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1. Introduction

It is of significant interest to find simple examples of dynamical supersymmetry break-

ing in string theory. One class of examples, where stringy D-instanton effects play a starring

role, was described in [1]. These models exhibit “retrofitting” of the classic SUSY break-

ing theories (Fayet, Polonyi and O’Raifeartaigh) [2], without incorporating any nontrivial

gauge dynamics. Instead, stringy instantons [3] automatically implement the exponentially

small scale of SUSY breaking in theories with only Abelian gauge fields. A related idea

using disc instantons instead of D-instantons appears in [4]. These models are simpler in

many ways than their existing field theory analogues [5].

In this paper, we show that these results (and many generalizations) admit a clear

and computationally powerful understanding using geometric transition techniques [6](see

also [7,8]). Such techniques are well known to translate quantum computations of super-

potential interactions in non-trivial gauge theories to classical geometric computations of

flux-induced superpotentials [9]. They are most powerful when the theories in question

exhibit a mass gap. While the classic models we study do manifest light degrees of free-

dom (and hence do not admit a complete description in terms of geometry and fluxes), we

find that a mixed description involving small numbers of D-branes in a flux background –

which arises after a geometric transition from a system of branes at a singularity – nicely

captures the relevant physics of supersymmetry breaking1. In the original theory without

flux, the SUSY breaking effects are generated by D-instantons either in U(1) gauge factors

or on unoccupied, but orientifolded, nodes of the quiver gauge theory (analogous to those

studied in [1,15,16]). Both are in some sense “stringy” effects. Simple generalizations

involve more familiar transitions on nodes with large N gauge groups.

The geometric transition techniques we apply have two advantages over the description

using stringy instantons in a background without fluxes. First, they allow for a classical

computation of the relevant superpotential instead of requiring a nontrivial instanton cal-

culation. Second, they incorporate higher order corrections (due to multi-instanton effects

in the original description) which had not been previously calculated.

The organization of this paper is as follows. In section 2, we remind the reader of the

relevant background about geometric transitions. In section 3, we discuss the geometries

we will use to formulate our DSB theories. In sections 4-6, we give elementary examples

1 For an application of geometric transitions to the study of supersymmetry breaking in the

context of brane/anti-brane systems see [10-14].
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that yield Fayet, Polonyi, and O’Raifeartaigh models that break SUSY at exponentially low

scales. In section 7, we present a single geometry that unifies the three models, reducing

to them in various limits. In section 8, we provide a more general, exact analysis of the

existence of these kinds of susy-breaking effects. In section 9, we give a few other examples

of simple DSB theories (related to recent or well known literature in the area). Finally, in

section 10, we extend the technology to orientifold models, in particular recovering models

which are closely related to the specific examples of [1].

2. Background: Geometric Transitions

Computing non-perturbative corrections in string theory, even to holomorphic quan-

tities such as a superpotential, is in general very difficult. A surprising recent development

[6,17] is that in some cases – namely for massive theories – these non-perturbative effects

can be determined by perturbative means in a dual language2.

Consider, for example, N D5 branes in type IIB string theory wrapping an isolated,

rigid IP1 in a local Calabi-Yau manifold. In the presence of D5 branes, D1 brane instantons

wrapping the IP1 generate a superpotential for the Kähler moduli3. The instanton effects

are proportional to

exp

(

− t

Ngs

)

where t =
∫

S2(B
NS + igsB

RR). For general N , these D1 brane instantons are gauge theory

instantons. More precisely, they are the fractional U(N) instantons of the low energy

N = 1 U(N) gauge theory on the D5 brane. However, on the basis of zero mode counting,

one expects that stringy instanton effects are present even for a single D5 brane.

In the absence of D5 branes, the theory has N = 2 supersymmetry, and the Kähler

moduli space is unlifted. In that case, the local Calabi-Yau with a rigid IP1 is known to

have another phase where the S2 has shrunk to zero size and has been replaced by a finite

S3. The two branches meet at t = 0, where there is a singularity at which the D3 branes

wrapping the S3 become massless.

What happens to this phase transition in the presence of D5 branes? Classically, we

can still connect the S2 to the S3 side by a geometric transition. The only difference is

2 For a two-dimensional example see [18].
3 This is a slight misnomer, since t is a parameter, and not a dynamical field for a non-compact

Calabi-Yau.
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that to account for the D5 brane charge, we need there to be N units of RR flux through

the S3,
∫

S3

HRR = N.

Quantum mechanically the effect is more dramatic. In the presence of D5 branes there is

no sharp phase transition at all between the S2 and the S3 sides; the interpolation between

them is completely smooth. As a consequence, the two sides of the transition provide dual

descriptions of the same physics. Since the theory is massive now, the interpolation occurs

by varying the coupling constants of the theory. The fact that the singularity where the

S3 shrinks to zero size is eliminated is consistent with the fact that D3 branes wrapping

an S3 with RR flux through it are infinitely massive. The most direct proof of the absence

of a phase transition is in the context of M-theory on a G2 holonomy manifold [19,20,21].

This is related to the present transition by mirror symmetry and an M-theory lift. In

M-theory, the transition is analogous to a perturbative flop transition of type IIA string

theory at the conifold, except that in M-theory the classical geometry gets corrected by

M2 brane instantons instead of worldsheet instantons [19]. The argument that the two

sides are connected smoothly is analogous to Witten’s argument for the absence of a sharp

phase transition in IIA [22]. In both cases, the presence of instantons is crucial for the

singularities in the interior of the classical moduli space to be eliminated.

The fact that the two sides of the transition are connected smoothly implies that the

superpotentials have to be the same. The instanton-generated superpotential has a dual

description on the S3 side as a perturbative superpotential generated by fluxes. The flux

superpotential

W =

∫

H ∧ Ω

is perturbative, given by

W =
t

gs
S + N ∂SF0 (2.1)

where F0(S) is the prepotential of the Calabi-Yau, and

S =

∫

S3

Ω.

The first term in (2.1) comes from the running of the gauge coupling t/gs which implies

that there is an HNS flux turned on on the Calabi-Yau through a 3-chain on the S2 side.

