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Cabot Fuel Cells

• New name, clear commitment to Fuel Cells 
commercialization 
• Combining the expertise in carbon supports with 
electrocatalyst manufacturing 
• New methods, new results! 

• Hydrogen-air FC & DMFC materials solutions
• Advanced electrocatalysts for Hydrogen Air Fuel 
Cells:

• Low precious metal alloys
• Oxidation resistant carbon supports
• Modified carbon black supports for low humidity operation



Cabot Fuel Cell Materials Development 

• Low Precious Metal Alloy Electrocatalysts
• Advanced Carbon Supports
• Easy Handling for Inks Formulation
• Optimized Electrode Layers and MEA Structures

CostCost
gPtgPt/kW;  $/kW/kW;  $/kWPerformancePerformance
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High Throughput Catalyst Discovery Platform is Key Element 
for Rapid Optimization of Complex Alloy Compositions

Electrochemical 
and Physical 
Characterization

High Throughput Synthesis Rapid Cathode Layer Fabrication

Rapid Screening in 
MEA ConfigurationHigh Volume Production



1 PtCoCu
2 PtCoFe
3 PtFeCu
4 PtNiCu
5 PtNiFe
6 PtPdCu
7 PtPdCo
8 PtPdFe
9 PtMnFe
10 PtPdMn
11 PtNiCo
12 PtCoAg
13 PtFeAg
14 PtNiAg
15 PtPdNiCo

Test Conditions:

• Non IR corrected, 50 cm2 MEA, NafionTM 112

• Loadings: Cathode: 0.2 mgM/cm2, Anode: 0.05 mgPt/cm2

• 80ºC, 1.5 H2/2.5 air at 1A/cm2, 100% RH, 30 psig, 10min/point 
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Best Pt alloy compositions show up to 2 fold mass 
activity improvement in hydrogen air fuel cell

Two Fold Mass Activity Improvement Demonstrated by
Ternary Pt- Alloy Supported Catalysts



Superior MEA Performance at Low Precious Metal Loadings

Highly Dispersed Alloy Catalysts
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MEA loadings: 0.15 mg Pt/cm2 total loading
Cathode: 0.1 mg Pt/cm2; Anode: 0.05 mg Pt/cm2

0.8 V, 0.6 g Pt/kW 
0.75 V, 0.4 g Pt/kW 

0.7 V, 0.3 g Pt/kW 

Test Conditions:
• 50 cm2, NafionTM 112 
• 80°C, 1.5 H2/2.5 air at 1A/cm2, 100% RH, 30 psig                 
10 min/point, Non IR corrected

Pt (111): 40.36 (2θ); a: 3.87 Å
Particle size (XRD): 2.4 nm



High Absolute Performance Combined with Low Precious 
Metal Loadings

Test Conditions:
• Non IR corrected 50 cm2, 
NafionTM 112, cathode: as 
listed; anode: 0.05 mgPt/cm2,
• 80°C, 1.5 H2/2.5 air at 
1A/cm2, 100% RH, 30 psig, 10 
min/point
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A: 0.3 mgPt/cm2, Pt alloy/KB

B: 0.5 mgPt/cm2, 50 wt.% Pt/KB

2006

• High Metal Loading 
Catalyst on High Surface 
Area Carbon Support

• Identical performance 
at approximately half of 
the Pt content

• At 0.8 V a power density of 0.32 W/cm2 was achieved

• At 0.7 V approximately 0.56 W/cm2 (total PM loading, anode plus cathode of 0.35
mgPt/cm2), which corresponds to approximately 0.6 gPt/kW.

