture, whereas 

plant transpiration depends linearly on soil moisture.  Bare soil evaporation has been shown to be 

sensitive to the formulation used (e.g. Kondo et al. 1990; Mahfouf and Noilhan, 1991).  The role 

of subsurface water in evapotranspiration will be discussed further below. 

Figure 7 plots the potential temperature at the first grid point above the ground for the 

three simulations.  Again, the largest differences are between the ARPS(narr) case and the two 

cases initialized with the soil moisture fields from the offline spin-up.  While the ARPS(narr) 

case starts with a topographically-influenced potential temperature, this evolves to reflect only 

the variation in the soil and vegetation cover.  The potential temperature for the ARPS(narr) 

simulation is generally higher than the ARPS(os) and PF.ARPS cases.  The PF.ARPS and 

ARPS(os) cases are similar overall, but the PF.ARPS case shows cooler potential temperatures in 

a number of locations, reflecting the influence of variations in soil moisture distribution. These 

changes in the near-surface air temperature demonstrate the direct forcing of the land surface on 

the atmosphere and will drive different convective processes, as described below. 

Figure 8 shows the hourly rainfall distribution for the three cases, PF.ARPS (left), 

ARPS(os) (center) and ARPS(narr) (right) for two times (33 and 34h) late in the simulation.  

With no lateral forcing, the rainfall is generated convectively in all three cases and its location 

and intensity show little agreement between the three cases.  The differences in potential 

temperature shown in Figure 7 trigger convective motions that develop into variable rainfall 

patterns, demonstrating the sensitivity of the atmosphere to land-surface forcing under calm 

conditions. The rainfall patterns are particularly strongly reflected in the soil moisture 

distribution for ARPS(os) and ARPS(narr) at 36 hr as shown previously in the last row of Figure 
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4. The influence of soil moisture on rainfall was recently studied by Clark et al. (2004), who 

correlated increased surface soil moisture resulting from antecedent rainfall to specific patterns 

of rainfall from subsequent frontal storms.  While the current study involves a more complicated 

system than the idealized study of Clark et al. (2004), there may be some similarities between the 

observed precipitation processes.  Figure 8 suggests that rainfall patterns for the PF.ARPS case, 

with precipitation occurring along the margins of the wet river valleys, might well be influenced 

by preceding soil moisture patterns. Additional work is needed to examine the mechanisms of 

these land-atmosphere feedbacks on rainfall, which is beyond the scope of this study.   

Summarizing the evolution of soil moisture for the different cases, Figure 9 plots time 

series of the spatially-averaged surface soil moisture for the three model simulations.  PF.ARPS 

and ARPS(os) start with the same spatial soil moisture distribution, while the ARPS(narr) model 

is initialized with the drier upper soil layer from NARR data.  The ARPS(os) upper soil moisture 

dries out quite rapidly and is almost in agreement with the ARPS(narr) simulation by 36 hours.  

The PF.ARPS soil moisture also dries out slightly over the simulation period, but maintains a 

much wetter upper soil moisture than the ARPS(os) simulation.  This further underscores the 

additional processes present in the fully-coupled PF.ARPS model and how lateral flow and 

groundwater storage help to maintain a much wetter soil profile.  

 

4.4. PF.ARPS correlations and analysis 

The fully-coupled PF.ARPS simulations provide a unique opportunity to evaluate effects 

of deep subsurface processes on atmospheric boundary layer development. Because the land 

surface formulation in ARPS includes separate dependence on each shallow soil layers (surface 

and deep), land heat fluxes depend more strongly on the water table depth than on either the 
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upper or lower soil moisture alone.  As mentioned previously, land surface temperature, for 

example, depends only on the deeper soil moisture (a limitation noted by Pleim and Xiu, 1995) 

while bare soil evaporation is a function of upper soil moisture.  In the coupled model, PF.ARPS, 

the soil moisture is modeled as a coherent system from land surface to bedrock, directly 

accounting for water table storage and lateral flow.  This allows correlations between water table 

and land surface functions to be fully realized in the coupled model. 

