Dibaryon amplitudes for the low-energy neutronproton electromagnetic interaction

Robert W. Hackenburg

January 2007

Physics Department
Brookhaven National Laboratory
P.O. Box 5000

Upton, NY 11973-5000
www.bnl.gov

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Dibaryon amplitudes for the low-energy neutron-proton electromagnetic interaction

R. W. Hackenburg*
Physics Department, Brookhaven National Laboratory, Upton, NY 11973
(Dated: April 30, 2007)

Abstract

This report is a collection of detailed calculations that employ dibaryon propagators and vertex operators to obtain various electromagnetic amplitudes in the low-energy $n p / d \gamma$ system.

I. PRELIMINARIES

Consider the low energy reactions depicted in Fig. 1. Amplitudes for these reactions are constructed using vertex operators Y_{d} and $Y_{d_{M 1}}$, off-shell deuteron (dibaryon) propagators \boldsymbol{D}_{d}, and initial and final $n p$ and γd non-interacting two-particle wavepacket states $\left|n p_{i}\right\rangle,\left|\gamma d_{i}\right\rangle$, etc. (d may be either t or s for the spin-triplet 1^{+}ground state or spinsinglet 0^{+}excited state. Y_{d} and $Y_{d_{M 1}}$ are shorthand for $Y_{d^{*} n p}$ and $Y_{d^{*} d \gamma_{M 1}}$, where the lone subscript refers to the off-shell particle.) The baryonic operator Y_{d} annihilates a deuteron (1^{+}or 0^{+}) and creates a neutron-proton pair, with no change of spin. There are two types of baryonic-M1-electromagnetic operators $Y_{d_{M 1}}$. The isovector operator $Y_{s_{M 1}}$ (or $Y_{t_{M 1}}$) annihilates a 0^{+}excited (or 1^{+}ground state) deuteron and creates a photon and a 1^{+}(or 0^{+}) deuteron, with $\Delta J=1$. The isoscalar operator $Y_{t_{M 1(0)}}$ annihilates a deuteron and creates a photon and a deuteron in a different orientation, with $\Delta J=0, \Delta M= \pm 1$. The reactions and their amplitudes are:

$$
\begin{array}{lll}
n+p \rightarrow d^{*} \rightarrow n+p & \left\langle n p_{f}\right| Y_{d} \boldsymbol{D}_{d} Y_{d}^{\dagger}\left|n p_{i}\right\rangle & \\
n+p \rightarrow d^{*} \rightarrow d+\gamma & \left\langle\gamma d_{f}\right| Y_{d_{M 1}} \boldsymbol{D}_{d} Y_{d}^{\dagger}\left|n p_{i}\right\rangle & \\
\gamma+d \rightarrow d^{*} \rightarrow n+p & \left\langle n p_{f}\right| Y_{d} \boldsymbol{D}_{d} Y_{d_{M 1}}^{\dagger}\left|\gamma d_{i}\right\rangle & \text { (radiative capture) } \\
\gamma+d \rightarrow d^{*} \rightarrow d+\gamma & \left\langle\gamma d_{f}\right| Y_{d_{M 1}} \boldsymbol{D}_{d} Y_{d_{M 1}}^{\dagger}\left|\gamma d_{i}\right\rangle & \text { (photodisintegration) } \tag{1.4}\\
\text { (} \gamma d \text { elastic) }
\end{array}
$$

These amplitudes do not include the phase space. From Ref. [1], the operators Y_{d} and Y_{d}^{\dagger} are both characterized by the same eigenvalue y_{d}, which includes the vertex-counting factor of two,

$$
\begin{gather*}
C_{d^{*} n p} \equiv C_{\frac{1}{2} \frac{1}{2}}\left(J_{d^{*}}, M_{d^{*}} ; M_{n}, M_{p}\right), \quad\langle n p| Y_{d}\left|d^{*}\right\rangle=C_{d^{*} n p} y_{d}, \quad\left\langle d^{*}\right| Y_{d}^{\dagger}|n p\rangle=C_{d^{*} n p} \bar{y}_{d}, \quad M_{d^{*}}=M_{n}+M_{p} \tag{1.5}\\
y_{d} \equiv i 2 Y_{0}^{0} \sqrt{E}=i \sqrt{E / \pi} . \tag{1.6}
\end{gather*}
$$

$C_{d^{*} n p}$ is a shorthand notation for the Clebsch-Gordan coefficient, e.g., as defined in Refs. [2] and [3], and $Y_{0}^{0} \equiv 1 / \sqrt{4 \pi}$. $J_{d^{*}}$ and $M_{d^{*}}$ are the total angular momentum and magnetic quantum numbers for the intermediate, off-shell dibaryon.

A

B

C

D

FIG. 1: The uncorrected low-energy s-wave $n p / \gamma d$ interactions with an intermediate dibaryon. Each vertex is counted twice, from the number of ways to attach the two initial or two final particles.
A: $n p \rightarrow d^{*} \rightarrow n p$ (elastic)
B: $n p \rightarrow d^{*} \rightarrow \gamma d$ (capture)
$\mathbf{C}: \gamma d \rightarrow d^{*} \rightarrow n p$ (photodisintegration)
D: $\gamma d \rightarrow d^{*} \rightarrow \gamma d$ (elastic)
M_{n} and M_{p} are the nucleons' magnetic quantum numbers. For a given $J_{d^{*}}, M_{d^{*}}$, the dibaryon propagator is a one-state dyad, thus, from Ref. [1],

$$
\begin{equation*}
\boldsymbol{D}_{d}=\left|d^{*}\right\rangle D_{d}\left\langle d^{*}\right|, \quad D_{d}=i 8(-1)^{J-1} / \sqrt{E^{2}-m_{d}^{2}} \tag{1.7}
\end{equation*}
$$

where m_{d} is the on-shell deuteron (1^{+}ground state or 0^{+}excited state) mass. Each $n p d^{*}$ vertex has a correction V_{d} due to OPE, applied across the $n p$ legs, where

$$
\begin{equation*}
V_{d}=(1-z \pm x)^{-1} \tag{1.8}
\end{equation*}
$$

with the upper sign for the space-symmetric triplet $n p\left(V_{t}\right)$ and the lower sign for the space-antisymmetric singlet $n p$ $\left(V_{s}\right)$. In Ref. [1], OPE is described in terms of $\pi^{ \pm}$exchange, through the $n p$ exchange operator X and eigenvalue $\pm x$, i.e., $X|n p\rangle= \pm x|n p\rangle$; or π^{0} exchange, through the $n p$ non-exchange operator Z and eigenvalue z, i.e., $Z|n p\rangle=z|n p\rangle$. Each d^{*} propagator has a correction

$$
\begin{equation*}
Q_{d}=\left[1+i p\left(V_{d}^{2}-1\right) / \gamma_{d}\right]^{-1} \tag{1.9}
\end{equation*}
$$

where p is the $n p$ c.m. momentum and γ_{d} is the scattering wavenumber. Nonrelativistically, $\gamma_{d} \cong 2 m_{n p} \epsilon_{d}$, where $m_{n p}$ is the reduced $n p$ mass and ϵ_{d} is the $n p$ binding energy of m_{d}, i.e., $m_{d}=m_{n}+m_{p}-\epsilon_{d}$. These corrections are to all orders, but ignore non-pionic contributions and the energy dependence of x and z, which is valid at least to a few MeV .

II. ORDINARY $M 1$ CAPTURE: DIRECT CONTRIBUTION FROM AN INTERMEDIATE DIBARYON

Consider the magnetic dipole ($M 1$) interaction acting directly on dibaryons (Fig. 1). The analog to Eq. (1.5) is

$$
\begin{equation*}
C_{d^{*} \gamma d} \equiv C_{11}\left(J_{d^{*}}, M_{d^{*}} ; \gamma, M_{d}\right),\langle\gamma d| Y_{d_{M 1}}\left|d^{*}\right\rangle=C_{d^{*} \gamma d} y_{d_{M 1}}^{\gamma},\left\langle d^{*}\right| Y_{d_{M 1}}^{\dagger}|\gamma d\rangle=C_{d^{*} \gamma d} \bar{y}_{d_{M 1}}^{\gamma}, M_{d^{*}}=M_{d}+\gamma, \tag{2.1}
\end{equation*}
$$

where γ serves double-duty both as the photon-state label in $\langle\gamma d|$ or $C_{d^{*} \gamma d}$, and as the photon helicity, with $\gamma= \pm 1$ corresponding to right or left circularly-polarized photons. Frequently, γ is used as a sign, i.e., $\gamma= \pm$.

