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Machine learning has emerged as a important tool for separating signal events from associated background in high
energy particle physics experiments. This paper describes a new machine learning method based on ensembles of rules.
Each rule consists of a conjuction of a small number of simple statements (“cuts”) concerning the values of individual
input variables. These rule ensembles produce predictive accuracy comparable to the best methods. However their
principal advantage lies in interpretation. Because of its simple form, each rule is easy to understand, as is its influence
on the predictive model. Similarly, the degree of relevance of each of the respective input variables can be assessed.
Graphical representations are presented that can be used to ascertain the dependence of the model jointly on the
variables used for prediction.

1. Introduction

Predictive learning is a common application in data
mining, machine learning and pattern recognition.
The purpose is to predict the unknown value of an
attribute y of a system under study, using the known
joint values of other attributes x = (x1, x2, · · ·, xn)
associated with that system. The prediction takes
the form ŷ = F (x), where the function F (x) maps
a set of joint values of the “input” variables x to a
value ŷ for the “output” variable y. The goal is to
produce an accurate mapping. Lack of accuracy is
defined by the prediction “risk”

R(F ) = ExyL(y, F (x)) (1)

where L(y, ŷ) represents a loss or cost for predicting a
value ŷ when the actual value is y, and the expected
(average) value is over the joint distribution of all
variables (x, y) for the data to be predicted.

As an example consider the problem of sepa-
rating signal from background events in a high en-
ergy particle physics experiment. Here the outcome
attribute y for each event has one of two values
y ∈ {signal, background}. The attributes x used
for prediction are the variables measured from each
event, perhaps augmented with various quantities
constructed from these measurements. The pre-
diction ŷ also realizes one of the two values ŷ ∈
{signal, background}. A natural loss function for
this two–class classification problem would be

L(y, ŷ) =
{

LS if y = signal & ŷ = background

LB if y = background & ŷ = signal
(2)

with L(y, ŷ) = 0 for correct predictions. Here LS and
LB are the respective user specified costs for misclas-

sifying signal and background events for the partic-
ular problem. The goal is to construct a mapping
function F (x) that given (2) minimizes the predic-
tion risk (1).

Although the loss function (2) characterizes the
actual goal, it cannot be directly used to con-
struct classification functions F (x) with most ma-
chine learning procedures. The problem is that with
this loss criterion the associated risk (1) is not a con-
tinuous function of the parameters associated with
the predicting function F (x). This excludes the ap-
plication of numerical optimization techniques in the
search for a good solution, requiring instead far more
costly combinatorial optimization methods.

In order to apply numerical optimization tech-
niques one must approximate the discrete loss (2)
with a smooth continuous one that produces the
same solution, at least in the limit of infinite amount
of data. For finite data sets the hope is that the
solutions will be similar enough to be useful. One
scores the signal events with the numerical value
y = 1 and the background with y = −1. In this
case the predicting function F (x) produces a nu-
merical score that estimates a monotone function
of the probability that y = 1 (signal event) given
the joint values of the predictor variables x; that is,
F (x) = m(Pr[y = 1 |x]) where m(η) is a monotoni-
cally increasing function of its argument η. Classifi-
cation is accomplished by thresholding this score at
an appropriate value t

F (x) ≥ t ⇒ signal

F (x) < t ⇒ background.
(3)

The value chosen for the threshold t is the one
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that minimizes the prediction risk (1) using (2) and
thereby depends on the values chosen for LS and LB .

Within this framework a variety of smooth surro-
gate loss functions have been proposed in the statis-
tics and machine learning literatures. A commonly
used criterion is squared–error loss L(y, ŷ) = (y−ŷ)2.
In this case the predicting score function approxi-
mates F (x) = 2 · Pr[y = 1 |x] − 1. Other popular
choices include L(y, ŷ) = log(1+e−y·ŷ) used by logis-
tic regression in statistics, and L(y, ŷ) = e−y·ŷ used
by the AdaBoost boosting procedure (Freund and
Schapire 1996) from machine learning. For these lat-
ter two loss functions the numerical score estimates
the log–odds

F (x) = log
Pr[y = 1 |x]

1− Pr[y = 1 |x]
.

