PArthENoPE : Public Algorithm Evaluating the Nucleosynthesis of Primordial Elements

O. Pisanti ${ }^{1 *}$, A. Cirillo ${ }^{1}$, S. Esposito ${ }^{1}$, F. Iocco 1,2, G. Mangano ${ }^{1}$, G. Miele ${ }^{1}$, and P. D. Serpico ${ }^{3}$
${ }^{1}$ Dipartimento di Scienze Fisiche, Università di Napoli Federico II and INFN, Sezione di Napoli, Via Cintia, I-80126 Napoli, Italy
${ }^{2}$ Kavli Institute for Particle Astrophysics and Cosmology, PO Box 20450, Stanford, CA 94309, USA
${ }^{3}$ Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510-0500, USA

We describe a program for computing the abundances of light elements produced during Big Bang Nucleosynthesis which is publicly available at http://parthenope.na.infn.it/ Starting from nuclear statistical equilibrium conditions the program solves the set of coupled ordinary differential equations, follows the departure from chemical equilibrium of nuclear species, and determines their asymptotic abundances as function of several input cosmological parameters as the baryon density, the number of effective neutrino, the value of cosmological constant and the neutrino chemical potential.

Program summary

Title of program: PArthENoPE
Program URL: http://parthenope.na.infn.it/
Program obtainable from: parthenope@na.infn.it
Computers: PC-compatible running Fortran on Unix, MS Windows or Linux
Operating systems under which the program has been tested: Windows 2000, Windows XP, Linux
Programming language used: Fortran 77
External routines/libraries used: NAG libraries
No. of lines in distributed program, including input card and test data: 4969
No. of bytes in distributed program, including input card and test data: 192 Kb
Distribution format: tar.gz
Nature of physical problem: Computation of yields of light elements synthesized in the primordial universe.
Method of solution: BDF method for the integration of the ODE's, implemented in a NAG routine
Typical running time: 90 sec with default parameters on a Dual Xeon Processor 2.4 GHz with $2 . \mathrm{GB}$ RAM

PACS numbers: 26.35.+c
DSF 13/07, FERMILAB-PUB-07-079-A, SLAC-PUB-12488
"A l'alta fantasia qui mancò possa; ma già volgeva il mio disio e 'l velle, sì come rota ch'igualmente è mossa,
l'amor che move il sole e l' altre stelle."
Dante Alighieri, "Commedia" - Paradiso, Canto XXXIII, 142-145

I. INTRODUCTION

Big Bang Nucleosynthesis (BBN) is considered as one of the most striking evidence of the Cosmological Standard Model. At the very early stages of Universe evolution, when the temperature of the primordial plasma decreased from a few MeV down to $\sim 10 \mathrm{keV}$, light nuclides as ${ }^{2} \mathrm{H},{ }^{3} \mathrm{He},{ }^{4} \mathrm{He}$ and, to a smaller extent, ${ }^{7} \mathrm{Li}$ were produced via a network of nuclear processes, resulting into abundances for these species which can be determined with several observational techniques and in different astrophysical environments. In the standard cosmological scenario and in the framework of the electroweak Standard Model, the dynamics of this phase is controlled by only one free parameter, the baryon to photon number density, which can thus be fixed by fitting experimental observations. This parameter can be also independently measured with very high precision by Cosmic Microwave Background anisotropies [1] and the agreement with BBN result is quite remarkable.

[^0]	1$)$	n	$7)^{6} \mathrm{Li}$	$13)^{10} \mathrm{~B}$	$19)^{13} \mathrm{C}$	$25)^{15} \mathrm{O}$
2$)$	p	$8)^{7} \mathrm{Li}$	$14)^{11} \mathrm{~B}$	$20)^{13} \mathrm{~N}$	$26)^{16} \mathrm{O}$	
3$)^{2} \mathrm{H}$	$9)^{7} \mathrm{Be}$	$15)^{11} \mathrm{C}$	$21)^{14} \mathrm{C}$			
4$)^{3} \mathrm{H}$	$10)^{8} \mathrm{Li}$	$16)^{12} \mathrm{~B}$	$22)^{14} \mathrm{~N}$			
5$)^{3} \mathrm{He}$	$11)^{8} \mathrm{~B}$	$17)^{12} \mathrm{C}$	$23)^{14} \mathrm{O}$			
6$)^{4} \mathrm{He}$	$12)^{9} \mathrm{Be}$	$18)^{12} \mathrm{~N}$	$24)^{15} \mathrm{~N}$			

TABLE I: Nuclides considered in PArthENoPE .

In the last decade the amount of cosmological and astrophysical observations has rapidly grown and reached in several cases an impressive accuracy. An overall consistent picture of the evolution of the Universe has been thus established, usually referred to as the "concordance" model. At present, one faces the intriguing possibility to test models which go beyond our present understanding of fundamental interactions, in a way which is complementary to traditional earth-based laboratory and accelerator approaches. This is illustrated e.g. by the search for new light degrees of freedom which might contribute to the total energy density in the Universe in addition to photons and neutrinos [2].

To pursue this programme, it is crucial to achieve a high level of accuracy in theoretical predictions for cosmological observable quantities, at least at the level of experimental uncertainties. In the case of BBN, many steps have been done in this direction by a careful analysis of several key aspects of the physics involved in the phenomenon. The accuracy of the weak reactions which enter the neutron/proton chemical equilibrium has been pushed well below the percent level [3, 4, 5, [6, 7]. Similarly, the neutrino decoupling has been carefully studied by several authors by explicitly solving the corresponding kinetic equations [8, 9, 10, 11, 12, 13]. These two issues are mainly affecting the prediction of ${ }^{4} \mathrm{He}$ mass fraction, which presently has a very small uncertainty, of the order of 0.1%, due to the experimental uncertainty on neutron lifetime. Finally, much study has been devoted to the analysis of several nuclear reaction rates entering the BBN network, as well as the corresponding uncertainties. This task involves a careful study of the available data or predictions on each reaction, including an update in light of new relevant experimental measurements, the choice of a reasonable protocol to combine them in order to obtain a best estimate and an error and, finally, the calculation of the corresponding thermal averaged rates. This issue has been extensively discussed in [7], whose results have been used in the program described in the present paper, and [14, 15]. An important benchmark in this development has been also represented by the NACRE Collaboration database 16].

In view of all these new developments, we think that it might be useful for the scientific community interested in BBN, in itself or as a tool to constrain new physics beyond the Standard Model, to have at its disposal a new numerical BBN code which comes after the first pioneering achievements of 17,18$]^{1}$. For this reason we have publicly released a programme we have developed and continuously updated over almost a decade, which we named PArthENoPE and can be obtained at the URL http://parthenope.na.infn.it/. The aim of the present paper is to give a general description of the programme and how to use it. After briefly summarizing in Section Π the theoretical framework of BBN, and all major improvements implemented in PArthENoPE, we discuss in Section III a few extensions of the minimal standard BBN scenario which are also included in the code. In Section IV the main structures of PArthENoPE are outlined. Finally we give our Conclusions in Section V .

II. THE THEORY OF BIG BANG NUCLEOSYNTHESIS

A. The set of equations

We consider $N_{n u c}$ species of nuclides, whose number densities, n_{i}, are normalized with respect to the total number density of baryons n_{B},

$$
\begin{equation*}
X_{i}=\frac{n_{i}}{n_{B}} \quad i=n, p,{ }^{2} \mathrm{H}, \ldots \tag{1}
\end{equation*}
$$

[^1]The list of all nuclides which are typically included in BBN analyses and considered in PArthENoPE is reported in Table I.

In the (photon) temperature range of interest for $\mathrm{BBN}, 10 \mathrm{MeV}>T>0.01 \mathrm{MeV}$, electrons and positrons are kept in thermodynamical equilibrium with photons by fast electromagnetic interactions and distributed according to a Fermi-Dirac distribution function $f_{e^{ \pm}}$, with chemical potential μ_{e}, parameterized in the following by the function $\phi_{e} \equiv \mu_{e} / T$. The pressure and energy density of the electromagnetic plasma ($e^{ \pm}$and γ) is calculated in PArthENoPE by including the effect of finite temperature QED corrections [11]. Furthermore, electromagnetic and nuclear scatterings keep the non-relativistic baryons in kinetic equilibrium, and their energy density ρ_{B} and pressure p_{B} are given by

$$
\begin{align*}
\rho_{B} & =\left[M_{u}+\sum_{i}\left(\Delta M_{i}+\frac{3}{2} T\right) X_{i}\right] n_{B} \tag{2}\\
\mathrm{p}_{B} & =T n_{B} \sum_{i} X_{i} \tag{3}
\end{align*}
$$

with ΔM_{i} and M_{u} the i-th nuclide mass excess and the atomic mass unit, respectively.
The set of differential equations ruling primordial nucleosynthesis is the following (see for example [5, 6, 17]):

$$
\begin{align*}
& \frac{\dot{a}}{a}=H=\sqrt{\frac{8 \pi G_{N}}{3} \rho} \tag{4}\\
& \frac{\dot{n}_{B}}{n_{B}}=-3 H \tag{5}\\
& \dot{\rho}=-3 H(\rho+\mathrm{p}) \tag{6}\\
& \dot{X}_{i}=\sum_{j, k, l} N_{i}\left(\Gamma_{k l \rightarrow i j} \frac{X_{l}^{N_{l}} X_{k}^{N_{k}}}{N_{l}!N_{k}!}-\Gamma_{i j \rightarrow k l} \frac{X_{i}^{N_{i}} X_{j}^{N_{j}}}{N_{i}!N_{j}!}\right) \equiv \Gamma_{i} \tag{7}\\
& L\left(\frac{m_{e}}{T}, \phi_{e}\right)=n_{B} \sum_{j} Z_{j} X_{j} \equiv T^{3} \hat{L}\left(\frac{m_{e}}{T}, \phi_{e}\right) \tag{8}
\end{align*}
$$

where ρ and p denote the total energy density and pressure, respectively,

$$
\begin{align*}
& \rho=\rho_{\gamma}+\rho_{e}+\rho_{\nu}+\rho_{B} \tag{9}\\
& \mathrm{p}=\mathrm{p}_{\gamma}+\mathrm{p}_{e}+\mathrm{p}_{\nu}+\mathrm{p}_{B} \tag{10}
\end{align*}
$$

while i, j, k, l denote nuclides, Z_{i} is the charge number of the $i-$ th nuclide, and the function $\hat{L}(\xi, \omega)$ is defined as

$$
\begin{equation*}
\hat{L}(\xi, \omega) \equiv \frac{1}{\pi^{2}} \int_{\xi}^{\infty} d \zeta \zeta \sqrt{\zeta^{2}-\xi^{2}}\left(\frac{1}{e^{\zeta-\omega}+1}-\frac{1}{e^{\zeta+\omega}+1}\right) \tag{11}
\end{equation*}
$$