Under the Siegert theorem [4], the baryonic and electromagnetic interactions are separable. If the $n p d^{*}$ vertex operator and the baryonic component of the $d^{*} d \gamma$ vertex operator are determined by the energy of the off-shell leg, then they are both characterized by the eigenvalue y_{d}. The $d^{*} d \gamma(M 1)$ vertex operator contains an electromagnetic component characterized by the eigenvalue $y_{M 1}^{\gamma}$. Following Appendix B in Ref. [2], a plane wave $e^{i \boldsymbol{p} \cdot \boldsymbol{r}}$ describing circularly polarized photons is expanded into a series of spherical vector harmonics $\boldsymbol{X}_{J}^{M}(\theta, \phi)$, which are products of a spherical harmonic, a Clebsch-Gordan coefficient $\left(-\gamma / \sqrt{2}-\right.$ this is not $C_{d^{*} \gamma d}$), and a spin-vector (polarization) $\boldsymbol{\epsilon}^{(\pm)}=\boldsymbol{\epsilon}^{\gamma}$. There are only two contributing terms for $M 1$, for which $J=1$, thus,

$$
\begin{equation*}
\boldsymbol{X}_{1}^{\gamma}=(-\gamma / \sqrt{2}) Y_{1}^{\gamma}(\Omega) \boldsymbol{\epsilon}^{\gamma}=\sqrt{3 / 16 \pi} \sin \theta e^{i \gamma \phi} \boldsymbol{\epsilon}^{\gamma} \quad \Rightarrow \quad y_{M 1}^{\gamma} \propto \sqrt{3 / 16 \pi} \sin \theta e^{i \gamma \phi} . \tag{2.2}
\end{equation*}
$$

For $M 1$ radiation, the spin of the deuteron defines the Z axis, and the radiation is predominantly in the equatorial plane, i.e., at 90° from the Z axis. Because the intermediate state has no spin, this Z axis has complete 4π freedom-of-choice. By conservation of momentum, the deuteron recoil is exactly opposite to the direction of the photon, in the c.m.

Because the spherical harmonics are contained in $y_{M 1}^{\gamma}$, the factor $Y_{0}^{0}=1 / \sqrt{4 \pi}$ in y_{d} must be removed when the interactions described by y_{d} and $y_{M 1}^{\gamma}$ are combined, thus,

$$
\begin{equation*}
y_{d_{M 1}}^{\gamma}=\sqrt{4 \pi} y_{d} y_{M 1}^{\gamma}=i 2 \sqrt{E} y_{M 1}^{\gamma} . \tag{2.3}
\end{equation*}
$$

The electromagnetic part of the Hamiltonian for a proton in an electromagnetic field is, nonrelativistically [5],

$$
H_{\mathrm{em}}=\left(e / 2 m_{p}\right) \boldsymbol{\sigma} \cdot\left(\boldsymbol{p}_{p} \times \boldsymbol{A}\right)+\left(e / m_{p}\right) \boldsymbol{p}_{p} \cdot \boldsymbol{A},
$$

where $\boldsymbol{\sigma}$ is the Pauli spin operator, e the proton charge, m_{p} the proton mass, \boldsymbol{p}_{p} the c.m. momentum of the proton, and \boldsymbol{A} the vector potential. The vector potential is quantized with

$$
\begin{equation*}
e \boldsymbol{A} \rightarrow \sqrt{\alpha} \boldsymbol{\epsilon}^{(i)} \tag{2.4}
\end{equation*}
$$

FIG. 2: Diagrams for the interaction of a proton with a photon. In both cases $k^{\mu}+p_{p}^{\mu}=p_{p^{*}}^{\mu}$.
where $\boldsymbol{\epsilon}^{(i)}$ is the photon polarization vector and α is the electromagnetic coupling ${ }^{1}$. This interaction is represented in Fig. 2, where at least one leg must be off-shell (here, one of the proton legs is off-shell). The on-shell proton momentum is $\left|\boldsymbol{p}_{p}\right| \equiv p_{p}=\omega$ in the rest frame of the off-shell proton leg, where $\boldsymbol{p}_{p}=-\boldsymbol{k}$, with \boldsymbol{k} the photon momentum vector, and where the on-shell proton and photon are both incoming or both outgoing. (For one incoming and one outgoing, $\boldsymbol{p}_{p}=\boldsymbol{k}$.) With $\hat{\boldsymbol{p}} \equiv \boldsymbol{p}_{p} / \omega$ and Eq. (2.4), the Hamiltonian density is

$$
\mathcal{H}_{\mathrm{em}}=\left(1 / m_{p}\right) \sqrt{\alpha} \omega\left[\frac{1}{2} \boldsymbol{\sigma} \cdot\left(\hat{\boldsymbol{p}} \times \boldsymbol{\epsilon}^{(i)}\right)+\hat{\boldsymbol{p}} \cdot \boldsymbol{\epsilon}^{(i)}\right] .
$$

The spin-current term in $\mathcal{H}_{\mathrm{em}}$ occurs in the $M 1$ interaction. Accounting for the anomalous magnetic moment,

$$
\mathcal{H}_{\mathrm{spin}}=\mu_{p} \omega \boldsymbol{\sigma} \cdot\left(\hat{\boldsymbol{p}} \times \boldsymbol{\epsilon}^{(i)}\right),
$$

where μ_{p} is the proton magnetic moment. This is a multiple of the nuclear magneton $\mu_{N} \equiv \sqrt{\alpha} / 2 m_{p}$, i.e., $\mu_{p}=2 \kappa_{p} \mu_{N}$. In the s-wave, $\boldsymbol{\sigma} \cdot\left(\hat{\boldsymbol{p}} \times \boldsymbol{\epsilon}^{(i)}\right)$ can be replaced with 0 or 1 , according to the initial and final states considered. With Eq. (2.2),

$$
\begin{equation*}
y_{M 1}^{\gamma}(\text { proton })=\mu_{p} \omega \sqrt{3 / 16 \pi} \sin \theta e^{i \gamma \phi} . \tag{2.5}
\end{equation*}
$$

The neutron also has a spin-current term, with magnetic moment μ_{n}. For the neutron,

$$
\begin{equation*}
y_{M 1}^{\gamma}(\text { neutron })=\mu_{n} \omega \sqrt{3 / 16 \pi} \sin \theta e^{i \gamma \phi} \tag{2.6}
\end{equation*}
$$

With the isovector magnetic moment $\mu_{1}=\mu_{p}-\mu_{n}$ for $\Delta J=1$ (ignoring the d-wave component), the isoscalar magnetic moment $\mu_{0}=\mu_{p}+\mu_{n}$ for $\Delta J=0$, and with $\mu_{\Delta J}$ one of μ_{1} or μ_{0}, for an isovector or isoscalar deuteron (or dibaryon),

$$
\begin{equation*}
y_{M 1}^{\gamma}(\text { deuteron })=\mu_{\Delta J} \omega \sqrt{3 / 16 \pi} \sin \theta e^{i \gamma \phi} \tag{2.7}
\end{equation*}
$$

Then, with Eq. (2.3),

$$
\begin{equation*}
y_{d_{M 1}}^{\gamma}=i 2 \sqrt{E} \mu_{\Delta J} \omega \sqrt{3 / 16 \pi} \sin \theta e^{i \gamma \phi}=i \mu_{\Delta J} \omega \sqrt{3 E / 4 \pi} \sin \theta e^{i \gamma \phi} . \tag{2.8}
\end{equation*}
$$

In the plane-polarization basis ($\phi=0^{\circ}$: "horizontal", $\phi=90^{\circ}$: "vertical"),

$$
\begin{aligned}
\boldsymbol{X}_{1+}+\boldsymbol{X}_{1-} & =-\sqrt{3 / 8 \pi} \sin \theta\left(\sin \phi \boldsymbol{\epsilon}^{(\mathrm{h})}+\cos \phi \boldsymbol{\epsilon}^{(\mathrm{v})}\right) \\
y_{M 1}^{(\mathrm{v} / \mathrm{h})} & =\mu_{\Delta J} \omega \sqrt{3 / 16 \pi} \sin \theta \sqrt{1 \pm \cos 2 \phi} \\
y_{d_{M 1}}^{(\mathrm{v} / \mathrm{h})} & =i \mu_{\Delta J} \omega \sqrt{3 E / 4 \pi} \sin \theta \sqrt{1 \pm \cos 2 \phi}
\end{aligned}
$$

