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Dibaryon amplitudes for the low-energy neutron-proton electromagnetic interaction

R. W. Hackenburg*
Physics Department, Brookhaven National Laboratory, Upton, NY 11973
(Dated: April 30, 2007)

This report is a collection of detailed calculations that employ dibaryon propagators and vertex
operators to obtain various electromagnetic amplitudes in the low-energy np/dy system.

I. PRELIMINARIES

Consider the low energy reactions depicted in Fig. 1. Amplitudes for these reactions are constructed using vertex
operators Yy and Yy,,,, off-shell deuteron (dibaryon) propagators Dy, and initial and final np and ~yd non-interacting
two-particle wavepacket states |np;), |yd;), etc. (d may be either ¢ or s for the spin-triplet 17 ground state or spin-
singlet 07 excited state. Yy and Yy,,, are shorthand for Y., and Yj4,,,, where the lone subscript refers to the
off-shell particle.) The baryonic operator Y, annihilates a deuteron (17 or 0%) and creates a neutron-proton pair, with
no change of spin. There are two types of baryonic—M 1-electromagnetic operators Y, . The isovector operator Yy
(or Y;, ) annihilates a 0 excited (or 1% ground state) deuteron and creates a photon and a 1% (or 07) deuteron,
with AJ = 1. The isoscalar operator Y, = annihilates a deuteron and creates a photon and a deuteron in a different
orientation, with AJ =0, AM = +1. The reactions and their amplitudes are:
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These amplitudes do not include the phase space. From Ref. [1], the operators Y, and YdT are both characterized by
the same eigenvalue y4, which includes the vertex-counting factor of two,

(Jd*aMd*;anMp) 9 <np| Yd |d*> = Cd*np Yd <d*| YJ |np> = Cd*npyd ) Md* = Mn + Mp ) (]-5)
ya = i2YOVE = in/E/7 . (1.6)

Cy+np is a shorthand notation for the Clebsch-Gordan coefficient, e.g., as defined in Refs. [2] and [3], and Y = 1//4~.
Jag+ and Mg« are the total angular momentum and magnetic quantum numbers for the intermediate, off-shell dibaryon.
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FIG. 1: The uncorrected low-energy s-wave np/~vd interactions with an intermediate dibaryon. Each vertex is counted twice,
from the number of ways to attach the two initial or two final particles.
A:np — d"— np (elastic) B:np — d*— 7d (capture) C: yd — d*— np (photodisintegration) D: vd — d*— ~d (elastic)
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M,, and M, are the nucleons’ magnetic quantum numbers. For a given Jg«, Mg-«, the dibaryon propagator is a one-state
dyad, thus, from Ref. [1],

Dy = |d*) Dy {(d*] , Dy =i8(—=1)""1/VE? —m? , (1.7)

where myg is the on-shell deuteron (11 ground state or 0" excited state) mass. Each npd* vertex has a correction Vy
due to OPE, applied across the np legs, where

Va=(1—z+x2)" ', (1.8)

with the upper sign for the space-symmetric triplet np (V;) and the lower sign for the space-antisymmetric singlet np
(Vs). In Ref. [1], OPE is described in terms of 7+ exchange, through the np exchange operator X and eigenvalue +u,
i.e., X |np) = £ |np); or 7° exchange, through the np non-exchange operator Z and eigenvalue z, i.e., Z |np) = z |np).
Each d* propagator has a correction

Qa=[1+ip(Vi—1)/v4 ™", (1.9)

where p is the np c.m. momentum and 4 is the scattering wavenumber. Nonrelativistically, 74 = 2mypeq, where My,
is the reduced np mass and €q4 is the np binding energy of my, i.e., mg = m,, + m;, — €4. These corrections are to all
orders, but ignore non-pionic contributions and the energy dependence of x and z, which is valid at least to a few
MeV.

II. ORDINARY M1 CAPTURE: DIRECT CONTRIBUTION FROM AN INTERMEDIATE DIBARYON

Consider the magnetic dipole (M 1) interaction acting directly on dibaryons (Fig. 1). The analog to Eq. (1.5) is
Carna = Cr1 (s, Mar; v, Ma) 5 (yd| Yy, |d7) = Carnayy,,, » (1Y 1vd) = CarnaTy,,, » Mo = Mg+, (2.1)

where 7 serves double-duty both as the photon-state label in (yd| or Cg++q, and as the photon helicity, with v = £1
corresponding to right or left circularly-polarized photons. Frequently, v is used as a sign, i.e., v = +.