Given a particular smooth surrogate L(y, ŷ), the
optimal mapping (“target”) function F ∗(x) is de-
fined as the one that minimizes the prediction risk
(1) over all possible functions

F ∗(x) = arg min
F (x)

ExyL(y, F (x)). (4)

This optimal predicting function is unknown because
the distribution of the joint values of the variables
(x, y), p(x, y), is unknown.

With the machine learning approach one has
a data base of previously solved cases T =
{xi, yi, wi}N

1 , called a training sample, containing
known signal and background events. Here xi rep-
resents the measurement variables associated with
the ith event. Each signal event is assigned the
value yi = 1 and the background events are assigned
yi = −1. Each event also has a weight wi that de-
pends on its type; signal events are assigned weights

wi = LS πS /NS

where LS is the cost for misclassifying a signal event
(2), πS is the fraction of signal events in future data
to be predicted, and NS is the total number of sig-
nal events in the training data T . Each background
event receives a weight

wi = LB πB /NB

where LB , πB , and NB are the corresponding quan-
tities for the background. With this weighting the
classification threshold (3) that minimizes prediction
risk is t = 0.

These weighted training data are presumed to
represent a random sample drawn from the distri-
bution of future data to be predicted. A machine
learning procedure is then applied to these training
data to derive an approximation F (x) to F ∗(x) (4).
This approximation will be used to score and then
classify (3) future events given only their measured
variables x. The extent to which this F (x) so de-
rived provides a useful approximation to F ∗(x) will
depend on the nature of F ∗(x), the training sample
size N , and the particular machine learning proce-
dure employed. Different procedures are appropriate
for different target functions and/or different sample
sizes.

2. Ensemble learning

Learning ensembles have emerged as being among
the most powerful machine learning methods (see
Breiman 1996 & 2001, Freund and Schapire 1996,
Friedman 2001). Their structural model takes the
form

F (x) = a0 +
M∑

m=1

amfm(x) (5)

where M is the size of the ensemble and each en-
semble member (“base learner”) fm(x) is a different
function of the input variables x derived from the
training data. Ensemble predictions F (x) are taken
to be a linear combination of the predictions of each
of the ensemble members, with {am}M

0 being the cor-
responding parameters specifying the particular lin-
ear combination. Ensemble methods differ in choice
of particular base learners (function class), how they
are derived from the data, and the prescription for
obtaining the linear combination parameters {am}M

0 .
All popular ensemble methods use variants of

the following generic procedure to generate the base
learners used in (5). Each base learner is taken to be
a simple function of the predictor variables charac-
terized by a set of parameters p = (p1, p2, · · ·). That
is,

fm(x) = f(x;pm) (6)

where pm represents a specific set of joint parameter
values indexing a specific function fm(x) from the
parameterized class f(x;p). Particular choices for
such parameterized function classes are discussed be-
low. Given a function class the individual members
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of the ensemble are generated using the prescription
presented in Algorithm 1.

Algorithm 1

Ensemble generation

1 F0(x) = 0
2 For m = 1 to M {
3 pm =

arg minp

∑
i∈Sm(η) L(yi, Fm−1(xi) + f(xi;p))

4 fm(x) = f(x;pm)
5 Fm(x) = Fm−1(x) + ν · fm(x)
6 }
7 ensemble = {fm(x)}M

1

In line 3, Sm(η) represents a different subsample
of size η < N randomly drawn without replacement
from the original training data, Sm(η) ⊂ {xi, yi}N

1 .
As discussed in Friedman and Popescu 2003, smaller
values of η encourage increased dispersion (less corre-
lation) among the ensemble members {fm(x)}M

1 by
training them on more diverse subsamples. Smaller
values also reduce computation by a factor of N/η.

At each step m, the “memory” function

Fm−1(x) = F0(x) + ν ·
m−1∑

k=1

fk(x)

contains partial information concerning the previ-
ously induced ensemble members {fk(x)}m−1

1 as con-
trolled by the value of the “shrinkage” parameter
0 ≤ ν ≤ 1. At one extreme, setting ν = 0 causes
each base learner fm(x) to be generated without
reference to those previously induced, whereas the
other extreme ν = 1 maximizes their influence. In-
termediate values 0 < ν < 1 vary the degree to which
previously chosen base learners effect the generation
of each successive one in the sequence.