Equation (4) is the definition of the Hubble parameter H, a denoting the scale factor of the Friedmann-Robertson-Walker-Le Maitre metric, with G_{N} the gravitational constant, whereas Eq.s (5) and (6) state the total baryon number and entropy conservation per comoving volume, respectively. The set of $N_{n u c}$ Boltzmann equations (77) describes the density evolution of each nuclide specie, with $\Gamma_{k l \rightarrow i j}$ the rate per incoming particles averaged over kinetic equilibrium distribution functions. Finally, Eq. (8) states the Universe charge neutrality in terms of the electron chemical potential, with $L\left(m_{e} / T, \phi_{e}\right)$ the charge density in the lepton sector in unit of the electron charge.

The neutrino energy density and pressure are defined in terms of their distributions in momentum space as

$$
\begin{equation*}
\rho_{\nu}=3 \mathrm{p}_{\nu}=2 \int \frac{d^{3} p}{(2 \pi)^{3}}|\vec{p}|\left[f_{\nu_{e}}+2 f_{\nu_{x}}\right] \tag{12}
\end{equation*}
$$

Indeed, in the default scenario we assume a vanishing neutrino chemical potential, so that $f_{\nu_{e}}=f_{\bar{\nu}_{e}}$ and $f_{\nu_{x}} \equiv f_{\nu_{\mu}}=$ $f_{\bar{\nu}_{\mu}}=f_{\nu_{\tau}}=f_{\bar{\nu}_{\tau}}$. The nuclide evolution can be followed in PArthENoPE also for finite neutrino chemical potential, see Section III below.

As well known, neutrinos decouple from the electromagnetic plasma at temperatures of a few MeV . Soon after, when the onset of $e^{+}-e^{-}$annihilations takes place, $e^{ \pm}$are still partially coupled to neutrinos. The neutrino distributions are thus slightly distorted, especially in their high energy tail (and the e-flavor more than the other two, since the former also interacts via charged current). To get BBN predictions accurate at the sub-percent level it is necessary to follow in details this residual out of equilibrium neutrino heating by solving the kinetic equations for neutrino
distributions. Remarkably, baryons provide a negligible contribution to the dynamics of the Universe at the BBN epoch as the baryon to photon number density is very small, $\eta \lesssim 10^{-9}$, and therefore Boltzmann equations for neutrino species can be solved together with equations (4) and (6) only, ignoring the dynamics of nuclear species. This allows one to solve the evolution of the neutrino species first, and then to substitute the resulting neutrino distribution into the remaining equations. We do not consider neutrino oscillations, whose effect has been studied and shown to be sub-leading in [12]. The reader can find further details on the neutrino decoupling stage in [7, 12, 13].

B. Numerical solution of the BBN set of equations

The BBN set of equations (4)-(8) can be recast in a form more convenient for a numerical solution, which follows the evolution of the $N_{n u c}+1$ unknown quantities $\left(\phi_{e}, X_{j}\right)$ as functions of the dimensionless variable $z=m_{e} / T$. In this framework, Eq. (8) provides n_{B} as a function of ϕ_{e}. In particular, the set of differential equations implemented in PArthENoPE is the following:

$$
\begin{gather*}
\frac{d \phi_{e}}{d z}=\frac{1}{z} \frac{\hat{L} \kappa_{1}+\left(\hat{\rho}_{e \gamma B}+\hat{\mathrm{p}}_{e \gamma B}+\frac{\mathcal{N}(z)}{3}\right) \kappa_{2}}{\hat{L} \frac{\partial \hat{\rho}_{e}}{\partial \phi_{e}}-\frac{\partial \hat{L}}{\partial \phi_{e}}\left(\hat{\rho}_{e \gamma B}+\hat{\mathrm{p}}_{e \gamma B}+\frac{\mathcal{N}(z)}{3}\right)} \tag{13}\\
\frac{d X_{i}}{d z}=\dot{X}_{i} \frac{d t}{d z}=-\frac{\widehat{\Gamma}_{i}}{3 z \widehat{H}} \frac{\kappa_{1} \frac{\partial \hat{L}}{\partial \phi_{e}}+\kappa_{2} \frac{\partial \hat{\rho}_{e \gamma B}}{\partial \phi_{e}}}{\hat{L} \frac{\partial \hat{\rho}_{e}}{\partial \phi_{e}}-\frac{\partial \hat{L}}{\partial \phi_{e}}\left(\hat{\rho}_{e \gamma B}+\hat{\mathrm{p}}_{e \gamma B}+\frac{\mathcal{N}(z)}{3}\right)} \tag{14}
\end{gather*}
$$

where

$$
\begin{gather*}
\kappa_{1}=4\left(\hat{\rho}_{e}+\hat{\rho}_{\gamma}\right)+\frac{3}{2} \hat{\mathrm{p}}_{B}-z \frac{\partial \hat{\rho}_{e}}{\partial z}-z \frac{\partial \hat{\rho}_{\gamma}}{\partial z}+\frac{1}{\hat{L}}\left(3 \hat{L}-z \frac{\partial \hat{L}}{\partial z}\right) \hat{\rho}_{B}-\frac{z^{2} \hat{L}}{\sum_{j} Z_{j} X_{j}} \sum_{i}\left(\Delta \widehat{M}_{i}+\frac{3}{2 z}\right) \widehat{\Gamma}_{i} \tag{15}\\
\kappa_{2}=z \frac{\partial \hat{L}}{\partial z}-3 \hat{L}-z \hat{L} \frac{\sum_{i} Z_{i} \widehat{\Gamma}_{i}}{\sum_{j} Z_{j} X_{j}} . \tag{16}
\end{gather*}
$$

See Appendix A for notations and the explicit derivation of this set of equations. Equations (13) and (14) are solved by imposing the following initial conditions at $z_{i n}=m_{e} /(10 \mathrm{MeV})$:

$$
\begin{align*}
\phi_{e}\left(z_{i n}\right) & =\phi_{e}{ }^{0}, \tag{17}\\
X_{1}\left(z_{i n}\right) & \equiv X_{n}\left(z_{i n}\right)=\left(\exp \left\{\hat{q} z_{i n}\right\}+1\right)^{-1} \tag{18}\\
X_{2}\left(z_{i n}\right) & \equiv X_{p}\left(z_{i n}\right)=\left(\exp \left\{-\hat{q} z_{i n}\right\}+1\right)^{-1}, \tag{19}\\
X_{i}\left(z_{i n}\right) & =\frac{g_{i}}{2}\left(\zeta(3) \sqrt{\frac{8}{\pi}}\right)^{A_{i}-1} \quad A_{i}^{\frac{3}{2}}\left(\frac{m_{e}}{M_{N} z_{i n}}\right)^{\frac{3}{2}\left(A_{i}-1\right)} \eta_{i}^{A_{i}-1} X_{p}^{Z_{i}}\left(z_{i n}\right) \\
& \times X_{n}^{A_{i}-Z_{i}}\left(z_{i n}\right) \exp \left\{\hat{B}_{i} z_{i n}\right\} \quad i={ }^{2} \mathrm{H},{ }^{3} \mathrm{H}, \ldots \tag{20}
\end{align*}
$$

In the previous equations $\hat{q}=\left(M_{n}-M_{p}\right) / m_{e}$, and the quantities A_{i} and \hat{B}_{i} denote the atomic number and the binding energy of the $i-$ th nuclide normalized to electron mass, respectively. Finally, η_{i} is the initial value of the baryon to photon number density ratio at $T=10 \mathrm{MeV}$ (for a discussion of how it is related to the final value after $e^{+}-e^{-}$annihilation stage see e.g. Section 4.2 .2 in [7]), and $\phi_{e}{ }^{0}$ the solution of the implicit equation

$$
\begin{equation*}
\hat{L}\left(z_{i n}, \phi_{e}^{0}\right)=\frac{2 \zeta(3)}{\pi^{2}} \eta_{i} \sum_{i} Z_{i} X_{i}\left(z_{i n}\right) \tag{21}
\end{equation*}
$$