Under the Siegert theorem [4], the baryonic and electromagnetic interactions are separable. If the npd* vertex
operator and the baryonic component of the d*dy vertex operator are determined by the energy of the off-shell leg,
then they are both characterized by the eigenvalue y4. The d*dy (M1) vertex operator contains an electromagnetic
component characterized by the eigenvalue y7,,. Following Appendix B in Ref. [2], a plane wave e”P" describing
circularly polarized photons is expanded into a series of spherical vector harmonics X fjw (0, ¢), which are products
of a spherical harmonic, a Clebsch-Gordan coefficient (—v/+/2 — this is not Cj+q), and a spin-vector (polarization)
€F) = €7, There are only two contributing terms for M1, for which J = 1, thus,

X] = (—y/V2)Y](Q)e” = \/3/167 sinfePe?’ = y], o \/3/167 sinfe? . (2.2)

For M1 radiation, the spin of the deuteron defines the Z axis, and the radiation is predominantly in the equatorial
plane, i.e., at 90° from the Z axis. Because the intermediate state has no spin, this Z axis has complete 47 freedom-
of-choice. By conservation of momentum, the deuteron recoil is exactly opposite to the direction of the photon, in
the c.m.

Because the spherical harmonics are contained in y},,, the factor Y =1/ V/4m in y4 must be removed when the
interactions described by y4 and y},, are combined, thus,

Yo = VAT yayl, = i2VEy),, . (2.3)
The electromagnetic part of the Hamiltonian for a proton in an electromagnetic field is, nonrelativistically [5],
Hem = (e/2myp)o - (pp X A) + (e/my)pp - A,

where o is the Pauli spin operator, e the proton charge, m, the proton mass, p, the c.m. momentum of the proton,
and A the vector potential. The vector potential is quantized with

eA — Jae® (2.4)
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FIG. 2: Diagrams for the interaction of a proton with a photon. In both cases k* + pj = pz*.

where € is the photon polarization vector and « is the electromagnetic coupling!. This interaction is represented in
Fig. 2, where at least one leg must be off-shell (here, one of the proton legs is off-shell). The on-shell proton momentum
is |pp| = pp = w in the rest frame of the off-shell proton leg, where p, = —k, with k the photon momentum vector,
and where the on-shell proton and photon are both incoming or both outgoing. (For one incoming and one outgoing,
pp = k.) With p = p,/w and Eq. (2.4), the Hamiltonian density is

Hom = (1/my)Vaw [fo - (b x e) +p- )] .

The spin-current term in Hep, occurs in the M1 interaction. Accounting for the anomalous magnetic moment,
Hspin =HUp WO - (ﬁ X e(i)) )

where i, is the proton magnetic moment. This is a multiple of the nuclear magneton p,, = v/ar/2my, L.e., 1y = 2Kl -

In the s-wave, o - (p x €?) can be replaced with 0 or 1, according to the initial and final states considered. With Eq.
(2.2),

Y1, (proton) = p, w+/3/167 sinf e'7? . (2.5)
The neutron also has a spin-current term, with magnetic moment p,,. For the neutron,
Y1, (neutron) = 1, wy/3/167 sin 6 e? (2.6)

With the isovector magnetic moment p1 = g, — py, for AJ = 1 (ignoring the d-wave component), the isoscalar
magnetic moment po = pp, + py, for AJ =0, and with p, , one of py or pg, for an isovector or isoscalar deuteron (or
dibaryon),

Yy, (deuteron) =y, , wy/3/16m sinf e 7% . (2.7)
Then, with Eq. (2.3),

Yi, = i2VE i, ,wy/3/167 sin @ e? = ip, ,wy/3E /4T sinfe? (2.8)
In the plane-polarization basis (¢ = 0°: “horizontal”, ¢ = 90°: “vertical”),
X144+ X1- = —+/3/87 sinf (sin(b e™ + cos ¢ (—:(V)) ,

y](\}]{h) = ILLAJUJ 3/1671' Sin@\/m )

yfi\;w/lh) = ip, ,wy/3E/4m sinf/1 + cos 2¢ .

