
Work supported in part by US Department of Energy contract DE-AC02-76SF00515

New constraints on dark energy from the observed growth

of the most X-ray luminous galaxy clusters

A. Mantz,1⋆ S. W. Allen,1 H. Ebeling2 and D. Rapetti1
1Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4060, USA
2Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, USA

26 September 2007

ABSTRACT

We present constraints on the mean matter density, Ωm, normalization of the density
fluctuation power spectrum, σ8, and dark energy equation of state parameter, w, ob-
tained from the X-ray luminosity function of the Massive Cluster Survey (MACS) in
combination with the local BCS and REFLEX galaxy cluster samples. Our anal-
ysis incorporates the mass function predictions of Jenkins et al. (2001), a mass–
luminosity relation calibrated using the data of Reiprich and Böhringer (2002), and
standard priors on the Hubble constant, H0, and mean baryon density, Ωbh

2. We find
Ωm = 0.27+0.06

−0.05 and σ8 = 0.77+0.07
−0.06 for a spatially flat, cosmological constant model,

and Ωm = 0.28+0.08
−0.06, σ8 = 0.75±0.08 and w = −0.97+0.20

−0.19 for a flat, constant-w model
(marginalized 68 per cent confidence intervals). Our findings constitute the first precise
determination of the dark energy equation of state from measurements of the growth
of cosmic structure in galaxy clusters. The consistency of our result with w = −1
lends strong additional support to the cosmological constant model. The constraints
are insensitive to uncertainties at the 10–20 per cent level in the mass function and in
the redshift evolution of the mass–luminosity relation; the constraint on dark energy is
additionally robust against our choice of priors and known X-ray observational biases
affecting the mass–luminosity relation. Our results compare favorably with those from
recent analyses of type Ia supernovae, cosmic microwave background anisotropies, the
X-ray gas mass fraction of relaxed galaxy clusters and cosmic shear. A simplified
combination of the luminosity function data with supernova, cosmic microwave back-
ground and cluster gas fraction data using importance sampling yields the improved
constraints Ωm = 0.263 ± 0.014, σ8 = 0.79 ± 0.02 and w = −1.00 ± 0.05.

Key words: cosmological parameters – large-scale structure of Universe – X-rays:
galaxies: clusters.

1 INTRODUCTION

In the hierarchical collapse scenario for structure forma-
tion in the universe, the number density of collapsed ob-
jects as a function of mass and cosmic time is a sensi-
tive probe of cosmology. The galaxy clusters that occupy
the high-mass tail of this population provide a powerful
and relatively clean tool for cosmology, since their growth
is predominantly determined by linear gravitational pro-
cesses. In the past, the local population of galaxy clus-
ters has been used to constrain the average matter density
of the universe and the amplitude of perturbations in the
density field (e.g. Reiprich & Böhringer 2002; Seljak 2002;
Viana et al. 2002; Allen et al. 2003; Pierpaoli et al. 2003;
Schuecker et al. 2003; Voevodkin & Vikhlinin 2004; Dahle
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2006; Rozo et al. 2007). Pushing observations to higher
redshift breaks the degeneracy between those two param-
eters (e.g. Donahue & Voit 1999; Eke et al. 1998; Henry
2000; Borgani et al. 2001; Vikhlinin et al. 2003), and al-
lows properties of dark energy to be probed as well (e.g.
Haiman et al. 2001; Levine et al. 2002; Weller et al. 2002;
Majumdar & Mohr 2003, 2004; Henry 2004).

Investigations of this type require sky surveys with well
understood selection functions to find clusters, as well as a
relation linking cluster mass with an observable. A success-
ful solution to the former requirement has been to identify
clusters by the X-ray emission produced by hot intraclus-
ter gas, notably using data from the ROSAT All-Sky Sur-
vey (RASS; Trümper 1993). The ROSAT Brightest Clus-
ter Sample (BCS; Ebeling et al. 1998, 2000) and ROSAT-
ESO Flux Limited X-ray sample (REFLEX; Böhringer et al.
2004) together cover approximately two-thirds of the sky out
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to redshift z ∼ 0.3 and contain more than 750 clusters. The
Massive Cluster Survey (MACS; Ebeling et al. 2001, 2007)
– which at this writing contains 126 clusters and covers 55
per cent of the sky – aims to extend these data to z ∼ 0.7.

The most straightforward mass–observable relation to
complement an X-ray flux-limited survey is the mass–X-ray
luminosity relation. It has the advantages that luminosities
can be estimated directly from the survey data, and that
the selection function is identical to the requirement for de-
tectability of the survey. Thus, every cluster in a flux com-
plete survey can be used in the analysis, without the need
for additional observations other than those required to cal-
ibrate the mass–luminosity relation. A disadvantage is that
there is a large scatter in cluster luminosities at fixed mass;
however, sufficient data allow this scatter to be quantified
empirically. Alternative approaches use cluster temperature
(Henry 2000; Seljak 2002; Pierpaoli et al. 2003; Henry 2004),
gas fraction (Voevodkin & Vikhlinin 2004) or YX parameter
(Kravtsov et al. 2006) to achieve tighter mass–observable re-
lations at the expense of greatly reducing the size of the
samples available for analysis. The need to quantify the se-
lection function in terms of both X-ray flux and a second
observable additionally complicates these efforts.

In this paper, we use the observed X-ray luminosity
function to investigate two cosmological scenarios, assum-
ing a spatially flat metric in both cases: the first includes
dark energy in the form of a cosmological constant (ΛCDM);
the second has a spatially uniform dark energy component
for which density evolves according to a fixed equation of
state parameter, w (wCDM). In each case, our results are in
good agreement with findings from independent cosmologi-
cal data sets, notably type Ia supernovae (SNIa), the cosmic
microwave background (CMB), the X-ray gas mass fraction
of galaxy clusters (fgas), and measurements of cosmic shear.
For the wCDM model, we obtain w = −0.97+0.20

−0.19, consistent
with a cosmological constant.

Unless otherwise noted, specific masses and luminosities
quoted in this paper or shown in figures are computed with
respect to a spatially flat ΛCDM reference cosmology with
h = H0/100 km s−1 Mpc−1 = 0.7 and Ωm = 0.3. Luminosi-
ties and fluxes refer specifically to the 0.1–2.4 keV energy
band in the source and observer rest frames, respectively.
We will consistently use the notation L to denote to the
true luminosity of a cluster and L̂ to denote the luminosity
inferred from observation. We will also write, for example,
Ωm to refer to the present day matter density in units of
the critical density, whereas Ωm(z) is the same quantity at
redshift z.

2 THEORY

The variance of the linearly evolved density field, smoothed
by a spherical top-hat window of comoving radius R, enclos-
ing mass M = 4πρ̄mR3/3, is

σ2(M, z) =
D2(z)

2π2

∫

∞

0

k2P (k)|WM (k)|2dk. (1)

Here ρ̄m is the mean comoving matter density of the uni-
verse, P (k) is the linear power spectrum at redshift zero,
WM (k) is the Fourier transform of the window function,

and D(z) = σ8(z)/σ8(0) is the growth factor of linear per-
turbations, normalized to unity at z = 0. The power spec-
trum, P (k) ∝ knsT 2(k), can be evaluated using, for exam-
ple, the transfer function T (k) of Eisenstein & Hu (1998).1

The growth factor is

D(z) =
g(z)

g(0)

1

1 + z
, (2)

where, for the wCDM cosmology, g(z) satisfies the second
order differential equation (Linder 2005)

g′′ +
[

5

2
−

3

2
wΩw(a)

]

g′ +
3

2
(1 − w)Ωw(a)g = 0. (3)

Here the derivatives are with respect to ln(a) and Ωw de-
notes the dark energy density. The corresponding equation
for ΛCDM is simply obtained by setting w = −1.