No.	Reaction	Type	No.	Reaction	Type
1	$\mathrm{n} \leftrightarrow \mathrm{p}$	weak	22	${ }^{6} \mathrm{Li}+\mathrm{p} \leftrightarrow \gamma+{ }^{7} \mathrm{Be}$	(p, γ)
2	${ }^{3} \mathrm{H} \rightarrow \bar{\nu}_{e}+e^{-}+{ }^{3} \mathrm{He}$	weak	23	${ }^{6} \mathrm{Li}+\mathrm{p} \leftrightarrow{ }^{3} \mathrm{He}+{ }^{4} \mathrm{He}$	${ }^{3} \mathrm{He}$ Pickup
3	${ }^{8} \mathrm{Li} \rightarrow \bar{\nu}_{e}+e^{-}+2{ }^{4} \mathrm{He}$	weak	24	${ }^{7} \mathrm{Li}+\mathrm{p} \leftrightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$	${ }^{4}$ He Pickup
4	${ }^{12} \mathrm{~B} \rightarrow \bar{\nu}_{e}+e^{-}+{ }^{12} \mathrm{C}$	weak	24 bis	${ }^{7} \mathrm{Li}+\mathrm{p} \leftrightarrow \gamma+{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$	(p, γ)
5	${ }^{14} \mathrm{C} \rightarrow \bar{\nu}_{e}+e^{-}+{ }^{14} \mathrm{~N}$	weak	25	${ }^{4} \mathrm{He}+{ }^{2} \mathrm{H} \leftrightarrow \gamma+{ }^{6} \mathrm{Li}$	(d, γ)
6	${ }^{8} \mathrm{~B} \rightarrow \nu_{e}+e^{+}+2{ }^{4} \mathrm{He}$	weak	26	${ }^{4} \mathrm{He}+{ }^{3} \mathrm{H} \leftrightarrow \gamma+{ }^{7} \mathrm{Li}$	$(\mathrm{t}, \gamma$)
7	${ }^{11} \mathrm{C} \rightarrow \nu_{e}+e^{+}+{ }^{11} \mathrm{~B}$	weak	27	${ }^{4} \mathrm{He}+{ }^{3} \mathrm{He} \leftrightarrow \gamma+{ }^{7} \mathrm{Be}$	$\left({ }^{3} \mathrm{He}, \gamma\right)$
8	${ }^{12} \mathrm{~N} \rightarrow \nu_{e}+e^{+}+{ }^{12} \mathrm{C}$	weak	28	${ }^{2} \mathrm{H}+{ }^{2} \mathrm{H} \leftrightarrow \mathrm{n}+{ }^{3} \mathrm{He}$	${ }^{2} \mathrm{H}$ Strip.
9	${ }^{13} \mathrm{~N} \rightarrow \nu_{e}+e^{+}+{ }^{13} \mathrm{C}$	weak	29	${ }^{2} \mathrm{H}+{ }^{2} \mathrm{H} \leftrightarrow \mathrm{p}+{ }^{3} \mathrm{H}$	${ }^{2} \mathrm{H}$ Strip.
10	${ }^{14} \mathrm{O} \rightarrow \nu_{e}+e^{+}+{ }^{14} \mathrm{~N}$	weak	30	${ }^{3} \mathrm{H}+{ }^{2} \mathrm{H} \leftrightarrow \mathrm{n}+{ }^{4} \mathrm{He}$	${ }^{2} \mathrm{H}$ Strip.
11	${ }^{15} \mathrm{O} \rightarrow \nu_{e}+e^{+}+{ }^{15} \mathrm{~N}$	weak	31	${ }^{3} \mathrm{He}+{ }^{2} \mathrm{H} \leftrightarrow \mathrm{p}+{ }^{4} \mathrm{He}$	${ }^{2} \mathrm{H}$ Strip.
12	$\mathrm{p}+\mathrm{n} \leftrightarrow \gamma+{ }^{2} \mathrm{H}$	(n, γ)	32	${ }^{3} \mathrm{He}+{ }^{3} \mathrm{He} \leftrightarrow \mathrm{p}+\mathrm{p}+{ }^{4} \mathrm{He}$	$\left({ }^{3} \mathrm{He}, 2 p\right)$
13	${ }^{2} \mathrm{H}+\mathrm{n} \leftrightarrow \gamma+{ }^{3} \mathrm{H}$	(n, γ)	33	${ }^{7} \mathrm{Li}+{ }^{2} \mathrm{H} \leftrightarrow \mathrm{n}+{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$	(d, $\mathrm{n} \alpha$)
14	${ }^{3} \mathrm{He}+\mathrm{n} \leftrightarrow \gamma+{ }^{4} \mathrm{He}$	$(\mathrm{n}, \gamma$)	34	${ }^{7} \mathrm{Be}+{ }^{2} \mathrm{H} \leftrightarrow \mathrm{p}+{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$	(d,p α)
15	${ }^{6} \mathrm{Li}+\mathrm{n} \leftrightarrow \gamma+{ }^{7} \mathrm{Li}$	(n, γ)	35	${ }^{3} \mathrm{He}+{ }^{3} \mathrm{H} \leftrightarrow \gamma+{ }^{6} \mathrm{Li}$	(t, γ)
16	${ }^{3} \mathrm{He}+\mathrm{n} \leftrightarrow \mathrm{p}+{ }^{3} \mathrm{H}$	charge ex.	36	${ }^{6} \mathrm{Li}+{ }^{2} \mathrm{H} \leftrightarrow \mathrm{n}+{ }^{7} \mathrm{Be}$	${ }^{2} \mathrm{H}$ Strip.
17	${ }^{7} \mathrm{Be}+\mathrm{n} \leftrightarrow \mathrm{p}+{ }^{7} \mathrm{Li}$	charge ex.	37	${ }^{6} \mathrm{Li}+{ }^{2} \mathrm{H} \leftrightarrow \mathrm{p}+{ }^{7} \mathrm{Li}$	${ }^{2} \mathrm{H}$ Strip.
18	${ }^{6} \mathrm{Li}+\mathrm{n} \leftrightarrow{ }^{3} \mathrm{H}+{ }^{4} \mathrm{He}$	${ }^{3} \mathrm{H}$ Pickup	38	${ }^{3} \mathrm{He}+{ }^{3} \mathrm{H} \leftrightarrow{ }^{2} \mathrm{H}+{ }^{4} \mathrm{He}$	$\left({ }^{3} \mathrm{H}, \mathrm{d}\right)$
19	${ }^{7} \mathrm{Be}+\mathrm{n} \leftrightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$	${ }^{4} \mathrm{He}$ Pickup	39	${ }^{3} \mathrm{H}+{ }^{3} \mathrm{H} \leftrightarrow \mathrm{n}+\mathrm{n}+{ }^{4} \mathrm{He}$	(t, n n)
20	${ }^{2} \mathrm{H}+\mathrm{p} \leftrightarrow \gamma+{ }^{3} \mathrm{He}$	(p, γ)	40	${ }^{3} \mathrm{He}+{ }^{3} \mathrm{H} \leftrightarrow \mathrm{p}+\mathrm{n}+{ }^{4} \mathrm{He}$	(t, n p)
$\underline{21}$	${ }^{3} \mathrm{H}+\mathrm{p} \leftrightarrow \gamma+{ }^{4} \mathrm{He}$	(p, γ)			

TABLE II: The reactions used in the small network.

C. The Nuclear Chain

In Tables III III and IV are reported the nuclear processes considered in PArthENoPE . The enumeration shown in the first column of the tables correspond to the order in which they appear in the program. See [7] for the relevant formalism concerning the thermally averaged nuclear rates and an analysis of the main experimental reaction rates. Reactions included in Table Π are used when running PArthENoPE in its simpler version (small network), while those of Tables III and IV are added in the intermediate and complete network running options, which also follows the evolution of the nuclides heavier than ${ }^{7} \mathrm{Be}$ and ${ }^{12} \mathrm{~N}$, respectively. Using the small network gives values of the lighter nuclides like ${ }^{2} \mathrm{H},{ }^{3} \mathrm{He},{ }^{4} \mathrm{He}$ and ${ }^{7} \mathrm{Li}$ which differ from the results obtained with the complete network for less than 0.02%, for default values of the input cosmological parameters. With respect to the database used in (7], there are a few minor upgrades implemented here, namely the three reactions (98, 99, 100) have been inserted following the analysis of the extended network reported in [19]. Also, we have added the recent data reported in [20] to the regressions for the rates $(28,29)$, with results in good agreement with those adopted in [7].

III. NON-STANDARD PHYSICS

In the standard scenario the only free parameter entering the BBN dynamics is the value of the baryon to photon number density η, or equivalently the baryon energy density parameter $\Omega_{B} h^{2}$, see e.g. 7] for the relation between these parameters. If one goes beyond the standard framework, the BBN predictions may be altered by non-standard physics entering e.g. the neutrino $12,13,21,22$ or gravity sector 23,24 , or more generically by the presence in the plasma of other degrees of freedom besides the Standard Model ones [25, 26, 27, 28, 29, 30, 31]. For an earlier review, see [32]. Typically, constraints on non-minimal and/or exotic scenarios require model-dependent modifications of the equations ruling BBN. In PArthENoPE we implement a few of them described below which are general enough to be commonly used/referred to in the specialized literature.

