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Abstract

A general formalism for treating simultaneously the transverse coupled bunch

and transverse coupled mode instabilities is presented. In this approach, the equa-

tions of motion of a coupled multi-bunch beam are expanded to yield a system

of equations involving correlation-moments of the transverse and longitudinal mo-

tions. After a proper truncation, the system of equations is closed and can be solved.

This approach allows us to formulate within one framework several known instabil-

ity mechanisms including the single bunch mode coupling instability, the coupled

bunch instability, the mode coupling instability, and the coupled mode coupled

bunch instability as particular cases.

1 Introduction

In a storage ring, a train of bunches is subject to various collective instabilities if the
beam current is sufficiently high. For a single-bunch beam, instabilities are traditionally
analyzed by decomposing the collective motion of the particles in the bunch into collec-
tive modes; the instability then results from the coupling among these modes. This is
referred to as the mode coupling instability in the literature. Another mechanism deals
with a train of multiple bunches; the corresponding instabilities can be analyzed in terms
of the coupled motion among the interacting bunches while basically ignoring the internal
degrees of freedom within each individual bunch. This is referred to as coupled bunch in-
stability in the literature. Traditional treatment of collective instabilities in storage rings
considers the mode coupling instability and the coupled bunch instability separately [1].
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An exception is the recently considered coupled mode coupled bunch (CMCB) instabil-
ity [2] where the effect of bunch coupling is taken into account in description of the mode
coupling instability. In the present paper, we develop an alternative formalism of collec-
tive instabilities where these two types of instabilities are treated systematically within
one framework.

One traditional way of analyzing the beam stability is based on the linearized Vlasov
equation [1, 2]. The formalism we present here adopts an alternative approach, based on
expanding the equations of motion into a system of equations for correlation-moments,
to be defined later, of the transverse and longitudinal degrees of freedom. After a proper
truncation, the system of equations is closed and can be solved. Due to the process of
truncation, our approach is limited to the lowest few modes, while the modes higher
than the quadrupole modes are ignored. However, the latter have higher thresholds and,
usually, are less important.

We will limit ourselves to the transverse collective instabilities, even though these
instabilities necessarily involve the longitudinal beam dynamics as well.

2 Equation of Motion

Let us consider a train of nb bunches in a storage ring with circumference C = 2πR and
the revolution period T0 = C/c. For simplicity, we assume that the equidistant bunches
are separated by sB = cτb. In the absence of collective motion, the center of the leading
bunch in the train is at the location s = ct around the ring at time t. We consider the
ultra-relativistic case when particles move with the speed of light c. The center of the
N -th bunch is at the distance sN = (N − 1)sB > 0 behind the leading bunch for evenly
spaced bunches. The variable s (−∞ < s < ∞), rather than the time t, is chosen as the
independent variable because the properties of the focusing system are defined by their
location s. Position si,N(t) of the i-th particle in the N -th bunch, N = 1, 2, ..., nb, is

si,N(t) = ct− sN + zi,N(s), (1)

where zi,N is longitudinal displacement due to synchrotron motion with a sign convention
that zi,N > 0 indicates the displacement is toward the head of the bunch.

We want to study effects of coupling of the longitudinal and transverse oscillations
assuming that the bunch current is below the threshold of the longitudinal microwave
instability [3]. The longitudinal distribution of particles in this case is a steady-state
Haissinski distribution [4], and the single particle trajectory gives

zi,N(s) = ζN(s) + ai,N sin(ωss/c+ φi,N), (2)

where ζN describes the motion of the bunch centroid. We assume below that ζN =
0 neglecting the longitudinal coupled-bunch effect (such as that due to beam loading)
although the consideration can be easily generalized to take it into account. Generally,
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the trajectory zi,N(s) in the nonlinear steady-state Haissinski potential has harmonics
multiple of the synchrotron frequency ωs. However, the head-tail instability due to the
coupling is, usually, caused by the crossings of the lowest two monopolar and dipolar
modes. Therefore, it is sufficient to consider only the lowest harmonics of the synchrotron
frequency ωs but taking into account correlation of the longitudinal and transverse motion
in the same bunch.