3



This three-chain becomes the non-compact 3-cycle dual to the S3 after the transition. Near

the conifold

∂SF0 = S

(

log

(

S

∆3

)

− 1

)

+ . . .

where the omitted terms are a model dependent power series in S, and ∆ is a high scale

at which t is defined. Integrating out S in favor of t, the superpotential W becomes

Winst = −∆3exp(− t

Ngs
) + . . .

up to two and higher order instanton terms that depend on the power series in F0(S). The

duality should persist even in the presence of other branes and fluxes, as long as the S2

that the branes wrap remains isolated, and the geometry near the branes is unaffected.

As we’ll discuss in section 10, this can also be extended to D5 branes wrapping IP1’s in

Calabi-Yau orientifolds.

3. The Theories

To construct the models in question, we will consider type IIB on non-compact Calabi-

Yau 3-folds which are Ar ADE type ALE spaces fibered over the complex plane C[x]. These

are described as hypersurfaces in C4 as follows

uv =
r+1
∏

i=1

(z − zi(x)). (3.1)

This geometry is singular at points where u, v = 0 and zi(x) = zj(x) = z. At these points,

there are vanishing size IP1’s which can be blown up by deforming the Kähler parameters

of the Calabi-Yau. There are r 2-cycle classes, which we will denote

S2
i .

These correspond to the blow-ups of the singularities at zi = zi+1, i = 1, . . . r. It is upon

these IP1’s that we wrap D5 branes to engineer our gauge theories.

The theory on the branes can be thought of as an N = 2 theory, corresponding to D5

branes wrapping 2-cycles of the ALE space, which is then deformed to an N = 1 theory

by superpotentials for the adjoints. For the branes on S2
i this superpotential is denoted

Wi(Φi). The adjoint Φi describes the positions of the branes in the x-direction, and the

4



superpotential arises because the ALE space is fibered nontrivially over the x plane. The

superpotential can be computed by integrating [23,24]

W =

∫

C

Ω

over a 3-chain with one boundary as the wrapped S2. In this particular geometry, it takes

an extra simple form (the details of the computation appear in appendix A)

Wi(x) =

∫

(zi(x) − zi+1(x))dx. (3.2)

In addition to the adjoints, for each intersecting pair of two-cycles S2
i , S2

i+1 there is

a bifundamental hypermultiplet at the intersection, consisting of chiral multiplets Qi,i+1

and Qi+1,1, with a superpotential interaction inherited from the N = 2 theory

Tr(Qi,i+1Φi+1Qi+1,i − Qi,i+1Qi+1,iΦi).

Classically, the vacua of the theory correspond to the different ways of distributing

branes on the minimal IP1’s in the geometry [25]. When one of the nodes is massive, the

instantons corresponding to D1 branes wrapping the S2 can be summed up in the dual

geometry after a geometric transition. As explained in [1], and as we’ll see in the next

section, this can trigger supersymmetry breaking in the rest of the system.

As an aside, we note that the systems we are studying are a slight generalization of

those described in [15,1]. Those geometries are related to the family of geometries studied

here, but correspond to particular points in the parameter space where the adjoint masses

have been taken to be large and the branes and/or O-planes have been taken to coincide

in the x-plane. In addition, we allow the possibility of U(1) (or in some cases higher

rank) gauge groups on the transitioning node, whereas in [15,1] the instanton effects were

associated with nodes that were only occupied by O-planes. Nevertheless, we will find the

same qualitative physics as in [1] in this broader class of theories.

4. The Fayet Geometry

We now turn to the specific geometry which will engineer the Fayet model at low

energies. This will be an A3 geometry, and (3.1) can be written explicitly as

uv = (z − mx)(z + mx)(z − mx)(z + m(x − 2a)). (4.1)
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After blowing up, we wrap M branes each on S2
1 at z1(x) = z2(x), on S2

2 at z2(x) =

z3(x) and one brane on S2
3 at z3(x) = z4(x). The tree-level superpotential (3.2) is now

given by

W =
3
∑

i=1

Wi(Φi) + Tr(Q12Φ2Q21 − Q21Φ1Q12) + Tr(Q23Φ3Q32 − Q32Φ2Q23) (4.2)

where

W1(Φ1) = mΦ2
1, W2(Φ2) = −mΦ2

2, W3(Φ3) = m(Φ3 − a)2.

Fig. 1. The A3 geometry used for retrofitting the Fayet model, before the geometric transition.

The red lines represent the IP1’s, wrapped by D5 branes. The third node does not intersect the

other two and is massive. The geometry after the transition sums up the corresponding instantons.

For N = 1 branes on S
2

3 , the instantons are stringy. For N > 1, these are fractional instantons

associated with gaugino condensation in the pure U(N) N = 1 gauge theory on that node.

The branes on nodes one and two intersect, since both of the corresponding IP1’s are

at x = 0. However, the third node, and the single brane on it, is isolated at x = a, and

the theory living on it is massive. Correspondingly, the the instantons effects due to D-

instantons wrapping the third node can be summed up in a dual geometry where we trade

S2
3 for a three-cycle S3 with one unit of flux through it

∫

S3

HRR = 1 .

The geometry after the transition is described by the deformed equation

uv = (z − mx)(z + mx)((z − mx)(z + m(x − 2a)) − s) (4.3)
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where the size of the S3
∫

S3

Ω = S

is given by S = s/m. It is fixed to be exponentially small by the flux superpotential, as

we shall see shortly. The third brane is gone now, and so are the fields Q23, Q32 and Φ3.

The effective superpotential can now be written to leading order in S as

Weff = W1(Φ1) + W̃2(Φ2, S) + Tr(Q12Φ2Q21 − Q21Φ1Q12) + Wflux(S).

In this geometry, the exact flux superpotential is

Wflux =
t

gs
S + S

(

log
S

∆3
− 1

)

without any polynomial corrections in S. It is crucial here that the superpotential for Φ2

has changed due to the change in the geometry to W̃2(Φ2), where

W̃2(x) =

∫

(z2(x) − z̃3(x))dx,

while the superpotential for Φ1 is unaffected. We have defined

(z − z̃3(x))(z − z̃4(x)) = (z − z3(x))(z − z4(x)) − s

with z̃3(x) being the branch which asymptotically looks like z3(x) at large values of x. In

other words,

W̃2(x) =

∫ x

∆

(−m(x′ + a) −
√

m2(x′ − a)2 + s)dx′.