No.	Reaction	Type	No.	Reaction	Type
41	${ }^{7} \mathrm{Li}+{ }^{3} \mathrm{H} \leftrightarrow \mathrm{n}+{ }^{9} \mathrm{Be}$	${ }^{3} \mathrm{H}$ Strip.	58	${ }^{6} \mathrm{Li}+{ }^{4} \mathrm{He} \leftrightarrow \gamma+{ }^{10} \mathrm{~B}$	(α, γ)
42	${ }^{7} \mathrm{Be}+{ }^{3} \mathrm{H} \leftrightarrow \mathrm{p}+{ }^{9} \mathrm{Be}$	${ }^{3} \mathrm{H}$ Strip.	59	${ }^{7} \mathrm{Li}+{ }^{4} \mathrm{He} \leftrightarrow \gamma+{ }^{11} \mathrm{~B}$	(α, γ)
43	${ }^{7} \mathrm{Li}+{ }^{3} \mathrm{He} \leftrightarrow \mathrm{p}+{ }^{9} \mathrm{Be}$	${ }^{3} \mathrm{He}$ Strip.	60	${ }^{7} \mathrm{Be}+{ }^{4} \mathrm{He} \leftrightarrow \gamma+{ }^{11} \mathrm{C}$	(α, γ)
44	${ }^{7} \mathrm{Li}+\mathrm{n} \leftrightarrow \gamma+{ }^{8} \mathrm{Li}$	(n, γ)	61	${ }^{8} \mathrm{~B}+{ }^{4} \mathrm{He} \leftrightarrow \mathrm{p}+{ }^{11} \mathrm{C}$	(α, p)
45	${ }^{10} \mathrm{~B}+\mathrm{n} \leftrightarrow \gamma+{ }^{11} \mathrm{~B}$	(n, γ)	62	${ }^{8} \mathrm{Li}+{ }^{4} \mathrm{He} \leftrightarrow \mathrm{n}+{ }^{11} \mathrm{~B}$	(α, n)
46	${ }^{11} \mathrm{~B}+\mathrm{n} \leftrightarrow \gamma+{ }^{12} \mathrm{~B}$	(n, γ)	63	${ }^{9} \mathrm{Be}+{ }^{4} \mathrm{He} \leftrightarrow \mathrm{n}+{ }^{12} \mathrm{C}$	(α, n)
47	${ }^{11} \mathrm{C}+\mathrm{n} \leftrightarrow \mathrm{p}+{ }^{11} \mathrm{~B}$	(n, p)	64	${ }^{9} \mathrm{Be}+{ }^{2} \mathrm{H} \leftrightarrow \mathrm{n}+{ }^{10} \mathrm{~B}$	$\left({ }^{2} \mathrm{H}, \mathrm{n}\right)$
48	${ }^{10} \mathrm{~B}+\mathrm{n} \leftrightarrow{ }^{4} \mathrm{He}+{ }^{7} \mathrm{Li}$	(n, α)	65	${ }^{10} \mathrm{~B}+{ }^{2} \mathrm{H} \leftrightarrow \mathrm{p}+{ }^{11} \mathrm{~B}$	$\left({ }^{2} \mathrm{H}, \mathrm{p}\right)$
49	${ }^{7} \mathrm{Be}+\mathrm{p} \leftrightarrow \gamma+{ }^{8} \mathrm{~B}$	(p, γ)	66	${ }^{11} \mathrm{~B}+{ }^{2} \mathrm{H} \leftrightarrow \mathrm{n}+{ }^{12} \mathrm{C}$	$\left({ }^{2} \mathrm{H}, \mathrm{n}\right)$
50	${ }^{9} \mathrm{Be}+\mathrm{p} \leftrightarrow \gamma+{ }^{10} \mathrm{~B}$	(p, γ)	67	${ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}+\mathrm{n} \leftrightarrow \gamma+{ }^{9} \mathrm{Be}$	$(\alpha \mathrm{n}, \gamma)$
51	${ }^{10} \mathrm{~B}+\mathrm{p} \leftrightarrow \gamma+{ }^{11} \mathrm{C}$	(p, γ)	68	${ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He} \leftrightarrow \gamma+{ }^{12} \mathrm{C}$	$(\alpha \alpha, \gamma)$
52	${ }^{11} \mathrm{~B}+\mathrm{p} \leftrightarrow \gamma+{ }^{12} \mathrm{C}$	(p, γ)	69	${ }^{8} \mathrm{Li}+\mathrm{p} \leftrightarrow \mathrm{n}+{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$	$(\mathrm{p}, \mathrm{n} \alpha)$
53	${ }^{11} \mathrm{C}+\mathrm{p} \leftrightarrow \gamma+{ }^{12} \mathrm{~N}$	(p, γ)	70	${ }^{8} \mathrm{~B}+\mathrm{n} \leftrightarrow \mathrm{p}+{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$	$(\mathrm{n}, \mathrm{p} \alpha)$
54	${ }^{12} \mathrm{~B}+\mathrm{p} \leftrightarrow \mathrm{n}+{ }^{12} \mathrm{C}$	(p, n)	71	${ }^{9} \mathrm{Be}+\mathrm{p} \leftrightarrow{ }^{2} \mathrm{H}+{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$	$(\mathrm{p}, \mathrm{d} \alpha)$
55	${ }^{9} \mathrm{Be}+\mathrm{p} \leftrightarrow{ }^{4} \mathrm{He}+{ }^{6} \mathrm{Li}$	(p, α)	72	${ }^{11} \mathrm{~B}+\mathrm{p} \leftrightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$	$(\mathrm{p}, \alpha \alpha)$
56	${ }^{10} \mathrm{~B}+\mathrm{p} \leftrightarrow{ }^{4} \mathrm{He}+{ }^{7} \mathrm{Be}$	(p, α)	73	${ }^{11} \mathrm{C}+\mathrm{n} \leftrightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$	$(\mathrm{n}, \alpha \alpha)$
57	${ }^{12} \mathrm{~B}+\mathrm{p} \leftrightarrow{ }^{4} \mathrm{He}+{ }^{9} \mathrm{Be}$	(p, α)			

TABLE III: The reactions used in the intermediate network in addition to those of Table Π

A. Energy density of the vacuum, ρ_{Λ}

As in the original Kawano code [18], we allow for a non-zero cosmological constant term at the BBN epoch. We parameterize it by means of ρ_{Λ} entering the equations only via

$$
\begin{equation*}
3 H \rightarrow 3 H=\sqrt{24 \pi G_{N}\left[\left(\frac{m_{e}}{z}\right)^{4} \hat{\rho}+\rho_{\Lambda}\right]} \tag{22}
\end{equation*}
$$

The allowed range for this parameter is $0 \leq \rho_{\Lambda} \leq 1$.

No.	Reaction	Type	No.	Reaction	Type
74	${ }^{12} \mathrm{C}+\mathrm{n} \leftrightarrow \gamma+{ }^{13} \mathrm{C}$	(n, γ)	88	${ }^{12} \mathrm{C}+{ }^{4} \mathrm{He} \leftrightarrow \gamma+{ }^{16} \mathrm{O}$	(α, γ)
75	${ }^{13} \mathrm{C}+\mathrm{n} \leftrightarrow \gamma+{ }^{14} \mathrm{C}$	(n, γ)	89	${ }^{10} \mathrm{~B}+{ }^{4} \mathrm{He} \leftrightarrow \mathrm{p}+{ }^{13} \mathrm{C}$	(α, p)
76	${ }^{14} \mathrm{~N}+\mathrm{n} \leftrightarrow \gamma+{ }^{15} \mathrm{~N}$	(n, γ)	90	${ }^{11} \mathrm{~B}+{ }^{4} \mathrm{He} \leftrightarrow \mathrm{p}+{ }^{14} \mathrm{C}$	(α, p)
77	${ }^{13} \mathrm{~N}+\mathrm{n} \leftrightarrow \mathrm{p}+{ }^{13} \mathrm{C}$	(n, p)	91	${ }^{11} \mathrm{C}+{ }^{4} \mathrm{He} \leftrightarrow \mathrm{p}+{ }^{14} \mathrm{~N}$	(α, p)
78	${ }^{14} \mathrm{~N}+\mathrm{n} \leftrightarrow \mathrm{p}+{ }^{14} \mathrm{C}$	(n, p)	92	${ }^{12} \mathrm{~N}+{ }^{4} \mathrm{He} \leftrightarrow \mathrm{p}+{ }^{15} \mathrm{O}$	(α, p)
79	${ }^{15} \mathrm{O}+\mathrm{n} \leftrightarrow \mathrm{p}+{ }^{15} \mathrm{~N}$	(n, p)	93	${ }^{13} \mathrm{~N}+{ }^{4} \mathrm{He} \leftrightarrow \mathrm{p}+{ }^{16} \mathrm{O}$	(α, p)
80	${ }^{15} \mathrm{O}+\mathrm{n} \leftrightarrow{ }^{4} \mathrm{He}+{ }^{12} \mathrm{C}$	(n, α)	94	${ }^{10} \mathrm{~B}+{ }^{4} \mathrm{He} \leftrightarrow \mathrm{n}+{ }^{13} \mathrm{~N}$	(α, n)
81	${ }^{12} \mathrm{C}+\mathrm{p} \leftrightarrow \gamma+{ }^{13} \mathrm{~N}$	(p, γ)	95	${ }^{11} \mathrm{~B}+{ }^{4} \mathrm{He} \leftrightarrow \mathrm{n}+{ }^{14} \mathrm{~N}$	(α, n)
82	${ }^{13} \mathrm{C}+\mathrm{p} \leftrightarrow \gamma+{ }^{14} \mathrm{~N}$	(p, γ)	96	${ }^{12} \mathrm{~B}+{ }^{4} \mathrm{He} \leftrightarrow \mathrm{n}+{ }^{15} \mathrm{~N}$	(α, n)
83	${ }^{14} \mathrm{C}+\mathrm{p} \leftrightarrow \gamma+{ }^{15} \mathrm{~N}$	(p, γ)	97	${ }^{13} \mathrm{C}+{ }^{4} \mathrm{He} \leftrightarrow \mathrm{n}+{ }^{16} \mathrm{O}$	(α, n)
84	${ }^{13} \mathrm{~N}+\mathrm{p} \leftrightarrow \gamma+{ }^{14} \mathrm{O}$	(p, γ)	98	${ }^{11} \mathrm{~B}+{ }^{2} \mathrm{H} \leftrightarrow \mathrm{p}+{ }^{12} \mathrm{~B}$	${ }^{2} \mathrm{H}$ Strip.
85	${ }^{14} \mathrm{~N}+\mathrm{p} \leftrightarrow \gamma+{ }^{15} \mathrm{O}$	(p, γ)	99	${ }^{12} \mathrm{C}+{ }^{2} \mathrm{H} \leftrightarrow \mathrm{p}+{ }^{13} \mathrm{C}$	${ }^{2} \mathrm{H}$ Strip.
86	${ }^{15} \mathrm{~N}+\mathrm{p} \leftrightarrow \gamma+{ }^{16} \mathrm{O}$	(p, γ)	100	${ }^{13} \mathrm{C}+{ }^{2} \mathrm{H} \leftrightarrow \mathrm{p}+{ }^{14} \mathrm{C}$	${ }^{2} \mathrm{H}$ Strip.
87	${ }^{15} \mathrm{~N}+\mathrm{p} \leftrightarrow{ }^{4} \mathrm{He}+{ }^{12} \mathrm{C}$	(p, α)			

TABLE IV: The reactions used in the complete network in addition to those of Tables II and III

B. Extra degrees of freedom, $\Delta N_{\text {eff }}$

We parameterize the radiation density in non-electromagnetically interacting particles at the BBN epoch by an additional radiation energy density ρ_{X} entering H. This is related to the "number of extra effective neutrino species" customarily used in the literature $\Delta N_{\text {eff }}$ by the equation

$$
\begin{equation*}
\rho_{X}=\frac{7}{8} \frac{\pi^{2}}{30} \Delta N_{\mathrm{eff}} T_{X}^{4} \tag{23}
\end{equation*}
$$

where, from the entropy conservation, $T_{X}=T=m_{e} / z$ at temperatures higher than the effective neutrino decoupling temperature, chosen as $T_{d}=2.3 \mathrm{MeV}$, or else

$$
\begin{equation*}
T_{X}=T\left[\frac{\hat{\rho}_{e, \gamma, B}(T)+\hat{\mathrm{p}}_{e, \gamma, B}(T)}{\hat{\rho}_{e, \gamma, B}\left(T_{d}\right)+\hat{\mathrm{p}}_{e, \gamma, B}\left(T_{d}\right)}\right]^{1 / 3}, T<T_{d} \tag{24}
\end{equation*}
$$

The user may input a value of $\Delta N_{\text {eff }}$ in the range $-3.0 \leq \Delta N_{\text {eff }} \leq 15.0$.

