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Abstract

High-gain free-electron lasers (FELs) are being developed as extremely bright sources for a next-

generation x-ray facility. In this paper, we review the basic theory of the startup, the exponential

growth, and the saturation of the high-gain process, emphasizing the self-amplified spontaneous

emission (SASE). The radiation characteristics of an x-ray FEL, including its transverse coherence,

temporal characteristics, and harmonic content, are discussed. FEL performance in the presence

of machine errors and undulator wakefields is examined. Various enhancement schemes through

seeding and beam manipulations are summarized.
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I. INTRODUCTION

Free-electron lasers (FELs), invented by John Madey [1] and subsequently demonstrated

experimentally by his group at Stanford University in the 1970s [2], hold great promise as

tunable, high-power, coherent sources for short-wavelength radiation. To circumvent the

need for mirrors or coherent seeds, the initial random field of spontaneous radiation in an

undulator may be amplified in the medium of a bright electron beam traveling through a long

undulator to intense, quasi-coherent radiation [3–5]. In the x-ray wavelength range (from a

few nm down to 1 Å or less), a high-gain FEL operated in this self-amplified spontaneous

emission (SASE) mode can generate multi-gigawatts (GWs) and femtosecond (fs) coherent x-

ray pulses. The extreme high power together with the excellent transverse coherence of such

x-ray sources provide about ten orders of magnitude improvement in peak brightness above

that offered by the current synchrotron radiation sources based on electron storage rings,

making FELs suitable probes for both the ultra-small and the ultra-fast worlds. Tremendous

progress in accelerator and FEL technologies has been made in past years towards realizing

such a “fourth-generation” radiation facility, demonstrated by the sequence of recent SASE

FEL experiments at visible and ultraviolet wavelengths [6–9]. More recently, the VUV-FEL

at DESY, now called FLASH, reported FEL lasing at wavelengths down to 13 nm [10].

Due to these successes, several x-ray FEL projects are either under construction or being

proposed (see, e.g., Refs. [11–14]).

This paper reviews the basic theory behind the x-ray FELs and points out possible

improvement of these sources. In Sec. II we discuss qualitatively how the coherent radiation

is amplified and developed from the initial seed signal or the electron shot noise. It is then

followed by mathematical analysis of the FEL equations and their solutions in Sec. III,

including diffraction, optical guiding, and effects of beam emittance and energy spread. The

main characteristics of x-ray FELs, including coherence properties and harmonic content,

are presented in Sec. IV, where the temporal manipulation and seeding schemes are also

briefly discussed. In Sec. V we analyze degrading effects of undulator errors and wakefields

and study their tolerances or compensations. Several electron beam manipulation methods

to enhance the SASE performance are described in Sec. VI. We conclude the paper with

final remarks in Sec. VII.
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FIG. 1: A wiggling electron in a planar undulator emits undulator radiation.

II. QUALITATIVE DISCUSSIONS

The radiation discussed in this paper is generated in a periodic magnetic device called

an “undulator.” Consider a planar undulator for which the magnetic field is in the vertical

y direction and varies sinusoidal along the z direction:

By = B0 sin(kuz) . (1)

Here ku = 2π/λu, λu is the undulator period, and B0 is the magnetic pole field. As shown in

Fig. 1, a relativistic electron entering the undulator will wiggle periodically in the horizontal

x direction and can spontaneously emit radiation at the resonant wavelength (see, e.g.,

Ref. [15])

λr =
λu

2γ2
0

(
1 +

K2
0

2
+ γ2

0φ
2

)
. (2)

Here γ0 is the electron energy in units of the rest energy mc2,

K0 =
eB0

mcku

= 0.934B0[Tesla]λu[cm] (3)

is the dimensionless undulator strength parameter, and φ is the observation angle relative to

the undulator z axis. Spontaneous undulator radiation at the resonant wavelength λr (and

its associated harmonics) is the workhorse of the third-generation synchrotron facilities.

The electromagnetic (EM) wave in the forward direction co-propagates with the electron

beam and may exchange energies with the electrons. In free space, the interaction cannot

be sustained because the EM wave is always faster than the electrons. In the undulator, the

co-propagating radiation overtakes the electrons in one undulator period by λ1, where

λ1 = λr(φ = 0) =
λu

2γ2
0

(
1 +

K2
0

2

)
=

2π

k1

=
2πc

ω1

(4)
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FIG. 2: (Color) After an electron (black dot) travels one undulator period λu, a plane wave

(alternating arrows) overtakes the electron by the resonant wavelength λ1. Thus, the undulator

radiation carrying this resonant wavelength can exchange energy with the electron over many

undulator periods.

is the resonant wavelength in the forward direction. In this case, due to the periodicity of the

system, the interaction with a plane EM wave carrying the resonant wavelength λ1 can be

sustained as shown in Fig. 2. Depending on the relative phase of the electrons to the plane

wave, some electrons gain energy from the radiation while other electrons lose energy to the

radiation, hence the energy of a long electron bunch is periodically modulated at λ1. As

faster electrons (with higher energies) catch up with the slower electrons, a periodic density

modulation at the radiation wavelength (the so-called “microbunching”) begins to develop in

the undulator. Under favorable conditions, the microbunched electron beam emits coherent

radiation at the expense of the beam kinetic energy; then the EM wave gains net energy

and the FEL amplification occurs.

If the total energy gain in the undulator is a small fraction of the EM energy, the FEL

is said to operate in the low-gain regime. In this case, an FEL oscillator using an optical

cavity together with many electron bunches is necessary to build up the radiation intensity.

Such FEL oscillators have been constructed and used successfully in the visible and longer

wavelengths (e.g., Ref. [16]). For a sufficiently bright electron beam and a sufficiently long

undulator, the collective interaction of the beam-radiation system leads to an exponential

growth of the radiation intensity along the undulator distance as illustrated in Fig. 3. Such a

high-gain FEL does not require any optical cavity and can amplify either an input seed signal

or the spontaneous undulator radiation produced by the electron shot noise. Thus, in the x-

ray wavelength range where both mirrors and coherent input sources are difficult to obtain,

intense, quasi-coherent radiation can be generated by the SASE process. The exponential

gain eventually stops as the beam loses enough energy to upset the resonant condition. Both
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FIG. 3: (Color) Growth of the radiation power and the electron beam microbunching as a function

of the undulator distance for a high-gain FEL.

the radiation intensity and the electron beam microbunching reach a maximum saturation

level (see Fig. 3).

A fundamental scaling parameter for a high-gain FEL is the dimensionless Pierce param-

eter ρ defined as [5]

ρ =

[
K2

0 [JJ]2

32

k2
p

k2
u

]1/3

=

[
1

16

Ie

IA

K2
0 [JJ]2

γ3
0σ

2
xk

2
u

]1/3

, (5)

where the Bessel function factor [JJ] is equal to [J0(ξ)− J1(ξ)] with ξ = K2
0/(4 + 2K2

0) for

a planar undulator and 1 for a helical undulator. kp =
√

2Ie/(γ3
0IAσ2

x) is the longitudinal

plasma oscillation wavenumber, Ie is the electron peak current, IA = ec/re ≈ 17 kA is

the Alfvén current, re ≈ 2.8 × 10−15 m is the classical electron radius, and σx is the rms

transverse size of the electron beam. In terms of this parameter, the one-dimensional (1-D)

power gain length of a monoenergetic beam is

LG0 =
λu

4π
√

3ρ
. (6)

The relative FEL bandwidth at saturation is close to ρ, and the saturation power is about

ρ times the electron beam power.

As the electron beam develops a periodic microbunching with the modulation wavelength

λ1, the longitudinal space-charge field between electrons tends to counteract the bunching

process if the reduced plasma oscillation wavelength k−1
p is comparable to the FEL gain
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length as given in Eq. (6). Examination of Eq. (5) for K0 ∼ 1 shows that this condition

requires that kp → ku and that ρ → 1. In typical short-wavelength FELs using high-energy

electron beams, ρ ∼ 10−3, hence we can neglect beam self-fields at these wavelengths and

focus on the beam-radiation interaction.

III. ANALYTICAL TREATMENTS

In this section, we illustrate analytical methods to treat the high-gain FELs. The beam-

radiation interaction in the undulator can usually be described by classical physics. Quantum

effects are expected to be small and will be discussed at the end of this section.

A. Electron motion in presence of undulator radiation

Consider an ultra-relativistic electron traversing in the undulator magnetic field described

by Eq. (1). In a first approximation, we take the longitudinal velocity vz ≈ c and apply the

Lorentz equation in the horizontal direction:

γm
dvx

dt
= −evzBy ≈ −ecB0 sin(kuz) . (7)

Here γmc2 is the electron energy that can be slightly different from the reference energy

γ0mc2. Since γ is a constant in a magnetic field, we can integrate Eq. (7) to obtain

vx =
eB0

γmku

cos(kuz) =
K0c

γ
cos(kuz) .

vz = c

√
1− 1

γ2
− v2

x

c2
≈ c

(
1− 1 + K2

0/2

2γ2

)

︸ ︷︷ ︸
≡v̄z

−K2
0c

4γ2
cos(2kuz) , (8)

where v̄z is the average longitudinal velocity over an undulator period. In the presence of

a horizontal electric field Ex = E0 cos(k1z − ω1t + ψ0), the change of the electron energy is

given by

mc2dγ

dt
= evxEx =

eE0K0c

2γ
[cos ((k1 + ku)z − ω1t + ψ0) + cos ((k1 − ku)z − ω1t + ψ0)] .

(9)

Here E0 and ψ0 are the initial amplitude and phase of the electric field, respectively.
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It is convenient to use the distance z from the undulator entrance as the independent

variable and change the time variable to a phase variable relative to the EM wave:

θ = (k1 + ku)z − ω1t̄ , (10)

where ct̄ =
∫

dz/v̄z is the electron arrival time averaged over the undulator period at z. The

phase change can be calculated as

dθ

dz
= k1 + ku − ω1

v̄z

= ku − k1
1 + K2

0/2

2γ2
. (11)

Defining a relative energy variable η = (γ−γ0)/γ0 ¿ 1 and inserting the resonant condition

Eq. (4) into Eq. (11), we obtain
dθ

dz
= 2kuη , (12)

i.e., the electron’s phase relative to the EM wave remains constant if its energy satisfies the

resonant condition (i.e., Eq. (4)). Thus, the first term on the right-hand side of Eq. (9)

varies slowly, contributing to the resonant energy exchange, while the second term varies

quickly, being oscillatory with the period 2λu. Properly taking into account the fact that

the electron’s longitudinal motion also has an oscillatory part as given in Eq. (8), Eq. (9)

after retaining only the slowly varying part becomes

dη

dz
=

eK0[JJ]

2γ2
0mc2

E0 cos(θ + ψ0) . (13)

Equations (12) and (13), known as the “pendulum equations,” describe the motion of

electrons under the influence of the “ponderomotive potential” due to the combined undu-

lator and radiation fields [17]. The motion of electrons in the (θ, η) phase space under the

influence of the ponderomotive potential is illustrated in Fig. 4. A nearly monoenergetic elec-

tron beam with its energy satisfying the resonant condition develops an energy modulation

at the resonant wavelength according to Eq. (13). After a certain undulator distance, the

energy modulation is turned into a density modulation as the relative longitudinal position

of an electron changes by an amount determined by its energy deviation from the resonant

energy (see Eq. (12)). Note that the net energy exchange is still zero, as the number of elec-

trons gaining energy is the same as the number of electrons losing energy. However, such a

microbunched beam changes the phase of the EM wave (through the Maxwell equation, see

Sec. III C) so that the buckets shift to the left. As a result, the electron beam begins to lose
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FIG. 4: Electron motion in the longitudinal phase space (θ, η) due to the presence of a resonant

EM wave (with an initial phase ψ0 = π/2) in the undulator. An initial distribution of the electron

beam, shown as a straight line at η = 0, changes into a distribution on a sinusoidal line, implying

that the energy and the density of the electron beam is modulated, i.e., microbunched. The dashed

lines are the phase space trajectories.

its average energy and the radiation intensity starts to grow exponentially further along the

undulator.