This superpotential sums up the instanton effects due to Euclidean branes wrapping node

three.

Before the transition, the vacuum was at Φ2 = 0. At the end of the day, we expect it to

be perturbed by exponentially small terms ∼ S, so the relevant part of the superpotential

is

W̃2(Φ2) = −mTrΦ2
2 −

1

2
S Tr log

a − Φ2

∆
+ . . . . (4.4)

where we’ve omitted terms of order S2 and higher and dropped an irrelevant constant. We

comment on the form of these corrections in appendix B.
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The theories on nodes one and two are asymptotically free. If the fields S and Φ1,2

have very large masses, we can integrate them out and keep only the light degrees of

freedom. Keeping only the leading instanton corrections, the relevant F-terms are

FΦ1
= 2mΦ1 − Q12Q21

FΦ2
= −2mΦ2 + Q21Q12 +

S

2(a − Φ2)

FS = t/gs + log S/∆3 − 1

2
Tr log(a − Φ2)/∆

(4.5)

Setting these to zero, we obtain

S∗ = ∆3 exp(− t̃

gs
) + . . .

where

t̃ = t − 1

2
Mgs log(a/∆)

and

Φ1,∗ = − 1

2m
Q12Q21

Φ2,∗ =
1

2m
Q21Q12 +

1

4ma
S∗ + . . . .

(4.6)

The omitted terms are higher order in Q21Q12/ma and exp(− t̃
gs

). The low energy, effective

superpotential is

Weff =
1

m
Tr(Q12Q21Q12Q21) − S∗

4ma
TrQ12Q21 + . . .

where we have neglected corrections to the quartic coupling, and the higher order couplings

of Q′s, all of which are exponentially suppressed. As shown in [1], in the presence of a

generic FI term for the off-diagonal U(1) under which Q12 and Q21 are charged,

D = Q12Q
†
12 − Q†

21Q21 − r,

the exponentially small mass for Q will trigger F-term supersymmetry breaking with an

exponentially low scale; we can put Q12,∗ =
√

r, and then

FQ21
∼

√
r

4ma
S∗ .

Geometrically, turning the FI term corresponds to choosing the central charges of the

branes on the two nodes to be miss-aligned. Combined with the fact that the nodes one
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and two have become massive with an exponentially low mass, this provides an extremely

simple mechanism of breaking supersymmetry at a low scale. The non-supersymmetric

vacuum we found classically is reliable, as long as the scale of supersymmetry breaking is

far above the strong coupling scales of the U(M) × U(M) gauge theory. Had we taken

N branes on the massive node instead of one, the story would have been the same, apart

from the fact that the flux increases, and correspondingly the vacuum value of S changes

to S∗ ∼ ∆3 exp(− t̃
Ngs

). In this case however, the instantons that trigger supersymmetry

breaking are the fractional U(N) instantons.

5. The Polonyi Model

In this section we construct the Polonyi model with an exponentially small linear

superpotential term for a chiral superfield Φ. This will turn out to be somewhat more

subtle, and the existence of the (meta)stable vacuum will depend sensitively on the Kähler

potential. We describe specific cases where we know the relevant Kähler potential does

yield a stable vacuum in section 7.

Consider an A2 geometry given by

uv = (z − mx)(z − mx)(z + m(x − 2a)) (5.1)

which has one D5-brane wrapped on the S2
1 blowing up z1(x) = z2(x), and one D5-brane

wrapped on the S2
2 blowing up z2(x) = z3(x). This system has a tree-level superpotential

W = W1(Φ1) + W2(Φ2) + Q12Φ2Q21 − Q21Φ1Q12. (5.2)

where

W1(Φ1) = 0, W2(Φ2) = m(Φ2 − a)2

This theory has a classical moduli space of vacua parameterized by the expectation value

of Φ1 and where Q12,∗ = 0 = Q21,∗, and Φ2,∗ = a.

At a generic point in the moduli space, away from Φ1 = a, the theory on the branes

wrapping S2
2 is massive. Then, the instanton effects associated with D1 branes wrapping

this node can be summed up by a geometric transition, that replaces S2
2 by an S3 with

one unit of flux through it. This deforms the Calabi-Yau geometry to

uv = (z − mx)((z − mx)(z + m(x − 2a)) − s).
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which has an S3 of size
∫

S3

Ω = S

where S = s/m. With this deformation, the superpotential for node 1 is altered as well:

W̃1(x) =

∫

(−m(a − x) +
√

m2(a − x)2 + s)dx.

The effective superpotential after the transition is simply

Weff = W̃1(Φ1, S) + Wflux(S)

where the flux superpotential has the simple form:

Wflux(S) =
t

gs
S + S(log S/∆3 − 1)

Note that there is no supersymmetric vacuum, since FΦ1
6= 0 always.

Suppose at a point in the moduli space, centered say at Φ1 = 0, the Kähler potential

takes the form

K = |Φ1|2 + c|Φ1|4 + . . .

where the higher order terms are suppressed by a characteristic mass scale (which we set

to one). Then, provided:

|ca2| ≫ 1, c < 0,

the theory has a non-supersymmetric vacuum at

Φ1,∗ =
1

ca∗
, (5.3)

which breaks SUSY at an exponentially low scale.

This can be seen as follows. Expanded about small Φ1, the superpotential W̃1 takes

the form

W̃1(Φ1) = −S

2
log(a − Φ1)/∆ + . . .

where the subleading terms are suppressed by additional powers of S, but are otherwise

regular at the origin of Φ1 space. Integrating out S first, by solving its F term constraint,

we find

S∗ = ∆3exp(−t̃/gs) + . . .
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where

t̃ = t − 1
2gs log(a/∆)

and the subleading terms are of order Φ1/a which will turn out to be small in the vacuum.

For large t̃, S is generically very massive, so integrating it out is justified.

The potential for Φ1 now becomes

Veff (Φ1) =
1

1 + c|Φ1|2
|S∗|2

|a − Φ1|2
+ . . .

It is easy to see that, up to corrections of order 1/|a2c| and S∗/(ma2), this has a non-

supersymmetric vacuum at (5.3) where Φ1 has a mass squared of order

−c|S∗

a
|2.