For ordinary $M 1$ capture, the initial state is $|n p\rangle=|J, M\rangle=|0,0\rangle$, and the two possible final states are $\langle\gamma t|=$ $\left\langle\gamma, M_{t}\right|=\langle \pm 1, \mp 1|$, where the magnetic quantum number of the final deuteron is $M_{t}=-\gamma$. The corrected $\gamma= \pm 1$ amplitudes for a direct contribution from an intermediate, off-shell singlet dibaryon are

$$
\begin{align*}
A_{s}^{\gamma} & =\langle\gamma t| Y_{s_{M 1}} \boldsymbol{D}_{s} Q_{s} Y_{s}^{\dagger} V_{s}|n p\rangle=Q_{s} V_{s}\langle\gamma t| Y_{s_{M 1}}\left|s^{*}\right\rangle \boldsymbol{D}_{s}\left\langle s^{*}\right| Y_{s}^{\dagger}|n p\rangle=Q_{s} V_{s} D_{s}\left(C_{s^{*} \gamma t} y_{s_{M 1}}\right)\left(C_{s^{*} n p} \bar{y}_{s}\right) \\
& =\mu_{1} \omega E Q_{s} V_{s} D_{s} \sin \theta e^{i \gamma \phi} / 2 \pi \tag{2.9}
\end{align*}
$$

where $C_{s^{*} \gamma t}=C_{11}(0,0 ; \gamma,-\gamma)=1 / \sqrt{3}$, and $C_{s^{*} n p}=1$ because the $n p$ state is expressed in the J, M basis.

[^0]

FIG. 3: Capture with off-shell baryons.

III. ORDINARY $M 1$ CAPTURE: CONTRIBUTION FROM OFF-SHELL BARYONS

Consider the diagrams in Fig. 3. Let b be either n or p for the neutron or the proton, and let $E_{b^{*}}$ and $p_{b^{*}}$ be the off-shell baryon's energy and momentum, which are

$$
\begin{equation*}
E_{b^{*}}=E_{b}-\omega, \quad p_{b^{*}}=p-\omega \tag{3.1}
\end{equation*}
$$

with $E_{b}=\sqrt{m_{b}^{2}+p^{2}}$, since $p_{n}=p_{p}=p$. Then

$$
\begin{equation*}
E_{b^{*}}^{2}-p_{b^{*}}^{2}-m_{b}^{2}=-2 \omega\left(E_{b}-p\right) . \tag{3.2}
\end{equation*}
$$

For a given isospin/spin-state, the baryon propagator is a one-state dyad [1], thus,

$$
\begin{equation*}
\boldsymbol{D}_{b}=\left|b^{*}\right\rangle D_{b}\left\langle b^{*}\right|, \quad D_{b} \cong i 2 m_{b} /\left(E_{b^{*}}^{2}-p_{b^{*}}^{2}-m_{b}^{2}\right)=-i m_{b} / \omega\left(E_{b}-p\right) \tag{3.3}
\end{equation*}
$$

The npd vertex eigenvalues are similar in both Figs. 1 and 3, but with different energies and a different particle off-shell (n^{*} or p^{*} instead of d^{*}), and with a vertex-counting factor of one instead of two. Note that Eq. (1.6) may be written $y_{d}=i 2 Y_{0}^{0} \sqrt{E_{d^{*}}}$ because $E_{d^{*}}=E$. Following Eqs. (1.5) and (1.6), and using Eq. (3.1),

$$
\begin{gather*}
C_{d n^{*} p} \equiv C_{\frac{1}{2} \frac{1}{2}}\left(J_{d}, M_{d} ; M_{n^{*}}, M_{p}\right), \quad\left\langle n^{*} p\right| Y_{n^{*}}|d\rangle=C_{d n^{*} p} y_{n^{*}}, \quad\langle d| Y_{n^{*}}^{\dagger}\left|n^{*} p\right\rangle=C_{d n^{*} p} \bar{y}_{n^{*}}, \quad M_{d}=M_{n^{*}}+M_{p}, \\
C_{d n p^{*}} \equiv C_{\frac{1}{2} \frac{1}{2}}\left(J_{d}, M_{d} ; M_{n}, M_{p^{*}}\right), \quad\left\langle n p^{*}\right| Y_{p^{*}}|d\rangle=C_{d n p^{*}} y_{p^{*}}, \quad\langle d| Y_{p^{*}}^{\dagger}\left|n p^{*}\right\rangle=C_{d n p^{*}} \bar{y}_{p^{*}}, \quad M_{d}=M_{n}+M_{p^{*}}, \\
y_{b}=i Y_{0}^{0} \sqrt{E_{b^{*}}}=i \sqrt{\left(E_{b}-\omega\right) / 4 \pi} . \tag{3.4}
\end{gather*}
$$

As with Y_{d}, etc., Y_{n} is shorthand for $Y_{d n^{*} p}$, etc., where the lone subscript refers to the off-shell particle. The EM vertex eigenvalues are similar to Eq. (2.1), thus,

$$
\begin{equation*}
C_{b \gamma b^{*}} \equiv C_{1 \frac{1}{2}}\left(\frac{1}{2}, M_{b} ; \gamma, M_{b^{*}}\right)=\gamma \sqrt{2 / 3}, \quad\left\langle\gamma b^{*}\right| Y_{b_{M 1}}^{\dagger}|b\rangle=C_{b \gamma b^{*}} \bar{y}_{b_{M 1}}^{\gamma}=\gamma \sqrt{2 / 3} \bar{y}_{b_{M 1}}^{\gamma}, \quad M_{b}=M_{b^{*}}+\gamma \tag{3.5}
\end{equation*}
$$

In analogy with Eq. (2.3), with Eqs. (2.5) and (2.6), and μ_{b} one of μ_{p} or μ_{n},

$$
\begin{equation*}
y_{b_{M 1}}^{\gamma}=i \sqrt{\left(E_{b}-\omega\right) / 4 \pi} \sqrt{4 \pi} \mu_{b} \omega \sqrt{3 / 16 \pi} \sin \theta e^{i \gamma \phi}=i \mu_{b} \omega \sqrt{3\left(E_{b}-\omega\right) / 16 \pi} \sin \theta e^{i \gamma \phi} . \tag{3.6}
\end{equation*}
$$

The vertex correction V_{t} is applied to the triplet $n^{*} p t$ and $n p^{*} t$ vertices, where X and Z operate between the $n p$ legs, and the vertex correction V_{s} is applied to the initial singlet $n p$. (The presence of an internal n^{*} or p^{*} leg does not affect the operators X and Z.) For a given $\gamma= \pm 1$, let $n p$ be the neutron-proton for the case of the virtual neutron, and let $n^{\prime} p^{\prime}$ be the neutron-proton for the case of the virtual proton. (These are the same neutron-proton pair, in their two possible singlet spin-states. For quantities other than the spin the prime is omitted, because $E_{n^{\prime}}=E_{n}, D_{n^{\prime}}=D_{n}$, etc., but note: $\boldsymbol{D}_{n^{\prime}} \neq \boldsymbol{D}_{n}$, etc.) For the $n^{*} n p$ contribution, where the neutron undergoes the $M 1$ transition,

$$
\begin{equation*}
\gamma+M_{n^{*}}=M_{n}, M_{t}=M_{n^{*}}+M_{p}=-\gamma \quad \Rightarrow \quad M_{p}=M_{n^{*}}=-M_{n}, M_{n}=\frac{1}{2} \gamma \tag{3.7}
\end{equation*}
$$

For the $p^{\prime *} n^{\prime} p^{\prime}$ contribution, where the proton undergoes the $M 1$ transition,

$$
\begin{equation*}
\gamma+M_{p^{\prime *}}=M_{p^{\prime}}, M_{t}=M_{p^{\prime *}}+M_{n^{\prime}}=-\gamma \quad \Rightarrow \quad M_{n^{\prime}}=M_{p^{\prime *}}=-M_{p^{\prime}}, M_{p^{\prime}}=\frac{1}{2} \gamma \tag{3.8}
\end{equation*}
$$