Since the FEL interaction is a resonant energy exchange between the electron and the

radiation field, the evolution of the electrons’ phase may affect the FEL performance criti-

cally. For example, a beam with an initial energy spread can cause a phase spread through

Eq. (12) that degrades the microbunching process. As we will discuss next, the betatron

motion of a finite-emittance beam introduces another mechanism for the phase spread.

B. Electron focusing and emittance effect

A beam with a finite emittance εx has an rms angular spread σx′ = εx/σx, where σx is

the rms beam size and will expand its size in the free space. Hence, the electron beam in

a long undulator channel should be properly focused to keep the beam size nearly constant

for the effective FEL interaction. We discuss two types of undulator focusing: “natural”

focusing and “strong” focusing, and study their effects on the FEL interaction.

8



1. Natural focusing

Equation (1) for the undulator magnetic field is valid only near the y = 0 midplane. An

exact solution of the Maxwell equation reducing to Eq. (1) for y = 0 is [18]

B =
(
0, B0 sin(kuz) cosh(kuy), B0 cos(kuz) sinh(kuy)

)
. (14)

This magnetic field is a reasonable representation of a planar undulator with wide and flat

pole faces.

The Lorentz force on the electron is given by

γm

(
d2x

dt2
,
d2y

dt2
,
d2z

dt2

)
= ev ×B = e

(
Bz

dy

dt
−By

dz

dt
,−Bz

dx

dt
, By

dx

dt

)
. (15)

A rigorous derivation of the linear and nonlinear equations of motion in the undulator is

presented in Ref. [19]. Here we expand Eq. (15) up to the second order in x and y. The

zeroth-order solution is the wiggling motion

x =
K0

γ0ku

sin(kuz) , y = 0 . (16)

The solution up to the second order can be written as

x =
K0

γ0ku

sin(kuz) (1 + χ) + xβn , y = yβn , (17)

where χ is the correction term to the zeroth-order wiggling motion, and (xβn, yβn) denotes a

slow evolution of the trajectory superimposed on the fast wiggling motion. Inserting Eq. (17)

into Eq. (15), keeping terms up to the second order, and separating the fast oscillation with

the slow motion, we obtain

χ =
k2

uy
2
βn

2
,

d2xβn

dz2
= 0 ,

d2yβn

dz2
≈ −

(
K2

0k
2
u

2γ2
0

)
yβn ≡ −k2

n0yβn , (18)

where kn0 = K0ku/(
√

2γ0) ¿ ku is the natural focusing strength of the undulator, and we

have changed the independent variable from t to z for convenience. The vertical motion is

indeed focused. The focusing is due to the intrinsic property of the periodic nature of the

undulator magnetic field and is referred to as natural focusing. Note that focusing is absent

in the x direction because of the uniform extent of the undulator in this direction.
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We now calculate the average longitudinal velocity, as it will determine the electron’s

phase relative to the EM wave through Eq. (11). From Eq. (8), we have

vz

c
≈ 1− 1

2γ2
− v2

x + v2
y

2c2
. (19)

Here

vx ≈c
dx

dz
=

K0c

γ0

cos(kuz)

(
1 +

k2
uy

2
βn

2

)
,

vy ≈c
dy

dz
= c

dyβn

dz
≡ cpy . (20)

We can again average Eq. (19) over the fast oscillation and retain terms up to the second

order in y to obtain
v̄z

c
= 1− 1 + K2

0/2

2γ2
− k2

n0y
2
βn + p2

y

2
. (21)

To generate focusing in the x direction, one can shape the undulator pole faces to be

parabolic [20]. The natural focusing strengths in the x and y directions can be shown to

satisfy

k2
nx + k2

ny = k2
n0 . (22)

Typically, one wants equal focusing in both transverse directions, in which case knx = knx =

kn0/
√

2 ≡ kn. The average longitudinal velocity is then [20]

v̄z

c
= 1− 1 + K2

0/2

2γ2
− k2

nx2 + p2

2
= 1− 1 + K2

0/2

2γ2
− Jx + Jy

βn

, (23)

where x = (xβn, yβn), p = (dxβn/dz, dyβn/dz), and βn = 1/knγ0λu(πK0) is the natural

focusing beta function in either transverse direction. We have also introduced the transverse

actions, Jx = βn(k2
nx2+p2

x)/2 and Jy = βn(k2
ny

2+p2
y)/2, which are invariants of the transverse

motion.

2. Strong focusing

The natural focusing is usually too weak to be effective for the high-energy electrons that

drive an x-ray FEL. Thus, quadrupole magnets are inserted in the undulator section breaks

to provide the necessary strong focusing, usually in the form of a FODO lattice (consisting of

repetitive focusing-undulator-defocusing-undulator cells, see Fig. 5). Following the standard
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FIG. 5: (Color) Variation of the horizontal beta function along the distance of two FODO cells

for a small phase advance per cell. Its derivative β′x ≡ dβx/dz is close to the values ±2, but the

deviation of βx from the average value β̄ is relatively small. The FODO cell length Lc is assumed

to be much smaller than the average beta function β̄.

accelerator notation (e.g., Ref. [15]), the electron trajectory can be described by

xβ(z) =
√

2Jxβx cos Φx(z) ,

pxβ(z) ≡dxβ

dz
= −

√
2Jx

βx

[sin Φx(z) + αx cos Φx(z)] , (24)

where βx is the horizontal beta function, αx = −dβx/(2dz), and Φx is the betatron phase

advance. Similar equations describe the vertical betatron motion.

To avoid a large beam size variation in the undulator, the FODO lattice is usually designed

to have a small phase advance per cell, i.e., the FODO lattice period LC is much smaller than

the average beta function β̄ (usually the same in both transverse planes). Such a FODO

lattice has the properties

αx = −1

2

dβx

dz
≈ ±1 , αy = −1

2

dβy

dz
≈ ∓1 , (25)

with the sign alternating per half cell. Figure 5 illustrates the variation of the beta function

in a FODO lattice with a small phase advance per cell.

Neglecting the natural focusing, the longitudinal velocity averaged over several undulator

periods in a strong focusing undulator is

v̄z

c
≈ 1− 1 + K2

0/2

2γ2
− p2

β

2
, (26)

where

p2
β = p2

xβ + p2
yβ =

2Jx

βx

[1± sin(2Φx)] +
2Jy

βy

[1∓ sin(2Φy)] . (27)
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Because the oscillatory terms in Eq. (27) change sign every half FODO lattice period, we

can further average the longitudinal velocity over the FODO cell length if it is smaller than

the power gain length to obtain [21]

v̄z

c
≈ 1− 1 + K2

0/2

2γ2
− Jx + Jy

β̄
. (28)

Note that Eq. (28) has the same form as Eq. (23), with the electron’s average longitudinal

velocity depending linearly on its transverse actions (constants of the motion in the undula-

tor). This simplifies the theoretical treatment of the emittance effect in an undulator with

either natural focusing (used in many low- and medium-energy FELs) and strong focusing

(commonly used in x-ray FELs). Although Jx,y are constants of motion for each electron,

different electrons with different betatron amplitudes have different transverse actions. In

fact, the ensemble average of Jx,y over all electrons is the rms transverse emittance of the

beam, i.e.,

〈Jx,y〉 = εx,y . (29)

Due to the finite emittance, electrons with different betatron amplitudes spread out in

longitudinal positions (and phases) relative to the EM wave and hence degrade the FEL

gain. Inserting Eq. (28) into Eq. (11), we obtain the phase equation in the presence of the

betatron motion as
dθ

dz
= 2kuη − k1(Jx + Jy)

β̄
. (30)

C. Paraxial wave equation

In the high-gain regime, the energy exchange in a single pass is so large that the radiation

field changes rapidly. The equations of motion must be solved together with the Maxwell

equation for the transverse radiation field:

[(
1

c

∂

∂t

)2

−
(

∂

∂z

)2

−∇2
⊥

]
Ex(x, t; z) = − 1

ε0c2

[
∂jx

∂t
+ c2∂(ene)

∂x

]
, (31)

where ∇2
⊥ is the transverse Laplacian, ε0 is the permittivity of free space, ne is the electron

volumn density,

jx = evxne = eK0 cos(kuz)
Ne∑
j=1

1

γj

δ(x− xj(z))δ(t− tj(z)) (32)
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is the transverse current, and Ne is the total number of electrons in the beam.

As we will discuss later, in order to have efficient FEL interaction, both the e-beam and

the radiation cross sections should be reasonably matched with the rms size approximately

given by

σx ∼ σr ∼
√

λ12LG0

4π
∼ 1

4π

√
λ1λu

ρ
. (33)

For short-wavelength FELs, the rms size of the radiation cross section is usually much smaller

than the vacuum chamber radius; hence we may neglect any boundary conditions in solving

the Maxwell equation. Furthermore, we have

jx = evxne ∼ cK

γ0

ene,
∂

∂x
∼ 1

σx

∼ 4π

√
ρ

λ1λu

,
∂

∂t
∼ ω1 ∼ 2πc

λ1

, (34)

the ratio
ec2∂ne/∂x

∂jx/∂t
∼ √

ρ ¿ 1 . (35)

Thus, the charge density term in the Maxwell equation (31) may be dropped.

It is convenient to introduce the frequency domain field amplitude Eν via

Ex(x, t; z) =
1

2

∫
dνEν(x; z)eiνk1(z−ct) + c. c. , (36)

where c. c. stands for complex conjugate. We expect that only a narrow frequency range

near the resonant frequency will be important. In other words, ∆ν ≡ ν − 1 is much smaller

compared to unity, and the ν integral extends a narrow range around ν = 1. If we further

assume that Eν varies slowly with z, i.e.,
∣∣∣∣
∂2Eν

∂z2

∣∣∣∣ ¿
∣∣∣∣2k1

∂Eν

∂z

∣∣∣∣ , (37)

then the Maxwell equation becomes the paraxial wave equation [22]

(
2iνk1

∂

∂z
+ ∇2

⊥

)
Eν(x; z) =

1

ε0c2

∫ ∞

−∞

ck1dt

π
e−iνk1(z−ct) ∂

∂t
jx(x, z, t)

≈ − e

ε0

K

∫ ∞

−∞

νk1dt

π
e−iνk1(z−ct) iνk1

γ0

cos(kuz)
N∑

j=1

δ(x− xj)δ(t− tj) . (38)

Here we have approximated γj = γ0 in the transverse velocity of the beam (assuming the

energy spread is small) and performed integration by parts over the time variable.

Equation (38) can be further simplified as follows. We change the integration variable

from t to θ according to Eq. (10) and average the right-hand side properly over the fast
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wiggling motion to obtain:

(
∂

∂z
+

∇2
⊥

2iνk1

)
Eν(x; z) = −eK[JJ]

2ε0γ0

ei∆νkuz

∫
k1dθ

2π
e−iνθ

Ne∑
j=1

δ(x− xj)δ(θ − θj) . (39)

Here θj is the position of the jth electron relative to the bunch center in units of λ1/(2π)

at the undulator distance z, and the left-hand side ν can be replaced by 1 around the

fundamental radiation frequency. Although ∆ν = ν − 1 << 1, we cannot ignore ∆νkuz

in the exponent of Eq. (39) as kuz >> 1 for a high-gain undulator. Section IVC gives a

derivation of the [JJ] factor including harmonic emissions.

D. Coupled Maxwell-Klimontovich equations

To take into account the discreteness of electrons that initiates the SASE process, we use

the Klimontovich distribution function to describe the microscopic electron distribution in

the phase space (see, e.g., Ref. [23]):

F (θ, η, x,p; z) =
k1

n0

Ne∑
j=1

δ(θ − θj)δ(η − ηj)δ(x− xj)δ(p− pj) , (40)

where n0 is the peak electron volume density. The evolution of the Klimontovich distribution

function F is governed by the continuity equation

∂F

∂z
+

∂F

∂θ

dθ

dz
+

∂F

∂η

dη

dz
+

∂F

∂x

dx

dz
+

∂F

∂p

dp

dz
= 0 . (41)

Here x and p are the averaged transverse variables that satisfy the smooth focusing approx-

imation, i.e.,
dx

dz
= p ,

dp

dz
= −x

β̄
≡ −kβx . (42)

The averaging is over the (FODO) lattice period for strong focusing. For natural focusing,

the averaging is over the undulator period, and kβ should be replaced by kn.