C. Chemical potential of the neutrinos, ξ

The usual argument in favor of a cosmic lepton asymmetry is that sphaleron effects before electroweak symmetry breaking equilibrate the lepton and baryon asymmetries to within a factor of order unity, thus producing the observed baryon density. In principle, however, the electron-neutrino degeneracy parameter $\xi=\mu_{\nu_{e}} / T_{\nu_{e}}$ as well as the degeneracy parameters of the other neutrino flavors are not determined within the Standard Model, and should be constrained observationally. Recently, it has been realized that the measured neutrino oscillation parameters imply that neutrinos reach approximate chemical equilibrium before the BBN epoch. Thus, all neutrino chemical potentials can be taken to be equal, i.e. they are all characterized by the same degeneracy parameter ξ that applies to ν_{e} [33, 34, 35]. In light of these results it is meaningful to assume a single and shared value ξ as the only free input parameter. Also, to achieve an approximate agreement between the observed and predicted light element abundances a possible lepton asymmetry must be small, $|\xi| \ll 1$. For such small ξ values the most important impact on BBN is a shift of the beta equilibrium between protons and neutrons. A subleading effect is a modification of the radiation density,

$$
\begin{equation*}
\Delta N_{\mathrm{eff}}(\xi)=3\left[\frac{30}{7}\left(\frac{\xi}{\pi}\right)^{2}+\frac{15}{7}\left(\frac{\xi}{\pi}\right)^{4}\right] \tag{25}
\end{equation*}
$$

Moreover, the neutrino decoupling temperature is higher than in the standard case [36, 37], so that in principle one could get a non-standard $T_{\nu}(T)$ evolution, but such effects are completely negligible for our case. A non-zero ξ slightly modifies the partial neutrino reheating following the $e^{+} e^{-}$annihilation 38], again a completely negligible effect for the range of ξ of our interest. In the code, we allow the user to select among 21 possible values of ξ, between -1.0 and +1.0 , spaced by 0.1 . The changes in the weak reactions are then automatically implemented, as in [6]. The associated change in $\Delta N_{\text {eff }}$ of Eq. (25) is also accounted for. Note that to derive results on a finer grid a perturbative approach as the one in [28] would be required. This possibility is left for an implementation in a future upgraded version of the code.

IV. THE STRUCTURE OF PARTHENOPE

The code is divided in two files, main.f and parthenope.f, the former one containing the main program and the latter the remaining subroutines. While all the physics is implemented in parthenope.f, the file main.f is an interface which can be possibly adapted to the user needs. The user can choose between two running modes: an interactive one, with parameter selections given on the screen, and a card mode requiring an input card, an example of which is provided as the file input (see also Table VI). The program links to the NAG libraries [39] for some algebraic operations and the evaluation of special functions.

The logical structure of the code is depicted in Figure In the following we detail the aim of each block.

FIG. 1: The logical structure of PArthENoPE .

A. MAIN

MAIN contains the interface which allows the user to choose the physical and network input parameters and to customize the output.

Physical parameters presently are: baryon density, number of additional neutrino species, neutron lifetime, neutrino chemical potential, energy density of the vacuum at the BBN epoch.

Network parameters include: the choice among a small (9 nuclides and 40 reactions), an intermediate (18 nuclides and 73 reactions), and a complete network (26 nuclides and 100 reactions). Moreover, the user can change the rates of each reaction included in the chosen network, selecting a 'LOW' or a 'HIGH' value, based on the experimental or theoretical uncertainties, or a customized multiplicative 'FACTOR'.

Finally, the output options include: the choice of the nuclides whose evolution has to be followed versus z, the name of the output files (a first one with the final results and a second with the evolution of the selected nuclides), and the possibility to follow the status of the evolution on the screen.

KEYWORD	DESCRIPTION	DEFAULT	RANGE/OPTIONS
OMEGABH	Baryon density $\Omega_{B} h^{2}$	0.0223	$0.01 \div 0.03$
DNNU	Number of additional neutrino species	0.	$-3 . \div 15$.
TAU	Neutron lifetime	885.7 s	$880 . \div 890$.
IXIE	Integer fixing the electron neutrino chemical potential	11	$1 \div 21$
RHOLMBD	Energy density of the vacuum	$0 . \mathrm{MeV}^{4}$	$0 . \div 1$.
NETWORK	Number of nuclides in the network	9	$9,18,26$
FOLLOW	Option for following the evolution on the screen	F	T, F
OVERWRITE	Option for overwriting the output files	F	T, F
FILES	Name of the output files	parthenope.out	20 bit string
OUTPUT	Evolution of nuclides	nuclides.out	20 bit string
RATES	Details on changed rates	first 9 nuclides	see text
EXIT	Closing keyword in the input card	No change	see text

TABLE V: The list of the possible keywords in the input card, their default values and corresponding ranges/options.

RATES	3 (1210.$)$ (283.4$)(2920)$	options for changing the nuclear rates
RATES	2 (320.$)$ (53.6)	options for changing the nuclear rates
TAU	885.7	experimental value of neutron lifetime
DNNU	. 0	number of extra neutrinos
IXIE	11	integer giving the value of ν_{e} chemical potential
RHOLMBD	. 0	value of cosmological constant energy density at the BBN epoch
OVERWRITE	T	option for overwriting the output files
FOLLOW	T	option for following the evolution on the screen
OMEGABH	. 0223	value of $\Omega_{B} h^{2}$
NETWORK	9	number of nuclides in the network
FILES	parthenope1.out nuclides1.out	names of the two output files
OUTPUT	T 3234	options for customizing the output
EXIT		terminates input

TABLE VI: An example of input card.

All this information can be provided either interactively, following the on-screen instructions, or by an input card, with the format of the example card included in the distribution. In particular, each line in this card must start with an allowed key and the last line key has to be 'EXIT'. In order to be recognized, each key must start at the first bit of the line. The allowed keywords are listed in Table $\bar{\nabla}$ together with the default values adopted by the code whenever the corresponding key is not explicitly set.

An example of input card is shown in Table VI. While the keys OMEGABH, DNNU, TAU, IXIE, RHOLMBD, NETWORK, FOLLOW, and OVERWRITE have only one argument, the keyword FILES has two arguments, that is the two names of the output files, each one at most 20 bits long. Some more details deserve the two keywords OUTPUT and RATES. OUTPUT can have at most $N_{n u c}+2$ arguments ($N_{n u c}$ being the number of nuclides of the chosen network), which are: 1) a bit equal to ' T ' or ' F ', if the user wants or not to store in the output the evolution of a given set of nuclide abundances, 2) the total number of such nuclides, and 3) the identity of these nuclides (given as the corresponding number in Table In . In the example of Table VI with the sequence T 3234 the user has chosen to store in the output the three nuclides $\mathrm{p},{ }^{2} \mathrm{H}$ and ${ }^{3} \mathrm{H}$. The keyword RATES allows to change the default values of the nuclear rates used in the chosen network. The input card can have more than one line with this keyword, as in the example of Table VI Each line contains: 1) an integer k, giving the number of reactions whose change is specified on that line; 2) the kind of change for the k reactions with the syntax (mife, indicating that the reaction number m (see Tables III III and IV) has to be changed according to the type of change i, with the factor f. Obviously, m can assume the values $1, \ldots, \mathrm{M}$ (M being the number of reactions of the chosen network), while $i=1,2,3$ corresponds to the 'LOW', 'HIGH', or 'FACTOR' type of change, respectively. Finally, if $i=3$ the real number f is the value of the multiplicative factor applied to the chosen reaction rate (not considered if the options $i=1,2$ are selected). For example, first line of the input card of Table VI specifies that 3 reaction rates should be changed in running PArthENoPE as follows

$$
\begin{aligned}
\mathrm{p}+\mathrm{n} \leftrightarrow \gamma+{ }^{2} \mathrm{H} & \text { low rate } \\
{ }^{2} \mathrm{H}+{ }^{2} \mathrm{H} \leftrightarrow \mathrm{n}+{ }^{3} \mathrm{He} & \text { rate multiplied by the factor } 0.4 \\
{ }^{2} \mathrm{H}+{ }^{2} \mathrm{H} \leftrightarrow \mathrm{p}+{ }^{3} \mathrm{H} & \text { high rate }
\end{aligned}
$$

Notice that it is possible to add comments after the parameters in the input card and the order of the lines with different keywords is not important.

B. PARTHENOPE

This subroutine drives the resolution of the BBN set of equations. It starts calling the initialization routine INIT, then the NAG solver, finally the output printing routine OUTEND. The NAG resolution parameters, controlling for example the resolution method and the numerical accuracy, have been chosen to optimize the performances of the NAG solver. Any change of these parameters should be implemented only after a careful reading of the NAG manual (39].