The initial state may then be written as

$$
\begin{equation*}
\frac{1}{\sqrt{2}}\left(\left|+\frac{1}{2},-\frac{1}{2}\right\rangle-\left|-\frac{1}{2},+\frac{1}{2}\right\rangle\right)=\gamma \frac{1}{\sqrt{2}}|n p\rangle-\gamma \frac{1}{\sqrt{2}}\left|n^{\prime} p^{\prime}\right\rangle . \tag{3.9}
\end{equation*}
$$

FIG. 4: The capture reaction (Fig. 1B) with the $\Delta J=1 M 1 s^{*} \gamma t$ vertex expanded to show the virtual baryon contributions. Because the counting factor at the upper $s^{*} n p$ vertex is one, and because the operator Y_{s} is defined in elastic scattering where the counting factor is two, the operator at that vertex is $\frac{1}{2} Y_{s}$. The lower $n p s^{*}$ vertex is the same from elastic scattering, and has a counting factor of two. Diagrams with a $t^{*} \gamma s$ vertex $(\Delta J=1)$ or a $t^{*} \gamma t$ vertex $(\Delta J=0)$ are similar, with $s^{*} \rightarrow t^{*}, t \rightarrow s$, or $s^{*} \rightarrow t^{*}, t \rightarrow t$.

By definition of the $n p / n^{\prime} p^{\prime}$ notation-scheme, $M_{n^{\prime}}=-M_{n}$ and $M_{p^{\prime}}=-M_{p}$, and only the $n p$ part contributes to the n^{*} transition, and only the $n^{\prime} p^{\prime}$ part contributes to the $p^{\prime *}$ transition. Note that $C_{s^{*} n p}=\gamma \frac{1}{\sqrt{2}}$ and $C_{s^{*} n^{\prime} p^{\prime}}=-\gamma \frac{1}{\sqrt{2}}$. Then, with Eq. (3.7) and the $n p$ part of Eq. (3.9), the n^{*} amplitude is

$$
\begin{align*}
A_{n}^{\gamma} & =\langle\gamma t| Y_{n} V_{t} \boldsymbol{D}_{n} Y_{n_{M 1}}^{\dagger} V_{s}\left(\gamma \frac{1}{\sqrt{2}}\right)|n p\rangle=\gamma \frac{1}{\sqrt{2}} V_{s} V_{t}\langle\gamma|\langle t| Y_{n}\left|n^{*}\right\rangle D_{n}\left\langle n^{*}\right| Y_{n_{M 1}}^{\dagger}|n\rangle|p\rangle \\
& =\gamma \frac{1}{\sqrt{2}} V_{s} V_{t}\langle t| Y_{n}\left|n^{*} p\right\rangle D_{n}\left\langle\gamma n^{*}\right| Y_{n_{M 1}}^{\dagger}|n\rangle=\gamma \frac{1}{\sqrt{2}} V_{s} V_{t} y_{n} D_{n}\left(\gamma \sqrt{\frac{2}{3}}\right) \bar{y}_{n_{M 1}}^{\gamma}=\frac{1}{\sqrt{3}} V_{s} V_{t} y_{n} D_{n} \bar{y}_{n_{M 1}}^{\gamma} \tag{3.10}
\end{align*}
$$

where $C_{t n^{*} p}=C_{t n^{\prime} p^{\prime *}}=1$ because $M_{t}= \pm 1$. With Eq. (3.8) and the $n^{\prime} p^{\prime}$ part of Eq. (3.9), the p^{*} amplitude is

$$
\begin{equation*}
A_{p}^{\gamma}=\langle\gamma t| Y_{p} V_{t} \boldsymbol{D}_{p} Y_{p_{M 1}}^{\dagger} V_{s}\left(-\gamma \frac{1}{\sqrt{2}}\right)\left|n^{\prime} p^{\prime}\right\rangle=-\frac{1}{\sqrt{3}} V_{s} V_{t} y_{p} D_{p} \bar{y}_{p_{M 1}}^{\gamma} \tag{3.11}
\end{equation*}
$$

The combined amplitude is

$$
\begin{equation*}
A_{n p}^{\gamma} \equiv A_{n}^{\gamma}+A_{p}^{\gamma}=\frac{V_{s} V_{t}}{\sqrt{3}}\left(y_{n} D_{n} \bar{y}_{n_{M 1}}^{\gamma}-y_{p} D_{p} \bar{y}_{p_{M 1}}^{\gamma}\right)=\frac{i V_{s} V_{t}}{8 \pi}\left(m_{n} \mu_{n} \frac{E_{n}-\omega}{E_{n}-p}-m_{p} \mu_{p} \frac{E_{p}-\omega}{E_{p}-p}\right) \sin \theta e^{i \gamma \phi} \tag{3.12}
\end{equation*}
$$

At low energies, $m_{n} \cong E_{n} \cong E / 2, m_{p} \cong E_{p} \cong E / 2$, and $E / 2 \gg p, \omega$. Then, with $\mu_{1} \cong \mu_{p}-\mu_{n}$ and $m_{N} \equiv$ $\left(m_{n}+m_{p}\right) / 2 \cong E / 2$,

$$
\begin{equation*}
A_{n p}^{\gamma} \cong \frac{-i \mu_{1} V_{s} V_{t} m_{N}}{8 \pi} \sin \theta e^{i \gamma \phi} \tag{3.13}
\end{equation*}
$$

which reveals the dependence on the isovector magnetic moment μ_{1}.

IV. ORDINARY $M 1$ CAPTURE: EXPANDED $s^{*} \gamma t$ VERTEX

The $s^{*} \gamma t$ vertex from Fig. 1B is expanded in Fig. 4 to reveal the virtual baryons. While all three baryons in the loop may be off-shell, the two from the s^{*} decay are not so-labeled; this is mostly for convenience, but also because these two may be on-shell. The n and p in the expanded vertex are taken to have the same spins as the n and p in the initial state. Then, the $n^{*}\left(\right.$ or $\left.p^{*}\right)$ has its spin opposite to the initial n (or p). There is an overall sign change when the n and p in the expanded vertex have changed their spins from the initial state, as happens when they are acted on by an odd number of X operators (i.e., $\pi^{ \pm}$exchange - see Ref. [1]). This is accounted for when the corrections are inserted. The $s^{*} n p$ opening vertex is counted only once, because swapping the n and p gives rise to the n^{*} and p^{*} contributions, which are separately accounted for. Therefore, the operator at this $s^{*} n p$ vertex occurs as $\frac{1}{2} Y_{s}$. The correction V_{t} is applied to the triplet $n^{*} p t$ and $n p^{*} t$ vertices, and the correction V_{s} is applied to both $n p s^{*}$ vertices. The correction Q_{s} is applied to the singlet dibaryon propagator D_{s}. There are no corrections applied to the baryon propagators, nor is there a radiative correction applied to the $n^{*} \gamma n$ or $p^{*} \gamma p$ vertex. With the $n^{*} n p / p^{\prime *} n^{\prime} p^{\prime}$ notation of Eqs. (3.8)-(3.9), the amplitudes with an intermediate singlet dibaryon are
$A_{s}^{\gamma}=\langle\gamma t| V_{t} Y_{n} \boldsymbol{D}_{n^{*}} Y_{n_{M 1}}^{\dagger} \boldsymbol{D}_{n} \boldsymbol{D}_{p} V_{s} \frac{1}{2} Y_{s} Q_{s} \boldsymbol{D}_{s} Y_{s}^{\dagger} V_{s}\left(\gamma \frac{1}{\sqrt{2}}\right)|n p\rangle+\langle\gamma t| V_{t} Y_{p} \boldsymbol{D}_{p^{\prime *}} Y_{p_{M 1}}^{\dagger} \boldsymbol{D}_{n^{\prime}} \boldsymbol{D}_{p^{\prime}} V_{s} \frac{1}{2} Y_{s} Q_{s} \boldsymbol{D}_{s} Y_{s}^{\dagger} V_{s}\left(-\gamma \frac{1}{\sqrt{2}}\right)\left|n^{\prime} p^{\prime}\right\rangle$