Using this set of smoothed transverse variables, the phase equation (30) for a strong

focusing undulator becomes

dθ

dz
= 2kuη − k1

2
(k2

βx2 + p2) . (43)

The energy equation can also be rewritten as

dη

dz
=

eK[JJ]

4γ2
0mc2

∫
dνeiνθe−i∆νkuzEν(x, z) + c. c. . (44)
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In terms of the electron distribution function F , the paraxial wave equation (39) becomes
(

∂

∂z
+

∇2
⊥

2ik1

)
Eν(x; z) = −eK[JJ]n0

2ε0γ0

ei∆νkuz

∫
dθ

2π
e−iνθ

∫
d2p

∫
dηF . (45)

We note that the fluid limit of the Klimontovich distribution function F satisfies the same

continuity equation, often referred to as the Vlaso equation in the literature. Here, we retain

the microscopic description of the electrons in order to describe the SASE radiation initiated

by the electron shot noise. Equation (41), with F given by Eq. (40), will be referred to as

the Klimontovich equation.

Making use of the fundamental FEL scaling parameter ρ defined in Eq. (5), we introduce

the following scaled variables to simplify our equations:

ẑ =2ρkuz, η̂ =
η

ρ
, ∆ν̂ =

∆ν

2ρ
,

x̂ =x
√

2k1kuρ, p̂ = p

√
k1

2kuρ
,

aν =
eK[JJ]

4γ2
0mc2kuρ

e−i∆νkuzEν , f =
2kuρ

2

k1

F . (46)

The coupled Maxwell-Klimontovich equations using these scaled variables are
(

∂

∂ẑ
+ i∆ν̂ +

∇̂2

⊥
2i

)
aν(x̂; ẑ) = −

∫
2ρdθ

2π
e−iνθ

∫
d2p̂

∫
dη̂f(θ, η̂, x̂, p̂; ŝ), (47)

∂f

∂ẑ
+ θ′

∂f

∂θ
+ p̂

∂f

∂x̂
− k̂2

βx̂
∂f

∂p̂
+

(∫
d∆ν̂eiνθaν + c. c.

)
∂f

∂η̂
= 0 , (48)

where

θ′ =
dθ

dẑ
= η̂ − p̂2 + k̂2

βx̂2

2
, (49)

and k̂β = kβ/(2kwρ) is the scaled focusing strength.

Throughout this paper, we denote most of the scaled (dimensionless) parameters and

variables with caret, except for a few special cases such as ρ, aν , and f . A list of symbols

and their physical meanings is given in Appendix A.

E. Solution in the exponential growth regime

Equation (48) can be linearized in the small signal regime before saturation when the

scaled radiation field is small, i.e.,

a(θ, x̂; ẑ) =

∫
d∆ν̂aν(x̂; ẑ)eiνθ ¿ 1 . (50)
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Let us write the distribution function as

f = f0 + f1 , (51)

where f0 is the distribution function averaged over θ, and f1 contains the shot-noise fluctu-

ation and the FEL-induced modulation. Equation (48) can be rewritten in two parts:

∂f0

∂ẑ
+ p̂

∂f0

∂x̂
− k̂2

βx̂
∂f0

∂p̂
+

〈[ ∫
d∆ν̂eiνθaν(x̂; ẑ) + c. c.

]
∂f1(θ, η̂, x̂, p̂; ẑ)

∂η̂

〉

θ

= 0 , (52)

∂f1

∂ẑ
+ θ′

∂f1

∂θ
+ p̂

∂f1

∂x̂
− k̂2

βx̂
∂f1

∂p̂
+

[ ∫
d∆ν̂eiνθaν(x̂; ẑ) + c. c.

]
∂f0(η̂, x̂, p̂; ẑ)

∂η̂
= 0 . (53)

We regard both f1 and the field a defined in Eq. (50) as first-order quantities, hence the

last term of Eq. (52) (averaged over θ) is a second-order quantity and will be ignored in

the linear theory. We will discuss its effect at the onset of the saturation in the quasi-linear

theory of Sec. III I.

Using the method of integration along the unperturbed trajectory [23] and following the

derivation of Ref. [24], we obtain

f1 = f1(0) +

∫ ẑ

0

ds

∫
d∆ν̂eiνθ(0)

aν(x̂
(0), s)

∂

∂η̂
f0(η̂, x̂(0), p̂(0); s) + c. c. , (54)

where f1(0) is the initial fluctuation from the smooth distribution at z = 0, and the unper-

turbed trajectory is given by

θ(0) =θ + θ′(s− ẑ) ,

x̂(0) =x̂ cos
[
k̂β(s− ẑ)

]
+

p̂

k̂β

sin
[
k̂β(s− ẑ)

]
,

p̂(0) =− k̂βx̂ sin [kβ(s− ẑ)] + p̂ cos
[
k̂β(s− ẑ)

]
. (55)

One can easily confirm that Eq. (54) satisfies Eq. (53).

We now assume that the electron beam is transversely matched to the undulator channel

and is uniform in the longitudinal direction (this can be approximately satisfied by a bunch

that is very long compared to the fundamental radiation wavelength λ1). Then f0 = f0(p̂
2 +

k̂2
βx̂2, η̂) is a solution of Eq. (52) in the absence of the second-order term. Inserting f = f0+f1

with f1 given by Eq. (54) into Eq. (47), we find that each frequency component of the
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radiation field is independently amplified and is governed by [24]

(
∂

∂ẑ
+ i∆ν̂ +

∇̂2

⊥
2i

)
aν(x̂; ẑ)−

∫
d2p̂

∫
dη̂

∫ ẑ

0

dseiθ′(s−ẑ)aν(x̂
(0); s)

∂f0

∂η̂

=

∫
d2p̂

∫
dη̂fν(η̂, x̂, p̂; 0) , (56)

where

fν(η̂, x̂, p̂; 0) =

∫
2ρdθ

2π
e−iνθf1(θ, η̂, x̂, p̂; 0)

=
2kuρ

3

πn0

Ne∑
j=1

e−iνθj(0)δ [η̂ − η̂j(0)] δ [x̂− x̂j(0)] δ
[
p̂− p̂j(0)

]
(57)

is the Fourier transformation of the initial fluctuation with θj(0) = −iω1tj(0) at z = 0.

We will postpone the discussions of shot-noise start-up until Sec. IIIH and focus on the

homogeneous part of Eq. (56). In this case, we seek a solution of the form An(x̂)e−iµnẑ, where

the complex growth rate µn and the transverse mode profile An(x̂) of the nth eigenmode

(n = 0, 1, 2, ...) satisfy

(
−iµn + i∆ν̂ +

∇̂2

⊥
2i

)
An(x̂)−

∫
d2p̂

∫
dη̂

∫ 0

−∞
dτAn(x̂+)ei(θ′−µn)τ ∂f0

∂η̂
= 0 . (58)

Here x̂+ = x̂ cos(k̂βτ) + (p̂/k̂β) sin(k̂βτ). Equation (58) generalizes Moore’s guided mode

equation [25, 26] to include effects of beam energy spread and emittance [27, 28]. In general,

there are many discrete solutions of Eq. (58), and the radiation field can be written as an

expansion of eigenmodes:

aν(x̂; ẑ) =
∞∑

n=0

CnAn(x̂)e−iµnẑ , (59)

where Cn is the mode expansion coefficient that can be determined by solving the initial

value problem. In the high-gain regime, a Gaussian-like fundamental mode (for n = 0) with

the largest growth rate Imµ0 usually dominates over other higher-order modes, i.e.,

aν(x̂; ẑ) ≈ C0A0(x̂)e−iµ0ẑ when ẑ = 2ρkuz À 1 . (60)

Thus, the transverse profile of the radiation appears to be guided with an exponentially

growing amplitude. We will discuss this remarkable feature of a high-gain FEL and its

implication to the transverse coherence in Sec. IVA.
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Before considering a fully three-dimensional (3-D) solution of Eq. (58), it is useful to

consider a simpler case where electrons are all parallel with a vanishing angular spread.

We can then set kβ = 0 and take f0 = U(x̂)V (η̂), where U(x̂) describes the electron

beam transverse profile with U(0) = 1 and V (η̂) describes the energy distribution with the

normalization
∫

dη̂V (η̂) = 1. In this case, Eq. (58) becomes

[
µn −∆ν̂ +

∇̂2

⊥
2
− U(x̂)

∫
dη̂

dV/dη̂

η̂ − µn

]
An(x̂) = 0 . (61)

This equation has been studied by various authors during the early days when optical guiding

was first discovered [25, 26, 29, 30]. In the 1-D limit where the electron beam is uniform

and infinite in transverse dimensions, we can drop the transverse dependence to obtain

µ−∆ν̂ −
∫

dη̂
dV/dη̂

η̂ − µ
= 0 . (62)

Here all transverse modes become degenerate with the same growth rate µ. For a cold beam

with a vanishing energy spread (i.e., V (η̂) = δ(η̂)), Eq. (62) reduces to the well-known cubic

equation for the complex growth rate [31]

µ2(µ−∆ν̂) = 1 . (63)

At the optimal detuning ∆ν̂ = 0, the growing solution of Eq. (63) is µ = (−1 + i
√

3)/2.

Hence, the radiation power builds up as P ∝ exp(z/LG0), with LG0 = λu/(4π
√

3ρ) as in

Eq. (6).

F. Dispersion relation with four scaled parameters

We will now return to the general 3-D case and solve Eq. (58) for a finite-emittance beam

with Gaussian transverse and energy distributions:

f0(p̂
2 + k̂2

βx̂2, η̂) =
1

2πk̂2
βσ̂2

x

exp

(
− p̂2 + k̂2

βx̂2

2k̂2
βσ̂2

x

)
1√
2πσ̂η

exp

(
− η̂2

2σ̂2
η

)
, (64)

where

σ̂x = σx

√
2k1kuρ, σ̂η = ση/ρ , (65)

and ση is the rms energy spread. The electron beam emittance is specified by

εx = εy = ε = σ̂2
xk̂β/k1 . (66)
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Inserting Eq. (64) into Eq. (58) and performing the η̂ integral, we obtain a dispersion relation

for the fundamental mode as [32, 33]

(
µ0 −∆ν̂ +

∇̂2

⊥
2

)
A0(x̂)− 1

2πk̂2
βσ̂2

x

∫ 0

−∞
τdτe−σ̂2

ητ2/2−iµ0τ

∫
d2p̂

× A0

(
x̂ cos(k̂βτ) +

p̂

k̂β

sin(k̂βτ)

)
exp

[
− p̂2 + k̂2

βx̂2

2

(
iτ +

1

k̂2
βσ̂2

x

)]
= 0 . (67)

The complex growth rate µ0 and the fundamental mode A0(x̂) are completely determined

by four scaled parameters [32], such as σ̂x, k̂β, σ̂η, and ∆ν̂ used here. They can be cast in

different ways [32, 33], but they characterize four distinct physical effects to be illustrated

below.