Several popular ensemble methods represent spe-
cial cases of Algorithm 1. A “bagged” ensemble
(Breiman 1996) is obtained by using squared–error
loss, L(y, ŷ) = (y − ŷ)2, and setting ν = 0, and
η = N/2 or equivalently choosing Sm (line 3) to
be a bootstrap sample (Friedman and Hall 1999).
Random forests (Breiman 2001) introduce increased
ensemble dispersion by additionally randomizing the
algorithm (“arg min”, line 3) used to solve for the
ensemble members (large decision trees). In both
cases the coefficients in (5) are set to a0 = ȳ,
{am = 1/M}M

1 so that predictions are a simple av-

erage of those of the ensemble members. AdaBoost
(Freund and Schapire 1996) uses exponential loss,
L(y, ŷ) = exp(−y · ŷ) for y ∈ {−1, 1}, and is equiva-
lent to setting ν = 1 and η = N in Algorithm 1. Pre-
dictions are taken to be the sign of the final memory
function FM (x). MART (Friedman 2001) allows a
variety of loss criteria L(y, ŷ) for arbitrary y, and in
default mode sets ν = 0.1 and η = N/2. Predictions
are given by FM (x).

Friedman and Popescu 2003 experimented with
a variety of joint (ν, η) values for generating ensem-
bles of small decision trees, followed by a regular-
ized regression to estimate the linear combination
parameters {aj}M

0 (5). Given a set of base learners
{fm(x)}M

1 the parameters of the linear combination
are obtained by a regularized linear regression on the
training data {xi, yi, wi}N

1

{âm}M
0 = arg min

{am}M
0

N∑

i=1

wi L

(
yi , a0 +

M∑
m=1

amfm(xi)

)

+λ ·
M∑

m=1

| am |. (7)

The first term in (7) measures the prediction risk (1)
on the training sample, and the second (regulariza-
tion) term penalizes large values for the coefficients
of the base learners. The influence of this penalty is
regulated by the value of λ ≥ 0. It is well known that
for this (“lasso”) penalty, larger values of λ produce
more overall shrinkage as well as increased dispersion
among the values {| âm |}M

1 , often with many being
set to zero (see Tibshirani 1996, Donoho et al. 1995).
Its value is taken to be that which minimizes an esti-
mate of future prediction risk (1) based on a separate
sample not used in training, or by full (multi–fold)
cross–validation. Fast algorithms for solving (7) for
all values of λ ≥ 0, using a variety of loss functions
L(y, ŷ), are presented in Friedman and Popescu 2004.
Empirical results presented in Friedman and Popescu
2003 indicated that small but nonzero values of ν

(ν ' 0.01) performed best in this context. Results
were seen to be fairly insensitive to the value chosen
for η provided it was small (η . N/2) and grew less
rapidly than the total sample size N (η ∼ √

N) as N

becomes large (N & 500).
Although in principle most of these procedures

can be used with other base learners, they have al-
most exclusively been applied with decision trees
(Breiman, et al 1983, Quinlan 1993). This is due
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to the attractive properties of trees in data mining
applications, and the existence of fast algorithms for
inducing decision tree ensembles.

3. Rule based ensembles

The base learners considered here are simple rules.
Let Sj be the set of all possible values for input vari-
able xj , xj ∈ Sj , and sjm be a specified subset of
those values, sjm ⊆ Sj . Then each base learner takes
the form of a conjunctive rule

rm(x) =
n∏

j=1

I(xj ∈ sjm) (8)

where I(δ) is an indicator of the truth of its logi-
cal argument; I(δ) = 1 if δ is true and I(δ) = 0 if δ is
false. Each such base learner (8) assumes two values
rm(x) ∈ {0, 1}. It is nonzero when all of the in-
put variables realize values that are simultaneously
within their respective subsets {xj ∈ sjm}n

1 . For
variables that assume orderable values the subsets
are taken to be contiguous intervals

sjm = (tjm, ujm]

defined by a lower and upper limit, tjm < xj ≤ ujm.
For categorical variables assuming unorderable val-
ues (names) the subsets are explicitly enumerated.
Such rules (8) can be regarded as parameterized
functions of x (6) where the parameters pm are the
quantities that define the respective subsets {sjm}.