Further relevant parameters are zin and zend, setting respectively the initial and final value of the independent variable z. Their present values correspond to the two temperatures of $T_{i}=10 \mathrm{MeV}$ and $T_{f}=1 / 130 \mathrm{MeV}$. Note that a few settings depend on these values, which then should be varied with caution.

C. InIT

Besides initializing the nuclear parameters, this subroutine calculates the initial values for all nuclide abundances and the electron chemical potential, the latter requiring the inversion of the implicit equation (21) with a NAG routine.

```
D. FCN, THERMO, RATE, EQSLIN
```

The subroutine FCN is required by the NAG solver to calculate the right hand side of the differential BBN equations. In order to do this, the thermodynamical quantities which appear in the equations are evaluated with a call to the subroutine THERMO. The second step is the calculation of the reaction rates with the subroutine RATE. Then the linearization of the set of equations is performed, with the construction of a corresponding $N_{n u c} \times N_{n u c}$ matrix ($N_{n u c}$ being the number of nuclides). In this way, the unknown functions appear in a linear equation system, solved by Gaussian elimination in the subroutine EQSLIN (this method is very similar to the one applied in the Kawano code [18]).

> E. OUTEVOL, OUTEND

The subroutine OUTEVOL is called during the evolution, for printing the intermediate values of the chosen nuclide abundances in one of the output files. Moreover, if requested by the user, this subroutine allows to follow the resolution evolution, printing some physical quantities on the screen. Finally, OUTEND prints the final values of the nuclide abundances and electron chemical potential in the other output file along with some technical information on the differential evolution resolution. The final yield of the $i-$ th nuclide is expressed as the ratio X_{i} / X_{p}, i.e. number density normalized to hydrogen. The only exceptions are Hydrogen expressed as X_{p} and ${ }^{4} \mathrm{He}$, which is conventionally reported in terms of the (approximate) mass fraction $Y_{p}=4 X^{4} \mathrm{He}$.

V. CONCLUSIONS

In this paper we have described the general structures and features of PArthENoPE, a new numerical code which computes the theoretical abundances of nuclei produced during BBN, as function of several input cosmological parameters. This code has been recently made public and can be obtained at the URL http://parthenope.na.infn.it/. The code evaluates the abundances of 26 nuclide in the standard BBN scenario, as well as in extended models allowing for extra relativistic particles or neutrino chemical potential.

In view of the improved data coming from astrophysical observations, accurate tools providing theoretical predictions on cosmological observables are required to check the overall consistency of the picture of the evolution of the Universe, as well as for investigating and constraining new physics beyond the present framework of fundamental interactions.

Much effort has been put in the recent years by several groups in order to increase the level of accuracy of theoretical prediction on nuclide abundances, in particular by improving the estimate of the neutron to proton weak conversion rates and the nuclear network rates. The results of these studies, along with a to date analysis of experimental results on relevant nuclear reactions have been implemented in PArthENoPE, which hopefully will turn useful as an accurate tool for BBN-related studies.

Acknowledgments

In Naples, this work was supported in part by the PRIN04 and PRIN06 Fisica Astroparticellare of the Italian MIUR. P.S. acknowledges support by the US Department of Energy and by NASA grant NAG5-10842.

APPENDIX A: DERIVATION OF THE PARTHENOPE SET OF EQUATIONS

We define $z \equiv m_{e} / T, x=m_{e} a, \bar{z}=x / z=a T=T / T_{\nu}, \hat{n}_{B}=m_{e}^{-3} n_{B}$ and introduce the following quantities:

$$
\begin{gather*}
\mathcal{N}(z)=\left.\frac{1}{\bar{z}^{4}}\left(x \frac{d}{d x} \bar{\rho}_{\nu}\right)\right|_{x=x(z)}, \quad \bar{\rho}_{\nu}=a^{4} \rho_{\nu}=\left(\frac{x}{m_{e}}\right)^{4} \rho_{\nu} \tag{A1}\\
\rho=\rho_{e \gamma B}+\rho_{\nu}, \quad \mathrm{p}=\mathrm{p}_{e \gamma B}+\mathrm{p}_{\nu} \tag{A2}
\end{gather*}
$$

$$
\begin{equation*}
\hat{\rho}=T^{-4} \rho=\left(\frac{z}{m_{e}}\right)^{4} \rho, \quad \hat{\mathrm{p}}=T^{-4} \mathrm{p}=\left(\frac{z}{m_{e}}\right)^{4} \mathrm{p} \tag{A3}
\end{equation*}
$$

Starting from Eq.s (5) and (6),

$$
\begin{align*}
& \frac{\dot{n}_{B}}{n_{B}}=-3 H \tag{A5}\\
& \dot{\rho}=-3 H(\rho+\mathrm{p}) \tag{A6}
\end{align*}
$$

and separating the neutrino contribution one gets

$$
\begin{equation*}
\dot{\rho}_{e \gamma B}+\dot{\rho}_{\nu}=-3 H\left(\rho_{e \gamma B}+\mathrm{p}_{e \gamma B}\right)-4 H \rho_{\nu} \tag{A7}
\end{equation*}
$$

where in (A7) we have used $\rho_{\nu}=3 \mathrm{p}_{\nu}$. From Eq. (A6) one gets the time derivative

$$
\begin{equation*}
\dot{\hat{\rho}}=\left(\frac{z}{m_{e}}\right)^{4} \dot{\rho}+4\left(\frac{z}{m_{e}}\right)^{3} \frac{\dot{z}}{m_{e}} \rho \tag{A8}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\dot{\hat{\rho}}_{e \gamma B}=-3 H\left(\hat{\rho}_{e \gamma B}+\hat{\mathrm{p}}_{e \gamma B}\right)+4 \frac{\dot{z}}{z} \hat{\rho}_{e \gamma B}-\left(\frac{z}{m_{e}}\right)^{4}\left(\dot{\rho}_{\nu}+4 H \rho_{\nu}\right) . \tag{A9}
\end{equation*}
$$

For the neutrino energy density one gets

$$
\begin{align*}
\dot{\rho}_{\nu}=\frac{d \rho_{\nu}}{d x} \dot{x}=m_{e} \dot{a} \frac{d \rho_{\nu}}{d x}=H x \frac{d \rho_{\nu}}{d x} & =\left(\frac{m_{e}}{x}\right)^{4} H\left[x \frac{d \bar{\rho}_{\nu}}{d x}-4 \bar{\rho}_{\nu}\right] \\
\dot{\rho}_{\nu}+4 H \rho_{\nu} & =\left(\frac{m_{e}}{x}\right)^{4} H x \frac{d \bar{\rho}_{\nu}}{d x} \tag{A10}
\end{align*}
$$

Hence substituting (A10) in (A9) we obtain

$$
\begin{equation*}
\dot{\hat{\rho}}_{e \gamma B}=4 \frac{\dot{z}}{z} \hat{\rho}_{e \gamma B}-3 H\left(\hat{\rho}_{e \gamma B}+\hat{\mathrm{p}}_{e \gamma B}\right)-H \mathcal{N}(z) . \tag{A11}
\end{equation*}
$$

On the other hand, the total time derivative of $\hat{\rho}_{e \gamma B}$ can be expressed via the partial derivatives with respect to z, ϕ_{e} e X_{i},

$$
\begin{equation*}
\dot{\hat{\rho}}_{e \gamma B}=\frac{\partial \hat{\rho}_{e \gamma B}}{\partial z} \dot{z}+\frac{\partial \hat{\rho}_{e \gamma B}}{\partial \phi_{e}} \dot{\phi}_{e}+\sum_{i} \frac{\partial \hat{\rho}_{e \gamma B}}{\partial X_{i}} \dot{X}_{i}=\left(\frac{\partial \hat{\rho}_{e \gamma B}}{\partial z}+\frac{\partial \hat{\rho}_{e \gamma B}}{\partial \phi_{e}} \frac{d \phi_{e}}{d z}+\sum_{i} \frac{\partial \hat{\rho}_{e \gamma B}}{\partial X_{i}} \frac{d X_{i}}{d z}\right) \dot{z} \tag{A12}
\end{equation*}
$$

Thus, equating the r.h.s of (A11) and (A12) after some rearrangement reads

$$
\begin{equation*}
\left(\frac{\partial \hat{\rho}_{e \gamma B}}{\partial z}-\frac{4}{z} \hat{\rho}_{e \gamma B}+\frac{\partial \hat{\rho}_{e \gamma B}}{\partial \phi_{e}} \frac{d \phi_{e}}{d z}+\sum_{i} \frac{\partial \hat{\rho}_{e \gamma B}}{\partial X_{i}} \frac{d X_{i}}{d z}\right) \dot{z}=-3 z H\left(\hat{\rho}_{e \gamma B}+\hat{\mathrm{p}}_{e \gamma B}\right)-H \mathcal{N}(z) . \tag{A13}
\end{equation*}
$$

Starting from A5 and proceeding in the same way leads to

$$
\begin{equation*}
\left(\frac{\partial \hat{n}_{B}}{\partial z}+\frac{\partial \hat{n}_{B}}{\partial \phi_{e}} \frac{d \phi_{e}}{d z}+\sum_{i} \frac{\partial \hat{n}_{B}}{\partial X_{i}} \frac{d X_{i}}{d z}\right) \dot{z}=-3 z H \hat{n}_{B} . \tag{A14}
\end{equation*}
$$

Obtaining \dot{z} from (A14) and substituting into (A13) we obtain

$$
\begin{equation*}
-3 H \hat{n}_{B} \frac{\frac{\partial \hat{\rho}_{e \gamma B}}{\partial z}-\frac{4}{z} \hat{\rho}_{e \gamma B}+\frac{\partial \hat{\rho}_{e \gamma B}}{\partial \phi_{e}} \frac{d \phi_{e}}{d z}+\sum_{i} \frac{\partial \hat{\rho}_{e \gamma B}}{\partial X_{i}} \frac{d X_{i}}{d z}}{\frac{\partial \hat{n}_{B}}{\partial z}+\frac{\partial \hat{n}_{B}}{\partial \phi_{e}} \frac{d \phi_{e}}{d z}+\sum_{i} \frac{\partial \hat{n}_{B}}{\partial X_{i}} \frac{d X_{i}}{d z}}=-3 z H\left(\hat{\rho}_{e \gamma B}+\hat{\mathrm{p}}_{e \gamma B}\right)-H \mathcal{N}(z) . \tag{A15}
\end{equation*}
$$