This is positive, and the vacuum is (meta)stable, as long as c < 0. Note that we could have

obtained the Polonyi model as a limit of the Fayet model where we turn on a very large FI

term for the off-diagonal gauge group of nodes one and two. In this case, the stability of

the Fayet model for a generic (effectively canonical) Kähler potential guarantees that the

Polonyi model obtained from it is stable. In fact [1], as we’ll review in section 7 , one can

show this directly by computing the relevant correction to the Kähler potential, arising

from loops of massive gauge bosons.

6. An O’Raifeartaigh model

To represent the third simple classic class of SUSY breaking models, we engineer an

O’Raifeartaigh model. Consider the A3 fibration with

z1(x) = mx, z2(x) = mx, z3(x) = mx, z4(x) = −m(x − 2a) . (6.1)

The defining equation of the non-compact Calabi-Yau is then

uv = (z − mx)(z − mx)(z − mx)(z + m(x − 2a)) . (6.2)

We wrap 1 D5 brane on each of S2
1,2,3. The adjoints Φ1 and Φ2 are massless, while

Φ3 obtains a mass from its superpotential

W3(x) =

∫

(z3(x) − z4(x)) dx (6.3)
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which gives

W3(Φ3) = m(Φ3 − a)2 .

Of course, there are also quarks Q12, Q21 and Q23, Q32. They couple via the superpotential

couplings

Q12Φ1Q21 − Q12Φ2Q21 + Q23Φ2Q32 − Q23Φ3Q32 . (6.4)

Because Φ3 is locked at a, for generic values of Φ2, Q23 and Q32 are massive. Then node

3 is entirely massive, and we can perform a geometric transition.

The resulting theory has a new “glueball superfield” S, and effective superpotential

Weff = Q12Φ1Q21 −Q12Φ2Q21 −
1

2
Slog(a−Φ2)/∆+S(log(S/∆3)−1)+

t

gs
S + . . . (6.5)

Integrating out the S field yields (at leading order)

S∗ = ∆3e−t̃/gs . (6.6)

where

t̃ = t +
1

2
gs log(a/∆).

Plugging this into the superpotential yields:

Weff = Q12Φ1Q21 − Q12Φ2Q21 −
1

2
S∗Φ2/a + . . . (6.7)

The omitted terms are suppressed by more powers of Φ2/a. We recognize (6.7) as the

superpotential for an O’Raifeartaigh model, very similar to the one considered in [1]. We

see that setting FΦ1
= FΦ2

= 0 is impossible, so one obtains F-term supersymmetry

breaking, with a small scale set by ∆e−t/3gs .

The stability of the non-supersymmetric vacuum again depends on the form of (tech-

nically) irrelevant corrections to the Kähler potential. As in the case of Polonyi model,

corrections which yield a stable vacuum can be arranged by embedding the model in a

slightly larger theory. We’ll turn to this in the next section.
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7. A Master Geometry

It is possible to construct one configuration of branes on an A4 geometry which in

appropriate limits can be made to reduce to any of the three simple models discussed in

the previous sections. The geometry is described by the defining equation

uv = (z − mx)(z − mx)(z + mx)(z − mx)(z + m(x − 2a)) (7.1)

which has superpotential given by

Wmaster =

4
∑

i=1

Wi(Φi) +

3
∑

i=1

Tr(Qi,i+1Φi+1Qi+1,i − Qi+1,iΦiQi,i+1). (7.2)

where we wrap N branes on nodes one, two and three, and a single brane on node four.

The superpotentials for the adjoints are given by

W1(Φ1) = 0, W2(Φ2) = −mTr(Φ2
2), W3(Φ3) = mTr(Φ2

3), W4(Φ4) = −m(Φ4 − a)2 .

For simplicity of the discussion, we’ll set N = 1 in this section. The non-abelian general-

ization is immediate, since all the nodes are asymptotically free (for large adjoint masses).

As long as the scale of supersymmetry breaking driven by the geometric transition is high

enough, we can ignore the non-abelian gauge dynamics on the other nodes.

Fig. 2. The master A4 geometry that gives rise to Fayet, Polonyi and O’Raifeartaigh models

by turning on suitable FI terms. The stringy instantons associated with the massive fourth node

generate the non-perturbative superpotential that triggers dynamical supersymmetry breaking in

the rest of the theory.
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The master theory has a metastable non-supersymmetric vacuum for generic, non-

zero FI terms. We can recover all three of the models discussed above by introducing

large Fayet-Iliopoulos terms for certain pairs of quarks, so we expect that these will have

non-supersymmetric vacua as well. This approach to obtaining the canonical models is

particularly useful in the case of Polonyi and O’Raifeartaigh models, for which we needed

to assume a particular sign for the subleading correction to the Kähler potential. By

obtaining the theories from the master theory, we can compute the corrections to the

Kähler potential directly and show that they are of the type required to stabilize the

susy-breaking vacua.

To see that the master theory has a metastable non-supersymmetric vacuum, we

can proceed as in the Fayet model. Node four is massive, and the corresponding non-

perturbative superpotential can be computed in the geometry after transition. The effec-

tive superpotential after the transition and integrating out the massive adjoints Φ2,3 is

then easily seen to be

Weff = Q12Q21Φ1 +
S∗

4ma
(Q23Q32 + . . .)

where we have omitted quartic and higher order terms in the Q’s which do not affect the

status of the vacuum. With generic FI terms setting

|Q12|2 − |Q21|2 = r2, |Q23|2 − |Q32|2 = r3 ,

this is easily seen to have an isolated vacuum which breaks supersymmetry.

We’ll now show that we can recover all of the the three models studied so far in

particular regimes of large FI terms.

7.1. O’Raifeartaigh

We can recover the O’Raifeartaigh construction by turning on a large FI term for

Q23 and Q32 – that is, for the U(1) under which these are the only charged quarks. This

generates a D-term

DO′R = |Q23|2 − |Q32|2 − r3. (7.3)

Taking r3 >> 0, this requires that Q23 acquire a large expectation value. Additionally

there is an F-term for Q32

FQ32
= Q23(Φ3 − Φ2) (7.4)
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which, in light of the D-term constraint, will set Φ2 equal to Φ3. The superpotential

then becomes just the O’Raifeartaigh superpotential of the previous section (with certain

indices renamed),

WO′R = m(Φ4 − a)2 + Q12Q21(Φ2 − Φ1) + Q24Q42(Φ4 − Φ2) . (7.5)

By performing a geometric transition on the massive node, we recover the superpotential

(6.5).