To investigate the effect of the groundwater component on land surface and atmospheric 

processes, scatter plots are generated between water table depth (as distance below the land 

surface) and various surface and subsurface variables.  These are either taken at a point in time or 

averaged over the entire PF.ARPS simulation.  Figure 10 plots four such comparisons, for a) 

surface soil temperature, b) potential temperature, c) boundary layer depth, and d) the vertical 

wind speed at the surface as a function of water table depth for simulation times 24 h (top), 26 h 

(middle) and 27 h (bottom) for all surface points in the domain.  These plots represent the 

influence of water table depth on land-surface and atmospheric processes. 

At 24 h, there is a negative correlation in surface soil temperature to water table depth 

with two patterns present, one for water table depths less than one meter and the other for water 

table depths greater than one meter.  The ground surface temperatures corresponding to water 

table depths of less than one meter are in general warmer than the ground surface temperatures 

corresponding to water table depths greater than one meter, though there is significant scatter in 

the relationship.  There is a weak trend in increasing surface air (potential) temperature with 

increasing water table depth, though with significant scatter.  There is also a weak correlation 

between boundary layer depth and water table depth, and we see a weak negative correlation 

between the vertical wind component at the bottom atmospheric cell, w, and water table depth.   
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As the land surface temperature increases during sunrise (times 26 and 27h), we see a 

reversal in correlation between upper soil temperature and water table depth, with soil 

temperature increasing with increasing water table depth.  The potential temperature correlation 

with water table depth strengthens over these times as well, with less scatter apparent at 27 hours 

than at 24 hours of simulation time.  The entire boundary layer becomes deeper and exhibits a 

stronger correlation to water table depth.  The vertical velocity component also changes its 

correlation to water table depth, shifting to a positive correlation at 27 hours of simulation time 

to increasing water table depth, with mostly downward velocities at very shallow and upward 

velocities at deeper water table depth values.  This corresponds to the onset of convection with 

downward velocities in the cooler river valleys and upward velocities at the warmer hill tops.  

The timing of this shift in convective behavior can be important in some systems, particularly 

thermally-forced slope flows.  Modeling such wind transitions has been shown to be sensitive to 

soil moisture distribution (see e.g. Chow et al 2006a, Daniels et al 2006).   

Figure 11 shows latent heat flux, averaged in time over the simulation, as a function of 

water table depth for a range of soil types and vegetation cover.  Time averages over the duration 

of the simulation indicate the influence of water table depth with the shorter-term variability in 

other processes removed (e.g. solar forcing), thus showing which land-surface and atmospheric 

parameters might be correlated with water table depth over longer timescales.  We see a 

relationship between latent heat flux and water table depth for some soil and vegetation types.  

The correlations between water table depth and latent heat flux are strongest for loamy sand (top 

middle panel).  There are greater latent heat fluxes from areas in the domain with shallower 

water table depths and lower latent heat fluxes from areas with deeper water table depths.  This 

corresponds to lower latent heat fluxes from the drier hill tops and greater latent heat fluxes from 
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the wetter river valleys.  We also see a negative correlation of latent heat flux with water table 

depth for open shrublands over loam, for trees over silt loam, and for sand, though there are only 

two locations in the domain where sand corresponds to a water table depth of less than one 

meter.  For silt loam covered by grass or by open shrublands there is a weak correlation of latent 

heat flux with water table depth.  This is also true for loam covered by grasslands.  These 

relationships reflect the fact that many parameters that influence heat flux (soil moisture 

retention parameters, saturated hydraulic conductivity, and vegetation parameters) are all a 

function of soil type and vegetation cover.  Figure 11 illustrates that while correlations are 

present between latent heat flux and water table depth, they also vary with soil type and land 

cover.  The variations that water table depth imparts on latent heat flux, are as large as those 

imparted by variations in soil type and land cover.  This is demonstrated by the range of heat flux 

variation with water table depth, on the order of 100 W/m2 for loamy sand, being as great as or 

greater than the difference in heat fluxes observed between grasslands and trees.  This provides 

strong motivation to include not only soil vegetation type but also water table influences in land-

surface models for use with mesoscale atmospheric models.  