• σ̂x characterizes the diffraction effect. Let us rewrite

σ̂2
x = σ2

x2k1kuρ =
2πσ2

x

λ1

4πρ

λu

=
1√
3

ZR

2LG0

, (68)

where ZR = 4πσ2
x/λ1 is the Rayleigh length assuming that the rms size of the optical

beam is the same as that of the electrons. The transverse area of the radiation will

double in one Rayleigh length, reducing the interaction efficiency. A strong gain will

mitigate the diffraction. The condition for that is

σ̂x ≥ 1 or ZR ≥ 2LG0 . (69)

• ∆ν̂ represents the effect of the frequency detuning (the normalized deviation of the

radiation wavelength λ from the resonant wavelength λ1). Since the electron with

the energy γ0mc2 slips exactly λ1 behind the radiation per undulator period, it will

experience a different radiation phase if λ 6= λ1. In order to not degrade the gain signif-

icantly, the phase spread introduced by the frequency detuning over ∼ 1/ρ undulator

period should be smaller than unity, or

|∆ν̂| = |∆λ|
λ1

1

2ρ
=
|∆ω|
ω1

1

2ρ
< 1 . (70)

The length λu/ρ is roughly the saturation length (see the discussion following Eq. (92)

in Sec. III I). Thus, we expect that the relative SASE bandwidth at saturation is about

ρ, i.e., σν ∼ ρ.
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• σ̂η represents the effect of the beam energy spread. The resonant wavelength spread

caused by the energy spread over the saturation length must also be less than unity,

i.e.,

σ̂η =
|∆γ|
γρ

∼ |∆λ|
λ1

1

ρ
< 1 or ση < ρ . (71)

• σ̂xk̂β represents the effect of the angular spread for a finite-emittance beam. According

to Eq. (2), the beam angular spread σx′ = kβσx = σx/β̄ inevitably introduces a spread

in the resonant wavelength |∆λ|/λ1 = λuσ
2
x′/(2λ1). Using similar arguments, we have

(σ̂xk̂β)2 =
λuσ

2
x′

2λ1

1

ρ
=
|∆λ|
λ1

1

ρ
< 1 . (72)

Writing σ2
x′ = ε/β̄, and LG0 = λu/(4π

√
3ρ) ≈ λu/(8πρ), we have the emittance

requirement

ε <
λ1

4π

β̄

LG0

. (73)

G. Variational solution of the power gain length

One of the most important FEL design parameters is the power gain length of the fun-

damental mode given by

LG =
λu

8(Imµ0)πρ
≡ LG0(1 + Λ) , (74)

where Λ quantifies the degrading effects discussed in the previous section over the shortest

possible gain length LG0 = λu/(4
√

3πρ) and will be determined explicitly here. Given the

four scaled parameters, the complex growth rate of the fundamental mode µ0 can be obtained

by solving Eq. (67) with a variational approximation [30, 32, 33], with an orthogonal function

expansion [34], or with a direct numerical method [33]. The variational method is very fast

and accurate in terms of the growth rate and will be illustrated here.

For an azimuthally symmetric fundamental mode, we take A0(x̂) = A0(R), where R =

|x̂|/σ̂x = |x|/σx. Equation (67) can be simplified considerably after some algebras:

[
µ0 −∆ν̂ +

σ̂2
x

2

d

RdR

(
R

d

dR

)]
A0(R) =

∫ ∞

0

R′dR′G0(R,R′)A0(R
′) , (75)
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where

G0(R, R′) =

∫ 0

−∞

τdτ

sin2(k̂βτ)
exp

[
− σ̂2

ητ
2

2
− iµ0τ −

(R2 + R′2)(1 + ik̂2
βσ̂2

xτ)

2 sin2(k̂βτ)

]

× I0

(
RR′(1 + ik̂2

βσ̂2
xτ) cos(k̂βτ)

sin2(k̂βτ)

)
, (76)

and I0 is the zeroth-order modified Bessel function. A variational functional may be con-

structed as follows [32, 33]:

∫ ∞

0

RdRA0(R)

[
µ0 −∆ν̂ +

σ̂2
x

2R

d

dR

(
R

d

dR

)]
A0(R) =

∫ ∞

0

RdRA0(R)

×
∫ ∞

0

R′dR′G0(R,R′)A0(R
′) . (77)

The variational principle states that a first-order approximation in A0(R) yields a stationary

solution µ0 that is accurate to the second order. For a Gaussian-like fundamental mode, we

take a trial function A0(R) ∝ exp(−wR2) and insert it into Eq. (77) to obtain

µ0 −∆ν̂

4w
− 1

4σ̂2
x

=

∫ 0

−∞

τdτe−σ̂2
ητ2/2−iµ0τ

(1 + ik̂2
βσ̂2

xτ
2)2 + 4w(1 + ik̂2

βσ̂2
xτ

2) + 4w2 sin2(k̂2
βτ)

. (78)

Differentiating Eq. (78) with respect to w and applying the variational condition ∂µ0/∂w =

0, we obtain the second relation between µ0 and w. Solving these two equations, we can

determine µ0 and hence the power gain length.

Based on the variational solution of the FEL dispersion relation, Ming Xie obtained a

very useful fitting formula for the power gain length of the fundamental mode that depends

on three scaled parameters [33, 35]:

ηd =
1

2
√

3σ̂2
x

=
LG0

2k1σ2
x

(diffraction parameter) ,

ηε =
2√
3
k̂2

βσ̂2
x = kβLG0

ε

λ1/(4π)
(angular spread parameter) ,

ηγ =
σ̂η√

3
= 4π

LG0

λu

ση (energy spread parameter) , (79)

while the fourth parameter, the frequency detuning, is optimized to yield the minimum

power gain length. The gain length degradation factor Λ defined in Eq. (74) is written as

Λ =a1η
a2
d + a3η

a4
ε + a5η

a6
γ + a7η

a8
ε ηa9

γ

+ a10η
a11
d ηa12

γ + a13η
a14
d ηa15

ε + a16η
a17
d ηa18

ε ηa19
γ , (80)
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where the fitting coefficients are

a1 = 0.45 , a2 = 0.57 , a3 = 0.55 , a4 = 1.6 , a5 = 3 ,

a6 = 2 , a7 = 0.35 , a8 = 2.9 , a9 = 2.4 , a10 = 51 ,

a11 = 0.95 , a12 = 3 , a13 = 5.4 , a14 = 0.7 , a15 = 1.9 ,

a16 = 1140 , a17 = 2.2 , a18 = 2.9 , a19 = 3.2 . (81)

The discrepancy between Xie’s fitting formula and numerical solutions of the FEL eigenmode

equation is typically less than 10%. These positive fitting coefficients quantitatively show

that all three scaled beam parameters in Eq. (79) should be kept small to avoid a large gain

reduction, corresponding to the qualitative beam requirements discussed in Sec. III F.

H. Start-up process

The 3-D initial value problem for an FEL starting up from electron shot noise (i.e.,

Eq. (56)) can be solved using Van Kampen’s normal mode expansion [27, 36]. Equivalent

methods using the bi-orthogonality theorem of a generalized Hamiltonian for the beam-

radiation system are given in Refs. [37, 38]. For Van Kampen’s normal mode expansion, we

refer to the detailed derivation in Appendix A of Ref. [39]. In the high-gain limit, we may

keep only the fundamental mode and arrive at

aν(x̂; ẑ) = e−iµ0ẑA0(x̂)

[ ∫
d2x̂′A0(x̂

′)aν(x̂
′; 0) +

∫
d2x̂′

∫
d2p̂

∫
dη̂fν(η̂, x̂′, p̂; 0)

×
∫ 0

−∞
dτA0

(
x̂′ cos k̂βτ − p̂

k̂β

sin k̂βτ

)
ei(θ′−µ0)τ

]
. (82)

The first term in the square bracket describes the process of coherent amplification (CA),

which starts from a coherent input signal aν(x̂; 0) at the frequency ω = νω1. The second term

describes the SASE process that starts from electron shot noise [27, 37, 40, 41]. Although

the ensemble average of fν(η̂, x̂′, p̂; 0) in Eq. (57) is zero, the average radiation intensity is

not and can be computed by using the relation [23]

〈fν(η̂, x̂, p̂; 0)fν(η̂
′, x̂′, p̂′; 0)〉 =

2k3
1kuρ

3cT

π2n0

δ(η̂ − η̂′)δ(x̂− x̂′)δ(p̂− p̂′)f0 , (83)

where cT is the bunch length for a flattop current profile.
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Including the frequency-dependence of the complex growth rate in Eq. (60) and integrat-

ing over the transverse coordinates, we obtain the FEL power spectrum in the high-gain

regime as

dP

dω
=

γ0mc3n0π

2ρω2
1T

∫
dx2〈|aν |〉2 = gA

(
dP0

dω
+ gS

ργ0mc2

2π

)
exp

(
z

LG

− ∆ω2

2σ2
ω

)
, (84)

where dP0/dω is the input power spectrum; ργ0mc2/(2π) is the 1-D SASE noise power

spectrum [27] and can be identified as the spontaneous undulator radiation in the first two

power gain lengths [42]; gA and gS determine the input coupling to the fundamental mode

and the effective start-up noise in units of ργ0mc2/(2π), respectively; and σω is the SASE

bandwidth. In the 1-D, cold beam limit, gA = 1/9, gS = 1, and the rms SASE bandwidth

is [40, 41]

σω =

√
3
√

3ρ

kuz
ω1 . (85)

For a more general beam distribution, the SASE bandwidth can be found by solving the

dispersion relation (i.e., Eq. (58)) and typically decreases to about ρω1 at the FEL saturation

point. gA and gS can also be computed for a general beam distribution by solving the 3-D

initial value problem [38, 43]. It is noted that the effective start-up noise increases with

larger energy spread and emittance mainly because of the corresponding increase in the gain

length. Integrating the SASE term over the frequency, we have the average SASE power as

P = gAPn exp

(
z

LG

)
. (86)

Here Pn = gSργ0mc2σω/
√

2π is the effective noise power for SASE.

As a numerical example, Fig. 6 shows the total radiated energy in the LEUTL FEL [6]

at λ1 = 130 nm. The agreement of the high-gain behavior between time-dependent SASE

simulations using either GINGER [44] or GENESIS [45] and Eq. (86) are very good when the

proper input coupling coefficient and effective noise power (i.e., gA and gS) are calculated.

Note that GENESIS is a 3-D code that does not assume azimuthal symmetry in the radiation

profile. Hence it takes into account more higher-order transverse modes than GINGER (with

only azimuthally symmetric modes) in the start-up regime and leads to more radiated energy

in the early part of the undulator length.
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FIG. 6: (Color) GINGER (black) and GENESIS (blue) simulations of the LEUTL FEL energy at

130 nm versus the undulator distance z, as compared from predictions of Eq. (86) with 3-D noise

(red) and 1-D noise (green).

I. Saturation mechanism

The exponential growth cannot continue indefinitely, and the power must saturate at a

certain level. This is because the average beam energy must decrease to conserve the total

energy. (In the linear theory, the average beam energy is unchanged to the first order in

aν because the field energy is second order in aν .) In addition, the beam energy spread

inevitably increases so that the growth rate becomes negligible. The saturation effect is due

to nonlinear interactions and can be studied by a quasilinear theory that takes into account

the second-order term in Eq. (52) [27, 46]. Here we illustrate the basic steps in the 1-D case,

where we write the distribution function as

f = f0(η̂; ẑ)︸ ︷︷ ︸
θ indep. average distribution

+

∫
fν(η̂; ẑ)eiνθdν + c. c.

︸ ︷︷ ︸
θ dep. microbunching

. (87)

Unlike in the linear theory discussed in Sec. III E, the smoothed distribution function f0(η̂; ẑ)

is also a function of ẑ. Consider ν ∼ 1 for the fundamental frequency (dropping higher

harmonics is equivalent to dropping higher than second-order terms; see Sec. IVC), the set
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of nonlinear equations following Eqs. (47), (52), and (53) are(
d

dẑ
+ i∆ν̂

)
aν +

∫
dη̂fν = 0 , (88)

∂fν

∂ẑ
+ iη̂fν +

∂f0

∂η̂
aν = 0 , (89)

∂f0

∂ẑ
+

(∫
dνa∗ν

∂fν

∂η̂
+ c. c.

)
= 0 . (90)

In the small signal regime where |aν |, |fν | ¿ 1, ∂f0/(∂ẑ) = 0 and we recover the 1-D lin-

earized Maxwell-Klimotovich equations. When |aν |, |fν | ∼ 1, the initial energy distribution

changes rapidly with ẑ. The average energy decreases with an increasing energy spread and

the FEL saturation sets in.

This set of nonlinear equations can be solved numerically given the initial conditions.

