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Dibaryon amplitudes for the low-energy neutron-proton electromagnetic interaction

R. W. Hackenburg∗
Physics Department, Brookhaven National Laboratory, Upton, NY 11973

(Dated: April 30, 2007)

This report is a collection of detailed calculations that employ dibaryon propagators and vertex
operators to obtain various electromagnetic amplitudes in the low-energy np/dγ system.

I. PRELIMINARIES

Consider the low energy reactions depicted in Fig. 1. Amplitudes for these reactions are constructed using vertex
operators Yd and YdM1 , off-shell deuteron (dibaryon) propagators Dd, and initial and final np and γd non-interacting
two-particle wavepacket states |npi〉, |γdi〉, etc. (d may be either t or s for the spin-triplet 1+ ground state or spin-
singlet 0+ excited state. Yd and YdM1 are shorthand for Yd∗np and Yd∗dγM1 , where the lone subscript refers to the
off-shell particle.) The baryonic operator Yd annihilates a deuteron (1+ or 0+) and creates a neutron-proton pair, with
no change of spin. There are two types of baryonic–M1-electromagnetic operators YdM1

. The isovector operator YsM1

(or YtM1
) annihilates a 0+ excited (or 1+ ground state) deuteron and creates a photon and a 1+ (or 0+) deuteron,

with ∆J = 1. The isoscalar operator YtM1(0)
annihilates a deuteron and creates a photon and a deuteron in a different

orientation, with ∆J = 0, ∆M = ±1. The reactions and their amplitudes are:

n+ p→ d∗ → n+ p 〈npf |YdDdY
†
d |npi〉 (np elastic) (1.1)

n+ p→ d∗ → d+ γ 〈γdf |YdM1
DdY

†
d |npi〉 (radiative capture) (1.2)

γ + d→ d∗ → n+ p 〈npf |YdDdY
†
dM1
|γdi〉 (photodisintegration) (1.3)

γ + d→ d∗ → d+ γ 〈γdf |YdM1
DdY

†
dM1
|γdi〉 (γd elastic) (1.4)

These amplitudes do not include the phase space. From Ref. [1], the operators Yd and Y †d are both characterized by
the same eigenvalue yd, which includes the vertex-counting factor of two,

Cd∗np ≡ C 1
2

1
2

(Jd∗ ,Md∗ ;Mn,Mp) , 〈np|Yd |d∗〉 = Cd∗np yd , 〈d∗|Y †d |np〉 = Cd∗np yd , Md∗ = Mn +Mp , (1.5)

yd ≡ i2Y 0
0

√
E = i

√
E/π . (1.6)

Cd∗np is a shorthand notation for the Clebsch-Gordan coefficient, e.g., as defined in Refs. [2] and [3], and Y 0
0 ≡ 1/

√
4π.

Jd∗ and Md∗ are the total angular momentum and magnetic quantum numbers for the intermediate, off-shell dibaryon.
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FIG. 1: The uncorrected low-energy s-wave np/γd interactions with an intermediate dibaryon. Each vertex is counted twice,
from the number of ways to attach the two initial or two final particles.
A: np→ d∗→ np (elastic) B: np→ d∗→ γd (capture) C: γd→ d∗→ np (photodisintegration) D: γd→ d∗→ γd (elastic)
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Mn and Mp are the nucleons’ magnetic quantum numbers. For a given Jd∗ ,Md∗ , the dibaryon propagator is a one-state
dyad, thus, from Ref. [1],

Dd = |d∗〉Dd 〈d∗| , Dd = i8(−1)J−1/
√
E2 −m2

d , (1.7)

where md is the on-shell deuteron (1+ ground state or 0+ excited state) mass. Each npd∗ vertex has a correction Vd
due to OPE, applied across the np legs, where

Vd = (1− z ± x)−1 , (1.8)

with the upper sign for the space-symmetric triplet np (Vt) and the lower sign for the space-antisymmetric singlet np
(Vs). In Ref. [1], OPE is described in terms of π± exchange, through the np exchange operator X and eigenvalue ±x,
i.e., X |np〉 = ±x |np〉; or π0 exchange, through the np non-exchange operator Z and eigenvalue z, i.e., Z |np〉 = z |np〉.
Each d∗ propagator has a correction

Qd = [1 + ip(V 2
d − 1)/γd]−1 , (1.9)

where p is the np c.m. momentum and γd is the scattering wavenumber. Nonrelativistically, γd ∼= 2mnpεd, where mnp

is the reduced np mass and εd is the np binding energy of md, i.e., md = mn +mp − εd. These corrections are to all
orders, but ignore non-pionic contributions and the energy dependence of x and z, which is valid at least to a few
MeV.

II. ORDINARY M1 CAPTURE: DIRECT CONTRIBUTION FROM AN INTERMEDIATE DIBARYON

Consider the magnetic dipole (M1) interaction acting directly on dibaryons (Fig. 1). The analog to Eq. (1.5) is

Cd∗γd ≡ C11(Jd∗ ,Md∗ ; γ,Md) , 〈γd|YdM1
|d∗〉 = Cd∗γd y

γ
dM1

, 〈d∗|Y †dM1
|γd〉 = Cd∗γd y

γ
dM1

, Md∗ = Md + γ , (2.1)

where γ serves double-duty both as the photon-state label in 〈γd| or Cd∗γd, and as the photon helicity, with γ = ±1
corresponding to right or left circularly-polarized photons. Frequently, γ is used as a sign, i.e., γ = ±.