Collective instabilities are caused by the wake fields generated by the beam at irregu-
larities of the vacuum chamber. If t is the time when the i-th particle in the N -th bunch
is at the position si,N(t) of the vacuum system, the time tj,M,k when a particle j of the
M -th bunch is at the same location on the turn number k (−∞ < k <∞) is

tj,M,k = t0M,k +
1

c
[zi,N (s) − zj,M(s− kC)] , (3)

where
t0M,k = t− kT0 + (M −N)τb. (4)

The transverse offset of the i-th particle in the N -th bunch around the ring is

yi,N(s) = Ai,N(s)e−iψi,N (s) + c.c. , (5)

where the transverse phase advance ψi,N and the betatron frequency ωyi,N are

ψi,N(s) =
ωys

c
− ωξ

zi,N (s)

c
,

ωyi,N
c

=
dψi,N
ds

. (6)

Here, ωy is the nominal betatron frequency, and [5]

ωξ =
ξ

α
ωy, ξ =

1

ωy

dωy
dδ

(7)

are the chromatic head-tail frequency and the relative chromaticity, respectively; α is the
momentum compaction factor, and δ = ∆E/E is the relative energy shift of a particle.
In general, the amplitude Ai,N is complex and is slowly varying in time.

The equation of motion in the smooth focusing approximation is

d2yi,N(s)

ds2
+

(

ωyi,N
c

)2

yi,N(s) =
re
γC

∑

j,M,k

Wy(t− tj,M,k) yj,M(s− kC), (8)

where re is the classical radius of the particle, and γ is the relativistic factor. The right-
hand-side (RHS) is due to the wake fields and is responsible for the collective instabilities;
Wy(t) is the transverse wake per turn (dimension V/pC/m or 1/cm2). For an ultra-
relativistic beam, causality requires that Wy(t) = 0 for t < 0. Summation over k takes
into account long-range wake fields that last multiple number of revolutions.
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Usually, the coherent frequency shift and the instability growth rate are small com-
pared to ωy. In this case, Eq. (8) can be averaged over fast oscillations, giving equation
for the amplitudes,

dAi,N(s)

ds
= iλy

∑

j,M,k

Wy(t− tj,M,k)Aj,M(s− kC) eikωyT0−i
ωξ
c

[zi,N (s)−zj,M (s−kC)], (9)

where we have dropped terms d2Ai,N/ds
2 and dωyi,N/ds, and introduced

λy =
rec

2γCωy
. (10)

3 Correlation-Moment Expansion

Measurements of the beam dynamics, usually, detect only the bunch centroid motion. We
want to reduce Eq. (9) to the system of equations for the quantities averaged over Nb

particles in a bunch

〈AM(s)〉 =
1

Nb

Nb
∑

i=1

Ai,M (s). (11)

Equation (9) shows that the transverse and longitudinal motions are correlated. There-
fore, the averaging denoted by the angular brackets means averaging over the full distri-
bution function depending on the transverse and longitudinal coordinates. We assume,
however, that the correlation is week and only the lowest order correlation-moments need
to be taken into account. For example, the average

〈AMzlM〉 =
1

Nb

∑

j

Aj,Mz
l
j,M (12)

can be expanded over the correlation-moments 〈AM〉, 〈AMzM〉, etc.,

〈AMzlM〉 = 〈AM〉〈〈zlM〉〉 + 〈AMzM〉〈〈zl−1
M 〉〉 l!

1!(l − 1)!
+ · · · (13)

where double angular brackets mean averaging over the longitudinal uncorrelated mo-
tion. Such averaging can be carried out by convolution with the longitudinal distribution
function ρM(z, pz, s) of the M -th bunch, for example,

〈〈zl−1
M 〉〉 =

∫

dzdpzρM(z, pz, s)z
l−1. (14)

Expanding over correlation-moments, we assume that there is no correlation of the lon-
gitudinal and transverse motion of particles belonging to different bunches, i.e. 〈ziMzjN〉 =
0, 〈ziMAjN〉 = 0 if N 6= M , and neglect higher order correlation-moments such as
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〈ziMz2
jN〉. These assumptions do not preclude bunch-to-bunch coupling of the ampli-

tudes 〈AM(s)〉 of different bunches. Using these assumptions, we can reduce Eq. (9) to a
system of equations for the lowest order correlation-moments.