Note that for the case in which the subset of val-
ues sjm (real or categorical) appearing in a factor of
(8) is in fact the entire set sjm = Sj , the correspond-
ing factor can be omitted from the product. In this
case the rule can be expressed in the simpler form

rm(x) =
∏

sjm 6=Sj

I(xj ∈ sjm). (9)

The particular input variables xj for which sjm 6= Sj

are said to be those that “define” the rule rm(x). As
an example, the rule

rm(x) =





I(18 ≤ age < 34)
·I(marital status ∈ {single,

living together–not married})
·I(householder status = rent)

is defined by three variables, and a nonzero value in-
creases the odds of frequenting bars and night clubs.
In high energy physics applications each rule (9) can

be interpreted as an intersection of “cuts” on the
variables that define the rule.

3.1. Rule generation

One way to attempt to generate a rule ensemble is to
let the base learner f(x;p) appearing in Algorithm
1 take the form of a rule (8) and then try to solve
the optimization problem on line 3 for the respective
variable subsets {sjm}. Such a (combinatorial) op-
timization is generally infeasible for more that a few
predictor variables although fast approximate algo-
rithms might be derived. The approach used here
is to view a decision tree as defining a collection of
rules and take advantage of existing fast algorithms
for producing decision tree ensembles. That is, de-
cision trees are used as the base learner f(x;p) in
Algorithm 1. Each node (interior and terminal) of
each resulting tree fm(x) produces a rule of the form
(9).
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0

Fig. 1. A typical decision tree with five terminal nodes as
described in the text.

This is illustrated in Fig. 1 which shows a typi-
cal decision tree with five terminal nodes that could
result from using a decision tree algorithm in con-
junction with Algorithm 1. Associated with each in-
terior node is one of the input variables xj . For vari-
ables that realize orderable values a particular value
of that variable (“split point”) is also associated with
the node. For variables that assume unorderable cat-
egorical values, a specified subset of those values re-
places the split point. For the tree displayed in Fig. 1
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nodes 0 and 4 are associated with orderable variable
x14 with split points u and t respectively, node 1 is
associated with categorical variable variable x32 with
subset values {a, b, c}, and node 2 is associated with
categorical variable x7 with the single value {z}.

Each edge of the tree connecting a “parent” node
to one of its two “daughter” nodes represents a fac-
tor in (9) contributing to the rules corresponding to
all descendent nodes of the parent. These factors are
shown in Fig. 1 for each such edge. The rule cor-
responding to any node in the tree is given by the
product of the factors associated with all of the edges
on the path from the root to that node. Note that
there is no rule corresponding to the root node. As
examples, in Fig. 1 the rules corresponding to nodes
1, 4, 6, and 7 are respectively:

r1(x) = I(x14 ≤ u)
r4(x) = I(x14 ≤ u) · I(x32 /∈ {a, b, c})
r6(x) = I(t < x14 ≤ u) · I(x32 /∈ {a, b, c})
r7(x) = I(x14 > u) · I(x7 = z).

3.2. Rule fitting

The collection of all such rules derived from all of the
trees {fm(x)}M

1 produced by Algorithm 1 constitute
the rule ensemble {rk(x)}K

1 . The total number of
rules is

K =
M∑

m=1

2(tm − 1) (10)

where tm is the number of terminal nodes for the
mth tree. The predictive model is

F (x) = â0 +
K∑

k=1

âkrk(x) (11)

with

{âk}K
0 = arg min

{ak}K
0

N∑

i=1

wi L

(
yi , a0 +

K∑

k=1

akrk(xi)

)

+λ ·
K∑

k=1

| ak |. (12)

Fast algorithms for solving (12) for all values of
λ ≥ 0, and procedures for choosing a value for λ,
are discussed in Friedman and Popescu 2004.