For a particular $\gamma= \pm 1$, the propagators are one-state dyads, thus,

$$
\boldsymbol{D}_{n^{*}}=\left|n^{*}\right\rangle D_{n^{*}}\left\langle n^{*}\right|, \boldsymbol{D}_{p^{\prime *}}=\left|p^{\prime *}\right\rangle D_{p^{*}}\left\langle p^{\prime *}\right|, \boldsymbol{D}_{n} \boldsymbol{D}_{p}=|n\rangle|p\rangle D_{n} D_{p}\langle n|\langle p|, \boldsymbol{D}_{n^{\prime}} \boldsymbol{D}_{p^{\prime}}=\left|n^{\prime}\right\rangle\left|p^{\prime}\right\rangle D_{n} D_{p}\left\langle n^{\prime}\right|\left\langle p^{\prime}\right| .
$$

The asterisk on the subscript of $D_{n^{*}}$ and $D_{p^{*}}$ serves to distinguish between the n and n^{*}, etc., which have different energies. The baryon propagators are all given by Eq. (3.3). Then

$$
\begin{align*}
A_{s}^{\gamma}= & \gamma \frac{1}{2 \sqrt{2}} Q_{s} V_{t} V_{s}^{2}\left(\langle\gamma|\langle t| Y_{n}\left|n^{*}\right\rangle D_{n^{*}}\left\langle n^{*}\right| Y_{n_{M 1}}^{\dagger}|n\rangle|p\rangle D_{n} D_{p}\langle n|\langle p| Y_{s}\left|s^{*}\right\rangle D_{s}\left\langle s^{*}\right| Y_{s}^{\dagger}|n p\rangle+\right. \\
& \left.\quad-\langle\gamma|\langle t| Y_{p}\left|p^{*}\right\rangle D_{p^{*}}\left\langle p^{\prime *}\right| Y_{p_{M 1}}^{\dagger}\left|n^{\prime}\right\rangle\left|p^{\prime}\right\rangle D_{n} D_{p}\left\langle n^{\prime}\right|\left\langle p^{\prime}\right| Y_{s}\left|s^{*}\right\rangle D_{s}\left\langle s^{*}\right| Y_{s}^{\dagger}\left|n^{\prime} p^{\prime}\right\rangle\right) \\
= & \gamma \frac{1}{2 \sqrt{2}} Q_{s} V_{t} V_{s}^{2} D_{s} D_{n} D_{p}\left[\langle t| Y_{n}\left|n^{*} p\right\rangle D_{n^{*}}\left\langle\gamma n^{*}\right| Y_{n_{M 1}}^{\dagger}|n\rangle\langle n p| Y_{s}\left|s^{*}\right\rangle\left(\gamma \frac{1}{\sqrt{2}}\right) \bar{y}_{s}+\right. \\
& \left.\quad-\langle t| Y_{p}\left|n^{\prime} p^{\prime *}\right\rangle D_{p^{*}}\left\langle\gamma p^{*}\right| Y_{p_{M 1}}^{\dagger}\left|p^{\prime}\right\rangle\left\langle n^{\prime} p^{\prime}\right| Y_{s}\left|s^{*}\right\rangle\left(-\gamma \frac{1}{\sqrt{2}}\right) \bar{y}_{s}\right] \\
= & \frac{1}{4} Q_{s} V_{t} V_{s}^{2} D_{s} D_{n} D_{p} \bar{y}_{s}\left[y_{n} D_{n^{*}}\left(\gamma \sqrt{\frac{2}{3}}\right) \bar{y}_{n_{M 1}}^{\gamma}\left(\gamma \frac{1}{\sqrt{2}}\right) y_{s}+y_{p} D_{p^{*}}\left(\gamma \sqrt{\frac{2}{3}}\right) \bar{y}_{p_{M 1}}^{\gamma}\left(-\gamma \frac{1}{\sqrt{2}}\right) y_{s}\right] \\
= & \frac{1}{4 \sqrt{3}} Q_{s} V_{t} V_{s}^{2} D_{s}\left|y_{s}\right|^{2} D_{n} D_{p}\left(y_{n} D_{n^{*}} \bar{y}_{n_{M 1}}^{\gamma}-y_{p} D_{p^{*}} \bar{y}_{p_{M 1}}^{\gamma}\right)=\frac{1}{4} Q_{s} V_{s} D_{s}\left|y_{s}\right|^{2} A_{n p}^{\gamma} D_{n} D_{p}, \tag{4.1}
\end{align*}
$$

where $\left\langle\gamma b^{*}\right| Y_{b_{M 1}}^{\dagger}|b\rangle=C_{1 \frac{1}{2}}\left(\frac{1}{2}, M_{b} ; \gamma, M_{b^{*}}\right) \bar{y}_{b_{M 1}}^{\gamma}=\gamma \sqrt{\frac{2}{3}} \bar{y}_{b_{M 1}}^{\gamma}$, for $b^{*} b=n^{*} n$ or $p^{\prime *} p^{\prime}$, and $A_{n p}^{\gamma}$ is given by Eq. (3.12), where D_{n} and D_{p} correspond to $D_{n^{*}}$ and $D_{p^{*}}$ in Eq. (4.1).

V. ISOSCALAR CAPTURE

An initial $n p$ in the triplet spin-state may be captured through the $\Delta J=0$ (isoscalar) operator $Y_{t_{M 1(0)}}$. The photon energy is the same as in ordinary capture, but the symmetry of the initial state is different. Consider first the contribution from Fig. 3. For the $n^{*} n p$ contribution, where the neutron undergoes the $M 1$ transition,

$$
\begin{equation*}
\gamma+M_{n^{*}}=M_{n} \quad \Rightarrow \quad M_{n^{*}}=-M_{n}, M_{n}=\frac{1}{2} \gamma, M_{t}=M_{n^{*}}+M_{p}=-\frac{1}{2} \gamma+M_{p} \tag{5.1}
\end{equation*}
$$

For the $p^{\prime *} n^{\prime} p^{\prime}$ contribution, where the proton undergoes the $M 1$ transition,

$$
\begin{equation*}
\gamma+M_{p^{\prime *}}=M_{p^{\prime}} \quad \Rightarrow \quad M_{p^{\prime *}}=-M_{p^{\prime}}, M_{p^{\prime}}=\frac{1}{2} \gamma, M_{t}=M_{p^{\prime *}}+M_{n^{\prime}}=-\frac{1}{2} \gamma+M_{n^{\prime}}, \tag{5.2}
\end{equation*}
$$

From these, it can be seen that the final deuteron must either have $M_{t}=-\gamma$ for $M=0\left(M_{n}=-M_{p}, M_{n^{\prime}}=-M_{p^{\prime}}\right)$ or $M_{t}=0$ for $M= \pm 1\left(M_{n}=M_{p}\right.$ - there is no distinction between $n p$ and $n^{\prime} p^{\prime}$ for $\left.M= \pm 1\right)$. There are three contributing initial states:

$$
\begin{equation*}
|1,0\rangle=\frac{1}{\sqrt{2}}\left|+\frac{1}{2},-\frac{1}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|-\frac{1}{2},+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{2}}|n p\rangle+\frac{1}{\sqrt{2}}\left|n^{\prime} p^{\prime}\right\rangle, \quad|1, \pm 1\rangle=\left| \pm \frac{1}{2}, \pm \frac{1}{2}\right\rangle=|n p\rangle . \tag{5.3}
\end{equation*}
$$