Under the Siegert theorem [4], the baryonic and electromagnetic interactions are separable. If the npd∗ vertex
operator and the baryonic component of the d∗dγ vertex operator are determined by the energy of the off-shell leg,
then they are both characterized by the eigenvalue yd. The d∗dγ (M1) vertex operator contains an electromagnetic
component characterized by the eigenvalue yγM1. Following Appendix B in Ref. [2], a plane wave eip·r describing
circularly polarized photons is expanded into a series of spherical vector harmonics XM

J (θ, φ), which are products
of a spherical harmonic, a Clebsch-Gordan coefficient (−γ/√2 – this is not Cd∗γd), and a spin-vector (polarization)
ε(±) = εγ . There are only two contributing terms for M1, for which J = 1, thus,

Xγ
1 = (−γ/

√
2)Y γ1 (Ω)εγ =

√
3/16π sin θ eiγφεγ ⇒ yγM1 ∝

√
3/16π sin θ eiγφ . (2.2)

For M1 radiation, the spin of the deuteron defines the Z axis, and the radiation is predominantly in the equatorial
plane, i.e., at 90◦ from the Z axis. Because the intermediate state has no spin, this Z axis has complete 4π freedom-
of-choice. By conservation of momentum, the deuteron recoil is exactly opposite to the direction of the photon, in
the c.m.

Because the spherical harmonics are contained in yγM1, the factor Y 0
0 = 1/

√
4π in yd must be removed when the

interactions described by yd and yγM1 are combined, thus,

yγdM1
=
√

4π yd y
γ
M1 = i2

√
E yγM1 . (2.3)

The electromagnetic part of the Hamiltonian for a proton in an electromagnetic field is, nonrelativistically [5],

Hem = (e/2mp)σ · (pp ×A) + (e/mp)pp ·A ,

where σ is the Pauli spin operator, e the proton charge, mp the proton mass, pp the c.m. momentum of the proton,
and A the vector potential. The vector potential is quantized with

eA→ √α ε(i) , (2.4)
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FIG. 2: Diagrams for the interaction of a proton with a photon. In both cases kµ + pµp = pµp∗ .

where ε(i) is the photon polarization vector and α is the electromagnetic coupling1. This interaction is represented in
Fig. 2, where at least one leg must be off-shell (here, one of the proton legs is off-shell). The on-shell proton momentum
is |pp| ≡ pp = ω in the rest frame of the off-shell proton leg, where pp = −k, with k the photon momentum vector,
and where the on-shell proton and photon are both incoming or both outgoing. (For one incoming and one outgoing,
pp = k.) With p̂ ≡ pp/ω and Eq. (2.4), the Hamiltonian density is

Hem = (1/mp)
√
αω

[
1
2σ · (p̂× ε(i)) + p̂ · ε(i)

]
.

The spin-current term in Hem occurs in the M1 interaction. Accounting for the anomalous magnetic moment,

Hspin = µp ωσ · (p̂× ε(i)) ,

where µp is the proton magnetic moment. This is a multiple of the nuclear magneton µ
N
≡ √α/2mp, i.e., µp = 2κpµN .

In the s-wave, σ · (p̂× ε(i)) can be replaced with 0 or 1, according to the initial and final states considered. With Eq.
(2.2),

yγM1(proton) = µp ω
√

3/16π sin θ eiγφ . (2.5)

The neutron also has a spin-current term, with magnetic moment µn. For the neutron,

yγM1(neutron) = µn ω
√

3/16π sin θ eiγφ . (2.6)

With the isovector magnetic moment µ1 = µp − µn for ∆J = 1 (ignoring the d-wave component), the isoscalar
magnetic moment µ0 = µp + µn for ∆J = 0, and with µ∆J one of µ1 or µ0, for an isovector or isoscalar deuteron (or
dibaryon),

yγM1(deuteron) = µ∆J ω
√

3/16π sin θ eiγφ . (2.7)

Then, with Eq. (2.3),

yγdM1
= i2
√
E µ∆Jω

√
3/16π sin θ eiγφ = iµ∆Jω

√
3E/4π sin θ eiγφ . (2.8)

In the plane-polarization basis (φ = 0◦: “horizontal”, φ = 90◦: “vertical”),

X1+ +X1− = −
√

3/8π sin θ
(

sinφ ε(h) + cosφ ε(v)
)
,

y
(v/h)
M1 = µ∆Jω

√
3/16π sin θ

√
1± cos 2φ ,

y
(v/h)
dM1

= iµ∆Jω
√

3E/4π sin θ
√

1± cos 2φ .

For ordinary M1 capture, the initial state is |np〉 = |J,M〉 = |0, 0〉, and the two possible final states are 〈γt| =
〈γ,Mt| = 〈±1,∓1|, where the magnetic quantum number of the final deuteron is Mt = −γ. The corrected γ = ±1
amplitudes for a direct contribution from an intermediate, off-shell singlet dibaryon are

Aγs = 〈γt|YsM1
DsQsY

†
s Vs |np〉 = QsVs 〈γt|YsM1

|s∗〉Ds 〈s∗|Y †s |np〉 = QsVsDs (Cs∗γt ysM1) (Cs∗np ys)

= µ1ωEQsVsDs sin θeiγφ/2π , (2.9)

where Cs∗γt = C11(0, 0; γ,−γ) = 1/
√

3, and Cs∗np = 1 because the np state is expressed in the J,M basis.

1 Equation (2.4) often appears with a conventional normalization 1/
√

2ω, where ω is the photon energy [5, 6]. The amplitudes as defined
here do not include this normalization, which occurs instead in a covariant phase-space factor [1].
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FIG. 3: Capture with off-shell baryons.