Jenkins et al. (2001, hereafter J01) and Evrard et al.
(2002) have shown that the predicted mass function of
galaxy clusters of mass M at redshift z can be written in
terms of a “universal” function of σ−1(M, z),

f(σ−1) =
M

ρ̄m

dn(M, z)

d ln σ−1
, (4)

which can be fit by a simple form,

f(σ−1) = A exp
(

−| ln σ−1 + B|ǫ
)

, (5)

for cosmological constant models. It has since been verified
that this fitting function is approximately universal among
models with constant w 6= −1 and some evolving-w mod-
els (Klypin et al. 2003; Linder & Jenkins 2003;  Lokas et al.
2004). We adopt the values A = 0.316, B = 0.67 and
ǫ = 3.82 from J01, determined using a spherical overden-
sity group finder at an overdensity of 324 times the mean
matter density (324m). The number density per unit mass
of galaxy clusters of mass M at redshift z is then

dn(M, z)

dM
=

ρ̄m

M

d ln σ−1

dM
f(σ−1). (6)

Following Morandi et al. (2007), we describe the rela-
tionship between mass and X-ray luminosity for massive
clusters as self-similar (e.g. Bryan & Norman 1998), mod-
ified by an additional redshift-dependent factor

E(z)M = M0(1 + z)γ

(

L

E(z)

)β

, (7)

where E(z) = H(z)/H0. Our model also includes a log-
normal scatter of width η in luminosity for a given mass.

For comparability with the Jenkins mass function, this
relation must use a consistent definition of cluster mass
(i.e. M324m). As there is no universal convention among ob-
servers for the overdensity used to define mass, it is nec-
essary to convert masses obtained from the literature to
the appropriate overdensity (White 2002). Details of car-
rying out this conversion, assuming a spherically symmet-
ric Navarro, Frenk, & White (1997) density profile, are re-
viewed in Hu & Kravtsov (2003).2

1 We employ their “effective shape” function, which includes
baryon suppression but not oscillations.
2 We assume a concentration parameter c = 5.0 when making
this conversion.
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Figure 1. Mass–luminosity data of RB02 and the best-fitting
relation (Equation 8). The quantities Y and X1 are defined in
Equation 9. As noted in the text, we have excluded the 6 clusters
at z > 0.11 from the complete RB02 sample. The masses and
luminosities are computed for our reference cosmology; the masses
correspond to a spherical overdensity of 324 with respect to ρ̄m,
matching the Jenkins mass function.

Equations 6 and 7, combined with a suitable stochastic
model linking the true luminosity of a cluster with its ob-
served flux, provide the means to predict the galaxy cluster
luminosity function based on a set of model parameters. The
procedure used to constrain these parameters is described in
Section 4.

3 OBSERVATIONS

3.1 Mass–luminosity relation

3.1.1 X-ray data

We have determined the mass–luminosity relation of galaxy
clusters using the sample of Reiprich & Böhringer (2002,
hereafter RB02), shown in Fig. 1. In these data, the lu-
minosities were measured from a combination of pointed
ROSAT PSPC and RASS data. The masses within r500

(M500) were determined by fitting the surface brightness
profile with a β-model (Cavaliere & Fusco-Femiano 1978)
and applying the hydrostatic equation, assuming that the
intracluster gas is isothermal. Here r500 is the radius within
which the mean density is 500 times the critical density, ρc,
not the universal mean matter density, ρ̄m.

The assumption of hydrostatic equilibrium introduces
a bias into the derived mass due to the presence of non-
thermal support and asphericity in the observed clusters
(Faltenbacher et al. 2005; Rasia et al. 2006). We attempt to
correct for this bias using the results of Nagai et al. (2007),
who find that the hydrostatic mass determinations of sim-
ulated clusters at z = 0 systematically underestimate M500

by 25.3 ± 16.2 per cent. This figure is an average over sim-
ulated clusters in both relaxed and unrelaxed states, and

additionally takes into account the observational bias in the
determination of r500.

We fit the log-linear model (see Equation 7)

Y = α + βX1 + γX2, (8)

where

Y = log10

(

E(z)M324m

M⊙

)

X1 = log10

(

L

E(z)1044 erg s−1

)

X2 = log10 (1 + z)

α = log10

(

M0

M⊙

)

. (9)

The process of fitting this model is potentially compli-
cated by the presence of Malmquist bias. Close to the flux
limit for selection, any X-ray selected sample will preferen-
tially include the most luminous sources for a given mass.
This results in a steepening of the derived mass–luminosity
relation and a bias in the inferred intrinsic scatter in lumi-
nosity for a given mass. (The inferred intrinsic dispersion
may be artificially reduced or increased, depending on the
distribution of data with respect to the flux limit.) The in-
clusion of the full sample of RB02, rather than only their
flux-limited HIFLUGCS sample, partially mitigates this ef-
fect by softening the flux limit. Furthermore, we eliminate
the 6 clusters at redshifts > 0.11 which all lie close the the
flux limit; as Fig. 2 shows, the extent in luminosity of the
remaining 100 clusters is roughly a decade at all redshifts.
As our estimate (see below) of the intrinsic scatter in X1

is roughly 0.17 (i.e. 0.17 decades in luminosity), and the
Poisson measurement error is much smaller, we expect the
effects of Malmquist bias on our estimation of the power-law
slope and intrinsic dispersion to be minimal.

A second consequence of Malmquist bias is that there is
a strong apparent, but not necessarily physical, correlation
between luminosity and redshift due to the fact that the flux
limit corresponds to higher luminosities at higher redshifts.
(This is evident in Fig. 2.) Within redshift 0.11, we expect
this false signal to be much greater than any real evolution;
we therefore fix γ = 0 when fitting the model.

Although methods exist for performing linear regression
on data with bivariate heteroscedastic errors and intrinsic
scatter (e.g. Akritas & Bershady 1996), such methods do not
provide a simple goodness-of-fit measure that can be associ-
ated with arbitrary values of the fit parameters. In contrast,
the χ2 statistic is an easily calculated measure of goodness-
of-fit, but is biased by the presence of intrinsic scatter. We
compromise by using a modified χ2 which accounts for in-
trinsic scatter by introducing an additional dispersion term,

χ̃2 =
∑

j

(α + βX1,j − Yj)2

ε2
Y,j + ∆

, (10)

where εY,j is the measurement error on Yj and ∆ is the
additional dispersion. This statistic is defined in terms of
Y given X1 because the luminosity measurement errors are
negligible in comparison to the mass measurement errors
(Fig. 1). The value of ∆ is chosen iteratively, adjusting it
such that the best fit, found by minimizing χ̃2 using least-
squares methods, has χ̃2 equal to the median of the chi-
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Figure 2. Luminosity–redshift distribution of the RB02 data.
The quantity X1 is defined in Equation 9 and is computed in our
reference cosmology. As noted in the text, we have excluded the 6
clusters at z > 0.11 from the complete RB02 sample. The remain-
ing clusters have an extent of roughly one decade in luminosity
at all redshifts.

square distribution with ν = 100−2 degrees of freedom (i.e.
χ̃2/ν ≈ 1). The χ̃2 statistic thus does not measure absolute
goodness-of-fit, but goodness relative to the best fit. Note
that in the cosmological analysis (Section 4.1) we use a fixed
value of ∆ rather than repeating this iterative process for
each step in the Markov chain.