It is convenient to write Eq. (9) in terms of the transverse impedance per turn Zy,

dAi,N(s)

ds
=

1

Nb

∑

k,M,j

∫ dω

2π
Fk(ω,N −M)Aj,M (s− kC) eiκ [zi,N (s)−zj,M (s−kC)], (15)

where κ = (ω − ωξ)/c, and

Fk(ω,N −M) = −λyNbZy(ω) e−i(ω−ωy)kT0−iωτb(N−M). (16)

Equation for d〈AM(s)〉/ds can be obtained from Eq. (15) using definition Eq. (11).
Expanding exponents in the RHS in series over zi,N and zj,M ,

ei
ω−ωξ

c
[zi,N (s)−zj,M (s−kC)] =

∞
∑

l=0

il

l!

(

ω − ωξ
c

)l

[zi,N (s)]l
∞
∑

l′=0

(−i)l′

l′!

(

ω − ωξ
c

)l′

[zj,M (s− kC)]l
′

(17)
and calculating the average using Eq. (13), we get

〈Aj,M(s− kC) eiκ [zi,N (s)−zj,M (s−kC)]〉
= |G(κ)|2

{

A0
M(s− kC) − κ

2

[

Q+
M(s− kC) ei

ωs
c

(s−kC) −Q−
M(s− kC) e−i

ωs
c

(s−kC)
]

}

.

(18)

Here we have used Eq. (2) for zN(s) and notations

A0
M(s) = 〈AM(s)〉,

Q±
M(s) = 〈aM(s)e±iφMAM(s)〉,
G(κ) = 〈〈e−iκzN 〉〉. (19)

Because the time dependence of a trajectory zM(s) can be considered as canonical
transform preserving the phase volume, the average 〈〈z l−1

M 〉〉 and, therefore, G(ω−ωξ) for
the steady-state distribution ρ(z, pz) is time independent. If all bunches have the same
longitudinal profile, then G is also independent of the bunch number. For the Gaussian
distribution with the rms bunch length σ, G(∆ω) is easy to calculate,

G(
∆Ω

c
) =

∫ dzdp

2πσδ
e−

p2

2δ2
− z2

2σ2 e−i
∆Ω

c
a sin(ωss/c+φ) = e−

1

2
(∆Ωσ

c
)2 . (20)

Equation (15) after averaging takes the form

dA0
N(s)

ds
=

∑

k,M

∫ dω

2π
Fk(ω,N −M) |G(κ)|2

×
{

A0
M(s− kC) − κ

2

[

Q+
M(s− kC) ei

ωs
c

(s−kC) −Q−
M(s− kC) e−i

ωs
c

(s−kC)
]

}

.

(21)
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Similarly, multiplying Eq. (15) by zi,N(s′) and calculating the sum over i, we get in the
LHS,

d

ds

1

Nb

∑

i

Ai,N(s)zi,N(s′) =
1

2i

d

ds

{

Q+
N(s) eiωss′/c −Q−

N(s) e−iωss′/c
}

. (22)

The average of the RHS differs from calculations described above by the factor

〈zN(s′)eiκzN (s)〉 = −i ∂
∂κ
G∗(κ) cos[

ωs
c

(s− s′)]. (23)

Separating terms proportional to e±iωss′/c, we get two equations

± 1

2i

dQ±
N(s)

ds
= − i

2

∑

k,M

∫ dω

2π
Fk(ω,N −M)G(κ)

dG∗(κ)

dκ
e∓iωss/c

×
{

A0
M(s− kC) − κ

2

[

Q+
M(s− kC) ei

ωs
c

(s−kC) −Q−
M(s− kC) e−i

ωs
c

(s−kC)
]

}

.