Figures 12a shows the potential temperature, averaged in time over the simulation, as a 

function of water table depth, demonstrating a positive correlation between potential temperature 

and water table depth over all soil and land cover types, similar to that seen for times t = 24, 26, 

and 27 h in Figure 10.  Figure 12b shows potential temperature as a function of water table depth 

for loamy sand (all vegetation types) and loam covered by open shrublands, the two categories 

with the strongest correlation between latent heat flux and water table depth shown in Figure 11.  

We see that these two soil and land cover types account for some of the scatter in Figure 12a.   

This figure suggests that potential temperature is not only correlated to water table depth at 
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instances in time (e.g. Figure 10) but that longer-term correlations may persist.  Additionally, 

though there appears to be an influence of soil and land cover type on potential temperature, this 

influence is smaller than the influence of water table depth, again pointing to the need to include 

the effect of water table depth in land-surface models. 

 

5. Summary and Conclusions 

This paper presents the methodology for a fully-coupled, parallel, groundwater, overland 

flow, land-surface, and atmospheric model. Our fully-coupled model incorporates three-

dimensional subsurface flow and surface water routing into a mesoscale atmospheric flow model 

to better represent spatial variations in soil moisture. Results from the coupled model are 

compared to those from an uncoupled atmospheric model using a realistic test case with 

idealized boundary conditions.  These results indicate the potential to improve predictions of 

boundary layer processes by incorporating physical processes at the land surface and below. We 

have demonstrated the sensitivity of thermally-forced boundary layer development to surface 

moisture and temperature conditions and our ability to more realistically represent the spatial 

variability in surface forcing using our coupled modeling approach.  

A realistic initial spatial distribution of soil moisture can be generated using an offline 

spinup procedure to incorporate subsurface and surface processes forced by atmospheric data 

over a water year. The results can be used to provide improved initial conditions to mesoscale 

meteorological models.  Other researchers (e.g. Holt et al, 2006) have shown this in an 

assimilation framework, it is shown here with improved surface-subsurface  processes. 

The initial distribution of soil moisture has a strong effect on the development of the 

atmospheric boundary layer under calm conditions. If lateral flow is not accounted for, this soil 
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moisture distribution can decay during a 36-hour period, a time period shorter than many 

weather forecast periods.  Lateral surface and subsurface flow is important to maintain 

topographically-induced drainage and soil moisture patterns over short (hour) timescales, as 

shown by comparisons between PF.ARPS and ARPS(os) runs in Figures 4-9 and can affect 

potential temperature and wind direction and speed over these timescales. 

The interplay between soil and land cover and surface and subsurface moisture transport 

is quite complex and appears to be highly dependent on the particular formulations used in the 

land surface parameterization and deserve further examination and validation. 

Correlations exist between water table depth and ground surface temperature, potential 

temperature in the first atmospheric cell above the land surface, and transient boundary layer 

development. Correlations are particularly strong during warm/cold transitions when surface 

heating determines boundary layer growth. 

The coupled model shows correlation between water table depth and latent heat flux and 

potential temperature averaged over the simulation time of 36h.  This suggests that these 

correlations may also persist over longer timescales. 

The correlations between water table depth and land surface and atmospheric processes 

shown in Figure 11 explain much of the sensitivities that other researchers have seen (e.g. Chow 

et al 2006a; Holt et al 2006). The absence of these correlations under varying conditions  (at 

different times or depending upon land and soil cover) also explains cases in which other studies 

have seen less sensitivity of boundary layer processes to land surface conditions (e.g. Desai et al 

2005).  The correlations shown in this work between water table and surface and boundary layer 

processes are testable in the field using collocated measurements of subsurface and atmospheric 

properties and parameters, which are currently lacking.  This work and follow-up work of this 
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kind should guide field experiments and campaigns to understand whether these correlations are 

seen in nature which will lead to further understanding of interactions of the subsurface and the 

atmosphere.   