4. Rule based interpretation

The most important aspect of any predictive func-
tion F (x) is its accuracy on future data as reflected

by its prediction risk (1). Results from Friedman
and Popescu 2005 suggest that rule based ensem-
bles (11) (12) provide accuracy competitive with the
best methods. However, accuracy is not the only de-
sirable property of a predictive model. Often it is
useful to be able to interpret the model to gain an
understanding of how the respective input variables
x = (x1, x2, · · ·, xn) are being used to formulate pre-
dictions. This information can be used to perform
“sanity checks” to see if the model is consistent with
one’s a priori domain knowledge, and to gain an a
posteriori understanding of the system that produced
the data. Such information can be used to refine the
model to improve its properties.

Most ensemble as well as other machine learn-
ing methods produce “black–box” models. They are
represented in an incomprehensible form making it
difficult to impossible to understand how the input
variables are being used for prediction. One of the
primary benefits that distinguish rule based ensem-
bles is the ability to intepret the resulting model to
gain such information.

Rules of the form (9) represent easily under-
standable functions of the input variables x. Al-
though a large number of such rules participate in the
initial ensemble, the fitting procedure (12) generally
sets the vast majority (∼ 80% to 90%) of the cor-
responding coefficient estimates {âk}K

1 to zero and
their corresponding rules are not used for predic-
tion. As noted above, this selection property is a
well known aspect of the lasso penalty in (12). The
remaining rules will have varying coefficient values
depending on their estimated predictive relevance.
The most relevant rules can then be examined for
interpretation.

A commonly used measure of relevance or im-
portance Ik of any predictor in a linear model such
as (11) is the absolute value of the coefficient of the
corresponding standardized predictor. For rules this
becomes

Ik = | âk | ·
√

sk(1− sk) (13)

where sk is the rule support

sk =
N∑

i=1

wi rk(xi)

/
N∑

i=1

wi. (14)

Those rules with the largest values for (13) are the
most influential for prediction based on the predic-
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tive equation (11). These can then be selected and
examined for interpretation.

4.1. Input variable importance

In predictive learning a descriptive statistic that
is almost always of interest is the relative impor-
tance or relevance of the respective input variables
(x1, x2, ···, xn) to the predictive model; that is, which
of the variables are most influential in making pre-
dictions and which in retrospect need not have been
included. For the models (11) considered here, the
most relevant input variables are those that prefer-
entially define the most influential rules appearing
in the model. Input variables that frequently appear
in important rules are judged to be more relevant
than those that tend to appear only in less influen-
tial rules.

This concept can be captured by a measure of
importance Jj of input variable xj

Jj =
∑

xj∈rk

Ik/mk. (15)

This measure sums the importances (13) of those
rules (9) that contain xj (xj ∈ rk) each divided by
the total number of input variables mk that define
the rule. In this sense the input variables that define
a rule equally share its importance, and rules with
more variables do not receive exaggerated influence
by virtue of appearing in multiple input variable im-
portance measures. The distribution of {Jj}n

1 (15)
can be examined to ascertain the relative influence of
each of the respective input variables on the model’s
predictions. Illustrations are provided in the exam-
ple below.

4.2. Partial dependence functions

Visualization is one of the most powerful interpre-
tational tools. Graphical renderings of the value of
F (x) as a function of its arguments provides a com-
prehensive summary of its dependence on the joint
values of the input variables. Unfortunately, such vi-
sualization is limited to low dimensional arguments.
Viewing functions of higher dimensional arguments is
more difficult. It is therefore useful to be able to view
the partial dependence of the approximation F (x)
on selected small subsets of the input variables. Al-
though a collection of such plots can seldom provide

a comprehensive depiction of the approximation, it
can often produce helpful clues.

Let zl be a chosen “target” subset, of size l, of
the input variables x

zl = {z1, · · ·, zl} ⊂ {x1, · · ·, xn},
and z\l be the complement subset

z\l ∪ zl = x.

The approximation F (x) in principle depends on
variables in both subsets

F (x) = F (zl , z\l).