Since the saturation power level is quite insensitive to the start-up process, we start with a

small seed signal aν(0) at various initial frequency detunings and find the dependence of the

maximum power (at the optimal detuning) as a function of the initial rms energy spread.

The results [46] are shown in Fig. 7 and are compared with a simulation fitting formula

given by [35]

Psat ≈ 1.6

(
LG0

LG

)2

ρPbeam =
1.6

(1 + Λ)2
ρPbeam , (91)

where Λ is defined in Eq. (74), and Pbeam[GW] = (γ0mc2/e)[GV]Ie[A] is the total electron

beam power.

To estimate the saturation distance of a SASE FEL, we require that Eq. (86) is equal to

Eq. (91). In the 1-D case, we obtain

zsat

LG

≈ ln
20Ietc

e
, (92)

where tc =
√

π/σω is the coherence time (see Eq. (102) below). Thus, the saturation

distance is a numerical factor times the power gain length. The numerical factor depends

logarithmically on the number of electrons within one coherence time (i.e., Nc = Ietc/e) and

typically varies little from 18 to 20. We note that, numerically, 4π
√

3 ≈ 20. Therefore the

saturation length is simply λu/ρ, if LG ≈ LG0.

J. Quantum effects

Despite the fact that the first FEL theory is based on a quantum mechanical analysis [1],

subsequent analysis shows that the classical theory is adequate in most practical devices.
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FIG. 7: (Color) Maximum FEL efficiency Psat/(ρPbeam) versus the initial normalized rms energy

spread ση̂ = ση/ρ from the quasilinear theory [46] (red solid curve) and from a simulation fitting

formula [35] (green dashed curve).

In this section, we discuss both the quantum recoil and the quantum diffusion effects that

tend to decrease the FEL interaction efficiency if they are not negligible.

1. Quantum recoil

As an electron emits a photon of energy h̄ω1, its energy is reduced due to the quantum

recoil. If the fractional energy change is on the order of or larger than the FEL gain band-

width, the quantum recoil may significantly degrade the FEL gain. For short-wavelength,

high-gain FELs using magnetic undulators and high-energy electron beams, the typical FEL

gain bandwidth is on the order of 10−3, while the fraction energy change after a photon emis-

sion is no more than 10−6; hence, the quantum recoil is negligible. The quantum recoil effect

may become an issue when an extremely bright and low-energy electron beam interacts with

an electromagnetic undulator, as the fractional energy change due to an x-ray photon emis-

sion may be comparable to or exceed the FEL bandwidth. High-gain FELs in the quantum

regime were studied before (see, e.g., Ref. [47–49]) and have been revisited recently in the

context of SASE [50, 51]. For a 1-D, cold electron beam, the classical cubic equation (63) is

modified to [48, 50, 51] (
µ2 − 1

4ρ̄2

)
(µ−∆ν̂) = 1 , (93)
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where ρ̄ = ργmc2/(h̄ω1) can be regarded as the ratio of the classical FEL bandwidth to the

fractional energy recoil of an FEL photon. In view of Eq. (62), we see that the effect due to

the quantum recoil is equivalent to a flattop energy spread with a width h̄ω1 that decreases

the FEL growth rate µ.

2. Quantum diffusion

Even when a single photon emission is not capable of changing the electron energy outside

the FEL bandwidth, the accumulated effects of spontaneous undulator emission may alter

the electron energy significantly over the long undulator line. The classical part of this effect

is that the electron changes its energy due to the spontaneous undulator radiation, given by

(∆γ)SR

γ0

= −1

3
reγ0K

2
0k

2
uLu , (94)

where Lu is the total length of the undulator. For the Linac Coherent Light Source (LCLS)

at 14 GeV (see Table I), the fractional energy loss over the 100-m undulator is about 0.17%,

which causes the electrons’ central energy γ0 to move away from the resonant bandwidth.

In view of Eq. (4), the resonant wavelength can be kept constant by tapering the undulator

magnetic field strength (i.e., adjusting the K0 parameter) to compensate for the energy loss.

In addition to the average energy loss, the discrete nature of spontaneous photon emissions

(over a wide energy spectrum) increases the uncorrelated energy spread of the beam, much

like the effect of quantum excitation in an electron storage ring (see, e.g., Ref. [15, 52]). The

diffusion rate of the energy spread is calculated to be [53]

d〈(∆γ)2〉
dz

=
7

15
reλcγ

4
0K

2
0k

3
uF (K0) , F (K0) = 1.2K0 +

1

1 + 1.33K0 + 0.40K2
0

, (95)

where λc = h̄/mc ≈ 3.86 × 10−13 is the Compton wavelength. For the LCLS case (see

Table I), this quantum diffusion process increases the uncorrelated energy spread in the 100-

m undulator to more than 1×10−4 even if the initial energy spread is zero. Although this level

of energy spread is still acceptable for the LCLS and other similar x-ray FEL projects, the

quantum diffusion effect may impose a practical limit on the minimum achievable wavelength

for a given transverse emittance and peak current [54].
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TABLE I: Main parameters for the LCLS FEL.

Parameter Symbol Value

electron energy γ0mc2 13.6 GeV

bunch duration (fwhm) T 200 fs

bunch current (flat part) Ie 3.4 kA

transverse norm. emittance εn 1.2 µm

average beta function β̄ 25 m

undulator period λu 0.03 m

undulator field B0 1.25 T

undulator strength parameter K0 3.5

active undulator length Lu 110 m

fundamental wavelength λ1 1.5 Å

Pierce parameter ρ 4.5× 10−4

FEL power gain length LG 4.3 m

IV. CHARACTERISTICS OF X-RAY FELS

In the last section, we reviewed the basic theory of a high-gain FEL. In the following three

sections, we will apply the theory to discuss in turn, the properties of x-ray FEL output,

various effects that can degrade FEL performance, and novel schemes designed to enhance

the usefulness of the x-ray FEL. In order to make the length of the paper manageable, we

will present most results without much derivation and refer the reader to an extensive list

of literature.

In this section, we describe the radiation characteristics of an x-ray FEL including its

transverse and temporal coherence, harmonic content, and saturation behaviors. We will

mainly concentrate on the SASE FEL but will also comment on some advanced seeding

schemes in Sec. IV B. As a numerical example, we use the LCLS at λ1 = 1.5 Å [11] as

given in Table I. Figure 8 shows the GENESIS simulation of the radiation growth along the

undulator distance obtained with these parameters.
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FIG. 8: GENESIS SASE simulation of the LCLS power along the undulator distance.

A. Transverse coherence and mode properties

As briefly discussed in Sec. III E, a unique feature of the exponential growth regime is

optical guiding [25, 29], the phenomena in which the transverse profile of the radiation beam

is frozen. This arises because the field amplitude is dominated by the fundamental mode

with the largest growth rate as given by Eq. (60). Due to stronger diffraction and less spacial

overlap with the electron beam, higher-order modes usually have smaller growth rates and

hence are negligible after a few e-folding lengths of the fundamental modes. For an explicit

numerical demonstration, we refer the reader to the results of the LCLS higher-order mode

calculation reported in Ref. [55].

Because of optical guiding, the SASE FEL can reach almost full transverse coherence be-

fore saturation, even when the emittance of the electron beam ε is larger than the diffraction-

limited radiation emittance εr0 = λ1/(4π) as in the above LCLS example. Figure 9 shows

the GENESIS simulation of the LCLS radiation angular patterns at different z locations.

At the initial start-up stage, the large beam emittance excites many transverse modes, and

the radiation is dominated by incoherent spontaneous emission with its emittance εr ≈ ε

(Fig. 9 (a)). The mode pattern cleans up in the exponential growth regime due to optical

guiding (Fig. 9 (b)). Near saturation, the guided fundamental mode dominates the radiation

pattern (Fig 9 (c)), and the radiation emittance is almost given by εr0. In fact, the frequency-
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(a)z = 25 m (b)z = 50 m (c)z = 75 m

FIG. 9: (Color) Evolution of the LCLS transverse profiles at different z locations (courtesy of S.

Reiche, UCLA).

dependence of the fundamental mode profile within the finite SASE bandwidth introduces

a slight increase of the radiation emittance above the minimum emittance εr0 [56, 57]. If we

define the transverse mode parameter as

M2
T =

(
εr

εr0

)2

, (96)

then M2
T = (ε/εr0)

2 À 1 at the start-up stage and decreases to a value slightly above unity

at saturation. Detailed numerical simulations characterizing the dependence of transverse

coherence on the ratio of the electron emittance to the radiation emittance is presented in

Ref. [58].

In general, the evaluation of the transverse mode size (and angular divergence) requires

numerical solutions of the FEL eigenmode equation. Two limiting cases can be discussed

here for a “parallel” beam with a vanishing angular spread. For a large electron transverse

size or a small diffraction parameter (i.e., ηd << 1 in Eq. (79)), it is plausible (but wrong)

to estimate the rms mode size σr by σD =
√

λ12LG0/4π, which is the size of a coherent

optical beam with its Rayleigh length identified as the 1-D field amplitude gain length

2LG0. A correct calculation of the mode size proceeds from Eq. (61) by setting U(x̂) =

exp(−x̂2/2σ̂2
x) ≈ 1 − x̂2/2σ̂2

x and solving the equation exactly for a Gaussian fundamental

mode. In this 1-D limit, we find that the rms mode size is the geometric average of σD and

σx [33], i.e.,

σr ≈ √
σDσx ≈ √

ηdσx . (97)
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On the other hand, when the radiation mode size is much larger than the electron transverse

size due to strong diffraction effect (i.e., ηd >> 1), the beam-radiation interaction is no longer

characterized by ρ. In this 3-D limit, we should redefine ρ by replacing σ2
x in Eq. (5) with

σ2
r = (λ1/4π)2LD

G , where LD
G is the power gain length in this diffraction-dominated regime.

If we assume LD
G takes the form of Eq. (6) with the redefined ρ, both LD

G and σr can be

determined self-consistently as [32]

LD
G ≈

λu

4π

√
γ0IA

Ie

1 + K2
0/2

K2
0 [JJ]2

, and σr ≈
√

λ1

4π
2LD

G . (98)

In this case, both the gain length and the mode size are independent of the transverse beam

size.

B. Temporal characteristics and manipulations

Due to its noisy startup, the temporal property of a SASE FEL is that of a chaotic

light [59–62]. This may be illustrated with the analytical result in the 1-D case. Dropping

the transverse dependencies and mode index 0 in Eq. (82) and assuming a cold beam without

any initial energy spread, the second term of Eq. (82) is simplified to

aν(ẑ) =
ie−iµẑ

3µ

Ne∑
j=1

e−iνθj(0) , (99)

where µ satisfies the 1-D FEL cubic equation (63) and may be expanded to the second order

in ∆ν̂ as

µ(∆ν̂) ≈ −1

2

[
1− 2

3
∆ν̂ +

∆ν̂2

6

]
+

√
3

2
i

(
1− ∆ν̂2

6

)
. (100)

Inserting it into Eq. (99) and Fourier transforming aν using the relations in Eqs. (36) and

(46), we have

Ex(t; z) ∝ ei(k1z−ω1t)

∫
d∆ν̂e−iµ(∆ν̂)ẑ

Ne∑
j=1

exp [−iθj(0) + i2ρ∆ν̂(θ − θj(0))] (101)

∝ e(
√

3+i)ρkuz

√
z

Ne∑
j=1

exp

[
ik1z − iω1(t− tj(0))− 3

4

(
1 +

i√
3

)
σ2

ω

](
t− tj(0)− z

vg

)2

,

where tj(0) is the random arrival time of the jth electron at the undulator entrance. Note

that the group velocity of the wave packet is vg = ω1/(k1 + 2ku/3) [59], slower than the

speed of light but faster than the electrons that amplify the radiation.