For ordinary M1 capture, the initial state is |np) = |J, M) = |0,0), and the two possible final states are (yt| =
(v, M| = (£1,F1|, where the magnetic quantum number of the final deuteron is M; = —v. The corrected v = +1
amplitudes for a direct contribution from an intermediate, off-shell singlet dibaryon are

Al = <’7t‘ Y;MlDSQstVs \np) =QsVs <7t| Yle |5*> Dy <5*‘ Yj \np) = QVsDy (CS*'yt ySM1) (CS*npys)
= mwEQ,V,D,sinfe? /27 (2.9)

where Cs«yp = C11(0,0;y, —) = 1/\/5, and Cj+pp = 1 because the np state is expressed in the J, M basis.

1 Equation (2.4) often appears with a conventional normalization 1/v/2w, where w is the photon energy [5, 6]. The amplitudes as defined
here do not include this normalization, which occurs instead in a covariant phase-space factor [1].



FIG. 3: Capture with off-shell baryons.

IIT. ORDINARY M1 CAPTURE: CONTRIBUTION FROM OFF-SHELL BARYONS

Consider the diagrams in Fig. 3. Let b be either n or p for the neutron or the proton, and let Ep« and pp« be the
off-shell baryon’s energy and momentum, which are

Epy=FE,—w, Por =p—w, (3.1)
with Ep, = \/TW, since p, = pp = p. Then
EL —pi. —mi = —2w(Ey, —p) . (3.2)
For a given isospin/spin-state, the baryon propagator is a one-state dyad [1], thus,
Dy = |b*) Dy (b*| , Dy =2i2my/(Ep. — ppe —mj) = —imy/w(Ep — p) . (3.3)

The npd vertex eigenvalues are similar in both Figs. 1 and 3, but with different energies and a different particle
off-shell (n* or p* instead of d*), and with a vertex-counting factor of one instead of two. Note that Eq. (1.6) may be
written yg = i2YV Eg4+ because E4« = E. Following Egs. (1.5) and (1.6), and using Eq. (3.1),

d> = Cdn*p Yn~* <d‘ YTT*

Cdn*p =C (Jd7Md;Mn*7Mp) 5 <n*p|Yn*

n*p> = Cdn*p yn* ) Md = Mn* + Mp )

1
2

(SIS

Cdnp* =C (Jda Md; an Mp*) s <Tlp*‘ Yp* ‘d> = Cdnp* Yp* <d‘ YpT* \np*) = Cdnp* ?p* ) Mg = M, + Mp* )
yp = iYON/ By = i/ (Ep — w) /47 . (3.4)

As with Yy, etc., Y}, is shorthand for Yg,«,, etc., where the lone subscript refers to the off-shell particle. The EM
vertex eigenvalues are similar to Eq. (2.1), thus,

Coypr = C11 (5, My; 7y, My-) = 7V/2/3 ol Y},TMI 0) = Corp- Ty, =VV2/3 T3, » My = My +~ . (3.5)

11
22

In analogy with Eq. (2.3), with Egs. (2.5) and (2.6), and p, one of w, or fi,,

) =iV (By — w) /Am VAT pyw/3/167 sin e = ippw/3(Ey — w) /167 sin e . (3.6)

The vertex correction V; is applied to the triplet n*pt and np*t vertices, where X and Z operate between the np
legs, and the vertex correction Vj is applied to the initial singlet np. (The presence of an internal n* or p* leg does not
affect the operators X and Z.) For a given v = £1, let np be the neutron-proton for the case of the virtual neutron,
and let n'p’ be the neutron-proton for the case of the virtual proton. (These are the same neutron-proton pair, in their
two possible singlet spin-states. For quantities other than the spin the prime is omitted, because E,,» = E,,, D,s = D,,,
etc., but note: D, # D,,, etc.) For the n*np contribution, where the neutron undergoes the M1 transition,

v+ My =M, , My =My +M,=—y = Mp:Mn*:—Mn,Mn:%’y. (3.7)
For the p’*n/p’ contribution, where the proton undergoes the M1 transition,
N4 My« = My , My = My« + M, = — = My = My« = =My , My = 3. (3.8)
The initial state may then be written as

Z5 (|43, -3) = [=3.+5)) =175 Inp) =75 In'?) - (3.9)



FIG. 4: The capture reaction (Fig. 1B) with the AJ =1 M1 s*vt vertex expanded to show the virtual baryon contributions.
Because the counting factor at the upper s*np vertex is one, and because the operator Y is defined in elastic scattering where
the counting factor is two, the operator at that vertex is %Ys The lower nps™ vertex is the same from elastic scattering, and
has a counting factor of two. Diagrams with a t*-ys vertex (AJ = 1) or a t*~t vertex (AJ = 0) are similar, with s* — ¢*, ¢ — s,
or ¥ —t", t —t.