(24)

It is convenient to write Eqs. (21) and (24) in the frequency domain for the Fourier
components Ã0

M(Ω) and Q̃±(Ω),

A0
M(s) =

∫ dΩ

2π
Ã0
M(Ω) e−i

Ωs
c ,

Q±
M(s) =

∫ dΩ

2π
Q̃±
M(Ω) e−i

Ωs
c . (25)

Fourier harmonics Ã0
N(Ω) satisfy the following equation,

ΩÃ0
N(Ω) = ic

∑

k,M

∫ dω

2π
Fk(ω,N −M) |G(κ)|2 eiΩkT0

×
{

Ã0
M(Ω) − κ

2
[Q̃+

M(Ω + ωs) − Q̃−
M(Ω − ωs)]

}

. (26)

The sum over turns k can be calculated using

∑

k

eiνT0k = ω0

∑

k

δ[ν + kω0], (27)

where δ(x) is the δ-function. Hence,

ΩÃ0
N(Ω) = −iλyω0cNb

2π

∑

M,k

Zy(ω)|G(κ)|2 e−iωτb(N−M)

×
{

Ã0
M(Ω) − κ

2
[Q+

M(Ω + ωs) − Q̃−
M(Ω − ωs)]

}

, (28)

where ω = ωy + Ω + kω0.
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Similarly, for harmonics Q̃±(Ω) we get

(Ω + ωs)Q̃
+
N(Ω + ωs) = −iλyω0cNb

2π

∑

M,k

Zy(ω)G(κ)
∂G∗(κ)

∂κ
e−iωτb(N−M)

×
{

Ã0
M(Ω) − κ

2
[Q+

M(Ω + ωs) − Q̃−
M(Ω − ωs)]

}

,

(Ω − ωs)Q̃
−
N(Ω − ωs) = i

λyω0cNb

2π

∑

M,k

Zy(ω)G(κ)
∂G∗(κ)

∂κ
e−iωτb(N−M)

×
{

Ã0
M(Ω) − κ

2
[Q+

M(Ω + ωs) − Q̃−
M(Ω − ωs)]

}

, (29)

where again ω = ωy + Ω + kω0.

3.1 Eigen-mode expansion

The coupled-bunch motion can be analyzed by expanding oscillations of individual bunches
over the eigen-modes. For the uniform distribution of nb bunches in the ring, the normal-
ized eigen-modes are

Xµ
M =

1√
nb
e

2πi
nb

(M−1)µ
, M = 1, 2, ..nb, µ = 1, .., nb − 1. (30)

The form of the expansion over eigen-modes is defined by the condition of periodicity
which can be explained by the following arguments. The average of the transverse offset
of the M -th bunch

yj,M(s) = Aj,M(s)e−
i
c
(ωys−ωξzj,M (s)) + c.c (31)

takes the form

〈yM(s)〉 =
[

A0
M(s) +

ωξ
2c

(Q+
M(s)e

iωs
c
s −Q−

M(s)e
iωs
c
s)
]

G∗(ωξ)e
−i

ωys

c + c.c. (32)

For a fixed time t, moving from a bunch number M to M + nb brings us to the same
bunch while s = ct− (M − 1)sb changes to s− C. Therefore, the transverse offset of the
M -th bunch has to satisfy the condition of periodicity,

〈yM+nb
(s− C)〉 = 〈yM(s)〉. (33)

Hence, the periodicity conditions for the amplitudes are

A0
M+nb

(s− C) eiωyT0 = A0
M(s),

Q±
M+Nb

(s− C) ei(ωy∓ω)T0 = Q±
M(s). (34)

For Fourier amplitudes the conditions take the form

Ã0
N+nb

(Ω) ei(Ω+ωy)T0 = Ã0
N(Ω),

Q̃±
M+nb

(Ω) ei(Ω+ωy∓ωs)T0 = Q̃±
M(Ω). (35)
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Equations (35) define the phase factor in the expansion over the eigen-modes,

Ã0
M(Ω) = e−i(ωy+Ω)τb(M−1)