7.2. Fayet

Alternatively, we could have turned on a large FI term for Q12 and Q21, generating a

D-term

DFayet = |Q12|2 − |Q21|2 − r2. (7.6)

In conjunction with the F-term for Q21, by the same process as in the O’Raifeartaigh

model, Φ1 is set equal to Φ2. This time, the remaining superpotential is given by

WFayet = mΦ2
2 − mΦ2

3 + m(Φ4 − a)2 + Q23Q32(Φ3 − Φ2) + . . . (7.7)

which is precisely the superpotential associated with the Fayet geometry (4.1). Performing

a geometric transition on S2
4 , we recover the Fayet model as discussed in section 4.

7.3. Polonyi

From the Fayet model above, before the geometric transition, we can turn turn on

another D-term for the quarks Q23 and Q32, which along with the F-term for Q32 sets

Φ2 = Φ3. The superpotential becomes

W = −mΦ2
3 + m(Φ4 − a)2 + Q34Q43(Φ4 − Φ3)

which reproduces the Polonyi model of section 5. Again performing the geometric transi-

tion on S2
4 results in the actual Polonyi model.
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7.4. The Kähler potential

The O’Raifeartaigh and Polonyi models have flat directions at tree level. As we

discussed for e.g. the Polonyi model, the existence of a stable SUSY-breaking vacuum

depends on the sign of the leading, quartic correction to the Kähler potential. When we

obtain the model as a suitable limit of our master model as above, we can compute this

correction and verify explicitly that the vacuum is stable. Let us go through this in some

detail. In fact, for simplicity, let’s focus on obtaining a stable Polonyi model as a limit of

a Fayet model [1].

After the geometric transition in the Fayet model, the effective theory is characterized

by a superpotential

W =
S∗

ma
Q23Q32 + . . . (7.8)

and D-term

D = |Q32|2 − |Q23|2 − r3 . (7.9)

Here r3 is the FI term for the U(1) under which only Q23 and Q32 carry a charge. We can

expand this theory about the vev Q23 =
√

r3. Renaming

X = Q32 ,

the effective theory then has

W =
S∗

ma

√
r3X . (7.10)

To find the Kähler potential for X , we should integrate out the massive U(1) gauge

multiplet. What happens to the potential contribution from the D-term, (7.9)? As ex-

plained in [26], in the theory with the U(1) gauge field, gauge invariance relates D-term

and F-term vevs at any critical point of the scalar potential. When one integrates out

the U(1) gauge field, there is a universal quartic correction to the Kähler potential which

(using the relation) precisely reproduces the potential contribution from the D-term. For

the theory in question, the quartic correction to the Kähler potential for X is just

∆K = −
g2

U(1)

M2
U(1)

(X†X)2 . (7.11)

Here MU(1) is the mass of the U(1) gauge boson, MU(1) ∼ gU(1)
√

r3. The result is a quartic

correction to K

∆K = − 1

r3
(X†X)2 . (7.12)
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So in the notation of section 5,

c = − 1

r3

and the sign c < 0 results in a stable vacuum, as expected. Plugging in the F -term

FX ∼ S∗

ma

√
r3, (7.12) gives X a mass

mX ∼ S∗

ma
,

in agreement with what it was in the full, Fayet model. Note that while one would obtain

other quartic couplings in K after integrating out the U(1) gauge boson, they don’t play

any role. They involve powers of the heavy field Q34, and since FQ34
≪ FX , cross-couplings

of the form Q†
34Q34X

†X in K do not correct the estimate for the X mass above appreciably.

8. Generalization

We now present a very general argument for the existence of supersymmetry-breaking

effects in a class of stringy quiver gauge theories which includes those just discussed.

Suppose we have such an Ar quiver theory in which the last node is isolated and undergoes

a transition. Note that this is the case in the master geometry considered in the previous

section.

In this case, the transition deforms the geometry to the following:

uv =

(

r−1
∏

i=1

(z − zi(x))

)

((z − zr(x))(z − zr+1(x)) − s)

where in which case the superpotential for the branes on the second-to-last node becomes

W̃r−1(Φr−1) =

∫

dx(z̃r(x) − zr−1(x))

where z̃r(x) is the solution to the equation

(z − zr(x))(z − zr+1(x)) = s (8.1)

which asymptotically approaches zr(x). We can re-write the superpotential as a correction

to the pre-transition superpotential as

W̃r−1(Φr−1) =

∫

dx(z̃r(x) − zr(x)) + Wr−1(Φr−1)
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and the F-term for Φr−1 and the remaining adjoints are then given by

FΦr−1
= W ′

r−1(Φr−1) + (z̃r(Φ) − zr(Φ)) + Qr−1,rQr,r−1

FΦi
= W ′

i(Φi) + Qi−1,iQi,i−1 − Qi,i+1Qi+1,i

(8.2)

which we can combine to obtain the constraint

r−1
∑

i

W ′
i(Φi) = zr(Φr−1) − z̃r(Φr−1) (8.3)

Note that the right hand side here cannot vanish for any value of Φr−1 since zr(x) can

never solve (8.1), the solution to which defines z̃r(x)

If we now consider turning on generic FI terms for the U(1) gauge groups, the D-term

constraints will require that, say, the Qi,i+1’s acquire vevs while the Qi+1,i’s get fixed at

zero. The F-terms for the Qi+1,i’s will then in turn require

Φi = Φj

for all i, j. When the brane superpotentials for the first r − 1 nodes are of the form

Wi(Φi) = ǫimΦ2
i , i = 1, . . . r − 1.

where ǫi = 0 ± 1, the left hand side of (8.3) vanishes, while the right hand side is strictly

non-zero. It is exponentially small, as long as the last node was isolated

Wr(Φr) = m(Φr − a)2

before the transition. This generically triggers low-scale susy breaking.