The log-normal intrinsic dispersion in luminosity for a
given mass can be estimated from the scatter in the data
about the best fit, with measurement errors subtracted in
quadrature,

η̂2 =
1

ν

∑

j

[

(

Yj − α0

β0
− X1,j

)2

− ε2
X1,j −

(

εY,j

β0

)2
]

, (11)

where α0 and β0 are the parameters describing the best
fit. Under assumptions of normal measurement errors and
intrinsic scatter, the quantity η̂2ν/η2 is drawn from a chi-
square distribution with ν degrees of freedom. It follows that
the likelihood of the observed η̂2 given the model parameter
η2 is the same chi-square density multiplied by ν/η2:

P (η̂2|η2) =

(

η̂2
)ν/2−1

2ν/2Γ(ν/2)

(

ν

η2

)ν/2

exp

(

−
νη̂2

2η2

)

. (12)

This provides a goodness-of-fit measure for η (see Sec-
tion 4.1).

Confidence regions for α and β obtained with cosmo-
logical parameters fixed at our reference and using uniform
priors on α, β and η are displayed as in Fig. 3 (solid lines).
The best-fitting values and marginal 68.3 per cent confi-
dence intervals are α = 14.69 ± 0.02, β = 0.59 ± 0.03 and
η = 0.165±0.012. Our results for the slope and intrinsic scat-
ter of the relation are in good agreement with the original
conclusions of RB02, obtained using bootstrap monte carlo
with the BCES estimator of Akritas & Bershady (1996). A
quantile-quantile plot of the residuals in X1 for the best fit

0.5 0.55 0.6 0.65 0.7

14
.5

14
.6

14
.7

α

β
Figure 3. 68.3 and 95.4 per cent confidence regions for the mass–
luminosity parameters α and β from the RB02 data (solid lines).
Also shown is the best fit and 68.3 per cent confidence interval
(square with error bars) on α with fixed β obtained from the
Dahle (2006) data (Section 3.1.2). The cosmology is fixed at our
reference. The dashed lines are the confidence regions that would
been obtained from the RB02 data if the the masses were not cor-
rected for bias due to the assumption of hydrostatic equilibrium.

(Fig. 4) confirms that the distribution of luminosities for a
given mass is reasonably approximated by the log-normal
distribution.

3.1.2 Weak lensing data

In order to verify the appropriateness of the hydrostatic bias
correction applied to the RB02 masses, we compare the re-
sults of Section 3.1.1 with the data of Dahle (2006), for
which masses were measured using weak gravitational lens-
ing. These masses, with associated luminosities taken from
the BCS and extended BCS (eBCS) catalogs, are shown in
Fig. 5 (black points). In contrast to the RB02 data, the
Malmquist bias due to the (e)BCS flux limit is clearly ev-
ident; in particular, the lowest-mass clusters in this data
set are very likely to represent the upper tail of the distri-
bution of luminosities for given mass. Although the simple
methods described above are unsuitable for fitting the mass–
luminosity relation when the data are subject to significant
Malmquist bias, the intersection of these two data sets near
the highest observed masses indicates that they are compat-
ible.

We can quantify this observation by using the Dahle
data to fit for the normalization, α, by minimizing χ̃2, while
leaving the slope, β, fixed at the best-fitting value from Sec-
tion 3.1.1. The resulting one-dimensional 68.3 per cent con-
fidence interval on α is shown in Fig. 3. The best-fitting
normalization (α = 14.72) is well within the 95.4 per cent
confidence region obtained using the corrected RB02 data.
Without applying the bias correction (∼ 0.13 in Y ) to the X-
ray determined masses it would fall well beyond the allowed
region (dashed lines in Fig. 3). This result confirms obser-
vationally both that a correction is needed when masses are
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Figure 4. Quantile-quantile plot comparing the residuals in X1

of the RB02 data for the best fitting relation to a normal dis-
tribution. The straightness of the distribution indicates that the
scatter is well approximated as normal in X1 (log-normal in lumi-
nosity). Inset: the histogram of X1 residuals is directly compared
with the normal distribution.
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Figure 5. The mass–luminosity data of Dahle (2006) (black) are
compared with those of RB02 (blue; see additional comments of
Fig. 1). The effect of the (e)BCS flux limit on the Dahle data
(X1 ∼ 0.75) is clearly evident. At lower masses, the data set
is progressively more likely to contain only the most luminous
clusters for that mass, resulting in an apparent steepening of the
relation.

measured using an X-ray analysis that assumes hydrostatic
equilibrium, and that the magnitude of the effect reported
by Nagai et al. (2007) is roughly correct.

3.2 X-ray luminosity function

We use three flux-limited surveys in our analysis: the BCS
(Ebeling et al. 1998) and REFLEX (Böhringer et al. 2004)
at low redshifts (z < 0.3), and the MACS (Ebeling et al.
2001) at 0.3 < z < 0.7. (We restricted the REFLEX sam-
ple to the southern hemisphere so that its coverage on
the sky would not overlap the BCS.) As discussed in Sec-
tion 4.2, a proper accounting of the intrinsic scatter in
the mass–luminosity relation involves convolving over all
possible masses when evaluating the likelihood of a set of
cosmological parameters; it is therefore necessary for the
mass–luminosity relation to be well calibrated at luminosi-
ties significantly (at least an order of magnitude) below
those allowed in the surveys. We thus also restrict the
analysis to clusters with large inferred luminosities L̂ >
2.55 × 1044h−2

70 erg s−1.

The completeness of the REFLEX sample has been in-
vestigated by Böhringer et al. (2001) and Schuecker et al.
(2001), and is thought to be well above 90 per cent at a
flux limit of 3.0×10−12 erg s−1 cm−2. The BCS completeness
as a function of flux is quantified in Ebeling et al. (1998);
we use a flux limit of 4.4 × 10−12 erg s−1 cm−2 where the
BCS completeness is 90 per cent. Most of the incomplete-
ness in the BCS is due to the inefficient extended-source
detection of the RASS II algorithm, which is most severe at
very low redshifts. One consequence of our high luminosity
cut is that the sample contains mostly higher redshift ob-
jects (z̄ ≈ 0.21) and not the large number of low redshift,
low luminosity objects that would be included in a strictly
flux-limited sample. The reported completeness of the BCS
is thus an underestimate for the subsample of very luminous
clusters used in our analysis. We have repeated the analy-
sis of the BCS data alone (see Section 5.1) using a higher
flux limit (5 × 10−12 erg s−1 cm−2) where the reported BCS
incompleteness is negligible, and obtain a similar result. We
conclude that significant incompleteness is not present in
the BCS, given our selection criteria. The similar number of
clusters (78 and 80, respectively) in the BCS and REFLEX
samples satisfying the BCS flux limit and our luminosity cut
support this conclusion.