The largest differences in the idealized sensitivity simulations were between the 

ARPS(narr) stand-alone and the PF.ARPS simulations, clearly showing the inadequacy of typical 

land surface models in representing spatial variability at the land surface due to topographic 

variations. The PF.ARPS and ARPS(os) results did not deviate greatly, but still showed different 

rainfall patterns. The ARPS(os) results indicate that ARPS could be used in stand-alone mode if 

initialized with offline spin-up data to provide realistic spatially distributed soil moisture; ARPS 

could then be run over a short simulation period such as 24 hours, allowing a more practical 

application scenario for forecast-like simulations where lateral subsurface transport may not be 

as important as the soil moisture initialization. For longer-term simulations, the fully 3D coupled 

subsurface and atmospheric model is needed to fully incorporate the feedbacks between the 

atmospheric boundary layer and the subsurface. Examples of simulations requiring full coupling 

include seasonal simulations for regional climate prediction. Fully-coupled runs may also be 

useful for flood forecasting and in other cases where surface water routing and immediate 

feedbacks to the atmosphere are critical (see e.g. Sturdevant-Rees et al 2001, Castillo et al. 

2003). 

The additional computational costs for PF.ARPS are 3-50% greater than for ARPS alone 

(depending upon the size of the subsurface and the timestep operator splitting); given the 

potential improvements of the improved land-surface feedback, this cost is warranted. 

Furthermore, as our approach is fully parallel, the additional computational costs may be offset 

through the use of larger parallel systems. 
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Our coupled modeling approach is general, allowing for physically-accurate 

representation of subsurface, land-surface, and atmospheric processes; no previous atmospheric-

land-surface model combination is able to capture all of these processes. Because the fully-

coupled model, PF.ARPS, is initialized using an offline spin-up process with atmospheric 

forcing data, calibration or tuning requirements are minimized. This demonstration study was 

performed with idealized boundary conditions to isolate the effects of the land surface on the 

atmosphere. Future work will apply PF.ARPS to larger domains with synoptic lateral forcing 

where the effects of soil moisture on model comparisons to observation data may be studied. 

Higher-resolution simulations will also be pursued to investigate the effect of topography 

representation for surface water routing in the watershed. Additionally, PF.ARPS can be used to 

study the effect of land-surface processes on regional climate predictions on seasonal time scales. 

Incorporation of lateral moisture transport through subsurface flow may be of even greater 

importance on these larger space and time scales.  
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Figure 1. Simplified flowchart of coupled model process.
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Figure 2.  Location of the Little Washita watershed. The inset shows the location of the 
watershed in the state of Oklahoma. 
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A B  
Figure 3. Plot of a) soil type and b) vegetation type for the simulation. 
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Figure 4.  Plot of surface soil moisture for the PF.ARPS (left), ARPS(os) (middle) and 
ARPS(narr) (right) models at 12 h intervals from time zero to the end of the coupled simulation. 
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Figure 5.  Plot of surface soil temperature for PF.ARPS (left), ARPS(os) (middle) and 
ARPS(narr) (right) at simulation times 24 (top), 26 (middle) and 27 (bottom) hours. 
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Figure 6.  Plot of latent heat for PF.ARPS (left), ARPS(os) (middle) and ARPS(narr) (right) at 
simulation times 24 (top), 26 (middle) and 27 (bottom) hours.  Note the log color scale for latent 
heat flux. 
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Figure 7.  Plot of potential temperature for PF.ARPS (left), ARPS(os) (middle) and ARPS(narr) 
(right) at simulation times 24 (top), 26 (middle) and 27 (bottom) hours. 
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Figure 8. Plot of hourly rainfall for PF.ARPS (left), ARPS(os) (middle) and ARPS(narr) (right) 
at simulation times 33 (top) and 34 (bottom) hours. 
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Figure 9.  Plot of soil moisture (averaged over the domain) for the upper soil layer for the 36 
hour simulation for three different test cases .
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Figure 10. Semi logarithmic scatterplots of soil temperature (A), potential temperature (B), 
boundary layer depth (C) and vertical velocity (D) as a function of water table at simulation 
times 24 (top), 26 (middle) and 27 (bottom) hours.  Note the different axis ranges in y for soil 
and potential temperature. 
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Figure 11. Semi logarithmic scatterplots of latent heat flux (averaged at each surface cell over the 
simulation time) as a function of water table (averaged over the simulation time) for a range of 
soil and vegetation types.   
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Figure 12a-b.  Scatterplot of potential temperature (averaged at each lower atmospheric cell over 
the simulation time) as a function of water table (averaged over the simulation time), a) for all 
soil types and vegetation cover, b) for loamy sand (all vegetation types) and loam covered by 
open shrublands. 
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ISBA soil model and the Advanced Regional Prediction System (ARPS) 
Patrick Granvold and Fotini Katapodes Chow, Department of Civil and Environmental 
Engineering, University of California, Berkeley, California. 
 