In terms of the classic models discussed in this paper, one can immediately see that

the susy breaking in the Fayet model and in the master geometry can be explained by the

above analysis. In the case of the Polonyi and O’Raifeartaigh models, it is even simpler,

since the left hand side of (8.3) vanishes identically for those models. One could conduct a

similar analysis for configurations with more complicated superpotentials and non-generic

F-terms on a case-by-case basis. What we see is that often the susy-breaking effects caused

by the geometric transition can be understood at an exact level.
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9. SUSY breaking by the rank condition

Here, we exhibit models which break supersymmetry due to the “rank condition.”

This class of models is very similar to those arising in studies of metastable vacua in SUSY

QCD [27]. However, we work directly with the analogue of the magnetic dual variables,

and the small scale of SUSY breaking is guaranteed by retrofitting [2].

Consider the A3 fibration with

z1(x) = mx, z2(x) = −mx, z3(x) = −mx, z4(x) = −m(x − 2a) . (9.1)

Then the defining equation is

uv = (z − mx)(z + mx)(z + mx)(z + m(x − 2a)) . (9.2)

We choose to wrap Nf − Nc D5 branes on S2
1 , Nf D5 branes on S2

2 , and a single D5 on

S2
3 . The tree level superpotential is

W =

3
∑

i=1

Wi(Φi) +

2
∑

i=1

(Qi,i+1Φi+1Qi+1,i − Qi+1,iΦiQi,i+1). (9.3)

where

W1(Φ1) = mTr(Φ1)
2, W2(Φ2) = 0, W3(Φ3) = −m(Φ3 − a)2

Fig. 3. The (magnetic) A3 geometry that retrofits the ISS model.

Now, we replace the third (U(1)) node with an S3 with flux, and integrate out Φ1

trivially (we can take the mass to be very large). The result is:

W = S(log (S/Delta3) − 1) +
t

gs
S − 1

2
S Trlog(a − Φ2)/∆ − Q12Φ2Q21 + . . . (9.4)
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where the omitted terms are suppressed by additional powers of S. Integrating out S in a

Taylor expansion about Φ2 = 0, produces a theory with superpotential

W = S∗TrΦ2/a − TrQ12Φ2Q21 + . . . (9.5)

where

S∗ = ∆3exp(−t̃/gs) , (9.6)

and t̃ = t − Nf
1
2gs log(a/∆). Computing FΦ2

, we see that the contribution from the first

term in (9.5) has rank Nf , while the contribution from the second term has maximal rank

Nf − Nc < Nf . The two cannot cancel and SUSY is broken. However, due to the small

coefficient of the TrΦ2 term, the breaking occurs at an exponentially small scale.

This model is very similar to the theories analyzed in [27] (for Nc+1 ≤ Nf < 3
2Nc) and

in section 4 of [28]. One difference is that the origin of the small parameter is dynamically

explained. The discussion of corrections due to gauging of the U(Nf ) factor (which is a

global group in [27]) is identical to that in [28] up to a change of notation, and we will not

repeat it here. For large a, the higher order corrections to (9.5) (which are suppressed by

powers of Φ2/a) should not destabilize the vacuum at the origin, described in [27,28].

We could also replace the U(1) at node 3 with a U(N) gauge group, still in the same

geometry. Then, in (9.4), the coefficient of the SlogS term is changed to N . The only effect,

after a geometric transition at node 3, is the replacement of replacement e−t/gs → e−t/gsN

in (9.6). This model, where the node upon which we perform the geometric transition has

non-Abelian gauge dynamics, is a literal example of the retrofitting constructions of [2].

The Φ2 field appears in the gauge coupling function of the U(N) gauge group at node 3,

because it controls the masses of the quarks Q23 and Q32 which are charged under U(N).

At energies below the quark mass, the U(N) is a pure N = 1 gauge theory and produces

a gaugino condensation contribution Λ3
N in the superpotential. The standard result for

matching the dynamical scale of the low-energy pure U(N) theory to the scale ΛN,Nf
of

the higher energy theory with Nf quark flavors with mass matrix m̃ is4

Λ3N
N = Λ

3N−Nf

N,Nf
detm̃ . (9.7)

4 Here, we are assuming the adjoints are very massive m → ∞ and are just matching the QCD

theories with quark flavors.
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With the identification of S with the gaugino condensate [6]

S ∼ tr(W 2
α) = Λ3

N ,

and identifying the mass matrix m̃ = a − Φ2, we see that we predict

SN = Λ
3N−Nf

N,Nf
det(a − Φ2) . (9.8)

This is precisely what carefully integrating S out of (9.4) produces, with Λ
3N−Nf

N,Nf
=

∆3N−Nf e−t/gs . So in our model with N > 1, the small Tr(Φ2) term in (9.5) can re-

ally be thought of as arising from the presence of Φ2 in the gauge coupling function for

the U(N) factor.

10. Orientifold models

In the presence of orientifold 5-planes, we expect D1 brane instantons wrapping 2-

cycles that map to themselves to contribute to the superpotential. The D1 brane instanton

contributions should again be computable using a geometric transition that shrinks the

S2, and replaces it with an S3. Geometric transitions with orientifolds have been studied

for e.g. in [29,30].

After the transition we generally get 2 different contributions to the superpotential.

First, the charge conservation of the D5/O5 brane that disappear after the transition,

requires a flux through the S3 equal to the the amount of brane charge:

Wflux =
t

gs
S + ND5/O5∂SF0

Second, there can be additional O5 planes that survive as the fixed points of the holo-

morphic involution after the transition. The O5 planes, just like D5 branes generate a

superpotential [31]

WO5 =

∫

Σ

Ω,

where the integral is over a three-chain with a boundary on the orientifold plane. The

contributions to the superpotential due to O5 planes and RR flux of the orientifold planes

are both computed by topological string RP 2 diagrams. The contributions of physical

brane charge come from the sphere diagrams.

In this way, geometric transitions can be used to sum up the instanton generated su-

perpotentials in orientifold models. Analogously to our discussion of the previous sections,

this can be used for dynamical supersymmetry breaking. We’ll discuss in detail the Fayet

model below; others can be seen to follow in similar ways.
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10.1. The Fayet model

Consider orientifolding the theory from section 3, by combining the worldsheet orien-

tation reversal with an involution I of the Calabi-Yau manifold. For this to preserve the

same supersymmetry as the D5 branes, the holomorphic involution I of the Calabi-Yau

has to preserve the holomorphic three-form Ω = du/udzdx = −dv/vdzdx.