Unlike the BCS and REFLEX, for which extended-
source fluxes were measured using the Voronoi tessella-
tion and percolation (Ebeling 1993; Ebeling & Wiedenmann
1993) and growth curve analysis (Böhringer et al. 2000) al-
gorithms, respectively, reported MACS fluxes are measured
within a fixed angular size aperture (5 arcmin in most
cases). A redshift-dependent correction for missing flux, de-
scribed in Ebeling et al. (2001), is required when convert-
ing this aperture flux to total flux, both when determining
luminosities for the detected clusters themselves and when
computing the aperture flux-dependent survey sky cover-
age (Ebeling et al. 2007). We adopt an aperture flux limit
of 2 × 10−12 erg s−1 cm−2 for MACS, corresponding to the
flux above which the optical follow-up of cluster candidates
is complete as of this writing. We assess the completeness
of this subsample by comparing the MACS log N − log S
distribution (the number of clusters exceeding aperture flux
S as a function of S) to predictions based on cosmologies
that are consistent with the BCS+REFLEX data (see Sec-
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Figure 6. Number of MACS clusters exceeding flux S as a func-
tion of S (log N − log S distribution). Here S is the flux mea-
sured within a 5 arcmin aperture (see text). Dotted red lines
are the 68.3 per cent confidence bounds on the log N − log S

distribution predicted by cosmologies that are consistent with
the BCS+REFLEX data, whose completeness has been indepen-
dently verified. The good agreement between the observed and
predicted number of clusters demonstrates that the completeness
of the sample is high.

tion 5.1).3 The agreement, shown in Fig. 6, demonstrates
that the sample is statistically complete at the ∼ 90 per
cent level.

Using the flux limits and luminosity cut described
above, the BCS, REFLEX and MACS surveys respectively
contribute 78, 130 and 34 clusters to our sample. The
luminosity–redshift distribution of these data is displayed
in Fig. 7.

In order to adequately take the effects of Eddington bias
into account when predicting the number of clusters above
our flux and luminosity thresholds for a given cosmology
and mass–luminosity relation, we must be able to assign a
probability to the luminosity observed from a cluster, given
its true luminosity. Ultimately, the distribution is related to
a Poisson distribution in the number of photons detected;
however, the nontrivial conversion from photon count rate to
unabsorbed flux and the variation in exposure times over the
sky make the solution from first principles computationally
difficult. Instead, we simplify the problem by assuming that
the distribution P (L̂|L), where L̂ and L are the observed and
true luminosities, is normal with mean L. The variance is a
function of the observed flux, which we estimate empirically
by fitting the flux errors versus flux for the different surveys

3 Predictions shown in Fig. 6 are from ΛCDM cosmologies, since
the BCS and REFLEX data are too limited in redshift to con-
strain w. Identical conclusions result from using wCDM models
consistent with the BCS and REFLEX data in addition to MACS
data at fluxes > 3.0 × 10−12 erg s−1 cm−2, where the complete-
ness of the parent RASS Bright Source Catalog has been inde-
pendently verified (Schuecker et al. 2001).
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Figure 7. Luminosity–redshift distribution of clusters in the BCS
(black), REFLEX (blue) and MACS (red) which are above the
respective flux limits (see text). The adopted minimum luminos-
ity of 2.55 × 1044h−2

70 erg s−1 is indicated by the dashed line. Er-
ror bars are not shown. Note that the redshift range covered by
MACS extends to z = 0.7 even though no clusters above our
adopted flux limit were found at z > 0.5.

to a power-law model. We find power-law slopes of 0.52 for
the BCS and REFLEX and 0.56 for MACS, consistent with
approximately Poisson scaling.

3.3 Other data

In this paper, we first present an analysis based only on the
above data along with the priors described in Section 4. We
also show results obtained from other cosmological data for
comparison purposes in Section 5, and use the luminosity
function data to importance sample these independent re-
sults in Section 5.2.3. A modified version of the COSMOMC
code4 of Lewis & Bridle (2002, see also Rapetti et al. 2005,
2007) is used to analyze these independent data. The SNIa
and fgas results shown are identical to those in Allen et al.
(2007). The fgas data are reported in that work and the
SNIa results are derived from the compilation of Davis et al.
(2007), which includes results from the ESSENCE survey
(60 targets; Wood-Vasey et al. 2007; Miknaitis et al. 2007),
the SNLS first year data (57 targets; Astier et al. 2006), 45
nearby supernovae (Jha et al. 2007) and the 30 high-redshift
supernovae discovered by HST and reported by Riess et al.
(2007) for which a ‘gold’ rating was awarded (192 SNIa in
total). Our analysis of the cosmic microwave background
(CMB) anisotropies uses three-year Wilkinson Microwave
Anisotropy Probe (WMAP) data, including marginalization
over a plausible range in the amplitude of the Sunyaev-
Z’eldovich signal (0 < ASZ < 2) (Spergel et al. 2007). We
use the October 2006 version of the WMAP likelihood code.5

The model fitted to the CMB data is slightly different

4 http://cosmologist.info/cosmomc/
5 http://lambda.gsfc.nasa.gov/product/map/current/m sw.cfm



New constraints on dark energy 7

from the one used for the cluster luminosity function. First,
we always marginalize over the scalar spectral index, ns, in
the CMB analysis. Since the CMB results are very sensitive
to this parameter, this avoids biases that would be intro-
duced by fixing ns to a particular value. In contrast, the
luminosity function constraints are much less sensitive to
ns (Section 5.2.2); the differences in results from the lumi-
nosity function when fixing ns = 1.0 versus ns = 0.95 (the
WMAP preferred value) are small. Second, when analyzing
the CMB data, we include in the model perturbations in the
dark energy density which must be present when w 6= −1
(Rapetti et al. 2005). These perturbations are not yet incor-
porated into the model we use for the luminosity function
constraints, although we will consider their effect in future
work. We note that there is no reason a priori to expect
that the inclusion of such perturbations affect the luminos-
ity function constraints in the same way that it affects the
CMB constraints.

4 ANALYSIS

We parametrize the full model fitted to the X-ray lumi-
nosity function data as (h, Ωbh2, Ωch

2, σ8, ns, w, A, α,
β, γ, η), where Ωc and Ωb are the cold dark matter and
baryon densities (Ωm = Ωc + Ωb) and A is the normal-
ization of the Jenkins mass function (Equation 5). In ad-
dition to the assumption of spatial flatness, we adopt the
Gaussian priors h = 0.72 ± 0.08 (Freedman et al. 2001) and
Ωbh2 = 0.0205 ± 0.0018 (O’Meara et al. 2001) from the
Hubble Key Project and Big Bang nucleosynthesis studies.
These latter priors are necessary because the likelihood de-
pends very weakly on h and Ωb, which enter only though
the transfer function. We must also place a prior on the
mass–luminosity evolution parameter, γ, since it is not con-
strained by the RB02 data and thus enters the likelihood
only through the evaluation of Equation 7. For the standard
set of allowances used in this paper, we adopt a uniform
prior with the width chosen such that the allowed variation
in the normalization of the mass–luminosity relation out to
the nominal redshift limit of MACS, (1 + 0.7)γ , is ±10 per
cent. We additionally marginalize over a 10 per cent uncer-
tainty (standard allowance) in the normalization of the J01
mass function, A, based on the residuals of the fitting for-
mula to their simulations over the mass range of interest. For
the remaining model parameters (except ns), uniform priors
on the physically allowed domains were used. These priors,
used in the determination of the results in Sections 5.1 and
5.2.1, are summarized in Table 1 (labeled “standard” pri-
ors). Note that the spectral index is fixed for these results;
the effect of marginalizing over ns is discussed separately in
Section 5.2.2. The sensitivity of our results to the choice of
priors is analyzed in Section 6.1.