1.0   Introduction 
 
This document examines the ISBA soil model as implemented in the Advanced Regional 
Prediction System (ARPS) by forcing a single cell domain with observational data.   The 
outputs of the ISBA model are dependent on choice of timestep, though no stability limits 
exist similar to those governing atmospheric simulation.  The model does not conserve 
water mass, due to artificial capping of soil moisture values and numerical error 
introduced by the soil model itself.  Finally, the ARPS implementation of ISBA mixes 
formulations from two different sources, and the impact of this model choice is explored. 
 
2.0   Simulation Forcing 
 
The ARPS soil model was forced over a one cell domain (4x4x4 ARPS domain, with 3 
ghost points in each direction) with 100 hours of North American Regional Reanalysis 
(NARR) data.  The forcing data corresponds to measurements from the Little Washita 
watershed in Oklahoma during the 1999 water year (September 1, 1998 – August 31, 
1999).  The data set includes: precipitation, surface specific humidity, surface 
temperature, lateral wind speeds u and v at 10m, surface pressure, and shortwave and 
longwave radiation.   Figure 1 displays the first 100 hours of the data set.  For runs with a 
timestep less than the NARR dataset (3600s), input data was linearly interpolated 
between hours. 
 
Atmospheric simulation was disabled in the ARPS subroutine cordint by calling only the 
radiation and surface physics subroutines radfrc and sfcphys.  Model output was taken 
directly from the soil model subroutine soilebm, called by sfcphys. 
 

 
Figure 1: One hundred hours of radiative and meteorological NARR data (beginning midnight September 

1, 1998) used to force ARPS. 



3.0 Simulation Timestep Dependence 
 
Figure 2 and Figure 3 show the dependence of soil moisture and temperature, 
respectively, on timesteps of 36s, 360s (6 minutes), and 3600s (1 hour).  Setting dtbig at 
36s or 360s results in nearly identical behavior.  However, both moisture and temperature 
begin to diverge near the end of the simulation period; running longer periods might 
result in larger differences. The largest timestep, dtbig of 3600s, results in oscillatory 
behavior during the daytime period, and different values than the other two timesteps.  
The soil model is not constrained by timestep stability limits, but larger timesteps result 
in markedly different behavior. 

 

 
Figure 2:  (a) Surface temperatures and (b) Deep soil temperatures for one hundred hours of simulation run 
at three differing timesteps.  Temperatures vary in a diurnal pattern, with lower temperatures resulting from 
a larger timestep. 

 

 
Figure 3:  (a) Surface layer and (b) Deep soil moistures for one hundred hours of simulation at three 
different timesteps.  The equivalent of approximately 5 mm of rainfall is lost during this period of minimal 
rainfall.  Less water leaves the system with a larger timestep. 

 



4.0 Water Balance 
 
The soil and canopy are two separate systems in the ISBA soil model, with no exchange 
(i.e. canopy drip).  Figure 4 shows the storage and flux terms for the ISBA soil model 
with no vegetative cover (canopy).  Since ISBA provides no lateral transport between 
cells, conservation of mass can be applied to each soil grid cell in the domain 
independently.  
 
