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Abstract.  The  SciDAC2  accelerator  project  at  SLAC  aims  to  simulate  an  entire  three-
cryomodule radio frequency (RF) unit of the International Linear Collider (ILC) main Linac. 
Petascale  computing  resources  supported  by  advances  in  Applied  Mathematics  (AM)  and 
Computer Science (CS) and INCITE Program are essential to enable such very large-scale 
electromagnetic accelerator simulations required by the ILC Global Design Effort.  This poster 
presents the recent advances and achievements in the areas of CS/AM through collaborations.

1.  Introduction
The International Linear Collider (ILC) is the highest priority mid-term HEP facility listed in DOE 
report “Facilities for the Future of Science: A Twenty-Year Outlook”.  The COMPASS accelerator 
project is charged by the ILC Global Design Effort to simulate an entire three-cryomodule RF unit of 
the  ILC  main  Linac  with  realistic  dimensions  and  misalignment.  Large-scale  electromagnetic 
modeling at petascale supercomputers, together with advances through collaborations with SciDAC 
CET’s/Institutes in the areas of CS/AM, is essential to achieving this goal. An integrated effort in 
developing parallel  eigensolvers,  linear  solvers,  optimization algorithms,  adaptive refinements and 
visualization  techniques  has  been  established.  In  the  following,  we  report  several  recent  major 
advances.

2.  Determining deformed shape of ILC cavities
Accelerating cavities for International Linear Collider (ILC) are manufactured with loose machining 
tolerance, so they need to be tuned to the accelerating frequency of 1.3GHz. This process leads to 
shape  changes  on  the  order  of  100  microns  from the  designed  shape.  The  deformed  cavity  can 
significantly  change  High-Order-Mode  (HOM)  damping  and  hence  the  beam  emittance. 
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Collaborating with scientists  from TOPS and ITAPS, the SLAC team has developed a systematic 
approach to determine shape deviations using measured frequencies and field values of dipole and 
monopole modes.   New algorithms are under development to include additional measured external 
quality factors of dipole modes. 
   The shape determination is formulated as a weighted least  squares minimization problem. The 
objective  function  composed  of  least  squares  differences  between  the  measured  and  computed 
frequencies and field data of an accelerating cavity. The constraint is the Maxwell equations expressed 
in the frequency domain. Inversion variables are the shape deformations. 

where  α and  β  are  weighting constants,  Δλ  and  ΔE are  misfits  of  frequencies  and electric  field, 
respectively.  
    A gradient  based algorithm is  used to solve the above optimization.  The shape gradients are 
computed using a discrete adjoint approach and consistent with the discrete objective function. The 
non-linear  problem  is  solved  with  a  Gauss-Newton  method  with  truncated  singular  value 
decomposition to deal with the ill-posedness. More details are described in [1].

Figure 1. The TESLA cavity for Internaltional Linear Collider.

   The algorithm has  been  tested  with  synthetic 
problems [1]. Nonlinear convergence usually takes 
less  than 20 iterations.  Figure 2 shows the results 
of an inversion problem with measured data for a 
TESLA cavity  shown in Figure 1. The blue line 
shows  the  misfit  between  the  measured 
frequencies  and  those  computed  from  the  ideal 
cavity while the red line shows the inverted cavity 
misfit.  The problem used 82 inversion variables, 
which  are  the  unknown  shape  parameters 
including changes in cell radius, cell thickness, cell 
length, and iris radius. 

                          Figure 2. Frequency misfits for inverted and ideal cavities.

3.  Element correction for meshes with complex geometries
The high-order finite element method used by SLAC for complicated accelerator structures requires 
the  use  of  properly  curved  elements.  The  conventional  unstructured  mesh  generators  may  create 
invalidly-curved elements at the boundaries. These invalid elements have negative determinants of the 
Jacobian in  their  closures,  and may lead to  inaccurate  results  for  frequency domain  analysis  and 
divergences in time domain simulations.  
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  A procedure, developed at RPI, applies Bezier polynomial to represent the mesh geometry and 
performs local mesh modification operations  to  incrementally correct the invalid elements. 
Bezier mesh geometry shapes are built on Bernstein polynomials [2] as shown in Figure 3,

                                             

Figure 3.  Bezier curve and Bezier mesh region geometric shape.

The  mesh  region  validity  is  determined  through  the  evaluation  of  the  determinant  of  Jacobian 
described in the following [3].  Let J be the determinant of Jacobian of a curved Bezier element, which 
can expressed as

                                                               

where                        are the three partial derivatives, which are also Bezier functions. Thus,  J is also a 
Bezier polynomial of order 3(q-1) written as,

Using the bounding property of the Bezier polynomials,

 
  Therefore, a curved element is valid if                      that ensures the Jacobian of the element in its 
closure is always positive and is independent of the chosen integration scheme in the high-order finite 
element method.