∑

µ

g0
µ(Ω)Xµ

M ,

Q̃±
M(Ω) = e−i(ωy+Ω∓ωs)τb(M−1)

∑

µ

g±µ (Ω)Xµ
M . (36)

Substituting Eqs. (36) into Eq. (28) and using orthogonality of the eigen-functions
Xµ
M , we get

Ωg0
µ(Ω) = −iλyω0cNb

2π

∑

N,M,ν,k

[Xµ
N ]∗Xν

M eikω0τb(N−M) Zy(ω
0
y + Ω + kω0) |G(κ)|2

×
{

g0
ν(Ω) − κ

2
[g+
ν (Ω + ωs) − g−ν (Ω − ωs)]

}

, (37)

where κ = (ω0
y + Ω + kω0 − ωξ)/c. Summing over N,M gives

∑

N,M

[Xµ
N ]∗Xν

M eikω0τb(N−M) = nb δµ,ν
∑

p

δk,pnb+µ. (38)

Equation (37) is then simplified to

Ωg0
µ(Ω) = −iλyω0cNbnb

2π

∑

p

Zy(ωp) |G(κµ)|2
{

g0
µ(Ω) − κµ

2
[g+
µ (Ω + ωs) − g−µ (Ω − ωs)]

}

,

(39)
where

ωp = ω0
y + Ω + (pnb + µ)ω0, κµ =

ωp − ωξ
c

. (40)

Similarly, Eq. (29) is transformed to

(Ω ± ωs)g
±
µ (Ω ± ωs) = ∓iλyω0cNbnb

2π

∑

p

Zy[ωp]G(κµ)
∂G∗(κµ)

∂κµ

×
{

g0
µ(Ω) − κµ

2
[g+
µ (Ω + ωs) − g−µ (Ω − ωs)]

}

. (41)

Equations (39) and (41) are the system of linear equations for the amplitudes g0
µ(Ω), and

g±µ (Ω ± ωs). For Gaussian longitudinal distribution function with the rms bunch length
σ,

|G(κµ)|2 = e−(κµσ)2 , G(κµ)
∂G∗(κµ)

∂κµ
= −κµσ2 e−(κσ)2 . (42)

The bunch-by-bunch feedback system adds damping to each bunch proportional to
the bunch centroid velocity 〈ẏN〉 = (1/Nb)

∑

i dyi,N/dt. The action of the feedback can be
described by replacing d2yi,N/dt

2 + (ωyi,N)2yi,N in the equation of motion by d2yi,N/dt
2 +
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2γFB〈dyN/dt〉 + (ωyi,N)2yi,N . Eqs. (39) and (41) are then modified by changing the factor
Ω to Ω + 2iγFB in the left-hand-side.

In the following four sections, we apply the results of analysis obtained above to
reproduce the well known results for the transverse dipole coupled-bunch (dipole CB)
[6] and the head-tail (HT) [5] instabilities of the rigid bunches. Using the same set of
equations, we also obtain results for transverse head-tail coupled-bunch (head-tail CB)
and coupled-mode coupled-bunch (CMCB) [2] instabilities.

4 Transverse dipole coupled-bunch instability

In this section, let us consider only Eq. (39) neglecting terms involving g(±)
µ which, as we

will see later, are related to the head-tail transverse CB modes. That leaves us with a
single homogeneous equation,

Ωg0
µ(Ω) = −iλyω0cNbnb

2π

∑

p

Zy(ωp) |G(κµ)|2 g0
µ(Ω), (43)

which in turn yields the dispersion equation for the frequency Ωµ of the µ-th transverse
dipole CB mode,

Ωµ = −iλyω0cNbnb
2π

∑

p

Zy(ωp) |G(κµ)|2. (44)

The real part of Ωµ gives the frequency shift of the coherent mode, while its imaginary
part gives the instability growth rate of the mode. If Ω is small, we can neglect it in
the argument of the impedance and obtain the approximate but explicit solution of the
dispersion equation. For a Gaussian bunch that gives

Ωµ = −iλyω0c

2π
NBnb

∞
∑

p=−∞

Zy[(pnb + µ)ω0 + ωy]e
−( σ

c
)2((pnb+µ)ω0+ωy−ωξ)2 . (45)

Note that one can relate this to the dc beam current Idcbeam, the beam energy E, and
nominal betatron tune νy by

λyω0

2π
Nbnb =

Idcbeam
4π(E/e)νy

. (46)

Also note that it would be more accurate to replace the tune νy in the last formula by
R/βy with the β-function taken at the location of the impedance-generating element, and
note that Eq. (45) agrees with the result [7].