• The corresponding value for Pt only catalyst at 0.7 V is approximately 0.9 gPt/kW



Short Stack Testing Validates Alloy Catalysts 
Performance

Stack Test Conditions:
• 5 cell, large area, NafionTM 112 

cathode: as listed; anode: 0.05 
mgPt/cm2

• 80/80/80oC, 55/55 kPa, 1.5/2.5 stoich 
• 80/80/80oC, 190/190 kPa, 1.5/2.5 stoich
• 80/80/64oC, 175/175 kPa, 2/2.5 stoich

• Short stack evaluation 
completed by Hydrogenics 
Corporation 
• 0.6 gPt/kW demonstrated in 
a short stack at 0.7 V and 
stoich test conditions
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Pt/KB, 0.5 mg Pt/cm2

Pt Alloy/V, 0.25 mg Pt/cm2

50% Pt/KB Pt Alloy/V
0.8V 0.67 0.95 42
0.75V 1.04 1.7 63
0.7V 1.37 2.75 100

Mass activity (A/mg Pt cathode) Performance 
improvement (%)50% Pt/KB Pt Alloy/V

0.8V 0.67 0.95 42
0.75V 1.04 1.7 63
0.7V 1.37 2.75 100
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Long-Term Durability Under Cycling Protocols

Normolized Specifc Surface Area vs. CV Cycle
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50 mA/cm2 6
400 mA/cm2 13

Test Conditions: 
50 cm2 MEA, cycling under H2/air at 80°C and 
100% RH between 0.7 and 0.9 V IR-free 
voltage (30 s hold at each potential) 
combined with periodical evaluation of the Pt 
surface area using cyclic voltammetry and 
performance.

Pt alloy catalyst shows 30% loss 
of surface area after 20 K cycles 
and no further loss is observed 
until 30K cycles !



Long Term Performance Losses Related to Carbon 
Corrosion

• Carbon Support Durability is considered to be a major 
barrier for commercialization of automotive fuel cells
• Carbon corrosion is accelerated during start/ stop cycles 
and at high temperature operating conditions
•Type of performance losses related to carbon corrosion

• Pt sintering due to loss of active phase/support interaction
• Oxidation of carbon surface leads to layer flooding effects
• Break down in carbon/carbon interface

• Conventional approaches to improving carbon durability 
lead to trade offs between durability, absolute performance 
and catalyst ink properties



Ability to Control Carbon Support Properties

Particle Size

Structure

Surface Chemistry

Combination of morphology control
and surface modification allows for 
rational design of carbon materials 

• Carbon black morphology can be 
controlled to design the length scale of gas 
and water transport channels

• Various degrees of carbon support 
graphitization can be achieved

• Carbon support surface chemistry can be 
modified

+ N YN
+

Carbon Black Diazonium Salt
Modified 
Carbon 
Black



Carbon Corrosion Analysis Approach

• Investigate and evaluate the corrosive 
behavior of dispersed carbon blacks in 
low temperature fuel cell environment

• Corrosion resistance evaluation 
protocol adopted from GM/DOE
– Polarization curves test conditions 80°C,

stoich flows A/C = 3/3, 50% RH, 7 psig

• Study the effect of platinum loading, 
surface modification and morphology 
of the carbon blacks on the corrosive 
behavior of electrocatalysts.

• Goal – less than 30 mV loss at 1 A/cm2

after 100 hrs corrosion test

Start-up Cell

Conditioning
(12 to 16 hours)

Measure 
Polarization Curves

Apply 1.2V - 100% RH 
H2/N2 for 15 hours

Measure 
Polarization Curves

Apply 1.2V - 100% RH 
H2/N2 for 5 -15 hours

t <100 hours?