   The curved local mesh modifications are applied in a properly order that can effectively eliminate 
the invalid curved elements and make the resulting mesh valid [3].  The operations are built upon a set 
of operations including collapse, split, swap, and shape modifications [4]. Figure 4 showed the invalid 
tetrahedrons in yellow and its correct mesh inside an accelerator cavity.

 The  mesh  correction  procedure  has  been 
successfully  applied  to  many  meshes  used  in 
accelerator  simulations.  The  corrected meshes 
not  only  make  the  time-domain  simulations 
stable but also make the execution time up to 
30% faster due to better conditioned matrices.
 

Figure 4. Invalid tetrahedrons and their corrections.
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4.  Memory reduction in linear solvers
Developing efficient and scalable linear solver is one of the keys to successful frequency-domain 
analysis  of  large  accelerator  structures  using  Omega3P.  The  use  of  sparse  direct  solvers  is  very 
effective in solving highly indefinite linear systems emerged from the accelerator simulations. On the 
other hand, its large memory usage is also a limiting factor for the simulation capability even on 
supercomputers. In particular, the unbalanced per-process memory usage from modern sparse direct 
solver packages severely limited the size of the problem that can be solved on the DOE’s flagship 
computers. Various methods have been developed [6] to reduce the per-process memory usage at the 
expense of longer run time. 

Method 1. The factor matrix and the stack for frontal matrices, the dominating items that consume a 
large amount memory in a multi-frontal sparse direct solver, are often stored in double precision in the 
double precision floating point computations. In this method, they are stored in single precision and 
the  factor  matrix  is  used  as  a  preconditioner  in  the  Krylov  subspace  methods.  Because  a  single 
precision number occupies only 4 bytes while a double precision number has 8 bytes, the method 
halves the memory usage. 

Method 2. In the complex linear systems emerged from Omega3P simulations, the complex matrix is 
very close to its real part. Namely, its imaginary part has a very-low rank and a small matrix norm. In 
this method, only the real part of the complex matrix is factorized and used as preconditioner in the 
Krylov subspace methods. This also halves the memory usage.

Method 3. This method combines Method 1 and 2. A real matrix is factorized in single precision and is 
used as preconditioner. Memory usage is about one quarter of that for a completed factorization of a 
double precision complex matrix.

Method 4. Reference [5] presented a hierarchical preconditioner based on the finite element order, 
which is suitable for solving real linear systems emerged from close cavity simulations. The idea has 
been extended to solve the complex linear systems emerged from open cavity simulations. In this 
method,  only  a  small  portion  of  a  complex  matrix  corresponding  to  linear  finite  element  basis 
functions is factorized. This significantly reduces memory usage.

Method 5. The method combines Method 1 and 4. A portion of a complex matrix is factorized in single 
precision. 

Method 6. The method combines Method 2 and 4. The real part of a portion of a complex matrix is 
factorized.

Method 7. The method combines method 1, 2 and 4. The real part of a portion of a complex matrix is 
factorized in single precision.

  To test the effectiveness of the above methods, computer experiments for solving a complex linear 
system with matrix size of 615114 and 23.7 million non-zeros were carried out. Table 1 summarized 
the results. With method 1 and 2, the per-process memory usage of a simulation cuts in half. With 
method 3, the memory usage cuts to about one quarter. With method 4, the memory usage cuts to 
about one tenth with a significantly longer run-time. Methods 5, 6, and 7 further reduced memory 
usage but the reducing ratio is not so large because of the relatively small testing matrix size. It should 
be noted that the reduction of memory usage is at the expense of  the longer  runtime.
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Table 1. Various methods are tested for a complex linear system with matrix size of 615114 and 23.7 
million non-zeros. MUMPS is a sparse direct solver. In all the other methods, a restarted generalized 
minimal  residual  (GMRES)  with  appropriate  preconditioner  was  used.  The  third  column  is  the 
maximal  per-process  memory usage.   The last  column is  the time to  compute a double-precision 
solution excluding factorization time.  The numbers in the last column is more important than the 
factorization time because the factorization is  performed once and the operation for  computing a 
solution is performed hundreds of times for different right hand sides in our production simulations.

  Advances in applied mathematics and computer science made it possible for SLAC scientists to 
simulate  an  8-cavity  ILC  cryomodule  shown  in  Figure  5,  which  is  twice  as  large  as  the  ILC 
superstructures simulated last year.

Figure 5. The electric field pattern of a trapped dipole mode inside an 8-cavity ILC cryomodule.
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Method Total 
memory(MB)

Per-process
memory(MB)

Factorization
Time (s)

Solution
Time (s)

MUMPS 9862 782 41.3 1.03

1 5199 410 15.6 11.46

2 5457 429 9.25 114.1

3 3001 234 6.4 323.0

4 854 79 0.81 23.6

5 479 51 0.91 27.6

6 500 51 0.51 55.0
7 302 37 0.41 72.1
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