31



Such a chaotic light can be analyzed by statistical methods (see, e.g., [63]). From the

first-order time correlation function, we obtain the coherence time as [60–62]

tc =

√
π

σω

. (102)

The energy of a SASE pulse W with a flattop duration T fluctuates according to the Gamma

probability distribution [60]:

p(W ) =
MM

Γ(M)

WM−1

〈W 〉M exp

(
−M

W

〈W 〉
)

, (103)

where 〈W 〉 is the average radiation energy and Γ(M) is the Gamma function. The relative

rms energy fluctuation σW is given by [60–62]

M =
1

σ2
W

=
〈W 〉2

〈W 2〉 − 〈W 〉2 =





T/tc when T À tc ,

1 when T ≤ tc .
(104)

Thus, the M parameter characterizes the degree of freedom or the temporal “mode” of the

pulse. For hard x-ray wavelengths, the coherence time tc determined by Eq. (102) is only

a few hundred attoseconds. Since the SASE pulse duration T is on the same order as the

typical electron pulse of a few hundred femtoseconds, M >> 1, and the Gamma distribution

of shot-to-shot pulse energies approaches a Gaussian distribution with a small relative rms

fluctuation given by 1/
√

M . Figure 10 illustrates the temporal power profile for about 10%

of the LCLS x-ray pulse. Note that these intensity spikes are roughly separated by tc. A

statistical analysis shows that the average number of intensity spikes in the time domain is

about 0.7M [64]. In the frequency domain, the SASE spectral profile is also similarly spiky.

The full SASE spectral width is about 2
√

πσω, consisting of M independent spectral modes.

Each mode is characterized by the spectral coherence range 2π/T .

The statistical fluctuation can be generalized to the 3-D case by redefining M = MLM2
T ,

where ML ≈ T/tc (for T À tc) or 1 (for T < tc) is the longitudinal mode number and M2
T

is the transverse mode number as defined in Eq. (96). Thus, the instantaneous power (with

ML = 1) at the start-up stage (with M2
T À 1) does not fluctuate as much as the exponential

growth stage (with M2
T → 1), as shown from Fig. 10 (a) to (b) and (b) to (c).

1. Shorter x-ray pulses

The temporal property of the SASE pulse can be tailored to a given application by

suitable manipulations. One interesting direction is to generate much shorter x-ray pulses
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FIG. 10: Temporal structures of 10% of the LCLS pulse at different z locations.

than the typical electron pulse of 100-fs in duration. Several methods have been proposed

(see Ref. [65] for a recent review), including that based on x-ray pulse compression [66] and

slicing [67] of a frequency-chirped SASE. The frequency-chirped SASE can be generated

by an energy-chirped electron beam through the FEL resonant condition of Eq. (4). In

this case, it can be shown [68] that the coherence time is independent of the frequency

chirp u = ∆ω/∆t as long as the frequency span within a temporal spike is smaller than

its bandwidth (i.e., when |u| ¿ σ2
ω), while the spectral coherence range increases according

to
√

π|u|/σω. A narrow-bandwidth monochromator may be used to slice a much shorter

section of the chirped x-ray pulse. If σm is the rms bandwidth of the monochromator, the

sliced rms x-ray pulse duration is [68]

σt =

√
σ2

ω + σ2
m

u2
+

1

4σ2
m

. (105)

The minimum pulse duration for an optimized σm is (σt)min ≈ σω/|u|. For |u| ∼ σ2
ω, σt ∼ tc,

and a single temporal spike of a few hundred attoseconds may be selected.

The energy chirp produced by the rf accelerator over the entire electron bunch is typically

much smaller than that required to select a single SASE spike, and the sliced x-ray pulse

duration is typically on the order of 10 fs [68]. A sufficiently large energy modulation

over a small fraction of the bunch may be produced when a high-power, fs optical laser

resonantly interacts with the bunch in a short undulator [69]. The local energy chirp can

be sufficiently large (with |u| ∼ σ2
ω) but can act like an effective energy spread to degrade

the FEL gain. Nevertheless, it is pointed out in Ref. [70] that the FEL gain degradation

due to a linear energy chirp can be perfectly compensated for by a proper taper of the

undulator parameter. Thus, a tapered undulator can automatically “select” a small fraction
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of an energy-modulated bunch that has the right chirp with a pulse duration of about 200

attoseconds [70].

2. Coherence enhancement through seeding

Although the poor temporal coherence of a SASE pulse can be improved by a narrow-

bandwidth monochromator, the radiation energy will at least be reduced by the ratio of the

SASE bandwidth to the monochromator bandwidth. In addition, the statistical fluctuation

of the filtered radiation will increase up to 100% as the number of spectral modes is reduced

down to unity. In order to provide fully coherent x-ray FEL pulses, the intrinsic noise of the

SASE radiation must be overcome with some forms of seeding.

• HGHG: Since a proper coherent seed does not exist at x-ray wavelengths, a high-

gain harmonic generation (HGHG) FEL relies on a coherent seed at subharmonic

wavelengths. In this scheme [71], a small energy modulation is imposed on the electron

beam by interaction with a seed laser in a short undulator (the modulator). The

energy modulation is converted to a coherent spatial density modulation as the electron

beam traverses a dispersive section. A second undulator (the radiator), tuned to a

higher harmonic of the seed frequency, causes the microbunched electron beam to emit

coherent radiation at that harmonic frequency. This shorter-wavelength radiation may

then be used as the coherent seed to the next stage HGHG. In this cascaded harmonic

conversion process, the ratio of electron shot noise to the laser signal is amplified by at

least the square of the harmonic order and may limit its final wavelength reach to the

soft x-ray region [72]. Single-stage HGHGs at infrared and ultraviolet wavelengths have

been demonstrated at Brookhaven National Laboratory [73, 74]. Cascaded HGHG

FELs are currently under design studies as soft x-ray sources [75, 76].

• Self-seeding FEL: A self-seeding scheme [77, 78] to improve the temporal coherence

consists of two undulators (of the same undulator period and strength) and an x-ray

monochromator located between them. The first undulator operates in the exponential

gain regime of a SASE FEL. After the exit of the first undulator, the electron is guided

through a dispersive bypass that smears out the microbunching induced in the first

undulator. The SASE output enters the monochromator, which selects a narrow band
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of radiation. At the entrance of the second undulator the monochromatic x-ray beam

is combined with the electron beam and is amplified up to the saturation level. Since

the SASE power over a narrow bandwidth at the exit of the first undulator fluctuates

100% for a single mode, the length of the second undulator is chosen to exceed the

saturation length sufficiently to suppress fluctuation of the final output power level.

Thus, this approach requires an undulator system almost twice as long as a single-stage

SASE FEL.

• Regenerative amplifier FEL: Another self-seeding scheme, a regenerative amplifier FEL

(RAFEL), has been demonstrated in the infrared wavelength region [79] and proposed

for VUV FELs [80, 81]. Recently, a hard x-ray RAFEL was also proposed and stud-

ied [82]. In this scheme, SASE radiation from the leading electron bunch in a bunch

train is spectrally filtered by the Bragg crystal reflectors and is brought back to the

beginning of the undulator to interact with the second bunch. This process continues

bunch-to-bunch, yielding an exponentially growing laser field in the x-ray cavity. The

FEL interaction with these short bunches regeneratively amplifies the radiation inten-

sity and broadens its spectrum. The downstream crystal transmits the part of the

radiation spectrum outside its bandwidth and feeds back the filtered radiation to con-

tinue the amplification process. This approach uses a significantly shorter undulator

but requires a bunch train that is uniform in space and energy.

C. Nonlinear harmonic generation

The ability to generate coherent harmonic radiation is an important aspect of an x-ray

FEL. In a planar undulator, the electron trajectory is not a pure sinusoid due to the fact

that the longitudinal velocity oscillates at one-half of the undulator period (see Eq. (8)).

This fact leads to the odd harmonic emission along the undulator axis. More specifically,

when we change the dependent coordinate from t to θ in the paraxial wave Eq. (38), we

should use the exact arrival time of the electron t = t̄ + (K2/(8ckuγ
2) sin(2kuz) and the

relation

θ(z) = (ku + k1)z − ck1t̄ = (ku + k1)z − ck1t + ξ sin(2kuz) , (106)
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FIG. 11: Longitudinal phase space picture of the electron bunch. In the small signal regime, both

the energy and the density modulations are sinusoidal at the fundamental wavelength λ1 (left).

Near saturation, the nonlinear modulation at the fundamental induces strong harmonic bunching

in the beam current (right).

where t̄ is the undulator-period-averaged arrival time and ξ = K2/(4 + 2K2) as defined

previous in Sec. III A. Because the right-hand side of Eq. (38) under the time integral is

periodic in z due to the fast wiggling motion, we average Eq. (38) over the undulator period

λu with the help of the Bessel function expansion

eiνξ sin(2kuz) =
+∞∑

p=−∞
Jp(νξ)ei2pkuz. (107)

This undulator-period averaging is nonzero only when ν is close to an odd integer h =

2p ± 1 = ...,−3,−1, 1, 3, .... Thus, the harmonic field amplitude Eν(x; z) at ν ∼ h is given

by

(
∂

∂z
+

∇2
⊥

2ihk1

)
Eν(x; z) =

eKh

2ε0γ0

ei∆νhkuz ×
∫

k1dθ

2π
e−iνθ

N∑
j=1

δ(x− xj)δ(θ − θj) . (108)

Here, the effective coupling strength of the hth harmonic is

Kh = K(−1)(h−1)/2
[
J(h−1)/2(hξ)− J(h+1)/2(hξ)

]
. (109)

In the previous notation, we had K1 = K[JJ]. Thus, in the forward z direction, the electric

field consists of a series of nearly monochromatic waves around the harmonic frequencies

hck1 [22], with the frequency detuning ∆νh = ν − h ¿ 1.

The FEL interaction introduces both energy and density modulations of the electron

beam with the period λ1. Close to saturation, strong bunching at the fundamental fre-

quency ω1 produces rich harmonic bunching and significant harmonic radiation in a planar

undulator [83, 84]. This nonlinear harmonic bunching process is qualitatively illustrated in

Fig. 11. Taking into account electron energy spread and emittance, as well as the radiation
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diffraction and guiding, a 3-D analysis of nonlinear harmonic generation [39] shows that the

gain length, and transverse and temporal properties of the first few harmonics are eventu-

ally governed by those of the fundamental after a certain stage of exponential growth. For

instance, driven by the third power of the radiation mode at the fundamental wavelength,

the third nonlinear harmonic radiation grows three times faster than the fundamental with a

coherent transverse mode and a more spiky temporal structure. As a numerical example, the

third harmonic power P3 (at 0.5 Å) of the LCLS radiation before saturation is analytically

estimated to be [39]

P3

ρPbeam

=

(
P1

ρPbeam

)3




×0.018 in the seeded mode ,

×0.11 in the SASE mode ,
(110)

where P1 is the fundamental radiation power. Due to the nonlinear statistics, the third-

harmonic power in the SASE mode is higher by a factor of six than that in the seeded case.

Figure 12 shows both the LCLS fundamental and the third-harmonic power of the seeded

case obtained from GINGER simulation at the optimal frequency detuning. Simulation for

the SASE mode shows more complicated third-harmonic evolution due to the shot-noise

background of the higher harmonics and the saturation effect. The analytical estimate for

the third-harmonic power is valid only for a short distance just before saturation. GINGER

SASE simulation shows that the third-harmonic power at saturation can reach almost 1% of

its fundamental power at 1.5 Å. A 1-D SASE simulation study [85] shows that the maximum

third-harmonic power at saturation (for a cold beam) is about 2% of the fundamental level.

The coherence time at saturation falls inversely proportional to the harmonic number, while

the relative spectral bandwidth is independent of the harmonic number.

In general, the third nonlinear harmonic radiation is the most significant harmonic com-

ponent and can naturally extend the wavelength reach of the x-ray FEL by a factor of three.

The naturally synchronized fundamental and third-harmonic radiation open up possibilities

for two-color pumb-probe experiments [86]. The pronounced temporal spikes of the nonlinear

harmonic radiation may allow selection of a short temporal pulse with high intensity [87].