An example of such an involution is one that takes

x → −x

and

u → v, v → u

A simplest Fayet-type model built on this orientifold is an A5 geometry that is roughly

a doubling of that in section 4:

uv = (z − mx)2(z + mx)2(z − m(x − 2a))(z + m(x − 2a)).

We’ll blow this up in a sequence:

z1(x) = mx, z2(x) = −m(x − 2a), z3(x) = mx,

z4(x) = −mx, z5(x) = +m(x + 2a), z6(x) = −mx,

It can be shown that the orientifold projection ends up mapping

S2
i → S2

6−i,

fixing S2
3 . Consider wrapping M branes on S2

i for i = 1, 2, and their mirror images, and

2N branes on S2
3 . With a particular choice of orientifold projection, the gauge group on

the branes is going to be

U(M) × U(M) × Sp(N)

Since the orientifold flips the sign of x, on the fixed node S2
3 it converts Φ3 to an adjoint of

Sp(N). (Having chosen that the orientifold sends x to minus itself, the action on the rest

of the variables is fixed by asking that it preserve the same susy as the D5 branes, and that

it be a symmetry after blowing up.) In the model at hand, the tree-level superpotential is

W =
3
∑

i=1

Wi(Φi) + Tr(Q12Φ2Q21 − Q21Φ1Q12) + Tr(Q23Φ3Q32 − Q32Φ2Q23).
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where

W1(Φ1) = mTr(Φ1 − a)2, W2(Φ2) = −mTr(Φ2 − a)2, W3(Φ3) = mTrΦ2
3.

Note that, even though the IP1 is fixed by the orientifold action, it is not fixed point-wise.

This means there is no O5+ plane charge on it. Instead, there are two non − compact

orientifold 5-planes. This model is T-dual [32] to the O6-plane models of [15].

After the geometric transition that shrinks node three and replaces it with an S3

S2
3 → S3

the geometry becomes:

uv = (z − mx)(z + mx)(z − m(x − 2a))2(z + m(x − 2a))2((z − mx)(z + mx) − s).

where
∫

S3

Ω = S

with S = s/m. Since the orientation reversal acted freely on the S2
3 , there are only N

units of D5 flux through the S3
∫

S3

HRR = N

which gives a superpotential

Wflux =
t

2gs
S + NS(log

S

∆3
− 1)

the overall factor of 1/2 comes from the fact that both the charge on the S2 and its size

has been cut in half by the orientifolding. Above, t =
∫

S2
3

k + iBRR is the combination of

Kahler moduli that survives the orientifold projection. In addition, the two non-compact

O5+ planes get pushed through the transition. Because the space still needs 2 blowups to

be smooth, to give a precise description of the O5 planes would require using a geometry

covered with 4 patches. At the end of the day, effectively, the O5 planes correspond to

non-compact curves over the two points on the Riemann surface

(z − z̃3(x))(z − z̃4(x)) = ((z − mx)(z + mx) − s) = 0.

located at x = 0, and the corresponding values of z, z±(0). They generate a superpotential

WO5+ =

∫ z−(0)

(z̃3 − z̃4)dx +

∫ z+(0)

(z̃3 − z̃4)dx.
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One can show that the contribution of the O5 planes is

WO5+ = +S(log
S

∆3
− 1)

The fact that the RP 2 contribution is proportional to that of the sphere is not an accident.

It has been shown generally that the contribution of the O5 planes in these classes of models

is ±∂SFS2 [33,30]. This means that the O5 planes and the fluxes add up to

N + 1

units of an “effective” flux on the S3.

After the transition, the branes on node three have disappeared and with them Φ3

and Q23, Q32. In addition, the deformation of the geometry induces a deformation of the

superpotential for node 2:

W̃2(x) =

∫

(z2(x) − z̃3(x))dx

where one picks for z̃3 the root that asymptotes to +mx. This is

W̃2(x) =

∫

(−m(x − 2a) −
√

(mx)2 + s)dx,

which, when expanded near the vacuum at x = a, gives

W̃2(Φ2) = −Tr m(Φ2 − a)2 − 1
2S Tr log(Φ2/∆) + . . .

The effective superpotential that sums up the instantons is thus

Weff = W1(Φ1) + W̃2(Φ2, S) + Tr(Q12Φ2Q21 − Q21Φ1Q12) + Wflux + WO5

Up to an overall shift of both Φ1,2 by a, this is the same model as in section 3.

We expect a transition here even when N = 0, and there are no D5 branes on the S2.

The transition for Sp(0) is analogous to the transition that occurs for a single D-brane on

the S2, and a U(1) gauge theory. In both cases, the smooth joining of the S2 and the S3

phases is due to instantons that correct the geometry. In the orientifold case at hand, it

is important to note that, while there is no flux through the S3, the D3 brane wrapping

it is absent: the orientifold projection projects out [34] the N = 1 U(1) vector multiplet

associated with the S3, and with it the D3 brane charged under it.

24



Picking the other orientifold projection, the Sp(N) gauge group gets replaced with

an SO(2N) with Φ3 becoming the corresponding adjoint. In this case, much of the story

remains the same, except that the RP 2 contribution becomes

WO5− = −S(log
S

∆3
− 1).

This means that the O5− planes and the fluxes add up to

N − 1

units of an “effective” flux on the S3. This is negative or zero for N ≤ 1. Naively, the

negative effective flux breaks supersymmetry after the transition. This is clearly impossi-

ble. It has been argued in [30] that the correct interpretation of this is that in fact SO(2),

SO(1) and SO(0) cases do not undergo the geometric transition. This has to correspond

to the statement that in these cases there are no D1 brane instantons on node three, and

that the classical picture is exact in these cases. This translates in the statement that in

these cases, in

Weff = Weff |S=0

S should not be extremised, but rather set to zero identically in the effective superpotential.

Note that with the SO projection on the space-filling branes, a D-instanton wrapping

the same node enjoys an Sp projection. As discussed in [35,15], in this situation direct

zero-mode counting also suggests that the instanton should not correct the superpotential.