By definition of the np/n'p’ notation-scheme, M, = —M,, and M,, = —M,,, and only the np part contributes to the
n* transition, and only the n’p’ part contributes to the p'* transition. Note that Cyspy, = 7% and Cgxprp = —’y%.
Then, with Eq. (3.7) and the np part of Eq. (3.9), the n* amplitude is

Ay = Y ViDaY,, Vs (vd5) Inp) = 7d5VaVi (2] (1Y, [n°) Do 0" Vi, ) 1)

=75 VaVa (1Y, [n*p) Dy (yn*| Y, [n) =775 ViViyaDa (’Y\/é) Uoan = o5 VsVaunDn Wy, (3.10)
where Cyprp = Clypr+ = 1 because My = £1. With Eq. (3.8) and the n'p’ part of Eq. (3.9), the p* amplitude is
Ay = Y, ViDY Ve (<1 ) ) = =5 ViViuoDy By, - (3.11)
The combined amplitude is
VsVi _ _ ViV, E,—w E,—w) . ,
A=A+ A = UnDn7)  —ypyDp7) = — (mn e — My >sm06”¢ . 3.12
P P \/g ( M1 p=p le) 87 H En —p pHp Ep —p ( )

At low energies, m, = E,, = E/2, m, =2 E, = E/2, and E/2 > p,w. Then, with p1 = p, — p, and my =
(my, +my) /22 E/2,

—ip VsVimpy

o~ ; (el
AY, = sinfe7? | (3.13)

8

which reveals the dependence on the isovector magnetic moment .

IV. ORDINARY M1 CAPTURE: EXPANDED s*yt VERTEX

The s*~vt vertex from Fig. 1B is expanded in Fig. 4 to reveal the virtual baryons. While all three baryons in the
loop may be off-shell, the two from the s* decay are not so-labeled; this is mostly for convenience, but also because
these two may be on-shell. The n and p in the expanded vertex are taken to have the same spins as the n and p in the
initial state. Then, the n* (or p*) has its spin opposite to the initial n (or p). There is an overall sign change when
the n and p in the expanded vertex have changed their spins from the initial state, as happens when they are acted
on by an odd number of X operators (i.e., 7* exchange — see Ref. [1]). This is accounted for when the corrections
are inserted. The s*np opening vertex is counted only once, because swapping the n and p gives rise to the n* and
p* contributions, which are separately accounted for. Therefore, the operator at this s*np vertex occurs as %YS. The
correction V; is applied to the triplet n*pt and np*t vertices, and the correction V; is applied to both nps* vertices.
The correction @ is applied to the singlet dibaryon propagator Ds. There are no corrections applied to the baryon
propagators, nor is there a radiative correction applied to the n*yn or p*vyp vertex. With the n*np/p'*n’p’ notation
of Egs. (3.8)-(3.9), the amplitudes with an intermediate singlet dibaryon are

na1 PMm1

A} = (1| Vi¥a Do Y, DuD,VedY,QuD. YV, (35) Inp)+ (1] Vi, Dy Yy, D Dy Va3 Y, QDY Vi (— 25 In'p')



For a particular v = +1, the propagators are one-state dyads, thus,
Dy = [n") Dy« ("], Dy~ = ‘p/*>Dp* ("

The asterisk on the subscript of D, and D)+ serves to distinguish between the n and n*, etc., which have different
energies. The baryon propagators are all given by Eq. (3.3). Then

» DnD), = In) |p) D, D, (n|(pl , D, D, = |”/> |p/> D, D, <n/\ <p/\ .

A} = 525 QVAVE (] (Y In*) Doe (07| Y, 1) [p) DuDy (n] (91 Y, |s*) Dy (57| Y] |np) +
— LYy [17) Dy (0| Y 10} 5) DDy (' (6], 157) D (1Y n's) )
=72—;§sttv3D8DnDp[<t|Yn [°p) D= (n* | Vi, In) (np] Y, |s*) (75 ) Bt

— (Y, [0 Dy (1Y, 1) (DY, | (75 ) 7]

% QthVgDsDn‘DPgs [ynDn* <’Y\/§) y;YlMl (’7%) Ys + yPDp* <’7\/§) yi?Ml (_’Y%> ys‘|

V15V32Ds|ys|2DnDp(ynDn* y’szl - prp* g;ZMl) = iQs‘/st‘ysFA;prDnDp , (41)

1
s @s

where (vb*|Y, le |b) = Clé(%,Mb;%Mb* W, = 7\/% Uy,,,» for b*b=n*n or PP, and A} is given by Eq. (3.12),
where D,, and D,, correspond to D, and Dp+ in Eq. (4.1).