5 Transverse head-tail coupled-bunch instability

Here we consider Eqs. (41) neglecting for a while the reverse effect of the amplitudes g(±)

on g(0), and considering the latter as an external excitation. That gives us the system of
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two coupled equations. Using notations

ĝ± = g±µ (Ω ± ωs), (47)

where ωp and κ (we drop the index µ) are defined in Eq. (40), and

hµ(l) = i
λyω0cNbnb

2π

∑

p

Zy[ωp] |G(κ)|2 (
κ

2
)l,

h′µ(l) = i
λyω0cNbnb

2π

∑

p

Zy[ωp]G(κµ)
∂G∗(κµ)

∂κµ
(
κ

2
)l, (48)

we get

[Ω + ωs − h′µ(1)] ĝ
+ + h′µ(1) ĝ

− = −h′µ(0) g0
µ(Ω),

h′µ(1) ĝ
+ + [Ω − ωs − h′µ(1)] ĝ

− = h′µ(0) g
0
µ(Ω). (49)

The response to the excitation by the bunch centroid is infinite at the eigen-frequencies
Ω given by the zeros of the determinant

det
[

Ω + ωs − h′µ(1) h′µ(1)
h′µ(1) Ω − ωs − h′µ(1)

]

= 0. (50)

Equation (50) shows that |Ω| ' ωs. Approximate solution for a moderate current where
|κ(2)
µ | � 1 is

Ω(±)
µ = ±ωs + h′µ(1). (51)

For a Gaussian bunch,

Ω(±)
µ = ±ωs − i

λyω0

4π
NBnb

∞
∑

p=−∞

(

σ

c

)2

[(pnb + µ)ω0 + ωy − ωξ ± ωs]
2

× Zy[(pnb + µ)ω0 + ωy ± ωs]e
−( σ

c
)2((pnb+µ)ω0+ωy−ωξ±ωs)2 . (52)

The result gives the coherent frequency shift and the growth rate of the CB head-tail
modes.

Eq. (49) defines the structure of the excited eigen-modes,

ĝ(+) ' −h
′
µ(1)

2ωs
ĝ(−), Ω ' ωs

ĝ(−) ' h′µ(1)

2ωs
ĝ(+), Ω ' −ωs. (53)

The amplitudes ĝ± describe correlation of the transverse and longitudinal oscillations
(so called head-tail modes). Let us consider the case of zero chromaticity, ωξ = 0. The cor-
related transverse/longitudinal motion for two head-tail modes with Ω ' ±ωs is described
by the terms

〈zN(s)yN(s)〉 ∝ ± 1

2i
Xµ
N e

−iωys/c−i(ωy±ωs)τb(N−1) ĝ±µ + c.c. (54)

corresponding to the periodic tilts with frequency ωs of the bunch in the moving frame
of the bunch centroid.
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6 Mode coupling in multibunch system (CMCB in-

stability)

Now we can take into account effect of the head-tail modes g(±)
µ on the motion of the

bunch centroid. The full system of Eqs. (39), (41) is the system of linear equations
M(Ω)V = 0 for the vector V = {g(0)

µ (Ω), g(+)
µ (Ω + ωs), g

(−)
µ (Ω − ωs)}. The system has a

nontrivial solution at frequencies Ω given by the zeros of the determinant of the matrix
M(Ω),

M(Ω) =







Ω + hµ(0) −hµ(1) hµ(1)
h′µ(0) Ω + ωs − h′µ(1) h′µ(1)
−h′µ(0) h′µ(1) Ω − ωs − h′µ(1)





 . (55)

A nontrivial situation arises when the coherent tune shift is of the order of ωs. Then,
the equations can not be considered separately as it is done in the previous sections. The
solution describes the CMCB instability in the multibunch system [2]. The instability
is essentially the mode coupling (CM) instability but takes into account that, due to
long-range wake, the frequency shift for different CB modes may be different. Hence, the
crossing of the CM modes for the CB system may take place at lower currents and the
CMCB instability may have lower threshold than CM single bunch instability.