Total water in the soil is: 
 
 qsfc  = wetsfc * zsfc 

qdeep  = wetdp * zdeep
 
The precipitation to the ground is that portion of total precipitation striking bare ground: 
 
 Pgnd = precip * (1 – veg) 
 
Water exiting (flux) due to transpiration (Etr) and direct ground evaporation (Eg) are: 
 
 Etr = evaprtr 

Eg = evaprg 
 

Then error (ε) in the water balance over one time step, in kg/m2-s, is given by: 
 
 ε = (∆qsfc + ∆qdeep) * ρ  / dtbigw  + Etr + Eg – Pgnd 

 
In addition to using the evaporative fluxes given at the end of the time step, 
evapotranspiration and precipitation were averaged over the time step to obtain the mean 
values over each time step n.  For any variable X: 
 
 Xtr,aver(n)  =  ½ (X(n) + X(n-1)) 
 
Then error in the water balance using averaged fluxes (εaver) over one time step, in kg/m2-
s, is given by: 
 
 εaver = (∆qsfc + ∆qdeep) * ρ  / dtbigw  + Etr,aver + Eg,aver – Pgnd,aver 

 
Figure 5 shows water balance error for the three time steps discussed in Section 3.0, for 
both reported and averaged water fluxes.  Significant error occurs during the daytime 
periods, when evaporative fluxes peak.  The magnitude of error decreases as the time step 
is reduced.  There is no distinct difference in the magnitude of error when using reported 
or averaged fluxes; however, averaged fluxes slightly increase the error for dtbig at 
3600s, and fluctuates more for smaller time steps. 
 
The error shown in Figure 5 comes solely from the governing equations and the two-step 
force-restore model implementation.  During high precipitation events, large amounts of 
water are lost when the water content is artificially “capped” to prevent supersaturated 
soil (see section 5.1 for example).  The soil model has no runoff or pooling capability, 
though runoff is calculated separately for the canopy. 
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Figure 4:  Schematic of two-layer ISBA soil model (without canopy).  Control volume over which mass 

balance is taken is given by the dotted line.  Soil moistures (qsfc and qdeep) are in units of m3/m3.  Fluxes 
(precipitation Pgnd, transpiration Etr, ground evaporation Eg) are in units of kg/m2-s 
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Figure 5:  Water balance error (as flux) for three different time steps.  Error shown comes from the 
parameterization used in the ISBA soil model. 

 
 



5.0 Model Formulation and Sources 
 
The ISBA soil model is based on the proposed models of both Noilhan & Planton (1989) 
and Pleim & Xiu (1995).   The two models use the same governing equations (ARPS 
documentation, section 6.10), but differ in parameterization of (1) land surface heat 
capacity CT, (2) ground thermal coefficient CG, and (3) soil moisture perturbation 
coefficient C1.   The equations used by the two formulations are shown in Table 1.  
Noilhan & Planton use deep-layer soil moisture to calculate CG and C1, while Pleim & 
Xiu use surface-layer soil moisture.  Noilhan & Planton consider the diminishing effects 
of vegetated cover on the thermal coefficient CT, while Pleim & Xiu uniformly set CT to 
the calculated value for bare ground. 
 

Table 1:  Comparison of parameterizations between proposed models of Noilhan & Planton (1989) and 
Pleim & Xiu (1995).  The implementation used in ARPS 5.2.4 is denoted by an asterisk (*). 

Coefficient Noilhan & Planton (1989) Pleim & Xiu (1995) 
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5.1 Simulation Results 
 
For each parameter in Table 1, three figures are presented, comparing model output over 
a full year of simulation with the orig inal ARPS 5.2.4 model, compared to model output 
with the parameter “switched”, or using the alternate formulation.  For each of the 
following model output items, timeseries from each run are overlaid and the differences 
between the two timeseries shown. : 

• wetsfc  
• wetdp 
• tsfc 
• tdeep 
• cumulative evaporation 

 
Figure 6 shows the results of switching CG,. Figure 7 shows the results of switching CT.  
Figure 8 shows the results of switching C1.  Figure 9 shows the results of switching all 
parameters simultaneously.  For all runs, precipitation is sufficient to saturate the soil for 
long periods, leading to constant water content (at wsat, here 0.465 m3/m3) and no 
difference resulting from choice of parameterization. 
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Figure 6:  Switching CG:  results of using wetsfc (Noilhan & Planton 1989) or wetdp (Pleim & Xiu 1995) to 
calculate ground thermal coefficient in ARPS 5.2.4 subroutine soilebm_frc.   Left column is model output.   
Right column is difference in output between the two runs.   ARPS 5.2.4 uses the Pleim & Xiu formulation 