If one conditions on specific values for the variables
in z\l, then F (x) can be considered as a function
only of the variables in the chosen subset zl

Fz\l
(zl) = F (zl | z\l). (16)

In general, the functional form of Fz\l
(zl) will depend

on the particular values chosen for z\l. If however,
this dependence is not too strong then the averaged
function

F̄l(zl) = Ez\l
[F (x)] =

∫
F (zl , z\l) p\l(z\l) dz\l

(17)
can represent a useful summary of the “partial de-
pendence” of F (x) on the chosen variable subset zl

(Friedman 2001). Here p\l(z\l) is the marginal prob-
ability density of z\l

p\l(z\l) =
∫

p(x) dzl, (18)

where p(x) is the joint probability density of all of
the inputs x. This complement marginal density (18)
can be estimated from the training data, so that (17)
becomes

F̄l(zl) =
N∑

i=1

wi F (zl , zi\l)

/
N∑

i=1

wi. (19)

where zi\l are the data values of z\l.
Partial dependence functions (19) can be used

to help interpret models produced by any “black
box” prediction method, such as neural networks,
support vector machines, nearest–neighbors, radial
basis functions, etc. They only require the value of
F (x) for specified values of x. However, when there
are a large number of predictor variables, it is very
useful to have an measure of relevance (Section 4.1)
to reduce the potentially large number variables, and
variable combinations, to be considered.
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5. Illustration

In this section we apply the RuleFit procedure to a
signal/background separation problem from a high
energy particle physics experiment and illustrate the
various interpretational tools described in Section 4.
The training data consists of 50000 Monte Carlo sim-
ulated events, half of which are signal and half are
background. Details concerning the specific appli-
cation and the nature of the 50 input variables are
withheld at the request of the experimenters. An ad-
ditional 23000 events were generated (half signal and
half background) to evaluate performance. These
latter (“test”) events were not used to train the pre-
dictive model.

All parameters of the RuleFit procedure were
set to their default values: ν = 0.01 and η =
min(N/2, 100 + 6

√
N) ' 1450 events in Algorithm

1, four terminal nodes for each tree, and 3500 gen-
erated rules in the initial ensemble (585 trees). It
is possible that performance could be improved by
tuning some of these parameters for this specific ap-
plication.

Applying RuleFit to the training data produced
a model (11) with 410 rules having nonzero coeffi-
cients from (12). The corresponding error rate on
the test data was 6.97%. Another measure of pre-
diction quality, area under the ROC curve (“AUC”),
was 0.977. Perfect prediction would have zero error
rate and AUC = 1.

Figure 2 displays a graphical representation of
prediction quality. The upper frame shows the dis-
tribution of the model scores F (x) (11) for the 11500
signal events in the test sample; the lower frame
shows the corresponding plot for the 11500 back-
ground events. One sees that signal events tend
to have predominately higher scores than the back-
ground. Using a threshold of t = 0 (3) gives rise to
the minimal error rate of 6.97%, with slightly more
background being classified as signal than signal clas-
sified as background. Increasing the threshold value
(t > 0) would reduce background errors leading to
a purer sample of signal events at the expense of
classifying more of the signal as background. Low-
ering the threshold (t < 0) would capture more of the
signal at the expense of increased background con-
tamination. In this context modifying the threshold
can be viewed as changing the relative values of the
misclassification costs LS and LB in (2).
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Fig. 2. Distribution of RuleFit prediction scores for signal
(upper) and background (lower) test events.

This signal/background trade–off is more di-
rectly captured by the corresponding ROC curve
shown in Fig. 3. Here the fraction of captured signal
events (true positives) is plotted against the fraction
of background contamination (false positives) as the
threshold t is varied. One sees that permitting 5%
background contamination allowed 90% of the sig-
nal events to be captured, whereas 10% background
captures approximately 95% of the signal.

Table 1 illustrates some typical rules by display-
ing the five most important using (13). The first
column shows the rules’ relative importance nor-
malized so that the maximum value over all rules is
100. The second column gives the coefficient âk (11)
of the corresponding rule rk(x). Positive coefficient
values indicate that satisfying the rule (rk(x) = 1)
increases the odds of being a signal event, where as
negative values decrease the odds. The third col-
umn shows the rule’s support (14). The last column
shows the variables and cut values that define the
corresponding rules. One sees that here all of these
relatively important rules are fairly simple, typically
involving two to three variables. Knowing the mean-
ing of the variables for each of the rules could lead to
insights concerning what aspects of the experiment
lead to separating signal from background.