Cosmological constraints were determined via Markov
Chain Monte Carlo, employing the Metropolis algorithm.
Multiple, randomly-initialized Markov chains were produced
for each set of results, and convergence to the posterior dis-
tribution was monitored using the Gelman-Rubin criterion,
R, which measures the ratio of between-chain to within-
chain variances (Gelman & Rubin 1992), as well as by vi-
sual inspection. Acceptable convergence was defined by the
requirement R − 1 < 0.05. The log-likelihood of the data

Table 1. Priors used in the analysis. All parameters not listed
were assigned uniform priors on their physically allowed domains.
The standard and weak priors on γ allow a variation of ±10 and
±20 per cent in the normalization of the mass–luminosity relation
over the redshift range of our data (see text). aN(µ, σ2) indicates
the normal distribution with mean µ and variance σ2, and U(a, b)
indicates the uniform distribution with endpoints a and b.

Prior Parameter Densitya Section

standard h N(0.72, 0.082)
weak h N(0.72, 0.242) 6.1

standard Ωbh2 N(0.0205, 0.00182)
weak Ωbh2 N(0.0205, 0.00542) 6.1

standard ns fixed at 1.0
weak ns U(0.5, 1.4) 5.2.2

standard A N(0.316, 0.03162)
weak A N(0.316, 0.06322) 6.1

standard γ U(−0.20, 0.18)
weak γ U(−0.42, 0.34) 6.1

given a set of model parameters is decomposed into the sum
ℓαβ + ℓη + ℓXLF, whose terms are described in the remainder
of this Section.

4.1 Mass–luminosity likelihood

The parameters describing the normalization and slope of
the mass–luminosity relation, α and β, are constrained us-
ing the χ̃2 statistic defined in Equation 10. Only the RB02
data are used. As mentioned previously, we fix the value of ∆
to be 0.0186, calculated in our reference cosmology using the
method described in Section 3.1.1. This makes values of χ̃2

from different steps of the Markov chain directly compara-
ble, while retaining the de-biasing effect of the modification
to χ2.6 The log-likelihood associated with χ̃2 is defined as
ℓαβ = −χ̃2/2.

At each step of the chain, the estimated intrinsic dis-
persion in the mass–luminosity relation, η̂2, is computed by
Equation 11. The contribution to the log-likelihood from the
dispersion is the logarithm of Equation 12,

ℓη =
(

ν

2
− 1

)

ln
(

η̂2
)

+
ν

2
ln

(

ν

2η2

)

−
νη̂2

2η2
, (13)

where ν = 100 − 2 and the constant term − ln Γ(ν/2) has
been neglected. Intuitively, this term penalizes models for
which the intrinsic dispersion is far from the estimated dis-
persion measured from the RB02 data.

4.2 Luminosity function likelihood

The likelihood that N clusters with inferred luminosities in a
range dL̂ exist in a volume dV can in general be written as a
Poisson probability plus a correction due to the clustering of
halos with one another. Given that our sample covers a very
wide survey area (∼ 2/3 of the sky) and includes only the

6 The reference cosmology with respect to which χ̃2 is defined
is unimportant, since the Markov chain is sensitive only to dif-
ferences in the statistic. In practice, recalculating the value of ∆
at each step of the chain results in negligibly small changes in its
value.
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most luminous, and therefore rare, objects, the clustering
term will be negligible compared to the pure Poisson term
(e.g. Hu & Kravtsov 2003). If the plane of redshift and in-
ferred luminosity is divided into non-overlapping cells, then
the likelihood of our data is simply

P ({Nj}) =
∏

j

Ñ
Nj

j e−Ñj

Nj !
, (14)

where Nj and Ñj are the number of clusters detected and
predicted in the jth cell, respectively. The log-likelihood is
then

ℓXLF =
∑

j

[

Nj ln(Ñj) − Ñj

]

, (15)

where the constant term −
∑

j
ln(Nj !) has been dropped.

If the cells are taken to be rectangular, with the jth
consisting of the area between redshifts z

(1)
j and z

(2)
j and

inferred luminosities L̂
(1)
j and L̂

(2)
j , then the quantity Ñj is

Ñj =

∫ z
(2)
j

z
(1)
j

dz
dV (z)

dz

∫ L̂
(2)
j

L̂
(1)
j

dL̂
dñ(z, L̂)

dL̂
, (16)

where V (z) is the comoving volume within redshift z. In the
absence of intrinsic scatter in the mass–luminosity relation
and measurement errors in the observed luminosities, the
derivative of the comoving number density would be simply

dñ(z, L)

dL
= fsky(z, L)

dM(L)

dL

dn(z, M)

dM
. (17)

Here fsky is the sky coverage fraction of the surveys as
a function of redshift and inferred luminosity (i.e. flux),
dn/dM is the Jenkins mass function (Equation 6) and M(L)
is the mass–luminosity relation (Equation 7). The presence
of scatter requires us to take into account that a cluster de-
tected with inferred luminosity L̂ could potentially have any
true luminosity L and mass M , with some associated prob-
ability. To calculate the predicted number density correctly,
we must therefore convolve with these probability distribu-
tions:

dñ(z, L̂)

dL̂
= fsky(z, L̂)

∫

∞

0

dL P (L̂|L)

×

∫

∞

0

dM P (L|M)
dn(z, M)

dM
. (18)

Above, P (L|M) is a log-normal (base 10) distribution whose
width is the intrinsic scatter in the mass–luminosity relation,
η, and P (L̂|L) is a normal distribution whose width as a
function of flux is modeled as a power law, as described in
Section 3.2.

The sum over the second term in Equation 15 reduces
to the integrated number of predicted clusters in the de-
tection region of the surveys (i.e. within the redshift range
and above the luminosity and flux thresholds), independent
of binning. However, the first term in that equation is de-
pendent on the choice of binning. To make optimal use of
the data, the bin size should be taken as small as possible.
For sufficiently small bins, the integrals in Equation 16 can
be approximated as an integrand multiplied by the constant
and cosmologically invariant bin area ∆z∆L̂/d2

L, where dL

is the luminosity distance to the redshift of the bin. The re-

Figure 8. Joint 68.3 and 95.4 per cent confidence constraints
on Ωm and σ8 for a ΛCDM model from, in order of increasing
precision, MACS (red), BCS (blue), and REFLEX (green) indi-
vidually, and their combination (purple). Note that only the 95.4
per cent confidence regions are visible for the individual BCS and
REFLEX data sets. These results assume fixed γ and A (see text),
and otherwise use our standard priors (Table 1).

sulting logarithm of this term in Equation 15 may then be
neglected, simplifying the log-likelihood to

ℓXLF =
∑

i

ln

(

d2
L

dV

dz

dñ

dL̂

∣

∣

∣

zi,L̂i

)

+

∫

dzdL̂
dV

dz

dñ

dL̂
, (19)

where the summation is over detected clusters and the inte-
gral extends over the detection region of the surveys.

5 RESULTS

5.1 ΛCDM constraints

For a ΛCDM cosmology, any of the X-ray luminosity func-
tion (XLF) data sets can individually provide constraints
on the model parameters. Fig. 8 shows the joint Ωm-σ8 con-
straints obtained from the BCS, REFLEX and MACS data
sets individually, as well as their combination. In this fig-
ure, we have fixed γ = 0.0 and A = 0.316 in order to
emphasize the agreement between the data sets. Using the
combined data and standard set of priors (including the
marginalizations over γ and A), we obtain Ωm = 0.27+0.06

−0.05

and σ8 = 0.77+0.07
−0.06 (Fig. 9).