Even harmonic radiation exists at an angle away from the undulator z axis. Although

the microbunched electron beam at saturation contains more second-harmonic bunching

than the third-harmonic bunching, the coupling strengths to even harmonic radiation are

usually much weaker for x-ray FELs employing high-energy electrons [88, 89]. For instance,
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FIG. 12: (Color) Fundamental (black solid curve) and third-harmonic (red dashed curve) powers

in GINGER seeded simulation for the LCLS parameters at the optimal frequency detuning. The

analytical estimate according to Eq. (110) is shown as the blue dotted curve.

the second-harmonic radiation for the LCLS FEL is negligible. Nevertheless, the second-

harmonic radiation may still be significant for long-wavelength FELs using relatively low-

energy electron beams as experimentally observed in Refs. [7, 90]. For an x-ray FEL such

as the LCLS, an “afterburner” undulator with its fundamental wavelength tuned to the

second harmonic of the main undulator may be used parasitically to extract coherent second-

harmonic radiation (at 0.75 Å) at a power level higher than the third-harmonic radiation

that accompanies the fundamental in the main undulator [91].

D. Saturation behavior

The radiation characteristics after saturation are more complex, especially for SASE

FELs. Linear and quasilinear theories do not apply, and simulation codes are required to

accurately predict the saturation behavior. The FEL bandwidth starts to increase due to

the appearance of sidebands associated with synchrotron oscillations of electrons trapped in

the ponderomotive potential [92]. In general both the transverse and the temporal coherence

decrease with the undulator distance in the saturation regime. Although the fluctuation of

the total radiated energy is reduced after saturation, the fluctuation of a single frequency

mode filtered by a monochromator is still 100% just as in the exponential growth regime [60].

An analytical model that reproduces such a statistical fluctuation in the early saturation
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regime was recently developed in Ref. [93].

V. UNDULATOR ERRORS AND WAKEFIELDS

The design of a typical x-ray FEL calls for a small-gap undulator system about 100 m

in length, consisting of many undulator sections with beam focusing/steering/diagnostic

stations between the sections. Errors in undulator magnetic field and electron beam steering

can degrade the FEL performance. In addition, wakefields induced by a high-current beam

in the small-gap vacuum chamber can also interfere with the FEL gain process. In this

section, we illustrate how FEL theory may be applied to study these effects.

A. Undulator errors

We will assume that each undulator segment is shimmed to have vanishing first and

second magnetic field integrals (no net steering errors) and focus on the variations of the

undulator parameter K due to magnetic field errors or transverse misalignments among

segments. Using the 1-D FEL equations, Yu et al. [94] studied the effect of undulator errors

on FEL performance. When the undulator strength parameter has an error ∆K = K −K0,

Eq. (11) can be written as

dθ

dz
=ku − k1

1 + (K0 + ∆K)2/2

2γ2

≈2kuη − ku
K0∆K(z)

1 + K2
0/2

. (111)

Here, the first term describes the ideal motion, and the second term is the amount of the

phase kick due to small changes in K. As a concrete model, we take

∆K(z) = ∆Kn for (n− 1)Lc < z < nLc (n = 1, 2, 3, ...) , (112)

where ∆Kn is a random quantity with the ensemble average 〈∆Kn〉 = 0. We have introduced

a magnetic correlation length Lc = Ncλu, which is assumed to be much shorter than the

approximate field amplitude gain length 2LG ≈ λu/(4πρ). Then the net phase shift per gain

length is

∆θ =

2LG/Lc∑
n=1

Nc
2πK0∆Kn

1 + K2
0/2

. (113)
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FIG. 13: (Color) Power degradation factor P/P0 at FEL saturation versus σK/K0 in the LCLS 33

undulator segments. Here, σK is the rms value of a uniform segment K error distribution. Five

random error distributions are used for a given σK . The rms width of the Gaussian fit is 4.2×10−4.

For 2LG/Lc À 1, ∆θ has a zero mean and a variance

(∆θ)2 =
Lg

Lc

(
Nc

2πK2
0

1 + K2
0/2

σK

K0

)2

=
πNcK

4
0

(1 + K2
0/2)2

(σK/K0)
2

ρ
≈ 4πNc

(σK/K0)
2

ρ
, (114)

where σK is the rms value of ∆Kn. A perturbation analysis yields the radiation power as [94]

P ≈ P0 exp

[
− z

LG

(∆θ)2

9

]
, (115)

where P0 is the power along the undulator without any error.

For a negligible power degradation near the SASE saturation at z ≈ 20LG, the mean

square of the ponderomotive phase shift per gain length is ∆θ2 ¿ 1. For errors associated

with magnetic pole field B0 that may occur every undulator period, Nc ∼ 1, the condition

becomes [94]
σB

B0

<

√
ρ

4π
. (116)

Hence, the pole field error tolerance is quite relaxed because it scales as
√

ρ instead of ρ.

On the other hand, if the length of the undulator segment is a significant fraction of 2LG

as in the LCLS case, the error in the average undulator parameter K per segment is now

correlated over Nc → (4πρ)−1. Although the perturbation analysis is not strictly valid in
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this case, Eq. (114) suggests that the error tolerance for K is

σK

K0

< ρ . (117)

The LCLS has the FEL parameter ρ ≈ 4.5 × 10−4 and 33 undulator segments (each 3.4 m

in length) [11]. Figure 13 shows that the GENESIS SASE simulation results for the LCLS

undulator segment K errors is in qualitative agreement with the requirement of Eq. (117).

B. Beam trajectory errors

The effects of non-straight beam trajectory may be illustrated with a heuristic 3-D model

when a microbunched beam is kicked by a single error dipole field (e.g., a misaligned

quadrupole) [95]. While the direction of the beam trajectory changes after the kick by

a deflecting angle φ, the wavefront orientation normal to the microbunching plane does not.

This discrepancy results in two mechanisms for gain degradation: a decrease in coherent

radiation power and an increased smearing of microbunching due to the intrinsic angular

spread. Both mechanisms are characterized by a critical angle [95]

φc =

√
λ1

LG

, (118)

and the power gain length after the kick becomes approximately LG/(1 − φ2/φ2
c). In the

LCLS case, φc ≈ 6 µrad at λ1 = 1.5 Å for LG ≈ 4 m.

For random trajectory errors that are periodically corrected by steering elements at beam

position monitor locations between the undulator sections, a statistical analysis based on the

previous phase error model is given in Ref. [94]. When the separation of the corrector stations

Ls is smaller than the gain length, the radiation power for an rms trajectory deviation xrms

is

P ≈ P0 exp

[
−

(
xrms

xtol

)1/4
]

, xtol = 0.266

(
Ls

LG

)3/4 (
LG

z

)1/4 √
λ1LG . (119)

For the LCLS, we can take Ls = 3.4 m, LG = 4 m, and z/LG ≈ 20 for the saturation

undulator distance, then xtol ≈ 3 µm, and the rms trajectory angle should be controlled to

within 1 µrad in order to guarantee a small power degradation.

Since a large trajectory distortion can destroy the FEL interaction, kicking the beam

at selected undulator locations may facilitate the z-dependent FEL power measurements

using a single diagnostic station at the end of the undulator beamline. This technique is
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FIG. 14: (Color) GENESIS simuluation of the LCLS far-field power for various quadrupole offsets

Qx at z = 40 m.

especially useful when intra-undulator FEL diagnostic stations are difficult to install. Let

us illustrate the trajectory distortion method for the LCLS. For a quadrupole with a focal

length fQ = 10 m, a small horizontal offset Qx = 60 µm corresponds to a kick angle

φ = Qx/fQ = φc. Figure 14 shows that a quadrupole at z = 40 m with a horizontal offset

Qx ≥ 60 µm (i.e., a kick angle φ ≥ φc) inhibits further growth of the FEL fundamental mode,

producing an approximately constant on-axis radiation intensity, which may be detected by

a far-field x-ray diagnostic station after the undulator. Similar conclusions hold at other

undulator locations in the exponential growth regime.

C. Wakefield effects

A high-current electron bunch induces a short-range wakefield that changes the beam

properties in the long undulator vacuum chamber. For the LCLS, the dominant (longitudi-

nal) wakefield is caused by the resistive wall of the vacuum pipe [96] and creates an energy

variation along the undulator distance as well as along the bunch position. Since the x-ray

coherence time tc is much shorter than the x-ray pulse duration T , the wakefield-induced

energy variation in an electron temporal slice of length ctc (known as an FEL slice) is usually

negligible for a typical wakefield that does not vary rapidly inside the bunch. Thus, the main

effect of the undulator wakefield in an FEL slice is to change the slice central energy and

consequently shift its resonant wavelength along the undulator distance. If we still use the

42



initial resonant wavelength to define the ponderomotive phase as was done in Sec. IIIA, the

phase equation (11) can now be rewritten as

dθ

dz
= 2ku

[
γ(z)− γ0

γ0

]
= 2ku

[ γ(z)− γc(z)

γ0︸ ︷︷ ︸
≡ η

+
γc(z)− γ0

γ0︸ ︷︷ ︸
≡ ζ

]
, (120)

where η(z) is now the energy deviation from the slice central energy γcmc2 and is still gov-

erned by Eq. (13) due to the FEL interaction, and ζ(z) is the wakefield-induced energy

change relative to the initial energy γ0mc2 for a particular slice of the bunch. Thus, the

wakefield effect for this slice is equivalent to an undulator taper that also changes the reso-

nant wavelength. The last point can be seen by comparing Eqs. (120) and (111). They are

equivalent when

ζ(z) = −K0∆K(z)

(2 + K2
0)

≈ −∆K(z)

K0

, for K2
0 À 2. (121)

Note that ζ in Eq. (111) is not a randomly fluctuating quantity as was the case for un-

dulator errors. Instead, ζ is a linear function of z for wakefield-induced energy change or

an equivalent linear taper of the undulator parameter. Unlike the uniform energy loss due

to the spontaneous undulator radiation, the wakefield-induced energy change varies from

slice to slice along the bunch coordinate, hence a unique undulator taper cannot perfectly

compensate the energy change for all bunch slices.

In general, ζ(z) is not small but can be considered as slowly varying if the fractional energy

change per field gain length is less than ρ. In the small signal regime before saturation, the

WKB approximation can be used to solve the FEL equations and to obtain the SASE power

as [97]

P (z) ≈ Pm(z) exp

[
−1

2

(
ζ(z)− ζm(z)√

3σω(z)/ω1

)2
]

, (122)

where Pm is the maximum power at the optimal energy change ζm > 0 or an equivalent

undulator taper, and Pm > P0 with P0 being the radiation power when ζ(z) = 0. Thus, a

small energy gain is actually beneficial to the SASE output power. For the LCLS, simulations

show that a fractional energy increase of 2ρ over the saturation distance zsat ≈ 90 m improves

the saturation power by about a factor of two as compared to the nominal saturation power

without any external energy change or taper (e.g., that given by Eq. (91) or FEL simulations

without any wakefield and taper). Because the LCLS bandwidth σω(zsat)/ω1 is close to ρ,

Eq. (122) indicates that the SASE power has a FWHM in ζ ≈ 4ρ at saturation.
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FIG. 15: (Color) Power degradation factor averaged over the core part of the bunch (with about

30 µm in length) versus the sinusoidal wake oscillation amplitude ζA/ρ at the LCLS saturation

(z = 90 m) for a prescribed tapered undulator (red solid curve) and without any taper (blue dashed

curve) (from Ref. [97]).