For illustration, we considered the PEP-II Low Energy Ring impedance shown in Fig.
1. Fig. 2 shows comparison of the calculations of CB modes and CMCB modes for the
beam current Idcbeam = 1 A and the number of bunches nb = 1616. The maximum growth
rate for rigid-dipole CB modes is 0.75 1/ms, and for dipole CMCB modes is 0.88 1/ms.
For the head-tail modes, the growth rates for CB and CMCB modes are 0.0057 1/ms and
0.0067 1/ms, respectively.

7 Head-tail instability

Let us apply these results to a single bunch, putting nb = N = M = 1, µ = 0 in Eqs.
(28), (29). Let us use notations

Â0 = Ã0
N(Ω),

Q̂± = Q̃(±)(Ω ± ωs),

h(l) = i
λyω0cNb

2π

∑

k

Zy[ωk] |G(κ)|2
(

κ

2

)l

,

h′(l) = i
λyω0cNb

2π

∑

k

Zy[ωk]G(κ)
∂G∗(κ)

∂κ

(

κ

2

)l

, (56)

where ωk = ωy + kω0 +Ω, κ = (ωk−ωξ)/c. The system of linear equations takes the form

ΩÂ0 = −h(0) Â0 + h(1) [Q̂+ − Q̂−],
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Figure 1: Impedance of the PEP-II LER given by the contributions from 6 cavities,
resistive wall, BPMs, and mostly inductive vacuum components.

(Ω + ωs) Q̂
+ = −h′(0) Â0 + h′(1) [Q̂+ − Q̂−],

(Ω − ωs) Q̂
− = h′(0) Â0 − h′(1) [Q̂+ − Q̂−]. (57)

Solutions exist if

det







Ω + h(0) −h(1) h(1)
h′(0) Ω + ωs − h′(1) h′(1)
−h′(0) h′(1) Ω − ωs − h′(1)





 = 0. (58)

In the lowest order in the beam current, the roots are

Ω = −h(0), Ω = ±ωs + h′(1). (59)

We can compare this result with the Satoh-Chin theory of the head-tail instability
for a Gaussian bunch. See Appendix. The Satoh-Chin theory gives solution in terms of
an infinite matrix Mh,l, (h, l) = 0, 1, 2, .... To get the solution, the matrix is truncated
to finite rank. The rank of the matrix defines how many synchrotron modes are taken
into account. The threshold, usually, corresponds to the crossing of the modes with mode
indices m = 0 and m = −1. Therefore, it can be defined with a good accuracy truncating
the matrix to the rank r = 1, taking only components (h, l) = 0 and (h, l) = 1. In this
approximation and in the lowest order in the bunch current, the roots of the Satoh-Chin
theory are

Ω = −iKSChωsM0,0, Ω = ±ωs − iKSCh ωsM1,1. (60)
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Figure 2: The growth rate for CB (blue) and CMCB modes (red) for rigid-dipole modes
m = 0 (a) and head-tail m = 1 modes (b).

The Satoh-Chin coefficient KSCh is

KSCh =
λyω0Nbc

2πωs
, (61)

and the matrix Mh,l(λ) in the Satoh-Chin formalism gives

h(0) = iKSChωsM0,0, h′(1) = −iKSChωsM1,1. (62)

Therefore, the roots Eq. (60) are exactly the same as given by the Satoh-Chin theory
in this approximation. We also compared the result of Eq. (58) numerically with the
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Satoh-Chin formalism with the rank of the truncated matrix equal to 2. Result is shown
in Fig. 3. Parameters are the same as in [8], see Appendix. The chromaticity has been set
to ξ = 0. The threshold of instability is defined by the crossings of the modes m = 0 and
m = −1. Agreement of the results is quite good and confirms that the higher synchrotron
modes give only small correction to the threshold.