By using Eq. (8)

$$
\begin{equation*}
\hat{n}_{B}=\frac{\hat{L}\left(z, \phi_{e}\right)}{z^{3} \sum_{i} Z_{i} X_{i}} \tag{A16}
\end{equation*}
$$

one can express \hat{n}_{B} and its derivatives as function of $\hat{L}\left(z, \phi_{e}\right)$ which is defined in (11). By solving Eq. (A15) with respect to $d \phi_{e} / d z$ one gets

$$
\begin{equation*}
\frac{d \phi_{e}}{d z}=\frac{1}{z} \frac{\hat{L} \kappa_{1}+\left(\hat{\rho}_{e \gamma B}+\hat{\mathrm{p}}_{e \gamma B}+\frac{\mathcal{N}(z)}{3}\right) \kappa_{2}}{\hat{L} \frac{\partial \hat{\rho}_{e}}{\partial \phi_{e}}-\frac{\partial \hat{L}}{\partial \phi_{e}}\left(\hat{\rho}_{e \gamma B}+\hat{\mathrm{p}}_{e \gamma B}+\frac{\mathcal{N}(z)}{3}\right)} \tag{A17}
\end{equation*}
$$

where

$$
\begin{gather*}
\kappa_{1}=4\left(\hat{\rho}_{e}+\hat{\rho}_{\gamma}\right)+\frac{3}{2} \hat{\mathrm{p}}_{B}-z \frac{\partial \hat{\rho}_{e}}{\partial z}-z \frac{\partial \hat{\rho}_{\gamma}}{\partial z}+\frac{1}{\hat{L}}\left(3 \hat{L}-z \frac{\partial \hat{L}}{\partial z}\right) \hat{\rho}_{B}-\frac{z^{2} \hat{L}}{\sum_{j} Z_{j} X_{j}} \sum_{i}\left(\Delta \widehat{M}_{i}+\frac{3}{2 z}\right) \widehat{\Gamma}_{i} \tag{A18}\\
\kappa_{2}=z \frac{\partial \hat{L}}{\partial z}-3 \hat{L}-z \hat{L} \frac{\sum_{i} Z_{i} \widehat{\Gamma}_{i}}{\sum_{j} Z_{j} X_{j}} \tag{A19}
\end{gather*}
$$

According to our notations, $\Delta \widehat{M}_{i}$ and \widehat{M}_{u} stand for the i-th nuclide mass excess and the atomic mass unit, respectively, normalized to m_{e}, whereas $H \equiv m_{e} \widehat{H}$ and $\Gamma_{i} \equiv m_{e} \widehat{\Gamma}_{i}$. By substituting in (A14) the expression obtained for $d \phi_{e} / d z$ in (A17) we get

$$
\begin{equation*}
\dot{z}=-3 H \frac{\frac{\partial \hat{n}_{B}}{\partial \phi_{e}}\left(\hat{\rho}_{e \gamma B}+\hat{\mathrm{p}}_{e \gamma B}+\frac{\mathcal{N}(z)}{3}\right)-\hat{n}_{B} \frac{\partial \hat{\rho}_{e \gamma B}}{\partial \phi_{e}}}{\frac{\partial \hat{n}_{B}}{\partial \phi_{e}}\left(\frac{\partial \hat{\rho}_{e \gamma B}}{\partial z}-\frac{4}{z} \hat{\rho}_{e \gamma B}+\sum_{i} \frac{\partial \hat{\rho}_{e \gamma B} B}{\partial X_{i}} \frac{d X_{i}}{d z}\right)-\frac{\partial \hat{\rho}_{e \gamma B}}{\partial \phi_{e}}\left(\frac{\partial \hat{n}_{B}}{\partial z}+\sum_{i} \frac{\partial \hat{n}_{B}}{\partial X_{i}} \frac{d X_{i}}{d z}\right)} \tag{A20}
\end{equation*}
$$

namely

$$
\begin{equation*}
\frac{d t}{d z}=-\frac{\kappa_{1} \frac{\partial \hat{L}}{\partial \phi_{e}}+\kappa_{2} \frac{\partial \hat{\rho}_{e \gamma B}}{\partial \phi_{e}}}{3 H\left[\hat{n}_{B} \frac{\partial \hat{\rho}_{e \gamma B}}{\partial \phi_{e}}-\frac{\partial \hat{n}_{B}}{\partial \phi_{e}}\left(\hat{\rho}_{e \gamma B}+\hat{\mathrm{p}}_{e \gamma B}+\frac{\mathcal{N}(z)}{3}\right)\right]} \tag{A21}
\end{equation*}
$$

The equations for the abundances (7) then become

$$
\begin{equation*}
\frac{d X_{i}}{d z}=\dot{X}_{i} \frac{d t}{d z}=-\frac{\widehat{\Gamma}_{i}}{3 z \widehat{H}} \frac{\kappa_{1} \frac{\partial \hat{L}}{\partial \phi_{e}}+\kappa_{2} \frac{\partial \hat{\rho}_{e \gamma B}}{\partial \phi_{e}}}{\hat{L} \frac{\partial \hat{\rho}_{e}}{\partial \phi_{e}}-\frac{\partial \hat{L}}{\partial \phi_{e}}\left(\hat{\rho}_{e \gamma B}+\hat{\mathrm{p}}_{e \gamma B}+\frac{\mathcal{N}(z)}{3}\right)} \tag{A22}
\end{equation*}
$$

The solution of neutrino dynamics performed in [11, 12, 13] allows to compute the quantity

$$
\begin{equation*}
\mathcal{N}(z)=\left.\frac{1}{\bar{z}^{4}}\left(x \frac{d}{d x} \bar{\rho}_{\nu}\right)\right|_{x=x(z)} \tag{A23}
\end{equation*}
$$

Notice that $\mathcal{N}(z)$ would vanish for purely thermal neutrinos, and it is strictly related to the small entropy transfer to neutrinos during the $e^{+}-e^{-}$annihilation stage. The numerical results give

$$
\mathcal{N}(z)=\left\{\begin{array}{cc}
\exp \left(\sum_{l=1}^{13} n_{l} z^{l}\right) & z<4 \tag{A24}\\
0 & z \geq 4
\end{array}\right.
$$

with

$$
\begin{array}{ll}
n_{0}=-10.21703221236002 & n_{1}=61.24438067531452 \\
n_{2}=-340.3323864212157 & n_{3}=1057.2707914654834 \\
n_{4}=-2045.577491331372 & n_{5}=2605.9087171012848 \\
n_{6}=-2266.1521815470196 & n_{7}=1374.2623075963388 \\
n_{8}=-586.0618273295763 & n_{9}=174.87532902234145 \\
n_{10}=-35.715878215468045 & n_{11}=4.7538967685808755 \\
n_{12}=-0.3713438862054167 & n_{13}=0.012908416591272199 \tag{A25}
\end{array}
$$

APPENDIX B: COMMON VARIABLES USED IN PARTHENOPE

VARIABLE	DESCRIPTION	COMMON
AA(NNUC)	Nuclide atomic numbers, A_{i}	ANUM
FACTOR(NREC) HCHRAT(NREC) NCHRAT WCHRAT(NREC)	Multiplicative factor for the rate of reaction i-th Type of changes adopted for reaction i-th Number of reactions to be changed Reactions to be changed	CHRATE
$\begin{array}{\|l\|} \hline \text { ALF } \\ \text { COEF(4) } \\ \text { GN } \\ \text { ME } \\ \text { MU } \\ \text { PI } \\ \hline \end{array}$	Fine structure constant, α Unity conversion factors Newton constant, G_{N}, in MeV^{-2} Electron mass, m_{e} Atomic mass unit, M_{u} π	CONSTANTS
IFCN IFCN1 ISAVE1 ISAVE2 ISTEP	Counter Counter Counter Counter Counter	COUNTS
DZ	Stepsize of the independent variable in the resolution of the nucleosynthesis equations Initial value for DZ	DELTAZ
DM(0:NNUC)	Mass excesses in $\mathrm{MeV}, \Delta M_{i}$	DMASS
DMH(NNUC)	Adimensional mass excesses, $\Delta M_{i} / m_{e}$	DMASSH
PHI	Adimensional electron chemical potential, ϕ_{e}	ECHPOT
AG(NNUC,4)	Nuclear partition function coefficients	GPART
YY0(NNUC+1)	Initial values of electron chemical potential, ϕ_{e}, and nuclide abundances, X_{i}	INABUN
CMODE FOLLOW OVERW	Flag for the choice of the running mode Option for following the evolution on the screen (card mode) Option for overwriting the output files (card mode)	INPCARD
$\begin{array}{\|l\|} \hline \text { INC } \\ \text { MBAD } \\ \hline \end{array}$	Maximum value of the flag for the convergence of the matrix inversion Error flag for the matrix inversion	INVFLAGS
	Initial value for the adimensional electron/positron asymmetry, \hat{L} Initial value for the evolution variable $z=m_{e} / T$ (=ZIN)	INVPHI
AMAT(NNUC,NNUC) BVEC(NNUC) YX(NNUC)	Matrix involved in the linearization of the relation between $X_{i}(z+d z)$ and $X_{i}(z)$ Vector involved in the linearization of the relation between $X_{i}(z-d z)$ and $X_{i}(z)$ (contains X_{i} in reverse order) $X_{i}(z)$ in reverse order	LINCOEF
YMIN	Numerical zero of nuclide abundances	MINABUN
DNNU DNNUXI ETAF IXIE RHOLMBD TAU XIE	Number of extra effective neutrinos, $\Delta N_{e f f}$ Contribution to the number of extra effective neutrinos from a non zero neutrino chemical potential, $\Delta N_{\text {eff }}$ of Eq. (25) Final value of the baryon to photon density ratio, η_{f} A positive integer fixing the electron neutrino chemical potential Energy density corresponding to a cosmological constant, ρ_{Λ} Value of neutron lifetime in seconds, τ_{n} Electron neutrino chemical potential, ξ (=XIE0)	MODPAR
XIE0(NXIE)	Electron neutrino chemical potential, ξ	NCHPOT
INUC IREC IXT(30)	Number of nuclides in the selected network Number of reactions among nuclides in the selected network Code of the nuclides whose evolution has to be followed $(\operatorname{ixt}(30)=$ control integer $)$	NETWRK