V. ISOSCALAR CAPTURE

An initial np in the triplet spin-state may be captured through the AJ = 0 (isoscalar) operator Yirn- The
photon energy is the same as in ordinary capture, but the symmetry of the initial state is different. Consider first the
contribution from Fig. 3. For the n*np contribution, where the neutron undergoes the M1 transition,

’Y+Mn*:Mn = Mn*:_Mn7 Mn:%’y’ My = My~ + M, :_%PY"_MP' (51)
For the p’*n/p’ contribution, where the proton undergoes the M1 transition,
y —+ Mp’* = Mpl = Mp/* = 7Mp/ s Mp/ = %’Y s Mt = Mp/* + Mn/ = *%’Y + Mn’ 5 (52)

From these, it can be seen that the final deuteron must either have M; = —v for M =0 (M,, = —M,,, M,y = —M,)
or My =0 for M = +1 (M, = M, — there is no distinction between np and n’p’ for M = +1). There are three
contributing initial states:

1,0) = f"" 2>+f| 3 +3) = f\np> \/ﬁ\n/P'>, |1, £1) = |+, £3) = |np) . (5.3)

The amplitudes Az(év)[’ AZ(’O)W for the M = 0 initial states are

Al = (Y, VDY Ve ) = J5Vi2 (1 (Y, [n*) Di (0] Y1, ) [p)

n(0) nan
= VY00 D |V, ) = 5 VDo (1/3) Tl =55 WnDuT . (50)
ANy = (Y, ViDp Y Vigs n'p') = S5 V2 1Y, [07) Dy (07| Y, In) ')
= SVE Y, [n'") Dy (0" Y, 1) = 5 Vi ypDy (7\@) U =75 Ve Dy, (5.5)
The amplitudes Ag{o) Ag(’g) for the M = +1 initial states are

AT0) = Y, ViD, Y, Vi lnp) = V2 (2] (], |n*) Do (0¥ Vi, 1) 1)
= VUV l08) Do b ¥ 1) = V2 () w0 (/3 ) T, =755 Vo DuTh 69
AT = (Y VDY Vi lnp) = 725 V2 up Dy Ty, - (5.7)



Note that there is no change in sign between the n* and p* contributions, as for ordinary capture. Define
, 112
A:;I)(O) = A 0) + AW(O) Al(of + Av(o) =75 Vi (YnDn Uyan + prp@zm) : (5.8)

Like the s*vyt vertex, the t*yt¢ vertex from Fig. 1B may also be expanded as in Fig. 4 to reveal the virtual baryons.
The correction V; is applied to the triplet n*pt and np*t vertices, and to both npt* vertices. The correction Q; is
applied to the triplet dibaryon propagator D;. With the t*+t vertex expanded as shown in Fig. 4, the AJ = 0
intermediate dibaryon amplitudes for the M = 0 (M; = —~) initial states are

Al = (I ViYaDy- Y, DuDyVidY,Qu DY, Vi Js Inp) + (71| ViV, Dy Yy, Do Dy Vi3 Y,Q: DY, Vi 5 n'p)
= 555 QuVE (1Y) Doe 0" Vi, 10) 1) DDy ] 9] Y, 1) D (¢ Y7 ) +
(1 UV [§7) Dy (0 10 10 DDy (| (0 Y, 16°) Dy 17 ) )
QDD D, |t Yo In7p) Do (¥ YL, ) (npl Y, 1) (5 ) 7t
+ (Y, [0D") Dy (30| Vi, 1) 091 Y, 1) (35) )
1Q:V Dy, DD, [ynDn* <7\/g) 5 (%) Y+ YpDyp (m/?) A (%) yt]

= 7505 QV Delye|*Du Dy (Yn D= T,y + YD Tpoy) = 1QiViDilye* DDy AY (5.9)

The AJ = 0 intermediate dibaryon amplitudes for the M = £1 (M, = 0) initial states are