III. ORDINARY M1 CAPTURE: CONTRIBUTION FROM OFF-SHELL BARYONS

Consider the diagrams in Fig. 3. Let b be either n or p for the neutron or the proton, and let Eb∗ and pb∗ be the
off-shell baryon’s energy and momentum, which are

Eb∗ = Eb − ω , pb∗ = p− ω , (3.1)

with Eb =
√
m2
b + p2, since pn = pp = p. Then

E2
b∗ − p2

b∗ −m2
b = −2ω(Eb − p) . (3.2)

For a given isospin/spin-state, the baryon propagator is a one-state dyad [1], thus,

Db = |b∗〉Db 〈b∗| , Db
∼= i2mb/(E2

b∗ − p2
b∗ −m2

b) = −imb/ω(Eb − p) . (3.3)

The npd vertex eigenvalues are similar in both Figs. 1 and 3, but with different energies and a different particle
off-shell (n∗ or p∗ instead of d∗), and with a vertex-counting factor of one instead of two. Note that Eq. (1.6) may be
written yd = i2Y 0

0

√
Ed∗ because Ed∗ = E. Following Eqs. (1.5) and (1.6), and using Eq. (3.1),

Cdn∗p ≡ C 1
2

1
2

(Jd,Md;Mn∗ ,Mp) , 〈n∗p|Yn∗ |d〉 = Cdn∗p yn∗ , 〈d|Y †n∗ |n∗p〉 = Cdn∗p yn∗ , Md = Mn∗ +Mp ,

Cdnp∗ ≡ C 1
2

1
2

(Jd,Md;Mn,Mp∗) , 〈np∗|Yp∗ |d〉 = Cdnp∗ yp∗ , 〈d|Y †p∗ |np∗〉 = Cdnp∗ yp∗ , Md = Mn +Mp∗ ,

yb = iY 0
0

√
Eb∗ = i

√
(Eb − ω)/4π . (3.4)

As with Yd, etc., Yn is shorthand for Ydn∗p, etc., where the lone subscript refers to the off-shell particle. The EM
vertex eigenvalues are similar to Eq. (2.1), thus,

Cbγb∗ ≡ C1 1
2
( 1

2 ,Mb; γ,Mb∗) = γ
√

2/3 , 〈γb∗|Y †bM1
|b〉 = Cbγb∗ y

γ
bM1

= γ
√

2/3 yγbM1
, Mb = Mb∗ + γ . (3.5)

In analogy with Eq. (2.3), with Eqs. (2.5) and (2.6), and µb one of µp or µn,

yγbM1
= i
√

(Eb − ω)/4π
√

4π µbω
√

3/16π sin θ eiγφ = iµbω
√

3(Eb − ω)/16π sin θ eiγφ . (3.6)

The vertex correction Vt is applied to the triplet n∗pt and np∗t vertices, where X and Z operate between the np
legs, and the vertex correction Vs is applied to the initial singlet np. (The presence of an internal n∗ or p∗ leg does not
affect the operators X and Z.) For a given γ = ±1, let np be the neutron-proton for the case of the virtual neutron,
and let n′p′ be the neutron-proton for the case of the virtual proton. (These are the same neutron-proton pair, in their
two possible singlet spin-states. For quantities other than the spin the prime is omitted, because En′ = En, Dn′ = Dn,
etc., but note: Dn′ 6= Dn, etc.) For the n∗np contribution, where the neutron undergoes the M1 transition,

γ +Mn∗ = Mn , Mt = Mn∗ +Mp = −γ ⇒ Mp = Mn∗ = −Mn , Mn = 1
2γ . (3.7)

For the p′∗n′p′ contribution, where the proton undergoes the M1 transition,

γ +Mp′∗ = Mp′ , Mt = Mp′∗ +Mn′ = −γ ⇒ Mn′ = Mp′∗ = −Mp′ , Mp′ = 1
2γ . (3.8)

The initial state may then be written as

1√
2

(∣∣+ 1
2 ,− 1

2

〉−
∣∣− 1

2 ,+
1
2

〉)
= γ 1√

2
|np〉 − γ 1√

2
|n′p′〉 . (3.9)
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FIG. 4: The capture reaction (Fig. 1B) with the ∆J = 1 M1 s∗γt vertex expanded to show the virtual baryon contributions.
Because the counting factor at the upper s∗np vertex is one, and because the operator Ys is defined in elastic scattering where
the counting factor is two, the operator at that vertex is 1

2
Ys. The lower nps∗ vertex is the same from elastic scattering, and

has a counting factor of two. Diagrams with a t∗γs vertex (∆J = 1) or a t∗γt vertex (∆J = 0) are similar, with s∗ → t∗, t→ s,
or s∗ → t∗, t→ t.

By definition of the np/n′p′ notation-scheme, Mn′ = −Mn and Mp′ = −Mp, and only the np part contributes to the
n∗ transition, and only the n′p′ part contributes to the p′∗ transition. Note that Cs∗np = γ 1√

2
and Cs∗n′p′ = −γ 1√

2
.

Then, with Eq. (3.7) and the np part of Eq. (3.9), the n∗ amplitude is

Aγn = 〈γt|YnVtDnY
†
nM1

Vs

(
γ 1√

2

)
|np〉 = γ 1√

2
VsVt 〈γ| 〈t|Yn |n∗〉Dn 〈n∗|Y †nM1

|n〉 |p〉

= γ 1√
2
VsVt 〈t|Yn |n∗p〉Dn 〈γn∗|Y †nM1

|n〉 = γ 1√
2
VsVt ynDn

(
γ
√

2
3

)
yγnM1

= 1√
3
VsVt ynDn y

γ
nM1

, (3.10)

where Ctn∗p = Ctn′p′∗ = 1 because Mt = ±1. With Eq. (3.8) and the n′p′ part of Eq. (3.9), the p∗ amplitude is

Aγp = 〈γt|YpVtDpY
†
pM1

Vs

(
−γ 1√

2

)
|n′p′〉 = − 1√

3
VsVt ypDp y

γ
pM1

. (3.11)

The combined amplitude is

Aγnp ≡ Aγn +Aγp =
VsVt√

3

(
ynDn y

γ
nM1
− ypDp y

γ
pM1

)
=
iVsVt

8π

(
mnµn

En − ω
En − p −mpµp

Ep − ω
Ep − p

)
sin θ eiγφ . (3.12)

At low energies, mn
∼= En ∼= E/2, mp

∼= Ep ∼= E/2, and E/2 À p, ω. Then, with µ1
∼= µp − µn and mN ≡

(mn +mp)/2 ∼= E/2,

Aγnp
∼= −iµ1VsVtmN

8π
sin θ eiγφ , (3.13)

which reveals the dependence on the isovector magnetic moment µ1.