The amplitudes $A_{b(0)}^{\gamma, M_{t}}=A_{b(0)}^{\gamma,-\gamma}$ for the $M=0$ initial states are

$$
\begin{align*}
A_{n(0)}^{\gamma,-\gamma} & =\langle\gamma t| Y_{n} V_{t} \boldsymbol{D}_{n} Y_{n_{M 1}}^{\dagger} V_{t} \frac{1}{\sqrt{2}}|n p\rangle=\frac{1}{\sqrt{2}} V_{t}^{2}\langle\gamma|\langle t| Y_{n}\left|n^{*}\right\rangle D_{n}\left\langle n^{*}\right| Y_{n_{M 1}}^{\dagger}|n\rangle|p\rangle \\
& =\frac{1}{\sqrt{2}} V_{t}^{2}\langle t| Y_{n}\left|n^{*} p\right\rangle D_{n}\left\langle\gamma n^{*}\right| Y_{n_{M 1}}^{\dagger}|n\rangle=\frac{1}{\sqrt{2}} V_{t}^{2} y_{n} D_{n}\left(\gamma \sqrt{\frac{2}{3}}\right) \bar{y}_{n_{M 1}}^{\gamma}=\gamma \frac{1}{\sqrt{3}} V_{t}^{2} y_{n} D_{n} \bar{y}_{n_{M 1}}^{\gamma}, \tag{5.4}\\
A_{p(0)}^{\gamma,-\gamma} & =\langle\gamma t| Y_{p} V_{t} \boldsymbol{D}_{p^{\prime}} Y_{p_{M 1}}^{\dagger} V_{t} \frac{1}{\sqrt{2}}\left|n^{\prime} p^{\prime}\right\rangle=\frac{1}{\sqrt{2}} V_{t}^{2}\langle\gamma|\langle t| Y_{p}\left|p^{\prime *}\right\rangle D_{p}\left\langle p^{\prime *}\right| Y_{p_{M 1}}^{\dagger}\left|n^{\prime}\right\rangle\left|p^{\prime}\right\rangle \\
& =\frac{1}{\sqrt{2}} V_{t}^{2}\langle t| Y_{p}\left|n^{\prime} p^{\prime *}\right\rangle D_{p}\left\langle\gamma p^{\prime *}\right| Y_{p_{M 1}}^{\dagger}\left|p^{\prime}\right\rangle=\frac{1}{\sqrt{2}} V_{t}^{2} y_{p} D_{p}\left(\gamma \sqrt{\frac{2}{3}}\right) \bar{y}_{p_{M 1}}^{\gamma}=\gamma \frac{1}{\sqrt{3}} V_{t}^{2} y_{p} D_{p} \bar{y}_{p_{M 1}}^{\gamma}, \tag{5.5}
\end{align*}
$$

The amplitudes $A_{b(0)}^{\gamma, M_{t}}=A_{b(0)}^{\gamma, 0}$ for the $M= \pm 1$ initial states are

$$
\begin{align*}
A_{n(0)}^{\gamma, 0} & =\langle\gamma t| Y_{n} V_{t} \boldsymbol{D}_{n} Y_{n M 1}^{\dagger} V_{t}|n p\rangle=V_{t}^{2}\langle\gamma|\langle t| Y_{n}\left|n^{*}\right\rangle D_{n}\left\langle n^{*}\right| Y_{n_{M 1}}^{\dagger}|n\rangle|p\rangle \\
& =V_{t}^{2}\langle t| Y_{n}\left|n^{*} p\right\rangle D_{n}\left\langle\gamma n^{*}\right| Y_{n_{M 1}}^{\dagger}|n\rangle=V_{t}^{2}\left(\frac{1}{\sqrt{2}}\right) y_{n} D_{n}\left(\gamma \sqrt{\frac{2}{3}}\right) \bar{y}_{n_{M 1}}^{\gamma}=\gamma \frac{1}{\sqrt{3}} V_{t}^{2} y_{n} D_{n} \bar{y}_{n_{M 1}}^{\gamma}, \tag{5.6}\\
A_{p(0)}^{\gamma, 0} & =\langle\gamma t| Y_{p} V_{t} \boldsymbol{D}_{p} Y_{p_{M 1}}^{\dagger} V_{t}|n p\rangle=\gamma \frac{1}{\sqrt{3}} V_{t}^{2} y_{p} D_{p} \bar{y}_{p_{M 1}}^{\gamma} . \tag{5.7}
\end{align*}
$$

Note that there is no change in sign between the n^{*} and p^{*} contributions, as for ordinary capture. Define

$$
\begin{equation*}
A_{n p(0)}^{\gamma} \equiv A_{n(0)}^{\gamma, 0}+A_{p(0)}^{\gamma, 0}=A_{n(0)}^{\gamma,-\gamma}+A_{p(0)}^{\gamma,-\gamma}=\gamma \frac{1}{\sqrt{3}} V_{t}^{2}\left(y_{n} D_{n} \bar{y}_{n_{M 1}}^{\gamma}+y_{p} D_{p} \bar{y}_{p_{M 1}}^{\gamma}\right) . \tag{5.8}
\end{equation*}
$$

Like the $s^{*} \gamma t$ vertex, the $t^{*} \gamma t$ vertex from Fig. 1B may also be expanded as in Fig. 4 to reveal the virtual baryons. The correction V_{t} is applied to the triplet $n^{*} p t$ and $n p^{*} t$ vertices, and to both $n p t^{*}$ vertices. The correction Q_{t} is applied to the triplet dibaryon propagator D_{t}. With the $t^{*} \gamma t$ vertex expanded as shown in Fig. 4, the $\Delta J=0$ intermediate dibaryon amplitudes for the $M=0\left(M_{t}=-\gamma\right)$ initial states are

$$
\begin{align*}
A_{t(0)}^{\gamma,-\gamma}= & \langle\gamma t| V_{t} Y_{n} \boldsymbol{D}_{n^{*}} Y_{n_{M 1}}^{\dagger} \boldsymbol{D}_{n} \boldsymbol{D}_{p} V_{t} \frac{1}{2} Y_{t} Q_{t} \boldsymbol{D}_{t} Y_{t}^{\dagger} V_{t} \frac{1}{\sqrt{2}}|n p\rangle+\langle\gamma t| V_{t} Y_{p} \boldsymbol{D}_{p^{\prime *}} Y_{p_{M 1}}^{\dagger} \boldsymbol{D}_{n^{\prime}} \boldsymbol{D}_{p^{\prime}} V_{t} \frac{1}{2} Y_{t} Q_{t} \boldsymbol{D}_{t} Y_{t}^{\dagger} V_{t} \frac{1}{\sqrt{2}}\left|n^{\prime} p^{\prime}\right\rangle \\
= & \frac{1}{2 \sqrt{2}} Q_{t} V_{t}^{3}\left(\langle\gamma|\langle t| Y_{n}\left|n^{*}\right\rangle D_{n^{*}}\left\langle n^{*}\right| Y_{n_{M 1}}^{\dagger}|n\rangle|p\rangle D_{n} D_{p}\langle n|\langle p| Y_{t}\left|t^{*}\right\rangle D_{t}\left\langle t^{*}\right| Y_{t}^{\dagger}|n p\rangle+\right. \\
& \left.+\langle\gamma|\langle t| Y_{p}\left|p^{\prime *}\right\rangle D_{p^{*}}\left\langle p^{\prime *}\right| Y_{p_{M 1}}^{\dagger}\left|n^{\prime}\right\rangle\left|p^{\prime}\right\rangle D_{n} D_{p}\left\langle n^{\prime}\right|\left\langle p^{\prime}\right| Y_{t}\left|t^{*}\right\rangle D_{t}\left\langle t^{*}\right| Y_{t}^{\dagger}|n p\rangle\right) \\
= & \frac{1}{2 \sqrt{2}} Q_{t} V_{t}^{3} D_{t} D_{n} D_{p}\left[\langle t| Y_{n}\left|n^{*} p\right\rangle D_{n^{*}}\left\langle\gamma n^{*}\right| Y_{n M 1}^{\dagger}|n\rangle\langle n p| Y_{t}\left|t^{*}\right\rangle\left(\frac{1}{\sqrt{2}}\right) \bar{y}_{t}+\right. \\
& \left.\quad+\langle t| Y_{p}\left|n^{\prime} p^{\prime *}\right\rangle D_{p^{*}}\left\langle\gamma p^{\prime *}\right| Y_{p_{M 1}}^{\dagger}\left|p^{\prime}\right\rangle\left\langle n^{\prime} p^{\prime}\right| Y_{t}\left|t^{*}\right\rangle\left(\frac{1}{\sqrt{2}}\right) \bar{y}_{t}\right] \\
= & \frac{1}{4} Q_{t} V_{t}^{3} D_{t} \bar{y}_{t} D_{n} D_{p}\left[y_{n} D_{n^{*}}\left(\gamma \sqrt{\frac{2}{3}}\right) \bar{y}_{n_{M 1}}^{\gamma}\left(\frac{1}{\sqrt{2}}\right) y_{t}+y_{p} D_{p^{*}}\left(\gamma \sqrt{\frac{2}{3}}\right) \bar{y}_{p_{M 1}}^{\gamma}\left(\frac{1}{\sqrt{2}}\right) y_{t}\right] \\
= & \gamma \frac{1}{4 \sqrt{3}} Q_{t} V_{t}^{3} D_{t}\left|y_{t}\right|^{2} D_{n} D_{p}\left(y_{n} D_{n^{*}} \bar{y}_{n_{M 1}}^{\gamma}+y_{p} D_{p^{*}} \bar{y}_{p_{M 1}}^{\gamma}\right)=\frac{1}{4} Q_{t} V_{t} D_{t}\left|y_{t}\right|^{2} D_{n} D_{p} A_{n p(0)}^{\gamma} . \tag{5.9}
\end{align*}
$$