(wetdp). 
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Figure 7:  Results of accounting for vegetation fraction (Noilhan & Planton 1989) or bare ground only 
(Pleim & Xiu 1995) to calculate ground heat capacity CT in ARPS 5.2.4 subroutine soilebm_frc.   Left 

column is model output.   Right column is difference in output between the two runs.   ARPS 5.2.4 uses the 
Noilhan & Planton formulation (vegetation accounted for). 
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Figure 8:  Results of using wetsfc (Noilhan & Planton 1989) or wetdp (Pleim & Xiu 1995) to calculate 
ground thermal coefficient CT  in ARPS 5.2.4 subroutine soilebm_frc.   Left column is model output.   
Right column is difference in output between the two runs.   ARPS 5.2.4 uses the Noilhan & Planton 

formulation (wetsfc). 
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Figure 9:  Results of switching all model choices (CT, CG, C1).  ARPS uses Noilhan & Planton formulation 

for CT (vegetated cover accounted for) and C1 (from wetsfc) and Pleim & Xiu for CG (from wetdp). 

 

 
 
 



5.2 Discussion 
 
Table 2 shows the mean difference in model soil moisture and temperature for each set of 
results above.  The mean temperature difference is taken over the entire year.  The mean 
soil moisture difference is taken only when both runs are below saturation, since the 
identical saturation results are not attributable to convergence of the two runs. 
 
Switching CG from the Pleim & Xiu formulation (ARPS 5.2.4 implementation) to that of 
Noilhan & Planton increases sensitivity of soil moisture and temperature, with the 
temperature using Noilhan & Planton varying by up to 1 K further than when using Pleim 
& Xiu.  On average, both are raised slightly. 
 
The most noticeable differences result from switching CT from Noilhan & Planton to 
Pleim & Xiu.  Soil moisture drops on average by over 0.002 m3/m3, while soil 
temperatures in both levels drop on average by around 0.5 K.  The response of 
temperature over diurnal scales shows marked increases in daily maximums, of up to 
approximately 3 K, and decreases at night 
 
Switching C1 has very little effect on model output.  Switching all three flags give results 
similar to switching CG, though reduced in magnitude by the effects of the other two 
flags. 
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Figure 10:  Comparison of mean differences between runs.  Each bar gives the mean differences 
between the original ARPS 5.2.4 results and results where one or more parameters is switched.  On 
the x-axis:  (1) CG formulation is switched from Pleim & Xiu to Noilhan & Planton, (2) CT switched 
from Noilhan & Planton to Pleim & Xiu, (3) C1 switched from Noilhan & Planton to Pleim & Xiu, 
and (4) all parameterizations are switched. 



Table 2:  Data for comparison of runs.  For the differences plotted in Figures 6-9, the mean 
difference, standard deviation from the mean difference, maximum and minimum differences, and 

the number of data points used (soil moisture values exclude periods where both models report 
saturation). 

 
Effects of CG      

Output 
Variable 

mean 
difference 

std. dev. 
of  

difference 
maximum
difference

minimum
difference 

data 
points 
used 

wetsfc 5.67E-04 9.70E-04 7.00E-03 -4.10E-03 6708 
wetdp 3.98E-04 5.76E-04 2.50E-02 -6.40E-05 6708 

tsfc 0.1045 0.2171 0.8484 -1.1725 8760 
tdeep 0.1041 0.0992 0.4720 -0.1753 8760 

      
Effects of CT    

Output 
Variable 

mean 
difference 

std. dev. 
of  

difference 
maximum
difference

minimum
difference 

data 
points 
used 

wetsfc -2.70E-03 1.90E-03 1.50E-03 -2.52E-02 6387 
wetdp -2.40E-03 2.50E-04 3.51E-04 -1.01E-02 6387 

tsfc -0.4905 0.9182 3.1699 -2.1356 8760 
tdeep -0.4891 0.3401 0.6281 -1.3175 8760 