IV. ORDINARY M1 CAPTURE: EXPANDED s∗γt VERTEX

The s∗γt vertex from Fig. 1B is expanded in Fig. 4 to reveal the virtual baryons. While all three baryons in the
loop may be off-shell, the two from the s∗ decay are not so-labeled; this is mostly for convenience, but also because
these two may be on-shell. The n and p in the expanded vertex are taken to have the same spins as the n and p in the
initial state. Then, the n∗ (or p∗) has its spin opposite to the initial n (or p). There is an overall sign change when
the n and p in the expanded vertex have changed their spins from the initial state, as happens when they are acted
on by an odd number of X operators (i.e., π± exchange – see Ref. [1]). This is accounted for when the corrections
are inserted. The s∗np opening vertex is counted only once, because swapping the n and p gives rise to the n∗ and
p∗ contributions, which are separately accounted for. Therefore, the operator at this s∗np vertex occurs as 1

2Ys. The
correction Vt is applied to the triplet n∗pt and np∗t vertices, and the correction Vs is applied to both nps∗ vertices.
The correction Qs is applied to the singlet dibaryon propagator Ds. There are no corrections applied to the baryon
propagators, nor is there a radiative correction applied to the n∗γn or p∗γp vertex. With the n∗np/p′∗n′p′ notation
of Eqs. (3.8)-(3.9), the amplitudes with an intermediate singlet dibaryon are

Aγs = 〈γt|VtYnDn∗Y
†
nM1

DnDpVs
1
2YsQsDsY

†
s Vs

(
γ 1√

2

)
|np〉+〈γt|VtYpDp′∗Y

†
pM1

Dn′Dp′Vs
1
2YsQsDsY

†
s Vs

(
−γ 1√

2

)
|n′p′〉
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For a particular γ = ±1, the propagators are one-state dyads, thus,

Dn∗ = |n∗〉Dn∗ 〈n∗| , Dp′∗ =
∣∣p′∗〉Dp∗

〈
p′∗
∣∣ , DnDp = |n〉 |p〉DnDp 〈n| 〈p| , Dn′Dp′ = |n′〉 |p′〉DnDp 〈n′| 〈p′| .

The asterisk on the subscript of Dn∗ and Dp∗ serves to distinguish between the n and n∗, etc., which have different
energies. The baryon propagators are all given by Eq. (3.3). Then

Aγs = γ 1
2
√

2
QsVtV

2
s

(
〈γ| 〈t|Yn |n∗〉Dn∗ 〈n∗|Y †nM1

|n〉 |p〉DnDp 〈n| 〈p|Ys |s∗〉Ds 〈s∗|Y †s |np〉+

− 〈γ| 〈t|Yp
∣∣p′∗〉Dp∗

〈
p′∗
∣∣Y †pM1

|n′〉 |p′〉DnDp 〈n′| 〈p′|Ys |s∗〉Ds 〈s∗|Y †s |n′p′〉
)

= γ 1
2
√

2
QsVtV

2
s DsDnDp

[
〈t|Yn |n∗p〉Dn∗ 〈γn∗|Y †nM1

|n〉 〈np|Ys |s∗〉
(
γ 1√

2

)
ys+

− 〈t|Yp
∣∣n′p′∗〉Dp∗ 〈γp∗|Y †pM1

|p′〉 〈n′p′|Ys |s∗〉
(
−γ 1√

2

)
ys

]

= 1
4 QsVtV

2
s DsDnDp ys

[
ynDn∗

(
γ
√

2
3

)
yγnM1

(
γ 1√

2

)
ys + ypDp∗

(
γ
√

2
3

)
y γpM1

(
−γ 1√

2

)
ys

]

= 1
4
√

3
QsVtV

2
s Ds|ys|2DnDp

(
ynDn∗ y

γ
nM1
− ypDp∗ y

γ
pM1

)
= 1

4 QsVsDs|ys|2AγnpDnDp , (4.1)

where 〈γb∗|Y †bM1
|b〉 = C1 1

2
(1

2 ,Mb; γ,Mb∗)y
γ
bM1

= γ
√

2
3 yγbM1

, for b∗b = n∗n or p′∗p′, and Aγnp is given by Eq. (3.12),
where Dn and Dp correspond to Dn∗ and Dp∗ in Eq. (4.1).

V. ISOSCALAR CAPTURE

An initial np in the triplet spin-state may be captured through the ∆J = 0 (isoscalar) operator YtM1(0) . The
photon energy is the same as in ordinary capture, but the symmetry of the initial state is different. Consider first the
contribution from Fig. 3. For the n∗np contribution, where the neutron undergoes the M1 transition,

γ +Mn∗ = Mn ⇒ Mn∗ = −Mn , Mn = 1
2γ , Mt = Mn∗ +Mp = − 1

2γ +Mp . (5.1)

For the p′∗n′p′ contribution, where the proton undergoes the M1 transition,

γ +Mp′∗ = Mp′ ⇒ Mp′∗ = −Mp′ , Mp′ = 1
2γ , Mt = Mp′∗ +Mn′ = − 1

2γ +Mn′ , (5.2)

From these, it can be seen that the final deuteron must either have Mt = −γ for M = 0 (Mn = −Mp, Mn′ = −Mp′)
or Mt = 0 for M = ±1 (Mn = Mp – there is no distinction between np and n′p′ for M = ±1). There are three
contributing initial states:

|1, 0〉 = 1√
2

∣∣+ 1
2 ,− 1

2

〉
+ 1√

2

∣∣− 1
2 ,+

1
2

〉
= 1√

2
|np〉+ 1√

2
|n′p′〉 , |1,±1〉 =

∣∣± 1
2 ,± 1

2

〉
= |np〉 . (5.3)