These constraints are in good agreement with recent, in-
dependent results from the CMB (Spergel et al. 2007) and
cosmic shear, as measured in the 100 Square Degree Sur-
vey (Benjamin et al. 2007) (Fig. 9). Our results are also
in good overall agreement with previous findings based on
the observed X-ray luminosity and temperature functions of
clusters (e.g. Eke et al. 1998; Donahue & Voit 1999; Henry
2000; Borgani et al. 2001; Seljak 2002; Allen et al. 2003;
Pierpaoli et al. 2003; Schuecker et al. 2003; Henry 2004), al-
though the correction to the hydrostatic mass estimates em-
ployed in the present study leads to our result on σ8 being,
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Table 2. Best-fitting values and 68.3 per cent confidence intervals for the model parameters obtained from the luminosity function
data. Our main results from this study occupy the first three lines; the remaining results are listed in the order that they appear in
the text. aB=BCS, R=REFLEX, M=MACS. bPriors not specified below are standard (see Table 1). 1: all standard; 2: weak ns prior;
3: fixed A = 0.316, γ = 0.0; 4: fixed A; 5: weak A; 6: fixed A, weak h and Ωbh2; 7: fixed A, weak γ; 8: fixed A, η = 0.0; 9: fixed A,
luminosity measurement error= 0.0; 10: fixed A, no correction to RB02 masses.

Dataa Model priorsb Ωm σ8 w α β η Section

B+R+M ΛCDM 1 0.27+0.06
−0.05 0.77+0.07

−0.06 — 14.70 ± 0.03 0.60 ± 0.03 0.168 ± 0.012 5.1

B+R+M wCDM 1 0.28+0.08
−0.06 0.75 ± 0.08 −0.97+0.20

−0.19 14.70 ± 0.03 0.60 ± 0.03 0.165+0.014
−0.010 5.2.1

B+R+M wCDM 2 0.23+0.17
−0.06 0.74 ± 0.14 −0.96 ± 0.21 14.69 ± 0.04 0.60 ± 0.03 0.167 ± 0.012 5.2.2

B ΛCDM 3 0.25 ± 0.08 0.80 ± 0.09 — 14.71 ± 0.04 0.59 ± 0.03 0.167 ± 0.013 5.1

R ΛCDM 3 0.24+0.08
−0.05 0.80 ± 0.08 — 14.70 ± 0.03 0.60 ± 0.03 0.164 ± 0.012 5.1

M ΛCDM 3 0.30+0.20
−0.11 0.74+0.09

−0.13 — 14.68 ± 0.05 0.60 ± 0.03 0.164+0.013
−0.011 5.1

B+R+M ΛCDM 3 0.27 ± 0.06 0.78 ± 0.06 — 14.70 ± 0.03 0.60 ± 0.03 0.166 ± 0.012 5.1

B+R+M wCDM 4 0.27+0.09
−0.05 0.76 ± 0.08 −0.95 ± 0.20 14.70+0.02

−0.04 0.59 ± 0.03 0.167 ± 0.013 6

B+R+M wCDM 5 0.28+0.09
−0.06 0.75 ± 0.08 −0.96+0.20

−0.19 14.70 ± 0.03 0.60 ± 0.03 0.166+0.14
−0.10 6.1

B+R+M wCDM 6 0.25+0.11
−0.07 0.74+0.15

−0.08 −1.02+0.26
−0.14 14.70+0.06

−0.05 0.60 ± 0.03 0.165+0.015
−0.010 6.1

B+R+M wCDM 3 0.28+0.09
−0.05 0.76 ± 0.08 −0.95 ± 0.18 14.70 ± 0.03 0.60 ± 0.03 0.169+0.010

−0.014 6.1

B+R+M wCDM 7 0.28+0.08
−0.05 0.75+0.08

−0.07 −0.99 ± 0.23 14.70 ± 0.03 0.59 ± 0.03 0.167 ± 0.012 6.1

B+R+M wCDM 8 0.24+0.06
−0.05 0.83 ± 0.08 −0.99+0.20

−0.16 14.71 ± 0.03 0.60 ± 0.03 — 6.3

B+R+M wCDM 9 0.27+0.09
−0.05 0.77 ± 0.08 −0.91+0.17

−0.22 14.70 ± 0.03 0.60 ± 0.03 0.165 ± 0.012 6.3

B+R+M wCDM 10 0.30+0.08
−0.07 0.64 ± 0.07 −0.99+0.22

−0.18 14.56 ± 0.03 0.60 ± 0.03 0.24 ± 0.02 6.4

Figure 9. Joint 68.3 and 95.4 per cent confidence constraints
on Ωm and σ8 for a ΛCDM model using the combined X-
ray luminosity function (XLF) data (purple) and our standard
priors (Table 1). Also shown are independent constraints from
the CMB (blue; Spergel et al. 2007) and cosmic shear (brown;
Benjamin et al. 2007)).

typically, somewhat higher (see Section 6.4). Our result on
Ωm is in excellent agreement with current constraints based
on cluster fgas data (Allen et al. 2007 and references therein)
and the power spectrum of galaxies in the 2dF galaxy red-
shift survey (Cole et al. 2005) and Sloan Digital Sky Sur-
vey (SDSS) (Eisenstein et al. 2005; Tegmark et al. 2006;
Percival et al. 2007), as well as the combination of CMB
data with a variety of external constraints (Spergel et al.

2007). Our result on σ8 is marginally lower than that deter-
mined by weak lensing tomography in the Cosmic Evolution
Survey (COSMOS; Massey et al. 2007) and by the observed
number density of optically-selected groups and clusters in
the 2dF (Eke et al. 2006) and SDSS surveys (Rozo et al.
2007).

5.2 wCDM constraints

5.2.1 Results using standard priors

In this Section, we investigate the constraints on a constant
dark energy equation of state provided by the luminosity
function data. Fig. 10 shows the joint constraint on Ωm and
w using our standard priors (purple contours), along with
those obtained independently from SNIa (green), CMB data
(blue), and cluster fgas data (red). Our results are consis-
tent with each of these independent data, and with the cos-
mological constant model (w = −1). The marginalized re-
sults from the luminosity function data are Ωm = 0.28+0.08

−0.06 ,
σ8 = 0.75 ± 0.08 and w = −0.97+0.20

−0.19.

5.2.2 Results marginalized over ns

We now consider the effect on our constraints of marginaliz-
ing over the spectral index ns. The data are able to constrain
the spectral index, although only weakly; in order to speed
convergence we impose a uniform prior 0.5 6 ns 6 1.4.
This prior is still very conservative, given the constraint of
the WMAP three-year data, ns = 0.951+0.015

−0.019 (Spergel et al.
2007). Fig. 11 shows the joint constraints from our data on
Ωm and σ8 using standard priors (purple; ns = 1.0) versus
this weak uniform prior (gray). The marginalization over ns

has the effect of expanding the constraints along the well-
known degeneracy between Ωm and σ8; a similar degeneracy
is evident in the CMB results (blue, no prior on ns used).
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Figure 10. Joint 68.3 and 95.4 per cent confidence constraints
on Ωm and w for a constant-w model using the luminosity func-
tion data (purple) and our standard priors (Table 1). Also shown
are independent constraints from CMB data (blue; Spergel et al.
2007), SNIa (green; Davis et al. 2007) and cluster fgas data (red;
Allen et al. 2007).