The $\Delta J=0$ intermediate dibaryon amplitudes for the $M= \pm 1\left(M_{t}=0\right)$ initial states are

$$
\begin{align*}
A_{t(0)}^{\gamma, 0}= & \langle\gamma t| V_{t} Y_{n} \boldsymbol{D}_{n^{*}} Y_{n M 1}^{\dagger} \boldsymbol{D}_{n} \boldsymbol{D}_{p} V_{t} \frac{1}{2} Y_{t} Q_{t} \boldsymbol{D}_{t} Y_{t}^{\dagger} V_{t}|n p\rangle+\langle\gamma t| V_{t} Y_{p} \boldsymbol{D}_{p^{*}} Y_{p_{M 1}}^{\dagger} \boldsymbol{D}_{n} \boldsymbol{D}_{p} V_{t} \frac{1}{2} Y_{t} Q_{t} \boldsymbol{D}_{t} Y_{t}^{\dagger} V_{t}|n p\rangle \\
= & \frac{1}{2} Q_{t} V_{t}^{3}\left(\langle\gamma|\langle t| Y_{n}\left|n^{*}\right\rangle D_{n^{*}}\left\langle n^{*}\right| Y_{n_{M 1}}^{\dagger}|n\rangle|p\rangle D_{n} D_{p}\langle n|\langle p| Y_{t}\left|t^{*}\right\rangle D_{t}\left\langle t^{*}\right| Y_{t}^{\dagger}|n p\rangle+\right. \\
& \left.\quad+\langle\gamma|\langle t| Y_{p}\left|p^{*}\right\rangle D_{p^{*}}\left\langle p^{*}\right| Y_{p_{M 1}}^{\dagger}|n\rangle|p\rangle D_{n} D_{p}\langle n|\langle p| Y_{t}\left|t^{*}\right\rangle D_{t}\left\langle t^{*}\right| Y_{t}^{\dagger}|n p\rangle\right) \\
= & \frac{1}{2} Q_{t} V_{t}^{3} D_{t} D_{n} D_{p}\left(\langle t| Y_{n}\left|n^{*} p\right\rangle D_{n^{*}}\left\langle\gamma n^{*}\right| Y_{n_{M 1}}^{\dagger}|n\rangle\langle n p| Y_{t}\left|t^{*}\right\rangle \bar{y}_{t}+\langle t| Y_{p}\left|n p^{*}\right\rangle D_{p^{*}}\left\langle\gamma p^{*}\right| Y_{p_{M 1}}^{\dagger}|p\rangle\langle n p| Y_{t}\left|t^{*}\right\rangle \bar{y}_{t}\right) \\
= & \frac{1}{2} Q_{t} V_{t}^{3} D_{t} \bar{y}_{t} D_{n} D_{p}\left[\left(\frac{1}{\sqrt{2}}\right) y_{n} D_{n^{*}}\left(\gamma \sqrt{\frac{2}{3}}\right) \bar{y}_{n_{M 1}}^{\gamma} y_{t}+\left(\frac{1}{\sqrt{2}}\right) y_{p} D_{p^{*}}\left(\gamma \sqrt{\frac{2}{3}}\right) \bar{y}_{p_{M 1}}^{\gamma} y_{t}\right] \\
= & \gamma \frac{1}{2 \sqrt{3}} Q_{t} V_{t}^{3} D_{t}\left|y_{t}\right|^{2} D_{n} D_{p}\left(y_{n} D_{n^{*}} \bar{y}_{n_{M 1}}^{\gamma}+y_{p} D_{p^{*}} \bar{y}_{p_{M 1}}^{\gamma}\right)=2 A_{t(0)}^{\gamma,-\gamma} . \tag{5.10}
\end{align*}
$$

Because of the occurrence of additional Clebsch-Gordan coefficients in the expanded vertex of Fig. $4, A_{t(0)}^{\gamma, 0} \neq A_{t(0)}^{\gamma,-\gamma}$.

VI. 0^{+}LEVEL DECAY

Only the eigenvalues $y_{s_{M 1}}^{\gamma}$ of the operator $Y_{s_{M 1}}$ are needed, as expanded in Fig. 4. The initial state is the 0^{+}level, $|s\rangle=|0,0\rangle$, and the final state is a deuteron and photon $\langle\gamma t|$ in one of two polarization states, with $M_{t}=-\gamma$. The correction V_{t} is applied to the triplet $n^{*} p t$ and $n p^{*} t$ vertices, and the correction V_{s} is applied to the $n p s$ decay vertex. With Eqs. (3.7)-(3.9), the eigenvalues are

$$
\begin{align*}
y_{s_{M 1}}^{\gamma}= & \langle\gamma t| V_{t} Y_{n} \boldsymbol{D}_{n^{*}} Y_{n_{M 1}}^{\dagger} \boldsymbol{D}_{n} \boldsymbol{D}_{p} \frac{1}{2} Y_{s} V_{s}|s\rangle+\langle\gamma t| V_{t} Y_{p} \boldsymbol{D}_{p^{\prime *}} Y_{p_{M 1}}^{\dagger} \boldsymbol{D}_{n^{\prime}} \boldsymbol{D}_{p^{\prime}} \frac{1}{2} Y_{s} V_{s}|s\rangle \\
= & \frac{1}{2} V_{t} V_{s}\left(\langle\gamma|\langle t| Y_{n}\left|n^{*}\right\rangle D_{n^{*}}\left\langle n^{*}\right| Y_{n_{M 1}}^{\dagger}|n\rangle|p\rangle D_{n} D_{p}\langle n|\langle p| Y_{s}|s\rangle\right. \\
& \left.\quad+\langle\gamma|\langle t| Y_{p}\left|p^{\prime *}\right\rangle D_{p^{*}}\left\langle p^{\prime *}\right| Y_{p_{M 1}}^{\dagger}\left|n^{\prime}\right\rangle\left|p^{\prime}\right\rangle D_{n} D_{p}\left\langle n^{\prime}\right|\left\langle p^{\prime}\right| Y_{s}|s\rangle\right) \\
= & \frac{1}{2} V_{t} V_{s} D_{n} D_{p}\left(\langle t| Y_{n}\left|n^{*} p\right\rangle D_{n^{*}}\left\langle\gamma n^{*}\right| Y_{n_{M 1}}^{\dagger}|n\rangle\langle n p| Y_{s}|s\rangle+\langle t| Y_{p}\left|n^{\prime} p^{\prime *}\right\rangle D_{p^{*}}\left\langle\gamma p^{\prime *}\right| Y_{p_{M 1}}^{\dagger}\left|p^{\prime}\right\rangle\left\langle n^{\prime} p^{\prime}\right| Y_{s}|s\rangle\right) \\
= & \frac{1}{2} V_{t} V_{s} D_{n} D_{p}\left[y_{n} D_{n^{*}}\left(\gamma \sqrt{\frac{2}{3}}\right) \bar{y}_{n_{M 1}}^{\gamma}\left(\gamma \frac{1}{\sqrt{2}}\right) y_{s}+y_{p} D_{p^{*}}\left(\gamma \sqrt{\frac{2}{3}}\right) \bar{y}_{p_{M 1}}^{\gamma}\left(-\gamma \frac{1}{\sqrt{2}}\right) y_{s}\right] \\
= & \frac{1}{2 \sqrt{3}} V_{t} V_{s} y_{s} D_{n} D_{p}\left(y_{n} D_{n^{*}} \bar{y}_{n_{M 1}}^{\gamma}-y_{p} D_{p^{*}} \bar{y}_{p_{M 1}}^{\gamma}\right)=\frac{1}{2} y_{s} D_{n} D_{p} A_{n p}^{\gamma}, \tag{6.1}
\end{align*}
$$

where $A_{n p}^{\gamma}$ is from Eq. (3.12).