The amplitudes Aγ,Mt

b(0) = Aγ,−γb(0) for the M = 0 initial states are

Aγ,−γn(0) = 〈γt|YnVtDnY
†
nM1

Vt
1√
2
|np〉 = 1√

2
V 2
t 〈γ| 〈t|Yn |n∗〉Dn 〈n∗|Y †nM1

|n〉 |p〉

= 1√
2
V 2
t 〈t|Yn |n∗p〉Dn 〈γn∗|Y †nM1

|n〉 = 1√
2
V 2
t ynDn

(
γ
√

2
3

)
yγnM1

= γ 1√
3
V 2
t ynDn y

γ
nM1

, (5.4)

Aγ,−γp(0) = 〈γt|YpVtDp′Y
†
pM1

Vt
1√
2
|n′p′〉 = 1√

2
V 2
t 〈γ| 〈t|Yp

∣∣p′∗〉Dp

〈
p′∗
∣∣Y †pM1

|n′〉 |p′〉

= 1√
2
V 2
t 〈t|Yp

∣∣n′p′∗〉Dp

〈
γp′∗

∣∣Y †pM1
|p′〉 = 1√

2
V 2
t ypDp

(
γ
√

2
3

)
yγpM1

= γ 1√
3
V 2
t ypDp y

γ
pM1

, (5.5)

The amplitudes Aγ,Mt

b(0) = Aγ,0b(0) for the M = ±1 initial states are

Aγ,0n(0) = 〈γt|YnVtDnY
†
nM1

Vt |np〉 = V 2
t 〈γ| 〈t|Yn |n∗〉Dn 〈n∗|Y †nM1

|n〉 |p〉

= V 2
t 〈t|Yn |n∗p〉Dn 〈γn∗|Y †nM1

|n〉 = V 2
t

(
1√
2

)
ynDn

(
γ
√

2
3

)
yγnM1

= γ 1√
3
V 2
t ynDn y

γ
nM1

, (5.6)

Aγ,0p(0) = 〈γt|YpVtDpY
†
pM1

Vt |np〉 = γ 1√
3
V 2
t ypDp y

γ
pM1

. (5.7)
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Note that there is no change in sign between the n∗ and p∗ contributions, as for ordinary capture. Define

Aγnp(0) ≡ Aγ,0n(0) +Aγ,0p(0) = Aγ,−γn(0) +Aγ,−γp(0) = γ 1√
3
V 2
t (ynDn y

γ
nM1

+ ypDp y
γ
pM1

) . (5.8)

Like the s∗γt vertex, the t∗γt vertex from Fig. 1B may also be expanded as in Fig. 4 to reveal the virtual baryons.
The correction Vt is applied to the triplet n∗pt and np∗t vertices, and to both npt∗ vertices. The correction Qt is
applied to the triplet dibaryon propagator Dt. With the t∗γt vertex expanded as shown in Fig. 4, the ∆J = 0
intermediate dibaryon amplitudes for the M = 0 (Mt = −γ) initial states are

Aγ,−γt(0) = 〈γt|VtYnDn∗Y
†
nM1

DnDpVt
1
2YtQtDtY

†
t Vt

1√
2
|np〉+ 〈γt|VtYpDp′∗Y

†
pM1

Dn′Dp′Vt
1
2YtQtDtY

†
t Vt

1√
2
|n′p′〉

= 1
2
√

2
QtV

3
t

(
〈γ| 〈t|Yn |n∗〉Dn∗ 〈n∗|Y †nM1

|n〉 |p〉DnDp 〈n| 〈p|Yt |t∗〉Dt 〈t∗|Y †t |np〉+

+ 〈γ| 〈t|Yp
∣∣p′∗〉Dp∗

〈
p′∗
∣∣Y †pM1

|n′〉 |p′〉DnDp 〈n′| 〈p′|Yt |t∗〉Dt 〈t∗|Y †t |np〉
)

= 1
2
√

2
QtV

3
t DtDnDp

[
〈t|Yn |n∗p〉Dn∗ 〈γn∗|Y †nM1

|n〉 〈np|Yt |t∗〉
(

1√
2

)
yt+

+ 〈t|Yp
∣∣n′p′∗〉Dp∗

〈
γp′∗

∣∣Y †pM1
|p′〉 〈n′p′|Yt |t∗〉

(
1√
2

)
yt

]

= 1
4QtV

3
t DtytDnDp

[
ynDn∗

(
γ
√

2
3

)
yγnM1

(
1√
2

)
yt + ypDp∗

(
γ
√

2
3

)
yγpM1

(
1√
2

)
yt

]

= γ 1
4
√

3
QtV

3
t Dt|yt|2DnDp

(
ynDn∗ y

γ
nM1

+ ypDp∗ y
γ
pM1

)
= 1

4QtVtDt|yt|2DnDpA
γ
np(0) . (5.9)

The ∆J = 0 intermediate dibaryon amplitudes for the M = ±1 (Mt = 0) initial states are

Aγ,0t(0) = 〈γt|VtYnDn∗Y
†
nM1

DnDpVt
1
2YtQtDtY

†
t Vt |np〉+ 〈γt|VtYpDp∗Y

†
pM1

DnDpVt
1
2YtQtDtY

†
t Vt |np〉

= 1
2QtV

3
t

(
〈γ| 〈t|Yn |n∗〉Dn∗ 〈n∗|Y †nM1

|n〉 |p〉DnDp 〈n| 〈p|Yt |t∗〉Dt 〈t∗|Y †t |np〉+

+ 〈γ| 〈t|Yp |p∗〉Dp∗ 〈p∗|Y †pM1
|n〉 |p〉DnDp 〈n| 〈p|Yt |t∗〉Dt 〈t∗|Y †t |np〉

)

= 1
2QtV

3
t DtDnDp

(
〈t|Yn |n∗p〉Dn∗ 〈γn∗|Y †nM1

|n〉 〈np|Yt |t∗〉 yt + 〈t|Yp |np∗〉Dp∗ 〈γp∗|Y †pM1
|p〉 〈np|Yt |t∗〉 yt

)

= 1
2QtV

3
t DtytDnDp

[(
1√
2

)
ynDn∗

(
γ
√

2
3

)
yγnM1

yt +
(

1√
2

)
ypDp∗

(
γ
√

2
3

)
yγpM1

yt

]

= γ 1
2
√

3
QtV

3
t Dt|yt|2DnDp

(
ynDn∗ y

γ
nM1

+ ypDp∗ y
γ
pM1

)
= 2Aγ,−γt(0) . (5.10)

Because of the occurrence of additional Clebsch-Gordan coefficients in the expanded vertex of Fig. 4, Aγ,0t(0) 6= Aγ,−γt(0) .