For a given wake energy variation as a function of the bunch coordinate, Eq. (122) can

be used to estimate the FEL power along the bunch position and to find the average SASE

power over the bunch. As a numerical example, Ref. [97] studied the case for a sinusoidal

energy oscillation that resembles the resistive wall wakefield in the core part of the 1-nC

LCLS bunch [96]. Figure 15 shows the average power degradation factor (with respect to

the maximum power Pm) as a function of the fractional energy oscillation amplitude ζA

without and with a linear taper that yields ζm = 2ρ at zsat. For a round 5-mm-diameter

vacuum pipe, ζA ≈ 6ρ for Cu and 3ρ for Al at zsat = 90 m. The average power in this part

of the bunch is then about 50% (25%) of Pm for the Al (Cu) vacuum pipe and insensitive to

the undulator taper for large energy oscillation amplitudes as shown in Fig. 15. In order to

reduce the wakefield effects in the undulator as well as in the accelerator, a 200-pC bunch

configuration was recently proposed for the LCLS [98]. In addition to compensating the

average wake energy loss, the start-to-end LCLS simulations [99] show that an additional

undulator taper of about 2ρ improves the saturation power by about a factor of two, making

its radiation energy comparable to the 1-nC case that suffers stronger wakefield effects.
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VI. GAIN ENHANCEMENT METHODS

As discussed in Sec. III F, a key requirement in realizing x-ray FELs is high-quality

electron beams. Since the SASE coherence time is relatively short as compared to the

electron bunch length, the slice beam qualities (i.e., the local emittance and energy spread

on the scale of the coherence time) are more relevant than the global ones. When high-

energy electrons are employed to drive the x-ray FELs, the relative slice energy spread is

usually too small to affect the SASE gain process. However, the FEL performance depends

critically on the transverse brightness of the beam defined as

B⊥ =
Ie

4π2ε2
n

. (123)

Here εn = γ0ε is the transverse normalized emittance. In the x-ray wavelength with negligible

energy spread, the power gain length at the optimized beta function may be estimated

as [100]

LG = 1.2

(
IA

I

)1/2
ε
5/6
n λ

5/6
u

λ
2/3
r

(1 + K2/2)1/3

K[JJ]
∝ B

−1/2
⊥ ε−1/6

n . (124)

The state-of-the-art photocathode rf gun is expected to produce beams with a normalized

emittance of about 1 µm at about 1 nC charge. With an optimized bunch compression

configuration, the bunch can be compresed to a peak electron current of 3 to 4 kA. These

expectations are reflected in the LCLS design parameters listed in Table I. Hence, the FEL

power gain length predicted from Eq. (80) or (124) is about 4 to 5 m, and the saturation

length is about 80 to 100 m.

We will now discuss some advanced beam-manipulation methods that can overcome these

apparent beam-quality limitations in order to enhance the FEL performance.

A. Beam conditioning

It was realized in Ref. [101] that the angular spread of a finite-emittance beam in the

undulator can be compensated for if each electron’s energy deviation is made to be propor-

tional to the square of its betatron amplitude. This can be understood by expanding the

undulator-period-averaged longitudinal velocity (i.e., Eq. (23) or (28)) for small ∆γ = γ−γ0.

The average longitudinal velocity will not depend on the transverse actions Jx,y when

(1 + K2
0/2)

γ2
0

∆γ

γ0

=
(Jx + Jy)

β̄
. (125)
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Averaging Eq. (125) over the beam (i.e., 〈Jx,y〉 = ε = εn/γ0) and using the FEL resonant

condition, the required correlated energy spread to compensate for the emittance effect or

to “condition” the beam is

〈∆γ〉 =
λu

λ1

εn

β̄
. (126)

Thus, the FEL gain degradation due to the angular spread of a finite-emittance beam can

be eliminated by conditioning the electron beam prior to the undulator entrance according

to Eq. (125). For such a conditioned beam in a natural-focusing undulator, we can take

k̂βσ̂x = 0 in Eq. (78) and ηε = 0 in Eq. (79), and the power gain length from Eq. (80)

can be much reduced. For a strong-focusing undulator employing FODO cells discussed in

Sec. III B, however, the oscillatory effect of the angular spread as shown in Eq. (27) remains

even though the average effect of the angular spread is eliminated by conditioning. In this

case, we can take ηε = 0 in Eq. (80) only when [102]

εn < γ0
λ1β̄

πLc

. (127)

This is usually a more tolerable emittance requirement than an unconditioned beam (see

Eq. (73)).

The nonlinear correlation of Eq. (125) requires special nonlinear accelerator components

that pose technical challenges. The discussion of various proposed methods to condition the

electron beams is beyond the scope of this paper. Reference [103] contains a recent review

on the subject.

B. Current-enhanced SASE

High electron peak current is an essential requirement for efficient FEL interaction

(through the FEL scaling parameter ρ). In a typical x-ray FEL accelerator system, bunch-

compressor chicanes are designed to increase the beam current to a few-kA level. Further

compression is increasingly difficult due to short-bunch collective effects in the accelerator.

Recently, Zholents proposed introduction of a GW-level optical laser beam to induce large

energy modulation in the electron beam in a special wiggler placed in the accelerator [104].

This energy modulation can then be converted to a large-density modulation at the optical

wavelength by a weak chicane prior to the FEL undulator. The local peak current of the

modulated beam can be tens of kA without strong emittance-deteriorating effects due to
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the small amount of charge concentrated in high-current regions. Such a current-enhanced

beam may enable the x-ray SASE FEL to saturate in a shorter undulator distance or to de-

crease the x-ray wavelength for a fixed undulator length. Reference [105] details a possible

implementation of this scheme in the LCLS.

C. Optical klystron enhancement

An optical klystron FEL [106] uses dispersive sections (magnetic chicanes) between un-

dulators to speed up the FEL microbunching process and has been successfully implemented

in many FEL oscillator facilities. A prerequisite for the effectiveness of the optical klystron

is the small relative energy spread. For a high-gain FEL, the requirement is [107]

ση ¿ ρ . (128)

Motivated by the very small uncorrelated energy spread (a few keV) of the electron beam

that has been measured in a photocathode rf gun [108], the optical klystron enhancement

to SASE FELs was recently studied in Ref. [109]. The optimal momentum compaction R56

of the chicane can be determined as

R56 ≈ 1

k1ση

. (129)

The additional slippage of the electron beam to the radiation introduced by the chicane is

R56

2
≈ λ1

4πση

À λ1

4πρ
∼ tc , (130)

where tc is the SASE coherence time defined in Eq. (102). This large slippage is beneficial

to a SASE optical klystron device because the microbunched electron beam does not have

to match the radiation phase when the dispersively enhanced microbunching does not over-

whelm the radiation from the earlier undulator [109]. Thus, the output power will not be

sensitive to a small variation of the chicane R56 (at the Angstrom level) or a small energy

jitter (at the 10−4 level), in contrast to an early simulation study with a seeded FEL [110].

The simulated SASE performance with the addition of four optical klystrons located at the

undulator long breaks in the LCLS shows significant improvement if the slice energy spread

at the undulator entrance can be controlled to 5× 10−5 [109]. In addition, FEL saturation

at shorter x-ray wavelengths (around 1.0 Å) within the LCLS undulator length becomes

possible.
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D. Emittance exchange

The very small uncorrelated energy spread of the beam from an rf gun also opens up the

possibility of exchanging the small longitudinal emittance with a large transverse emittance,

and hence increasing the transverse brightness of the beam for an x-ray FEL. First, a spe-

cial, “flat-beam” rf gun [111] can be used to produce beams with a large ratio of transverse

emittances. Then a transverse-to-longitudinal emittance-exchange beamline can be used to

switch the larger transverse emittance with the smaller longitudinal one. An approximate

optics for emittance exchange consisting of a dipole mode cavity in the middle of two doglegs

of opposite kicks (i.e., a magnetic chicane) was discussed in Ref. [112]. The scheme is ade-

quate when the emittance ratio is not too large. An exact emittance-exchange optics found

recently by K.-J. Kim is similar to the one in Ref. [112], but with the second dogleg in the

same direction as the first one [113] (see also Ref. [103]). Such a transverse-to-longitudinal

emittance-exchange optics is capable of handling very large-emittance ratios. Together with

a short-pulse, flat-beam rf gun, this scheme may produce beams with normalized transverse

emittances on the order of 0.1 µm and a compressed current on the order of kA, which may

be used to drive a sub-Angstrom x-ray FEL.

VII. CONCLUSIONS

We have reviewed the theory of the high-gain FELs, especially the SASE FELs, in both

ideal and more realistic accelerator environments. These analytical results are useful in

providing physical pictures, benchmarking simulation codes, and guiding the FEL designs

and experiments that are currently building toward x-ray lasers. We also highlighted several

research directions toward shortening the x-ray pulse lengths, increasing the temporal co-

herence of the source, and enhancing the FEL performance. We hope that the formulas and

ideas summarized here will stimulate further progress in realizing x-ray FELs, improving

their performance, and reducing their size and cost.
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APPENDIX A: LIST OF SYMBOLS

Symbol Physical meaning

aν scaled electric field

An nth-order transverse mode profile (n = 0, 1, 2, ...)

αx,y twiss parameter α

B0 undulator peak magnetic field on axis

β̄ average transverse beta function

βn natural beta function in a parabolic-pole-faced undulator

βx,y transverse beta function

c speed of light in vacuum

∆ν relative frequency detuning

e electron charge

E0 transverse electric field amplitude

Eν Fourier component of the transverse electric field

Ex transverse electric field

η relative energy deviation

ηd diffraction parameter

ηε angular spread parameter

ηγ energy spread parameter

ε0 vacuum permittivity

ε or εx,y transverse emittance of the electron beam

εn normalized transverse emittance of the electron beam

εr0 diffraction limited radiation emittance

εr radiation emittance
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f or F electron phase space distribution function

f0,1 zeroth-order (first-order) phase space distribution function

fν Fourier component of the distribution function

γ0 electron reference energy (in units of mc2)

γ electron energy (in units of mc2)

h harmonic order

h̄ Planck constant

I0 zeroth-order modified Bessel function

Ie electron bunch peak current

IA Alfvén current

jx transverse current

Jx,y transverse action

Jn Bessel function of order n (n = 0, 1, 2, ...)

k1 fundamental undulator radiation wavenumber

kβ average betatron focusing wavenumber

kn parabolic-pole-faced undulator natural focusing wavenumber

kn0 planar undulator vertical natural focusing wavenumber

kp longitudinal plasma oscillation wavenumber

ku undulator wavenumber

K0 nominal undulator strength parameter

Kh effective coupling strength of the hth harmonic radiation

LG0 1-D FEL power gain length of a monoenergetic beam

LG 3-D FEL power gain length

Ls undulator section length

Lu active undulator length

λ1 fundamental FEL wavelenth

λr undulator resonant wavelength at an arbitrary angle

λu undulator period
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Λ FEL gain length degradation factor

m electron rest mass

M total number of independent mode in a radiation pulse

MT,L transverse or longitudinal mode number

µn scaled growth rate of the nth transverse mode (n = 0, 1, ...)

n0 peak electron volume density

ne electron volume density function

Ne total number of electrons in a bunch

ω1 fundamental undulator radiation frequency

ν ratio of the radiation frequency to the fundamental frequency ω1

pβ divergence angle vector of transverse betatron motion

p divergence angle vector due to natural focusing or smoothed betatron

focusing

P radiation power

Pbeam electron beam power

Pn effective SASE start-up noise power

Psat FEL saturation power

P0 fundamental radiation power without error or taper

P1,3 radiation power at the fundamental (third-harmonic) frequency

Pm fundamental radiation power with an optimal taper

φ angle of the electron trajectory relative to the radiation propagation

ψ0 initial phase of the radiation wave

re classical electron radius

ρ FEL Pierce parameter

ση rms relative energy spread of the electron beam

σr rms transverse radiation size

σω rms SASE bandwidth

σW rms radiation energy fluctuation
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σx rms transverse size of the electron beam

σx′ rms transverse divergence of the electron beam

t electron’s arrival time at the undulator location z

t̄ electron’s arrival time averaged over an undulator period

T flattop electron bunch duration

tc radiation temporal coherence time

θ electron’s phase relative to the radiation wave

u radiation frequency chirp (frequency change per unit time)

vg SASE radiation group velocity

vx,y electron’s transverse velocity

vz electron’s longitudinal velocity

v̄z electron’s average longitudinal velocity in a planar undulator

W total radiation energy

x electron’s horizontal position

x two-component vector representing transverse betatron motion

y electron’s vertical position

z distance from the undulator beginning

zsat FEL saturation distance

ζ wakefield-induced fractional energy change

ZR Rayleigh length of the radiation
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