Al = (7t VYo Dy Y

nM1

D, D,Vi3Y,Q: DYV, [np) + (1| ViY, Dy Yy}, DD, Vi3 Y,Qi DY, Vi [np)
Z%Qt‘é?’((vI(tlYn [n%) Dos (n*| Y1, [n) p) DuDy (n (p| Y, |t°) Dy (7] ;' |np) +
+ (7] (1 Y5 [p") Dy (p"| Y, [0) [) DDy (n] {pl Yy [£7) D (7] Y Inp>)

:%QtvatDnDp(<t\Yn\n*p>Dn ([ ) (9] Y2 £ 5, + (01 Yy ) Dy ("1 Y, 1) (0] Y, 1) 7,

= Y305 QVEDilyd > Du Dy (yn Do T3y + Yp D Ty, ) = 2AZ(’037 : (5.10)

Because of the occurrence of additional Clebsch-Gordan coefficients in the expanded vertex of Fig. 4, A;’(g =+ A;’(’O)

VI. 0" LEVEL DECAY

Only the eigenvalues 37, of the operator Ys,,, are needed, as expanded in Fig. 4. The initial state is the 07T level,
|s) =0,0), and the final state is a deuteron and photon (v¢| in one of two polarization states, with M; = —. The
correction V; is applied to the triplet n*pt and np*t vertices, and the correction V is applied to the nps decay vertex.
With Eqgs. (3.7)-(3.9), the eigenvalues are

= (Y| ViYo DYl DD, 1Y, Vi|s) + (yt| Vi, Dy- Y, DDy Y,V |s)
=3 ViV (<vl (] Yy [n*) Dy (n*| Y1, [0) p) DuDy (0] (] Y, |s)
+ [ty [p7) Dpe (07| Y, I0) P) DuDy <n'|<p'\Ys|S>)

= LVViDDy ({11 Yo [19) Doe (4| Y, ) (mpl Y, Is) + (1] Yy [W'p) Dy (3| Vi, 19) (0P| Y, 1) )

— 1VV,D,D, [ynDn* <7\/g) Toae (195) v+ 12D (’V\@ T (~138) y]

= vatv Ys D D) ( n D~ ?;;Ml — YpDp y;{zvn) = stD D Anp ) (6.1)

where A7 is from Eq. (3.12).

~
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VII. M1 PHOTON-DEUTERON ELASTIC SCATTERING

For the amplitude with an intermediate, off-shell singlet dibaryon, the initial deuteron and photon have opposite
spins, as do the final deuteron and photon. With ~;, v the polarization states of the initial and final photon, there
are four contributing amplitudes, each with initial and final deuteron spins My; = —v; and My = —vy. In terms of
the expanded s*vt vertex operator and its eigenvalue (6.1), the elastic 4¢ amplitudes with an intermediate, off-shell
singlet dibaryon are

AT = (yptg| Y, Qs DSYS  vits) = Qs Diydl, 1 (7.1)

VIII. TWO-PHOTON CAPTURE

Consider AJ = 1 M1 radiative capture from an initial triplet np, resulting in a deuteron in the excited 0% state
and a photon. Unlike ordinary capture, there can be no contribution from M = M,, + M,, = 0. For the contribution
from off-shell baryons, where there is no intermediate dibaryon, the correction V; is applied to the singlet n*ps and
np*s vertices, and the correction V; is applied to the initial singlet np. Because the intial state has M = 41, there is
no need to distinguish np between the case of the virtual neutron and the case of the virtual proton, as was done in
Egs. (3.7)-(3.9), For the n*np contribution, where the neutron undergoes the M1 transition,

Y+ My =M, , Mg = M, + M, =~+ M, =0 = M, =—M,- = M, =1v. (8.1)
For the p*np contribution, where the proton undergoes the M1 transition,
Y+ My =M, , Mg =Mp+M,=~v+ M, =0 = Mn:—Mp*:Mpzév. (8.2)
The initial state is
11, £1) = |+£3,£3) = [v3,73) = [np) . (8.3)

Note that Cgp+p = —’y% and Cgpp = 7%. The M = +1 amplitudes from Fig. 3 are

AY = (8| Y Ve DYl Ve lnw) = ViV (3] (sl Y, ) Do (n*| Y1, ) [p) = ViVa (s] Y, [n*p) Di (yn*| Y1, )

