Development of Durable, Low-Cost, High-Performance Pt Alloy Electrocatalysts for H₂/Air Fuel Cell Application

Yipeng Sun, Ph.D.

Cabot Superior MicroPowders

5401 Venice Avenue, NE

Albuquerque NM 87113

CABOT

Pt Alloy Catalyst for Automotive Fuel Cell Commercialization

- ✓ Activity: fourfold mass activity over SOA Pt/C; 0.44 A/mgPt@0.9V_{iR-free} (Test at 80°C/80°C H₂/O₂ in MEA; fully humidified with total outlet pressure of 150 kPa; anode stoichiometry 2; cathode stoichiometry 9.5).
- Durability: less than 40% loss in Pt surface area in 300,000 voltage cycles (between 0.7V and 0.9V iR-free voltage in H₂/Air (30 sec hold at each potential))
- Carbon support durability: < 30mV performance loss after 100 hours @ 1.2 V.

Combinatorial Discovery

Need for combinatorial discovery

✓ Empirical studies demonstrated 20-30 mV activity gains of binary systems, such as PtNi, PtCo and PtCr, over Pt/C.

 \checkmark The optimum composition of these alloys remains unknown.

 \checkmark As the number of elemental components increases, the number of possible compositions to be prepared and tested grows geometrically.

Challenge of combinatorial approach

✓ Many combinatorial platforms rely on high throughput techniques for model systems (sputtering) followed by scale up in supported form

✓ "Hits" cannot always be translated into real material systems.

Cell Voltage (V)

0.5

0.3 0.2

Cabot's Combinatorial Catalyst Discovery Platform

Electrochemical and physical characterization

High volume production

Rapid screening

Ternary and Quaternary Alloy Libraries Completed

A/mg Pt cathode

CABOT Scale Up and Optimization of Best Alloy Compositions

2.1 nm

10 nm

MicroPowders

- Systematically investigated production conditions on physical and electrochemical properties of alloy.
- Characterization of catalyst powders by XRD, TEM, BET and EDS.
- Correlate physical properties to performance in MEA

	Average metal crystalline size (nm)	BET (m^2/g)
Sample A	3.7	108
Sample B	4.4	103
Sample C	4.3	98

Scale Up of Best Alloy Compositions

- Catalysts with 20-50 wt.% metal loading made on production unit.
- Same level of performance improvement compared to Pt/C was achieved.

Mass Activity for 20-50% Pt Alloy Catalysts

	Mass Activity at
Catalyst Composition	0.9V (A/mg Pt)
CSMP 20% Pt/V	0.07
CSMP 50% Pt/KB	0.13
Commercial 20% Pt/V	0.07
CSMP 20% PtNiCo/V	0.13
CSMP 20% PtCoCu/V	0.25
CSMP 50% PtNiCo/V	0.09
CSMP 50% PtNiCo/KB	0.23
CSMP 50% PtCoCu/KB	0.22

- Effect of metal loading, type of support and processing conditions on mass activity.
- Layer structure (loading, Nafion/C ratio) might have an effect on mass activity measurement.

Test Conditions:

- 80°C cell, Nafion[™] 112, 100% humidification, 9 psi backpressure, H₂/O₂ (2/9.5)
- 20 wt.% M/C: Cathode: 0.2 mg Metal/cm², anode: 0.05 mgPt/cm²
- 50 wt.% M/C: Cathode: 0.5 mg Metalcm², anode: 0.05 mgPt/cm²

Electrocatalyst Powder Characterization – Composition and Uniformity by TEM/EDS and SEM

µm scale

nm scale

	A (%)	B (%)	Pt (%)
Ball02	29	28	43
Ball01	30	28	42
Expected	25	25	50

ſ		A(%)	B (%)	Pt (%)
	А	33	23	44
	В	29	25	46
-	С	30	27	43
	Whole area	31	20	49
I	Expected	25	25	50

	A (%)	B (%)	Pt (%)
1	22	22	56
2	17	11	72
3	16	11	73
4	22	18	60
Expected	25	25	50

Best Single Cell MEA Performance

CABOT

Test Conditions:

- ✓ 50 cm² MEA
- ✓ Nafion[™] 112
- ✓ 80°C, 1.5 $H_2/2.5$ air at 1A/cm²
- ✓ 100% RH, 30 psig, 10min/point,
- ✓ Non IR corrected

High Metal Loading Pt Alloy Catalyst on High Surface Area Carbon Support

 Similar high absolute performance at approximately half of the Pt content

• Mass activity measured at 0.9V (IR-free) in pure hydrogen and oxygen with reactant flow set at stoichiometry of 2 and 9.5, respectively (9 psi back pressure) corresponds to 0.24 A/mg Pt.

• New carbon support is more corrosion resistant than conventional carbon.

CABOT Superior MicroPowders

• The test consists of cycling a 25 cm² MEA under H_2 /air at 80°C and 100% RH between 0.7 and 0.9 V IR-free voltage (30 s hold at each potential) combined with periodical evaluation of the Pt surface area using cyclic voltammetry and performance.

C CABOT Long-Term Durability Study – Cycling Protocols

- Pt alloy catalyst shows better durability under cycling protocols than Pt/C.
- Further analysis of the alloy durability with post mortem analysis of structural changes in progress.

Test conditions:

- Single MEA 50 cm² test cell, Nafion 112
- Cell temperature 80C
- Anode/cathode constant flow rates = 510/2060 mL/min H₂/air (1.5H₂/ 2.5 air stoich at 1 A/cm²)
- 30 psig pressure on both anode and cathode
- 100% humidification of gases, 80C dew point

Conclusion

Demonstrate effectiveness of combinatorial platform combined with systematic production scale up for discovery of highly active Pt alloy compositions.

- Demonstrate better durability of Pt alloy catalyst under cycling protocols than Pt/C.
- Durable Pt alloy catalyst with further activity enhancement on corrosion-resistant carbon is needed for automotive fuel cell commercialization.

THE REAL PROPERTY.

Acknowledgements

•DOE Hydrogen Program, Award DE-FC0402AL67620, Topic 1A1

•DOE Program Managers: Amy Manheim, Walter Podolski, Reg Taylor

•CSMP, DuPont Fuel Cells and CFDRC for cost share funding

•The whole CSMP team and especially: Paolina Atanassova, Yvette Herrera, Leonard Perez, Jim Brewster, Gordon Rice, David Dericotte

CSMP's Facility in Albuquerque

•DuPont Fuel Cells: Todd Fountain, Gowri Nagarajan, Dennis Kountz