      
Effects of C1    

Output 
Variable 

mean 
difference 

std. dev. 
of  

difference 
maximum
difference

minimum
difference 

data 
points 
used 

wetsfc -2.35E-04 1.20E-03 1.90E-03 -1.32E-02 6710 
wetdp 1.28E-05 1.99E-05 4.99E-05 -2.98E-08 6710 

tsfc 0.0000 0.0028 0.0546 -0.3310 8760 
tdeep 0.0003 0.0012 0.0115 -0.0085 8760 

      
Effects of flipping all 
variables        

Output 
Variable 

mean 
difference 

std. dev. 
of  

difference 
maximum
difference

minimum
difference 

data 
points 
used 

wetsfc -2.50E-03 1.80E-03 1.70E-03 -2.02E-02 6390 
wetdp -1.90E-03 2.00E-03 2.11E-04 -6.90E-03 6390 

tsfc -0.3909 0.7707 2.7059 -1.9412 8760 
tdeep -0.3899 0.2859 0.6114 -1.2623 8760 

 



6.0 Two Dimensional Domain 
 
One year of simulation at dtbig = 360s over a 45 x 32 1km x 1km grid of the Little 
Washita watershed in Oklahoma was performed using a flat domain (no terrain) and with 
an elevated domain (terrain).   Both runs used the same set of surface characteristics: 
vegetation type, vegetated fraction, soil type, leaf area index (LAI), and surface 
roughness.  Terrain characteristics consist only of elevation height, used to calculate 
surface angle at each grid cell. 
 
Results for each 2D run are shown below.  The effects of terrain on midnight and noon 
temperatures is shown in Figure 11-Figure 14.  The effects of terrain on soil moistures is 
shown in Figure 15-Figure 18. 
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Figure 11:  Contours of surface temperature (in K) each 60 days for ARPS 5.2.4 2D simulation with 

terrain effects.  Temperatures reach nadir during winter (120 days), then peak in summer (300 days).  The 
northeast region, which is flat and infrequently shaded by terrain, remains warmer than the rest of the 

domain.  Left panel: midnight.  Right panel: noon. 
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Figure 12:  Contours of surface temperature (in K) each 60 days for ARPS 5.2.4 2D simulation without 

terrain effects.  Temperatures are relatively uniform across the domain, compared to Figure 11; variations 
are driven by surface characteristics.  Left panel: midnight.  Right panel: noon. 
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Figure 13:  Contours of deep-layer temperature (in K) each 60 days for ARPS 5.2.4 2D simulation with 

terrain effects.  Variation in magnitude is less than with surface temperatures (Figure 11), and values do 
not change significantly over short time periods.   As with surface temperatures, the northeast region 
remains consistently warmer than the rest of the domain.   Left panel: midnight.  Right panel: noon. 
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Figure 14:  Contours of deep-layer temperature (in K) each 60 days for ARPS 5.2.4 2D simulation without 
terrain effects.  Temperatures remain relatively uniform across the domain, varying slightly with surface 

properties.  Again, temperatures are slightly higher at noon, but large changes in deep soil temperature 
occur over longer time periods.  Left panel: midnight.  Right panel: noon. 
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Figure 15:  Surface (left) and deep (right) soil moistures each 60 days from ARPS 5.2.4 with terrain 
effects.   In general, the northeast corner remains drier than the rest of the domain, due to higher rates of 
evaporation.  Through the middle of the year, precipitation drives the system to saturation or near-
saturation values. Time of day? 
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Figure 16:  Fraction of saturation value for surface (left) and deep (right) soil moistures each 60 days from 
ARPS 5.2.4 with terrain effects.   A value of 1 indicates fully saturated.  During the middle of the year, 
the entire domain remains at or near saturation. 
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Figure 17:  Surface (left) and deep (right) soil moistures each 60 days from ARPS 5.2.4 without terrain 
effects.   Radiation input is equal across the domain, and evaporative effects are more strongly dependent 
on soil type.  As with the run with terrain effects, precipitation continues to drives the system to saturation 
or near-saturation values during the middle of the year.  Deep layer soil moisture is more uniform than 
surface soil moisture. 
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Figure 18:  Fraction of saturation value for surface (left) and deep (right) soil moistures each 60 days from 
ARPS 5.2.4 without terrain effects.   A value of 1 indicates fully saturated.  During the middle of the year, 
the entire domain remains at or near saturation. 

 