=V,V;D, (—7%) Yn (w/é) Do = =5 VeVeun D0, (8.4)

AY = (ys| Y, VaDp Yl Ve Inp) = VaVi (0] (31 Y,, [07) Dy (0 Yy, ) In) = ViVe (s] Y, np®) Dy (97| VS, )
= V.ViD, (7%) Yp (v\@) Upors = 75 VsVt Do Wy, (85)
Al = AT+ A) (8.6)

But for an overall sign change and substantially different photon energy, these are the same as Eqgs. (3.10)-(3.12) for
ordinary capture. Like ordinary capture, this is very nearly proportional to p1 = pp — n, i.e., it can also be classified
as an isovector reaction. With the t*vys vertex expanded as shown in Fig. 4, the amplitudes are

A} = (ys|ViY, DY, | DD, ViLY,Q,D,Y,'V, |np) + (ys| V.Y, D,- Y, D, D,V,1Y,Q,D,Y,'V, |np)

i par
= %QtVst(ﬁl (8 Yo [n%) Dy (0| Y,F,,, 1) [p) DuDy (1] (pl Y, 1£7) De (7] ;' [np) +
+ (71 (1Y [p*) Dy ("1 Yy, In) |p) DuDy (] {pl Yy [t*) Dy (7] V7! Inp>)
= 3QUVPAVaDi, DDy (] Y [0p) Die (yn*| Y, |n) (npl Yy [£7) + (5] Yy, [np™) Dy (9| VS, ) (npl Yy [£7))
= 3Q:Vi?ViDig, DD, [(—vk) Yn Dn- <7\/g) Uhasy Ut + (v%) YpDp- (v\@) Ui yt}
= 27\1/5 Q:V2ViDi|yi|* Du Dy (= yn D= 7)), + YpDypr Uh) = %Qt‘/tDtlyt'QDnDpA;sz . (8.7)

A}, is given by Eqgs. (8.4)-(8.6), where D,, and D, correspond to D, and Dy in Eq. (8.7).



IX. FE1 CAPTURE

For E1 capture, the initial np is in a triplet spin state, with total spin S =1 and Mg = £1,0, and in a relative p-
wave, with orbital angular momentum L = 1 and My, = #£1,0. The final deuteron ¢ is in the 17 ground state, with spin
M, and the final photon has helicity ¥ = £1. The intermediate baryon contribution, with no intermediate dibaryon,

is similar to the M1 case (Fig. 3), but there is no contribution from the neutron. Y,,,, is replaced with Y, ., and

the eigenvalue y) =~ = VA y, y}, is replaced with 7, = VAry, yr,, with y}, = (—iv)(iw/my)+/3/16m sinf 9.
Note that y}, differs from y],, by a factor —iy (among other things), because the electric and magnetic fields in
electric multipole radiation are “exchanged”, relative to those in magnetic multipole radiation, and it is p - € that
is replaced with unity instead of o - (p x €)). The spins satisfy

Y+ My =M, + My, , My =My + M, , My =DM, , Ms=M,+M, =  My=~, Msg=DM,, (9.1)

from which it is seen that the final deuteron has the same spin and orientation of the initial np, i.e., M; = Mg.
Because v = My, only Mj = %1 contributes. The initial np are in a relative p-wave, so the triplet np wavefunction
is spatially antisymmetric. Adopting the np/n’p’ notation from Eqs. (3.7)-(3.9) for the M; = 0 case (and modifying
it somewhat), the initial state is (By definition, M, = —M,, and M, = —M,,.)

A T e L L s A X
M; = +1 |£3,£3) = np) , M, =M, = M, = +3 . (9.2)

no

With this notation (employed only for M; = 0), there is a contribution from npp* and another from n’p’p’*. Because p
and p’ are the same proton in its two possible orientations, the prime is not included in the subscripts of such variables
as Ep, Dp«, etc. Note, however, that the Clebsch-Gordan coeflicients are not the same, i.e., Cypp- = % = —Ciprpr=.
Let J,, specify the total angular momentum of the initial np, with projection M, = Mg + M = My + . Jpp is
0, 1, or 2, corresponding to 28411, =3Py, 3Py, or 3Py; amplitudes with different J,,, My, do not interfere when
integrated over 47 solid angle. In analogy with Eq. (3.5),