Figure 11. Joint 68.3 and 95.4 per cent confidence constraints on
Ωm and σ8 for a constant-w model using standard priors (purple;
ns = 1.0) and marginalized over ns (gray). The latter results are
in good agreement with independent constraints from the CMB
(blue Spergel et al. 2007), also marginalized over ns.

In contrast, there is no strong degeneracy between ns and
w, and the w constraint is not significantly affected by the
marginalization.

5.2.3 Combination with fgas+CMB+SNIa data

A detailed analysis of the constraints that can be obtained
from a combination of the different cosmological data sets

Figure 12. The joint constraints (68.3 and 95.4 per cent confi-
dence) on σ8 and w obtained from a combined SNIa+fgas+CMB
analysis (blue) and the improved constraints obtained by combin-
ing this with the XLF results using importance sampling (gold).
No priors on h, Ωbh2 or ns are imposed in either analysis.

is beyond the scope of this paper. Nevertheless, we present
here constraints on Ωm, σ8 and w obtained by using our
X-ray luminosity function constraints to importance sample
the results of a combined fgas+CMB+SNIa analysis (fol-
lowing Allen et al. 2007). Priors on h, Ωbh2 and ns are not
required or used in this analysis. We note that the wCDM
model is treated inconsistently here, in that dark energy per-
turbations are taken into account in the CMB analysis but
not in the XLF analysis; therefore, these results should be
interpreted only as a preview of more rigorous future work.

The importance sampling was accomplished by thin-
ning a Markov chain produced from the combined
fgas+CMB+SNIa analysis and weighting each entry in this
thinned chain by the likelihood of the mass–luminosity and
luminosity function data (Section 4). This likelihood must
be marginalized over all the parameters not addressed by
the fgas+CMB+SNIa data, namely the mass function nor-
malization, A, and the parameters describing the mass–
luminosity relation, α, β, γ and η. However, the posteriors
obtained from the luminosity function analysis alone indi-
cate that A and γ are essentially independent of the other
parameters; we therefore fixed them at their best-fitting val-
ues. The remaining marginalization over α, β and η, was
carried out numerically.

The importance-sampled XLF+fgas+CMB+SNIa re-
sults are compared with the fgas+CMB+SNIa results in
Fig. 12 and 13, and in Table 3. The fgas+CMB+SNIa com-
bination already provides tight constraints on Ωm, h, Ωbh2

and ns, but the degeneracy between w and σ8 (Fig. 12) lim-
its the precision of the dark energy results. The addition
of the XLF data breaks the degeneracy in the Ωm-σ8 plane
(Fig. 13), resulting in tighter constraints on Ωm, σ8 and w
(Table 3).
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Figure 13. The joint constraints (68.3 and 95.4 per cent confi-
dence) for a wCDM model on Ωm and σ8 obtained from a com-
bined SNIa+fgas+CMB analysis (blue) are compared with the
constraints from the XLF alone (purple, marginalized over ns).
The results from combining all four data sets using importance
sampling are shown in gold. No priors on h, Ωbh2 or ns are im-
posed. This figure demonstrates the degeneracy breaking power
available from the combination of the data sets.

Table 3. Best-fitting values and marginalized 68.3 per cent con-
fidence limits on cosmological parameters obtained from a com-
bined analysis of the fgas+CMB+SNIa data, and the combination
of those results with the X-ray luminosity function (XLF) data
by importance sampling. No priors on h, Ωbh2 or ns are used in
either analysis.

fgas+CMB XLF+fgas

+SNIa +CMB+SNIa

Ωm 0.258 ± 0.022 0.263 ± 0.014
σ8 0.79 ± 0.06 0.79 ± 0.02
w −0.99 ± 0.07 −1.00 ± 0.05

6 DISCUSSION

6.1 Sensitivity to priors

In order to assess the sensitivity of these results to our stan-
dard priors, we have also performed analyses using the priors
labeled as “weak” in Table 1: doubling the uncertainty on
the mass function normalization, A, tripling the width of the
Gaussian priors on h and Ωbh2, and doubling the size of the
allowed region for the mass–luminosity evolution parame-
ter, γ. We will discuss the effect of these changes separately,
having confirmed that they act independently.

A comparison of the results for prior sets 1, 4 and 5
in Table 2 demonstrates that marginalization over our stan-
dard and weak priors on A does not have a significant effect
on the results. We therefore leave A fixed when producing
the results shown in the remainder of Section 6.

Fig. 14 compares the constraints on Ωm and σ8 for a
wCDM model using the standard and weak priors on h and
Ωbh2. Similar to the marginalization over ns, the effect is

Figure 14. Comparison of joint 68.3 and 95.4 per cent confidence
constraints on Ωm and σ8 for a constant-w model using stan-
dard priors (solid, black lines) and weak priors on h and Ωbh2

(dashed, blue lines). Weakening these priors results in an expan-
sion of the confidence region along the Ωm-σ8 degeneracy axis.
The constraint on w is essentially unaffected (Table 2).

to compound the Ωm-σ8 degeneracy. The constraint on w is
essentially unchanged, as can be seen in Table 2.

The effect of changing the allowed region for γ on
the Ωm-w constraint is shown in Fig. 15, where the re-
sults obtained by fixing γ = 0 are compared with those
of our standard and weak priors on γ. (We do not show
the effect on σ8 because it is very small for the ΛCDM
models and nonexistent for the wCDM model.) There is
an evident degeneracy between γ and w, but the non-self-
similar evolution parametrized by γ must be large in or-
der to significantly affect the constraint. Observations have
not yet determined conclusively whether there is any de-
parture from self-similar evolution in the mass–luminosity
relation; some studies have claimed significant detections
(Vikhlinin et al. 2002; Maughan 2007), while others have
not (Maughan et al. 2006; Morandi et al. 2007). The most
recent report of detection (Maughan 2007) corresponds to
a shift in normalization of about 10 per cent by redshift
0.7, which is covered by our standard prior on γ. We note,
however, that none of these analyses address the effects of
data collection (e.g. Malmquist bias) which, if present, will
tend to produce a spuriously strong signal of evolution with
redshift.

6.2 AGN contamination

The presence of active galactic nuclei (AGN) and other
point-like X-ray emitters is a potential concern for the ac-
curacy of the mass–luminosity relation. There is no pos-
sibility of subtracting these point sources from the RASS
data, since the number of photons in a cluster detection is
typically too small. However, they are subtracted from the
RB02 luminosities, to the extent that ROSAT can resolve
them. In addition, there is the possibility of an increase in

–
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Figure 15. Comparison of joint 68.3 and 95.4 per cent confidence
constraints on Ωm and w for a constant-w model assuming strictly
self-similar evolution of the mass–luminosity relation (γ = 0; dot-
ted, red lines) and using our standard (solid, blue lines) and weak
(dashed, black lines) prior on γ. A weak degeneracy between γ

and w is evident; doubling the width of the γ prior expands the
w constraint by only 15 per cent.

the density of AGN over the redshift range of our data (e.g.
Hasinger, Miyaji, & Schmidt 2005 and references therein).
There may therefore be a mismatch between luminosities
inferred from the RASS data and those used in the cali-
bration of the mass–luminosity relation. In our work study-
ing MACS clusters (in preparation), we take advantage of
the Chandra X-ray Observatory’s high spatial resolution to
efficiently identify point sources and determine their con-
tribution to the total cluster luminosity. We find that this
contribution is at the per cent level – much smaller than the
typical survey flux uncertainty – which indicates that point
source contamination is not an issue for the current study.