VARIABLE	DESCRIPTION	COMMON
BYY(NNUC+1)	Text strings for the output	NSYMB
$\begin{aligned} & \mathrm{MN} \\ & \mathrm{MP} \end{aligned}$	Neutron mass, M_{n} Proton mass, M_{p}	NUCMASS
NAMEFILE1 NAMEFILE2	Name of the output file for the final values of the nuclide abundances Name of the output file for the evolution of the nuclides whose evolution has to be followed	OUTFILES
$\begin{aligned} & \hline \text { NBH } \\ & \text { THETAH } \\ & \text { TXH } \end{aligned}$	Adimensional baryon number density, n_{B} / m_{e}^{3} Adimensional Hubble function times 3, $3 \widehat{H}$ Neutrino to photon temperature ratio, T_{X} / T	OUTVAR
DZP SUMMYP SUMZYP ZP	Previous iteration value of the step-size of the independent variable in the resolution of the nucleosynthesis equations Value of the linear combination $\sum_{i}\left(\Delta \widehat{M}_{i}+\frac{3}{2 z}\right) \widehat{\Gamma}_{i}$ Value of the linear combination $\sum_{i} Z_{i} \widehat{\Gamma}_{i}$ Previous iteration value of the evolution variable $z=m_{e} / T$	PREVVAL
CFLAG IKEY ISTART DNCHRAT LINE	Flag for the input variable type in the card reading (card mode) Progressive argument key number in the card reading (card mode) Starting point of the line in the card reading (card mode) Number of reactions to be added to the changed ones Line input from the card file (card mode)	READINP
IFORM(NREC) NG(NREC) NH(NREC) NI(NREC) NJ(NREC) NK(NREC) NL(NREC) Q9(NREC) REV(NREC) TG(NREC) TH(NREC) TI(NREC) TJ(NREC) TK(NREC) TL(NREC)	Reaction type (1-12) Number of incoming nuclides of type TG Number of incoming nuclides of type TH Number of incoming nuclides of type TI Number of incoming nuclides of type TJ Number of incoming nuclides of type TK Number of incoming nuclides of type TL Energy released in reaction (in unit of $10^{9} \mathrm{~K}$) Reverse reaction coefficient Incoming nuclide type Outgoing nuclide type Incoming nuclide type Incoming nuclide type Outgoing nuclide type Outgoing nuclide type	RECPAR
RATEPAR(NREC,13)	Reaction parameter values (=IFORM $+\mathrm{TI}+\ldots+\mathrm{NI}+\ldots$)	RECPAR0
RSTRING(NREC)	Reaction text strings	RSTRINGS
LH LHPHI LHZ NAUX PBH PEH PGH RHOBH RHOEH RHOEHPHI RHOEHZ RHOGH RHOGHZ RHOH	Function \hat{L} Derivative of \hat{L} with respect to ϕ_{e} Derivative of \hat{L} with respect to z Neutrino auxiliary function, $\mathcal{N}(z)$ Adimensional baryon pressure, $\hat{\mathrm{p}}_{B}$ Adimensional electron pressure, $\hat{\mathrm{p}}_{e}$ Adimensional gamma pressure, $\hat{\mathrm{p}}_{\gamma}$ Adimensional baryon energy density, $\hat{\rho}_{B}$ Adimensional electron energy density, $\hat{\rho}_{e}$ Derivative of $\hat{\rho}_{e}$ with respect to ϕ_{e} Derivative of $\hat{\rho}_{e}$ with respect to z Adimensional gamma energy density, $\hat{\rho}_{\gamma}$ Derivative of $\hat{\rho}_{\gamma}$ with respect to z Adimensional total energy density, $\hat{\rho}$	THERMQ
GNUC(NNUC)	Nuclide spin degrees of freedom	SPINDF

VARIABLE	DESCRIPTION	COMMON
A(13)	Forward weak reaction best-fit parameters (non degenerate case)	WEAKRATE
B(10)	Reverse weak reaction best-fit parameters (non degenerate case)	
DA(12,NXIE)	Forward weak reaction best-fit parameters (degenerate case)	
DB(12,NXIE)	Reverse weak reaction best-fit parameters (degenerate case)	
QNP	Forward weak reaction best-fit exponent parameter	
QNP1	Forward weak reaction best-fit exponent parameter	
QPN	Reverse weak reaction best-fit exponent parameter	
QPN1	Reverse weak reaction best-fit exponent parameter	
ZZ(NNUC $)$	Nuclide atomic charges, Z_{i}	ZNUM

[1] D. N. Spergel et al. [WMAP Collaboration], astro-ph/0603449.
[2] W. M. Yao et al. [Particle Data Group], Phys. Rev. D66, 010001 (2002).
[3] R.E. Lopez and M.S. Turner, Phys. Rev. D59, 103502 (1999) astro-ph/9807279.
[4] S. Esposito et al., Nucl. Phys. B540, 3 (1999) astro-ph/9808196].
[5] S. Esposito et al., Nucl. Phys. B568, 421 (2000) astro-ph/9906232.
[6] S. Esposito et al., JHEP 0009, 038 (2000) astro-ph/0005571.
[7] P. D. Serpico et al., JCAP 0412, 010 (2004) astro-ph/0408076].
[8] N. Y. Gnedin and O. Y. Gnedin, Astrophys. J. 509, 11 (1998) astro-ph/9712199.
[9] A. D. Dolgov, S. H. Hansen, D. V. Semikoz, Nucl. Phys. B543, 269 (1999) hep-ph/9805467.
[10] A. D. Dolgov, Phys. Rept. 370, 333 (2002) hep-ph/0202122.
[11] G. Mangano et al., Phys. Lett. B534, 8 (2002) astro-ph/0111408.
[12] G. Mangano et al., Nucl. Phys. B729, 221 (2005) hep-ph/0506164.
[13] G. Mangano et al., Nucl. Phys. B756, 100 (2006) hep-ph/0607267.
[14] R. H. Cyburt, Phys. Rev. D70, 023505 (2004) astro-ph/0401091].
[15] A. Coc et al., Astrophys. J. 600,544 (2004) astro-ph/0309480].
[16] C. Angulo et al., Nucl. Phys. A656, 3 (1999), See the URL: http://pntpm.ulb.ac.be/nacre.htm.
[17] R.V. Wagoner et al., Astrophys. J. 148, 3 (1967); R.V. Wagoner, Astrophys. J. Suppl. 18, 247 (1969); R.V. Wagoner, Astrophys. J. 179, 343 (1973).
[18] L. Kawano, Let's go Early Universe Preprint Fermilab-Pub-92/04-A.
[19] F. Iocco et al., Phys. Rev. D75, 087304 (2007) astro-ph/0702090.
[20] D.S. Leonard et al., Phys. Rev. C73, 045801 (2006) nucl-ex/0601035].
[21] P. D. Serpico and G. G. Raffelt, Phys. Rev. D71, 127301 (2005) astro-ph/0506162.
[22] Y. Z. Chu and M. Cirelli, Phys. Rev. D74, 085015 (2006) astro-ph/0608206.
[23] A. Coc et al., Phys. Rev. D73, 083525 (2006) astro-ph/0601299].
[24] A. De Felice et al., Phys. Rev. D74, 103005 (2006) astro-ph/0510359].
[25] V. Barger et al., Phys. Lett. B569, 123 (2003) hep-ph/0306061.
[26] A. Cuoco et al., Int. J. Mod. Phys. A19, 4431 (2004) astro-ph/0307213.
[27] K. Jedamzik, Phys. Rev. D70, 063524 (2004) astro-ph/0402344].
[28] P. D. Serpico and G. G. Raffelt, Phys. Rev. D70, 043526 (2004) astro-ph/0403417.
[29] R. H. Cyburt et al., Astropart. Phys. 23, 313 (2005) astro-ph/0408033.
[30] S. H. Hansen et al., Phys. Rev. D65, 023511(2002) astro-ph/0105385.
[31] G. Mangano et al., JCAP 0703, 006 (2007) astro-ph/0612150.
[32] S. Sarkar, Rept. Prog. Phys. 59, 1493 (1996) hep-ph/9602260.
[33] A. D. Dolgov et al., Nucl. Phys. B632, 363 (2002) hep-ph/0201287.
[34] Y. Y. Y. Wong, Phys. Rev. D66, 025015 (2002) hep-ph/0203180].
[35] K. N. Abazajian, J. F. Beacom and N. F. Bell, Phys. Rev. D66, 013008 (2002) astro-ph/0203442].
[36] K. Freese, E. W. Kolb and M. S. Turner, Phys. Rev. D27, 1689 (1983).
[37] H. S. Kang and G. Steigman, Nucl. Phys. B372, 494 (1992).
[38] S. Esposito et al., Nucl. Phys. B590, 539 (2000) astro-ph/0005573].
[39] See the URL: http://www.nag.co.uk/numeric/f/manual/html/FLlibrarymanual.asp

[^0]: * Corresponding author. E-mail: pisanti@na.infn.it

[^1]: ${ }^{1}$ It is a pleasure to acknowledge the public code of [18] as the starting point for many scholars interested in BBN, including the authors of the present paper.