VI. 0+ LEVEL DECAY

Only the eigenvalues yγsM1
of the operator YsM1 are needed, as expanded in Fig. 4. The initial state is the 0+ level,

|s〉 = |0, 0〉, and the final state is a deuteron and photon 〈γt| in one of two polarization states, with Mt = −γ. The
correction Vt is applied to the triplet n∗pt and np∗t vertices, and the correction Vs is applied to the nps decay vertex.
With Eqs. (3.7)-(3.9), the eigenvalues are

yγsM1
= 〈γt|VtYnDn∗Y

†
nM1

DnDp
1
2YsVs |s〉+ 〈γt|VtYpDp′∗Y

†
pM1

Dn′Dp′
1
2YsVs |s〉

= 1
2VtVs

(
〈γ| 〈t|Yn |n∗〉Dn∗ 〈n∗|Y †nM1

|n〉 |p〉DnDp 〈n| 〈p|Ys |s〉

+ 〈γ| 〈t|Yp
∣∣p′∗〉Dp∗

〈
p′∗
∣∣Y †pM1

|n′〉 |p′〉DnDp 〈n′| 〈p′|Ys |s〉
)

= 1
2VtVsDnDp

(
〈t|Yn |n∗p〉Dn∗ 〈γn∗|Y †nM1

|n〉 〈np|Ys |s〉+ 〈t|Yp
∣∣n′p′∗〉Dp∗

〈
γp′∗

∣∣Y †pM1
|p′〉 〈n′p′|Ys |s〉

)

= 1
2VtVsDnDp

[
ynDn∗

(
γ
√

2
3

)
yγnM1

(
γ 1√

2

)
ys + ypDp∗

(
γ
√

2
3

)
yγpM1

(
−γ 1√

2

)
ys

]

= 1
2
√

3
VtVs ysDnDp

(
ynDn∗ y

γ
nM1
− ypDp∗ y

γ
pM1

)
= 1

2ysDnDpA
γ
np , (6.1)

where Aγnp is from Eq. (3.12).
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VII. M1 PHOTON-DEUTERON ELASTIC SCATTERING

For the amplitude with an intermediate, off-shell singlet dibaryon, the initial deuteron and photon have opposite
spins, as do the final deuteron and photon. With γi, γf the polarization states of the initial and final photon, there
are four contributing amplitudes, each with initial and final deuteron spins Mti = −γi and Mtf = −γf . In terms of
the expanded s∗γt vertex operator and its eigenvalue (6.1), the elastic γt amplitudes with an intermediate, off-shell
singlet dibaryon are

A
γi,γf
s = 〈γf tf |YsM1

QsDsY
†
sM1
|γi, ti〉 = QsDsy

γf
sM1 y

γi
sM1

. (7.1)

VIII. TWO-PHOTON CAPTURE

Consider ∆J = 1 M1 radiative capture from an initial triplet np, resulting in a deuteron in the excited 0+ state
and a photon. Unlike ordinary capture, there can be no contribution from M ≡Mn +Mp = 0. For the contribution
from off-shell baryons, where there is no intermediate dibaryon, the correction Vs is applied to the singlet n∗ps and
np∗s vertices, and the correction Vt is applied to the initial singlet np. Because the intial state has M = ±1, there is
no need to distinguish np between the case of the virtual neutron and the case of the virtual proton, as was done in
Eqs. (3.7)-(3.9), For the n∗np contribution, where the neutron undergoes the M1 transition,

γ +Mn∗ = Mn , Ms = Mn∗ +Mp = γ +Mt = 0 ⇒ Mp = −Mn∗ = Mn = 1
2γ . (8.1)

For the p∗np contribution, where the proton undergoes the M1 transition,

γ +Mp∗ = Mp , Ms = Mp∗ +Mn = γ +Mt = 0 ⇒ Mn = −Mp∗ = Mp = 1
2γ . (8.2)

The initial state is

|1,±1〉 =
∣∣± 1

2 ,± 1
2

〉
=
∣∣γ 1

2 , γ
1
2

〉
= |np〉 . (8.3)

Note that Csn∗p = −γ 1√
2

and Csnp∗ = γ 1√
2
. The M = ±1 amplitudes from Fig. 3 are

Aγn = 〈γs|YnVsDnY
†
nM1

Vt |np〉 = VsVt 〈γ| 〈s|Yn |n∗〉Dn 〈n∗|Y †nM1
|n〉 |p〉 = VsVt 〈s|Yn |n∗p〉Dn 〈γn∗|Y †nM1

|n〉

= VsVtDn

(
−γ 1√

2

)
yn

(
γ
√

2
3

)
yγnM1

= − 1√
3
VsVt ynDn y

γ
nM1

, (8.4)

Aγp = 〈γs|YpVsDpY
†
pM1

Vt |np〉 = VsVt 〈γ| 〈s|Yp |p∗〉Dp 〈p∗|Y †pM1
|p〉 |n〉 = VsVt 〈s|Yp |np∗〉Dp 〈γp∗|Y †pM1

|p〉

= VsVtDp

(
γ 1√

2

)
yp

(
γ
√

2
3

)
yγpM1

= 1√
3
VsVt ypDp y

γ
pM1

, (8.5)