6.3 Intrinsic and measurement luminosity scatter

The mass distribution of clusters available to a flux-limited
survey is influenced by the degree of scatter in flux for a
given mass. As described previously, this effect can be de-
composed into a convolution of intrinsic scatter in the mass–
luminosity relation and measurement error in the survey flux
determinations. Failure to account for either of these sources
of scatter when evaluating the number of detectable clusters
predicted by a set of model parameters can significantly bias
the result. The magnitude of the effect is demonstrated in
Fig. 16, which shows the constraints on Ωm and σ8 for a
wCDM cosmology obtained by ignoring either of these scat-
ters individually. In each case, the results are biased towards
lower Ωm and higher σ8, parallel to the degeneracy between
the two parameters. The bias is small when ignoring the
measurement scatter, but ignoring the intrinsic dispersion
results in a significant bias. As can be seen in Table 2, the
constraint on w is not significantly affected in either case.
We note that these comments regarding the intrinsic disper-

sion apply equally well to mis-estimation of the uncertainty
in the mass bias correction applied in Section 3.1.1; changing
this quantity alters the error bars on the corrected masses,
which directly affect the estimation of the intrinsic disper-
sion through Equation 11.

6.4 Bias in mass measurements

Any bias in the measured masses of the mass–luminosity
data is completely degenerate with the normalization, α,
which in turn affects inferences made on the other parame-
ters. Fig. 17 (left panel) compares our constraints on Ωm and
σ8 to those that would be obtained without the correction
to these masses motivated by departures from hydrostatic
equilibrium, as described in Section 3.1.1. The fit in the lat-
ter case is biased towards significantly lower values of σ8,
such that the two of results are barely consistent at the 95.4
per cent confidence level. Importantly, however, the right
panel of Fig. 17 demonstrates that the constraint on w is
not significantly affected.

7 CONCLUSION

We have presented new constraints on cosmological constant
(ΛCDM) and constant-w (wCDM) dark energy models using
the observed X-ray luminosity function of the largest, most
X-ray luminous galaxy clusters out to redshift 0.7, in com-
bination with standard priors on h and Ωbh2. At 68.3 per
cent confidence, we find Ωm = 0.27+0.06

−0.05 and σ8 = 0.77+0.07
−0.06

for a ΛCDM model, and Ωm = 0.28+0.08
−0.06 , σ8 = 0.75 ± 0.08

and w = −0.97+0.20
−0.19 for a wCDM model. These results in-

clude marginalization over uncertainties in the theoretical
mass function and in non-self-similar evolution in the mass–
luminosity relation, but not the spectral index. Marginaliz-
ing also over a conservative range of values of the spectral in-
dex, using no additional data, we still find w = −0.96±0.21.
Our results constitute the first precise determination of the
dark energy equation of state using measurements of the
growth of cosmic structure observed in galaxy clusters, and
provide a strong, independent confirmation of the validity
of the cosmological constant model. The dark energy con-
straints are remarkably insensitive to the choice of priors and
to the remaining systematic uncertainties in the analysis.

These results build upon, and are largely in agreement
with, a number of earlier galaxy cluster studies (see Sec-
tion 1). Our constraints on cosmological parameters are both
consistent with and competitive with independent findings
from studies of type Ia supernovae, anisotropies in the CMB,
the X-ray gas mass fraction of galaxy clusters, galaxy red-
shift surveys and leading cosmic shear surveys. The agree-
ment between the results from these independent techniques
is reassuring, and motivates a combined analysis of the data
in order to investigate more complex models of dark energy.
We will pursue this strategy in future work. The preliminary
combination through importance sampling presented in this
paper indicates that significantly improved constraints on
σ8 and w can be obtained by combining the our data with
CMB, SNIa and fgas data; we find Ωm = 0.263 ± 0.014,
σ8 = 0.79 ± 0.02 and w = −1.00 ± 0.05.

The results for σ8 presented here are somewhat higher
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Figure 16. Comparison of joint 68.3 and 95.4 per cent confidence constraints on Ωm and σ8 for a constant-w model using standard
priors (solid, black lines) and results obtained by ignoring each source of luminosity scatter individually (dashed, blue lines). Left panel:
the mass–luminosity intrinsic dispersion is fixed at η = 0.0. Right panel: measurement errors on survey luminosities are set to zero.
Failing to account for the intrinsic dispersion in the mass–luminosity relation produces a significant bias towards higher values of σ8 and
lower values of Ωm; a similar, but much smaller, bias is evident when the survey measurement error is not accounted for.

Figure 17. Comparison of joint 68.3 and 95.4 per cent confidence constraints for a constant-w model using standard priors (solid, black
lines) and results obtained without correcting the RB02 masses for bias due to the assumption of hydrostatic equilibrium (Section 3.1.1;
dashed, blue lines). Whereas the result for σ8 is sensitive to the correction for non-thermal pressure support (left panel), the constraints
on w (right panel) and Ωm are essentially independent.

than those from previous work based on the BCS and RE-
FLEX data due to our correction to the masses used to con-
strain the mass–luminosity relation. The magnitude of this
discrepancy underscores the need for an improved under-
standing of the X-ray observational biases resulting from as-
phericity, projection effects and hydrostatic disequilibrium.
More advanced and comprehensive simulations, calibrated
by gravitational lensing studies, show considerable promise
in this area. Broad-band, high spectral resolution X-ray data

from, for example, the New X-ray Telescope (NeXT) and
Constellation-X, will allow precise measurements of gas ve-
locities and non-thermal emission components in clusters,
providing a more comprehensive understanding of the rele-
vant gas physics.

Remaining systematics in the analysis appear to be rel-
atively minor. In particular, uncertainty in the theoretical
mass function and the redshift evolution of the scaling re-
lation have a small effect on our results. However, we note
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that the extension of this analysis to future, high-redshift
X-ray (e.g. Spectrum-RG/eROSITA) or Sunyaev-Z’eldovich
surveys will necessitate more rigorous study of galaxy clus-
ter virial relations and their evolution, taking full account
of selection effects.

ACKNOWLEDGMENTS

We thank Adrian Jenkins for providing computer code to
evaluate the mass function of dark matter halos and Gil
Holder for a helpful discussion. We also thank Glenn Mor-
ris and Stuart Marshall for computer support. Calculations
for this work were carried out using the KIPAC XOC and
Orange compute clusters at the Stanford Linear Acceler-
ator Center (SLAC) and the SLAC Unix compute farm.
We acknowledge support from the National Aeronautics
and Space Administration through Chandra Award Num-
bers DD5-6031X, GO2-3168X, GO2-3157X, GO3-4164X and
GO3-4157X, issued by the Chandra X-ray Observatory Cen-
ter, which is operated by the Smithsonian Astrophysical
Observatory for and on behalf of the National Aeronautics
and Space Administration under contract NAS8-03060. This
work was supported in part by the U.S. Department of En-
ergy under contract number DE-AC02-76SF00515. AM was
additionally supported in part by a Stanford Graduate Fel-
lowship.

REFERENCES

Akritas M. G., Bershady M. A., 1996, ApJ, 470, 706
Allen S. W., Rapetti D. A., Schmidt R. W., Ebeling H.,
Morris G., Fabian A. C., 2007, MNRAS, submitted (astro-
ph/07060033)

Allen S. W., Schmidt R. W., Fabian A. C., Ebeling H.,
2003, MNRAS, 342, 287

Astier P. et al., 2006, A&A, 447, 31
Benjamin J. et al., 2007, MNRAS, in press (astro-
ph/0703570)
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