There are more than two fermion zero modes coming from the Ramond sector of strings

stretching from the instanton to itself. This is in accord with the results of [30]. In

contrast, when one has an Sp projection on the space-filling branes, the instanton receives

an SO projection, and the instanton with SO(1) worldvolume gauge group has the correct

zero mode count to contribute. The presence of the instanton effects when one has this

projection (and their absence when one does not), was also confirmed by direct studies of

the renormalization group cascade ending in the appropriate geometry in [15].
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Appendix A. Brane superpotentials

We can compute the superpotential W(Φ) as function of the wrapped 2-cycles Σ by

using the superpotential [23,24]

W =

∫

C

Ω

where C is a three-chain with one boundary being Σ and the other being a reference two-

cycle Σ0 in the same homology class. It is easy to show [23] that the critical points of the

superpotential are holomorphic curves. We will evaluate it for the geometries at hand. We

can write the holomorphic three-form of the non-compact Calabi-Yau in the usual way,

Ω =
dv ∧ dz ∧ dx

dF
du

=
dv

v
∧ dz ∧ dx. (A.1)

Now for fixed values of x and z, the equation for the CY threefold becomes uv = const,

which is the equation for a cylinder. By shifting the definition of u or v by a phase, we

can insist that the constant is purely real, and then by writing u = x + iy, v = x − iy,

the equation can be reformulated as two real equations in terms of the real (xR, yR) and

imaginary (xI , yI) parts of x and y.

x2
R + y2

R = C + x2
I + y2

I , xRxI = yRyI . (A.2)

The first of these can be solved for any given values of xI and yI to give an S1. The second

equation restricts the possible values which we choose for xI and yI to a one-dimensional

curve in the (xI , yI) plane, and so we have the topology of S1 × R, where the size of the

S1 degenerates at the points where z = zi(x) for any i. By simultaneously shifting the

phases of u and v according to

u → eiθu

v → e−iθv

the equation for the cylinder remains unchanged, and we simply rotate about the S1 factor.

We can thus integrate Ω around the circle and obtain

∫

S1

Ω = dz ∧ dx

up to an overall constant. Now the IP1’s on which we are wrapping the D5 branes are the

product of the S1 just discussed and an interval in the z direction between values where
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the S1 fiber degenerates. Thus, for a given IP1 class in which the vanishing S1 occurs for

zi(x) and zj(x), we can integrate dz ∧ dx over the interval in the z-plane and obtain

∫

S1×Iij

Ω = (zi(x) − zj(x))dx.

The superpotential for the D-branes then becomes a superpotential for the location of the

branes on the t-plane. Defining an arbitrary reference point t∗, we then have

W(x) =

∫ t

t∗

(zi(x) − zj(x))dx (A.3)

Of course, the contribution to the superpotential coming from the limit of integration at

t∗ is just an arbitrary constant and is not physically relevant. Thus we write (A.3) instead

as the indefinite integral

W(x) =

∫

(zi(x) − zj(x))dx. (A.4)

Appendix B. Multi-instanton contributions

In this appendix we demonstrate the computation of multi-instanton corrections to

the superpotential using the Polonyi model of section 5 as an example. All the information

about these corrections is contained in the deformed superpotential for Φ,

W̃(x) =

∫

(

m(x − a) −
√

m2(x − a)2 + mS
)

dx (B.1)

along with the flux superpotential5

Wflux =
t

gs
S + S

(

log
S

∆3
− 1

)

. (B.2)

where the scale ∆ is determined by the one-loop contributions to the matrix model free

energy. The models considered in this paper are particularly convenient since the purely

quadratic superpotential for the massive adjoint at the transition node guarantees that the

flux superpotential will be exact at one-loop order in the associated matrix model [17].

5 In the case of the Polonyi model these two terms constitute the entire superpotential. In the

more general case, however, there will be more fields with superpotential terms, but it will remain

the case that only these two contributions play a role in determining instanton corrections.
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Extremizing the flux superpotential and expanding in powers of the instanton action

Sinst ∼ exp(−t/Ngs),

we can determine multi-instanton contributions to a given superpotential term. Summing

up the series contributing to a given Φk term in will correspond to computing corrections

to a fixed, explicit disc diagram, and so we might expect these series to exhibit some

integrality properties.

We first expand the deformed superpotential W1(Φ) as a power series in the glueball

superfield S,

W̃(Φ) =

∫

(

m(x − a) − m(x − a)(1 +

∞
∑

n=1

(−1)n−1n(2n − 2)!

22n−1(n!)2
yn)

)

dx (B.3)

where the expansion parameter y can also be expanded as a power series in x,

y =
S

m(x − a)2
=

S

ma2

(

1 +

∞
∑

n=1

(n + 1)(−1)n
(x

a

)n
)

. (B.4)

We can integrate (B.3) term by term to obtain an expansion of the effective superpotential

in powers of Φ. However, it will be useful to represent this schematically

W1(Φ) = c1TrΦ + c2TrΦ2 + . . . ci =
∞
∑

n=1

c
(n)
i Sn

where the coefficients ci are themselves written as power series in S. Extremizing the

superpotential with respect to S gives an equation for the values of S

log
S

∆3
= − t

gs
−

∞
∑

n=1

∞
∑

i=1

n c
(n)
i Sn−1TrΦi (B.5)

which can be solved perturbatively in powers of Sinst. Re-inserting the resulting values into

the original superpotential then allows us to read off the instanton-corrected superpotential

of the low energy theory up to any given number of instantons. Below we display the linear

and quadratic terms at the three-instanton level.

Weff = µTrΦ + mTrΦ2

where

µ =
1

2

∆3

a
e−

t
gs − 1

8

∆6

ma3
e−

2t
gs +

1

16

∆9

m2a5
e−

3t
gs + . . .

m = −7

8

∆3

a2
e−

t
gs +

11

16

∆6

ma4
e−

2t
gs +

1

32

∆9

m2a6
e−

3t
gs + . . .

(B.6)

It may be interesting to see if there is some way to relate these to the exact formulae

for multicovers derived in the resolution of the singularity in hypermultiplet moduli space

when a 2-cycle shrinks in IIB string theory, given (up to mirror symmetry) in [36].
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