Aγnp ≡ Aγn +Aγp . (8.6)

But for an overall sign change and substantially different photon energy, these are the same as Eqs. (3.10)-(3.12) for
ordinary capture. Like ordinary capture, this is very nearly proportional to µ1 = µp−µn, i.e., it can also be classified
as an isovector reaction. With the t∗γs vertex expanded as shown in Fig. 4, the amplitudes are

Aγt = 〈γs|VsYnDn∗Y
†
nM1

DnDpVt
1
2YtQtDtY

†
t Vt |np〉+ 〈γs|VsYpDp∗Y

†
pM1

DnDpVt
1
2YtQtDtY

†
t Vt |np〉

= 1
2QtV

2
t Vs

(
〈γ| 〈s|Yn |n∗〉Dn∗ 〈n∗|Y †nM1

|n〉 |p〉DnDp 〈n| 〈p|Yt |t∗〉Dt 〈t∗|Y †t |np〉+

+ 〈γ| 〈s|Yp |p∗〉Dp∗ 〈p∗|Y †pM1
|n〉 |p〉DnDp 〈n| 〈p|Yt |t∗〉Dt 〈t∗|Y †t |np〉

)

= 1
2QtV

2
t VsDtytDnDp

(〈s|Yn |n∗p〉Dn∗ 〈γn∗|Y †nM1
|n〉 〈np|Yt |t∗〉+ 〈s|Yp |np∗〉Dp∗ 〈γp∗|Y †pM1

|p〉 〈np|Yt |t∗〉
)

= 1
2QtV

2
t VsDtytDnDp

[(
−γ 1√

2

)
ynDn∗

(
γ
√

2
3

)
yγnM1

yt +
(
γ 1√

2

)
ypDp∗

(
γ
√

2
3

)
yγpM1

yt

]

= 1
2
√

3
QtV

2
t VsDt|yt|2DnDp

(− ynDn∗ y
γ
nM1

+ ypDp∗ y
γ
pM1

)
= 1

2 QtVtDt|yt|2DnDpA
γ
np . (8.7)

Aγnp is given by Eqs. (8.4)-(8.6), where Dn and Dp correspond to Dn∗ and Dp∗ in Eq. (8.7).
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IX. E1 CAPTURE

For E1 capture, the initial np is in a triplet spin state, with total spin S = 1 and MS = ±1, 0, and in a relative p-
wave, with orbital angular momentum L = 1 and ML = ±1, 0. The final deuteron t is in the 1+ ground state, with spin
Mt, and the final photon has helicity γ = ±1. The intermediate baryon contribution, with no intermediate dibaryon,
is similar to the M1 case (Fig. 3), but there is no contribution from the neutron. YpM1

is replaced with YpE1
, and

the eigenvalue yγpM1
=
√

4π yp y
γ
M1 is replaced with yγpE1

=
√

4π yp y
γ
E1, with yγE1 = (−iγ)(iω/mp)

√
3/16π sin θ eiγφ.

Note that yγE1 differs from yγM1 by a factor −iγ (among other things), because the electric and magnetic fields in
electric multipole radiation are “exchanged”, relative to those in magnetic multipole radiation, and it is p̂ · ε(i) that
is replaced with unity instead of σ · (p̂× ε(i)). The spins satisfy

γ +Mp∗ = Mp +ML , Mt = Mp∗ +Mn , Mp = Mp∗ , MS ≡Mp +Mn ⇒ ML = γ , MS = Mt , (9.1)

from which it is seen that the final deuteron has the same spin and orientation of the initial np, i.e., Mt = MS .
Because γ = ML, only ML = ±1 contributes. The initial np are in a relative p-wave, so the triplet np wavefunction
is spatially antisymmetric. Adopting the np/n′p′ notation from Eqs. (3.7)-(3.9) for the Mt = 0 case (and modifying
it somewhat), the initial state is (By definition, Mn′ = −Mn and Mp′ = −Mp.)

Mt = 0 1√
2

∣∣+ 1
2 ,− 1

2

〉− 1√
2

∣∣− 1
2 ,+

1
2

〉
= 1√

2
|np〉 − 1√

2
|n′p′〉 , Mn = −Mp = 1

2 ,Mn′ = −Mp′ = − 1
2 ,

Mt = ±1
∣∣± 1

2 ,± 1
2

〉
= |np〉 , Mn = Mp = 1

2Mt = ± 1
2 . (9.2)

With this notation (employed only for Mt = 0), there is a contribution from npp∗ and another from n′p′p′∗. Because p
and p′ are the same proton in its two possible orientations, the prime is not included in the subscripts of such variables
as Ep, Dp∗ , etc. Note, however, that the Clebsch-Gordan coefficients are not the same, i.e., Ctnp∗ = 1√

2
= −Ctn′p′∗ .

Let Jnp specify the total angular momentum of the initial np, with projection Mnp = MS + ML = Mt + γ. Jnp is
0, 1, or 2, corresponding to 2S+1LJ = 3P0, 3P1, or 3P2; amplitudes with different Jnp,Mnp do not interfere when
integrated over 4π solid angle. In analogy with Eq. (3.5),

C(np)γ(np∗) ≡ C11(Jnp,Mnp; γ,Mnp∗) = C11(Jnp,Mnp; γ,Mt) , 〈γp∗|Y †pE1
|p〉 = C(np)γ(np∗)y

γ
pE1

, (9.3)

yγpE1
= i
√

(Ep − ω)/4π
√

4π yγE1 = γ(ω/mp)
√
α(Ep − ω)

√
3/16π sin θ eiγφ (circular polarization) , (9.4)

y(v/h)
pE1

= (ω/mp)
√
α(Ep − ω)

√
3/16π sin θ

√
1∓ cos 2φ (plane polarization) . (9.5)

The Clebsch-Gordan coefficients are

3P0 (γ = ±1;Mt = −γ) C11(0, 0; +1,−1) = C11(0, 0;−1,+1) = + 1√
3
,

3P1 (γ = ±1;Mt = 0,−γ)
C11(1,+1; +1, 0) = C11(1, 0; +1,−1) = + 1√

2

C11(1,−1;−1, 0) = C11(1, 0;−1,+1) = − 1√
2

= γ 1√
2
,

3P2 (γ = ±1;Mt = 0,±γ)
C11(2,+2; +1,+1) = C11(2,−2;−1,−1) = 1
C11(2,+1; +1, 0) = C11(2,−1;−1, 0) = 1√

2

C11(2, 0; +1,−1) = C11(2, 0;−1,+1) = 1√
6

.