No

Yes

Shutdown Cell



Severe Corrosion Losses with Standard Supports

60% Pt / Ketjen Black

• > 100mv loss at 1A/cm2 only after 15hrs

• > 53% Loss in EC area after 45hrs of standard corrosion protocol
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Polarization curves 
test conditions: 

80/80/80°C, stoich
flows A/C = 3/3, 
50% RH, 7 psig



Surface Modification Effectively Enhances Carbon 
Corrosion Resistance

• >100mV Loss at 1A/cm2 after 50hrs
• Improvement is related to the coverage of functional groups on 

carbon surface 
• Functional groups stabilize the carbon surface
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Polarization curves 
test conditions: 

80°C, stoich flows 
A/C = 3/3, 50% RH, 
7 psig

60% Pt / Modified Carbon Black  (MCB)



Surface Modification Enables Operation at Low 
Relative Humidity Conditions
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• 100 % relative humidity test: flow stoich  = 2.0 (A/C), cell temperature 80°C 
back pressure =10 psig ( A/C), RH=100% (A/C)

• 50 % relative humidity test: flow stoich  = 2.0 (A/C), cell temperature 80°C 
back pressure =10 psig ( A/C), RH=50%/50% (A/C)



Superior Corrosion Resistance with New Cabot 
Carbon Support

• Identical initial absolute performance after layer optimization
• No loss of performance after 105 hrs corrosion test
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New Cabot Carbon 7psig 0hr
New Cabot Carbon 30 psig
Standard Carbon 30 psig
Standard carbon 7 psig 0hr
New Cabot Carbon  7 psig 105hr

Standard Polarization Curves Test Conditions: 80C, constant 
flow - 520/2040 mL/min A/C, 100% RH, 30 psig

Corrosion Test Polarization Curves: 80C, stoich flow 3/3 
A/C,50% RH, 7 psig

60% Pt / Corrosion Resistant Carbon (CRC) 



Summary 

Alloy Electrocatalysts:

Two fold mass activity improvement by Pt-alloy catalysts

High absolute performance combined with low precious metal  
loadings in a single cell and short stack

Significant durability improvement under cycling protocols 

New Carbon Supports:

Surface modification of carbon supports effectively enhances 
carbon corrosion resistance and enables operation at low relative 
humidity operating conditions 

No performance loss after 105 hours of standard corrosion 
protocol without sacrificing initial performance

Combination of durable Pt alloy catalysts with corrosion-
resistant carbon supports is a viable way for next generation 
automotive fuel cell materials



Future Work

Cabot’s press release on November13th,2006 
announced plans to introduce new products in Q1, 
2007:

Superior Durability Electrocatalysts based on Corrosion 
Resistant Carbon (CRC) supports

Superior Performance Electrocatalysts for Operation at Low 
Relative Humidity based on Modified Carbon Blacks (MCB)

For additional information:

Visit us at Cabot’s boot #102

info@cabotfuelcells.com

Presentations at ECS meeting, Cancun

mailto:info@cabotfuelcells.com


Acknowledgements

•• Cabot Corporation Cabot Corporation 
•• DOE Hydrogen Program, Award DOE Hydrogen Program, Award DEDE--FC0402AL67620FC0402AL67620
•• NIST ATP Program NIST ATP Program 70NANB4H301970NANB4H3019
•• The whole Cabot team and especially: Greg Romney, Fred Von The whole Cabot team and especially: Greg Romney, Fred Von GottebergGotteberg, , 

YakovYakov KutsovskyKutsovsky, Martin Green, Geoffrey , Martin Green, Geoffrey MoeserMoeser, Yvette Herrera, , Yvette Herrera, 
Leonard Perez, Jason ZackLeonard Perez, Jason Zack

•• Madhusudhana DowlapalliMadhusudhana Dowlapalli,, Plamen AtanassovPlamen Atanassov, Ceramic and Composite , Ceramic and Composite 
Materials Center, University of New MexicoMaterials Center, University of New Mexico

Cabot’s Facility in AlbuquerqueCabot’s Facility in Albuquerque


	Long Term Performance Losses Related to Carbon Corrosion
	Ability to Control Carbon Support Properties
	Carbon Corrosion Analysis Approach
	60% Pt / Ketjen Black
	Surface Modification Effectively Enhances Carbon Corrosion Resistance
	Surface Modification Enables Operation at Low Relative Humidity Conditions
	Superior Corrosion Resistance with New Cabot Carbon Support
	Acknowledgements