The advantage of our approach is that Eqs. (58) do not require the Gaussian bunch
profile, thus allowing us to take into account the potential well distortion (PWD). Fig.(4)
shows the threshold of the head-tail instability for a Gaussian bunch (blue dots) and for the
bunch with profile given by the current dependent Haissinski distribution. The effect on
the threshold is negligible. More accurately, to be consistent, taking into account the PWD
we should also take into account the synchrotron frequency spread ωs(a) calculating the
G(κ) factor. Such generalization of our formalism does not contradict to single harmonic
approximation Eq. (2).

8 Summary

The transverse instabilities of coupled bunches are studied considering correlation of the
transverse and longitudinal motion. We show that the results for dipole and head-tail
coupled bunch instabilities can be obtained in this way as well as the results for the
coupled bunch coupled mode instability. All of that can be obtained as limiting cases
of the same framework of equations. Applying these equations for a single bunch gives
results which agree quite well with the Satoh-Chin theory of the head-tail instability
for a Gaussian bunch. The equations derived here for the head-tail instability allow to
take into account also the potential wake distortion of the bunch profile. The statements
are illustrated by numerical examples. We believe that the correlation-moment analysis
presented here provides a way to describe the collective beam instability mechanism as
an alternative, and in some aspects an improvement, compared with the usual analysis
based on linearization of the Vlasov equation.
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10 Appendix: Satoh-Chin formalism for head-tail in-

stability

The accurate consideration of the head-tail instability for a Gaussian bunch was given by
Satoh and Chin [8]. The result is formulated as a matrix equation

det[δh,l + iKSChbh(λ)Mh,l] = 0, (63)

for the parameter λ = Ω/ωs where Ω is the coherent shift from the zero-current betatron
tune ν⊥, the instability takes place when the growth rate Im[Ω] > 0, and

KSCh =
Ibunchβ⊥

4π(E/e)νs
(64)

Here Mh,l, h, l = 0, 1, 2, .. is the matrix element

Mh,l =
∞
∑

p=−∞

Z⊥[(p+ ν⊥ + λνs)ω0]

× Ch

[

(p+ ν⊥ + λνs − ν⊥
ξ

α
)
σ

R

]

Cl

[

(p+ ν⊥ + λνs − ν⊥
ξ

α
)
σ

R

]

, (65)

where Z⊥(ω) is transverse impedance (dimension Ω/m,) ξ is the relative chromaticity, R
is the average machine radius, α is the momentum compaction, and

Ch(x) =
1√
h!

(

x√
2

)h

e−
x2

2 , (66)

The coefficients bh(λ) are

bh(λ) =
[h/2]
∑

k=0

h!

k!(h− k)!

λ

λ2 − (h− 2k)2
P [h, k], (67)

b0(λ) =
1

λ
, b1(λ) =

2λ

λ2 − 1
. (68)

The upper limit of summation is given by the integer part of h/2 and P (h, k) = 1 if
2k = h and P (h, k) = 2 otherwise. In actual calculations the matrix is truncated to a
finite rank which is approximately equal to the number of azimuthal modes taken into
account. Usually, the threshold of instability is given by the lowest modes. An example
of calculations based on the Satoh-Chin formalism is given in the text. For illustration in
the text above, we took parameters of the PEP-II broad-band Q = 1 wake used by Satoh-
Chin: the resonance frequency fres = 1.3 GHz, the shunt impedance Rs = 0.68 MΩ/m,
energy E = 14.5 GeV, the synchrotron tune νs = 0.044, the betatron tune νy = 21.25,
the momentum compaction α = 1.2 × 10−3, the revolution frequency frev = 136.4 kHz,
rms bunch length σ = 2 cm, and β-function βy = 160 m.
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