Since the np∗ is in a relative s-wave, in the triplet spin state, the vertex correction Vt is included at the np∗t vertex,
where the final-state deuteron t is created and the np∗ are annihilated. The p-wave vertex correction VP is applied
to the initial p-wave np (see Ref. [1]). The amplitudes with an intermediate, off-shell baryon (Fig. 3) are, where
JM ≡ Jnp,Mnp,

Aγ,Mt

p,JM = 〈γt|VtYpDpY
†
pE1

VP |np〉 , Aγp ≡ VtVP ypDp y
γ
pE1

, (9.6)

Aγ,0p,JM = VtVP

[
〈γt|Yp |p∗〉Dp 〈p∗|Y †pE1

(
1√
2

)
|np〉+ 〈γt|Yp

∣∣p′∗〉Dp

〈
p′∗
∣∣Y †pE1

(
− 1√

2

)
|n′p′〉

]

= 1√
2
VtVPDp

(〈t|Yp |np∗〉 〈γp∗|Y †pE1
|p〉 − 〈t|Yp

∣∣n′p′∗〉 〈γp′∗∣∣Y †pE1
|p′〉)

= 1√
2
VtVPDp

[(
1√
2

)
yp C11(J,M ; γ, 0) yγpE1

−
(
− 1√

2

)
yp C11(J,M ; γ, 0) yγpE1

]
= C11(J,M ; γ, 0)Aγp ,

Aγ,±1
p,JM = VtVP 〈γt|Yp |p∗〉Dp 〈p∗|Y †pE1

|np〉 = VtVP 〈t|Yp |np∗〉Dp 〈γp∗|Y †pE1
|p〉 = C11(J,M ; γ,±1)Aγp ,

⇒ Aγ,Mt

p,JM = C11(J,M ; γ,Mt)Aγp . (9.7)
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Contributions from intermediate dibaryons require that the dibaryon posses orbital angular momentum. The p-
wave dibaryon propagator is take to be the same as the s-wave dibaryon propagator, but with a p-wave propagator
correction QP instead of Qt (see Ref. [1], where it is assumed that a p-wave triplet dibaryon has the same on-shell
mass as an s-wave triplet dibaryon). The t∗tγ vertex is expanded as shown in the right half of Fig. 4. There is a
p-wave vertex correction VP at either end of the intermediate dibaryon, applied between the np legs, and an s-wave
vertex correction Vt at the vertex where the np∗ join to form the final triplet dibaryon in a relative s-wave. Aγp and
Aγ,Mt

p,JM are given by Eqs. (9.6)-(9.7), where Dp corresponds to Dp∗ in the amplitudes Aγ,Mt

t,JM , which are

Aγ,0t,JM = QPVtV
2
P

[
〈γt|YpDp∗Y

†
pE1
DnDp

1
2YtDtY

†
t

(
1√
2

)
|np〉+ 〈γt|YpDp′∗Y

†
pE1
Dn′Dp′

1
2YtDtY

†
t

(
− 1√

2

)
|n′p′〉

]

= 1
2
√

2
QPVtV

2
P

(
〈γt|Yp |p∗〉Dp∗ 〈p∗|Y †pE1

|n〉 |p〉DnDp 〈n| 〈p|Yt |t∗〉Dt 〈t∗|Y †t |np〉+

− 〈γt|Yp
∣∣p′∗〉Dp∗

〈
p′∗
∣∣Y †pE1

|n′〉 |p′〉DnDp 〈n′| 〈p′|Yt |t∗〉Dt 〈t∗|Y †t |n′p′〉
)

= 1
2
√

2
QPVtV

2
PDp∗DnDpDt

[
〈t|Yp |np∗〉 〈γp∗|Y †pE1

|p〉
(

1√
2

)
yt

(
1√
2

)
yt+

− 〈t|Yp
∣∣n′p′∗〉 〈γp′∗∣∣Y †pE1

|p′〉
(
− 1√

2

)
yt

(
− 1√

2

)
yt

]

= 1
4
√

2
QPVtV

2
PDp∗DnDpDt|yt|2

[(
1√
2

)
yp C11(J,M ; γ, 0)yγpE1

−
(
− 1√

2

)
yp C11(J,M ; γ, 0)yγpE1

]

= 1
4C11(J,M ; γ, 0)QPVPDnDpDt|yt|2Aγp , (9.8)

Aγ,±1
t,JM = QPVtV

2
P 〈γt|YpDp∗Y

†
pE1
DnDp

1
2YtDtY

†
t |np〉

= 1
2QPVtV

2
P 〈t| 〈γ|Yp |p∗〉Dp∗ 〈p∗|Y †pE1

|n〉 |p〉DnDp 〈n| 〈p|Yt |t∗〉Dt 〈t∗|Y †t |np〉
= 1

2QPVtV
2
PDp∗DnDpDt 〈t|Yp |np∗〉 〈γp∗|Y †pE1

|p〉 yt yt
= 1

2QPVtV
2
PDp∗DnDpDt|yt|2 yp C11(J,M ; γ,±1) yγpE1

= 1
2C11(J,M ; γ,±1)QPVPDnDpDt|yt|2Aγp . (9.9)
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