Figure 4 plots the relative importances (15) of
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Table 1. The five most important rules for differentiating signal from background events.

Importance Coefficient Support Rule

100 -0.16 0.45 x6 ≤ 0.31 & x16 ≤ 1117 & x32 ≤ 1.31
83 0.13 0.41 0.025 ≤ x14 < 0.53 & x27 <82.4
82 0.22 0.093 -500 ≤ x3 < 92.6 & x21 ≤ -0.022 & x39 > 1.18
75 0.12 0.32 x1 ≤ 5.2 & -500≤ x3 <92.6 & x21 > -0.022
73 -0.12 0.41 x1 >4.37 & x23 ≤ 160.1 & x32 ≤ 1.41
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Fig. 3. ROC curve for RuleFit test predictions.

each of the 50 input variables in (inverse) order of
their importance values. Here some variables are
clearly far more relevant than others to the predictive
model (11). Knowing which variables are the impor-
tant ones for separating signal from background can
lead to insights concerning the experimental setup.

Table 2. Error rate and one minus area under the
ROC curve for RuleFit models based on subsets of
the most important predictor variables.

Variables 1-AUC Error

50 0.0230 6.97
25 0.0232 7.06
20 0.0237 7.06
15 0.0264 7.60

This information can also be used to simplify the
actual predictive model. This is illustrated in Table
2. Each row shows the test error rate (third column)
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Fig. 4. Relative importances of the 50 input variables to the
RuleFit predictive model.

and 1 − AUC (second column) for RuleFit models
using subsets of the input variables. The first column
shows the number of (most important – see Fig. 4)
variables used out of the total of 50. One sees that
training the model using only the 20 most important
variables results in no significant decrease in model
quality. Using only the top 15 variables degrades
performance only by about 8%. Predictive models
with fewer variables might be preferred if some of
those variables deemed to be unimportant and thus
expendable were especially difficult or expensive to
measure.

Figure 5 shows plots of the single variable par-
tial dependence of F (x) (11) on the nine most im-
portant variables. One sees that, for example, the
odds of being a signal event decrease monotonically
with increasing values of the most important variable
x13. For the next most important variable x3, pre-
dicted signal odds are lowest for 95 . x3 . 170 and
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Fig. 5. Single–variable partial dependence plots of the odd
of a signal event as a function of the nine most important
predictor variables.

become higher for values outside this range. In gen-
eral, examination of such partial dependences on the
important variables provides information on how the
values of the corresponding variables are being used
for prediction.

More detailed information can be obtained from
two–variable partial dependence plots. Figure 6
shows the partial dependence of F (x) (11) on the
joint values of selected variable pairs using several
plotting formats. The upper left frame shows the
partial dependence on (x1, x13) using a perspective
mesh representation. One sees that signal odds in-
crease as either of the two variables become larger.
The upper right frame shows a contour plot of the
partial dependence on (x17, x13). Here the signal
odds are highest for x17 ' 0.4 and x13 ' −0.4, and
decrease in all directions from that point. The lower
two frames of Fig. 6 use a “heat map” to represent
the respective two–variable partial dependence plots.
Lowest values are colored red (darker) while higher
values are (lighter) yellow, and the highest values
(surrounded by yellow) are colored white. As an an

example, one sees from the lower right frame that
for large values of x1 the odds of being a signal event
are low and at most depend weakly on x3, whereas
for small values of x1 the odds strongly depend on
the value of x3. This is an example of an interaction
(correlation) effect between these two variables.
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Figure 6: Two–variable partial dependence plots
of the odds of a signal event as a function of the joint
values of selected variable pairs. Upper left: perspec-
tive mesh plot, upper right: contour plot, lower: heat
map representation.

6. Conclusion

This paper has outlined the RuleFit technique for
predictive learning and illustrated some of its fea-
tures on a signal/background separation problem
in high energy particle physics. A more complete
description of the procedure along with its other
features can be found in Friedman and Popescu
2005. A software interface to the R statisti-
cal package can be obtained from http://www-
stat.stanford.edu/˜jhf/RuleFit.html.
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