C(np)'y(np*) = Oll(an; an; s an*) = Cll(']npa an; Vs Mt) ) <’Yp | pEl |p> = C(np)'y(np*)?gEl ) (93)
Ypp = IV(Ep —w)/Am ViaTyp, = v(w/mp)Va(E, —w)\/3/167 sinfe’®  (circular polarization) ,  (9.4)
yz(j‘;/lh) = (w/my)Va(E, — w)\/3/167 sin 6 /1 F cos 26 (plane polarization) . (9.5)

The Clebsch-Gordan coefficients are

3Po (7 =x1; M; = —"/) Cn 1

(0,0;+1, 1) = C11(0,0; —1, +1) =+,
3 = . — _ ’ ’ ) 75 1
Py (y==%1;M; =0,—7) Cn(1,-1;-1,0) = 011(170, _1’+1) _ _% Y5
PPy (v = £1; My = 0,%7) O 41 41,0) = Oy (2,1 -1,0) = &
Ci1(2,0;4+1,-1) = C11(2,0; -1, +1) = \}6

Since the np* is in a relative s-wave, in the triplet spin state, the vertex correction V; is included at the np*t vertex,
where the final-state deuteron ¢ is created and the np* are annihilated. The p-wave vertex correction Vp is applied
to the initial p-wave np (see Ref. [1]). The amplitudes with an intermediate, off-shell baryon (Fig. 3) are, where
IM = Jpp, My,

PE1
A0 = ViV [V, 1) Dy (0* 1Y, (5 ) Inw) + 01 Y, [0 Dy (07| Vi, (=) 1)
= 55ViVe Dy ((tY, [np") (| Y, 1p) = (1Y, [n''™) (™[ Y, 1)
= Ve, [(&) 1 Cut (M7, 0) B, — (—25) 00 On (0 M7, 033, ] = Cui (4, M3,0)47
A)Tar = ViVe (1t Y, [97) Dy (07| Yy, Inp) = ViV (4] Y,, Inp™) Dy (yp*| Vil Ip) = Cua(J, My, 1) A7

= AT = O] Msy, M)Ay (9.7)

AV = (I VY,DY) Ve lnp) . AY=ViVey,Dp7l,, (9.6)
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Contributions from intermediate dibaryons require that the dibaryon posses orbital angular momentum. The p-
wave dibaryon propagator is take to be the same as the s-wave dibaryon propagator, but with a p-wave propagator
correction @ p instead of Q; (see Ref. [1], where it is assumed that a p-wave triplet dibaryon has the same on-shell
mass as an s-wave triplet dibaryon). The ¢t*ty vertex is expanded as shown in the right half of Fig. 4. There is a
p-wave vertex correction Vp at either end of the intermediate dibaryon, applied between the np legs, and an s-wave
vertex correction V; at the vertex where the np* join to form the final triplet dibaryon in a relative s-wave. A} and

Az %\2 are given by Eqgs. (9.6)-(9.7), where D,, corresponds to D)« in the amplitudes AZ’%}I, which are

PE1
= 35 QpVVE( (3t1Y, I67) Dy (07| Y, In) [p) DuDy (] (6] Y, 1) D (] Y, Inp) +
— Y, [0 Dy (0| il 10} 19) DDy (0| 0 Y, 16°) Dy (2| ') )
= TinPWVﬁDp*DnDth[@\ Y, Inp®) (o Y, p) (%) v (ﬁ) Yot
— (Y, |’y (| YD) (—%) Yt (—%)?t}

= 5QpViVEDy DDy Dilunl? | (3) v C1a (U M3 7, 00T, — (= 35) v O (4 M37,0073,, |

Ay = QeViVE (31, Dy Y, DaDy Y, DiY] (J5) Inp) + (1] Y, Dy Yy, Do Dy 1Y, D1Y; (=5 ) In'p')]

= 1C11(J, M;7,0)QpVe Dy Dy Dy|y:|* A (9.8)
A = QpViVE (4] Y, Dy, D, D, 1YD,gY Inp)

= 3QpViVE (t (1Y, [p") Dy (0| Y, In) \p> D,.D, (n| (p| Y, |t*) Dy (t*| Y |np)
= 3QpPViVpDy- D, D, D, <t|Yp np") (vp" | Vi, D) 0 T,

= 3QPViVEDy- Dy Dy Difye|* yp Cha (J, M3, £1) 777,

= 3C11(J, M;~, £1)QpVp Dy Dy Dy|y:|* A (9.9)
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