VII. M1 PHOTON-DEUTERON ELASTIC SCATTERING

For the amplitude with an intermediate, off-shell singlet dibaryon, the initial deuteron and photon have opposite spins, as do the final deuteron and photon. With γ_{i}, γ_{f} the polarization states of the initial and final photon, there are four contributing amplitudes, each with initial and final deuteron spins $M_{t i}=-\gamma_{i}$ and $M_{t f}=-\gamma_{f}$. In terms of the expanded $s^{*} \gamma t$ vertex operator and its eigenvalue (6.1), the elastic γt amplitudes with an intermediate, off-shell singlet dibaryon are

$$
\begin{equation*}
A_{s}^{\gamma_{i}, \gamma_{f}}=\left\langle\gamma_{f} t_{f}\right| Y_{s_{M 1}} Q_{s} \boldsymbol{D}_{s} Y_{s_{M 1}}^{\dagger}\left|\gamma_{i}, t_{i}\right\rangle=Q_{s} D_{s} y_{s_{M 1}}^{\gamma_{f}} \bar{y}_{s_{M 1}}^{\gamma_{i}} . \tag{7.1}
\end{equation*}
$$

VIII. TWO-PHOTON CAPTURE

Consider $\Delta J=1 M 1$ radiative capture from an initial triplet $n p$, resulting in a deuteron in the excited 0^{+}state and a photon. Unlike ordinary capture, there can be no contribution from $M \equiv M_{n}+M_{p}=0$. For the contribution from off-shell baryons, where there is no intermediate dibaryon, the correction V_{s} is applied to the singlet $n^{*} p s$ and $n p^{*} s$ vertices, and the correction V_{t} is applied to the initial singlet $n p$. Because the intial state has $M= \pm 1$, there is no need to distinguish $n p$ between the case of the virtual neutron and the case of the virtual proton, as was done in Eqs. (3.7)-(3.9), For the $n^{*} n p$ contribution, where the neutron undergoes the $M 1$ transition,

$$
\begin{equation*}
\gamma+M_{n^{*}}=M_{n}, M_{s}=M_{n^{*}}+M_{p}=\gamma+M_{t}=0 \quad \Rightarrow \quad M_{p}=-M_{n^{*}}=M_{n}=\frac{1}{2} \gamma . \tag{8.1}
\end{equation*}
$$

For the $p^{*} n p$ contribution, where the proton undergoes the $M 1$ transition,

$$
\begin{equation*}
\gamma+M_{p^{*}}=M_{p}, M_{s}=M_{p^{*}}+M_{n}=\gamma+M_{t}=0 \quad \Rightarrow \quad M_{n}=-M_{p^{*}}=M_{p}=\frac{1}{2} \gamma \tag{8.2}
\end{equation*}
$$

The initial state is

$$
\begin{equation*}
|1, \pm 1\rangle=\left| \pm \frac{1}{2}, \pm \frac{1}{2}\right\rangle=\left|\gamma \frac{1}{2}, \gamma \frac{1}{2}\right\rangle=|n p\rangle . \tag{8.3}
\end{equation*}
$$

Note that $C_{s n^{*} p}=-\gamma \frac{1}{\sqrt{2}}$ and $C_{s n p^{*}}=\gamma \frac{1}{\sqrt{2}}$. The $M= \pm 1$ amplitudes from Fig. 3 are

$$
\begin{align*}
A_{n}^{\gamma} & =\langle\gamma s| Y_{n} V_{s} \boldsymbol{D}_{n} Y_{n_{M 1}}^{\dagger} V_{t}|n p\rangle=V_{s} V_{t}\langle\gamma|\langle s| Y_{n}\left|n^{*}\right\rangle D_{n}\left\langle n^{*}\right| Y_{n_{M 1}}^{\dagger}|n\rangle|p\rangle=V_{s} V_{t}\langle s| Y_{n}\left|n^{*} p\right\rangle D_{n}\left\langle\gamma n^{*}\right| Y_{n_{M 1}}^{\dagger}|n\rangle \\
& =V_{s} V_{t} D_{n}\left(-\gamma \frac{1}{\sqrt{2}}\right) y_{n}\left(\gamma \sqrt{\frac{2}{3}}\right) \bar{y}_{n_{M 1}}^{\gamma}=-\frac{1}{\sqrt{3}} V_{s} V_{t} y_{n} D_{n} \bar{y}_{n_{M 1}}^{\gamma} \tag{8.4}\\
A_{p}^{\gamma} & =\langle\gamma s| Y_{p} V_{s} \boldsymbol{D}_{p} Y_{p M 1}^{\dagger} V_{t}|n p\rangle=V_{s} V_{t}\langle\gamma|\langle s| Y_{p}\left|p^{*}\right\rangle D_{p}\left\langle p^{*}\right| Y_{p_{M 1}}^{\dagger}|p\rangle|n\rangle=V_{s} V_{t}\langle s| Y_{p}\left|n p^{*}\right\rangle D_{p}\left\langle\gamma p^{*}\right| Y_{p_{M 1}}^{\dagger}|p\rangle \\
& =V_{s} V_{t} D_{p}\left(\gamma \frac{1}{\sqrt{2}}\right) y_{p}\left(\gamma \sqrt{\frac{2}{3}}\right) \bar{y}_{p_{M 1}}^{\gamma}=\frac{1}{\sqrt{3}} V_{s} V_{t} y_{p} D_{p} \bar{y}_{p_{M 1}}^{\gamma} \tag{8.5}\\
A_{n p}^{\gamma} & \equiv A_{n}^{\gamma}+A_{p}^{\gamma} . \tag{8.6}
\end{align*}
$$

But for an overall sign change and substantially different photon energy, these are the same as Eqs. (3.10)-(3.12) for ordinary capture. Like ordinary capture, this is very nearly proportional to $\mu_{1}=\mu_{p}-\mu_{n}$, i.e., it can also be classified as an isovector reaction. With the $t^{*} \gamma s$ vertex expanded as shown in Fig. 4, the amplitudes are

$$
\begin{align*}
A_{t}^{\gamma}= & \langle\gamma s| V_{s} Y_{n} \boldsymbol{D}_{n^{*}} Y_{n_{M 1}}^{\dagger} \boldsymbol{D}_{n} \boldsymbol{D}_{p} V_{t} \frac{1}{2} Y_{t} Q_{t} \boldsymbol{D}_{t} Y_{t}^{\dagger} V_{t}|n p\rangle+\langle\gamma s| V_{s} Y_{p} \boldsymbol{D}_{p^{*}} Y_{p_{M 1}}^{\dagger} \boldsymbol{D}_{n} \boldsymbol{D}_{p} V_{t} \frac{1}{2} Y_{t} Q_{t} \boldsymbol{D}_{t} Y_{t}^{\dagger} V_{t}|n p\rangle \\
= & \frac{1}{2} Q_{t} V_{t}^{2} V_{s}\left(\langle\gamma|\langle s| Y_{n}\left|n^{*}\right\rangle D_{n^{*}}\left\langle n^{*}\right| Y_{n_{M 1}}^{\dagger}|n\rangle|p\rangle D_{n} D_{p}\langle n|\langle p| Y_{t}\left|t^{*}\right\rangle D_{t}\left\langle t^{*}\right| Y_{t}^{\dagger}|n p\rangle+\right. \\
& \left.\quad+\langle\gamma|\langle s| Y_{p}\left|p^{*}\right\rangle D_{p^{*}}\left\langle p^{*}\right| Y_{p_{M 1}}^{\dagger}|n\rangle|p\rangle D_{n} D_{p}\langle n|\langle p| Y_{t}\left|t^{*}\right\rangle D_{t}\left\langle t^{*}\right| Y_{t}^{\dagger}|n p\rangle\right) \\
= & \frac{1}{2} Q_{t} V_{t}^{2} V_{s} D_{t} \bar{y}_{t} D_{n} D_{p}\left(\langle s| Y_{n}\left|n^{*} p\right\rangle D_{n^{*}}\left\langle\gamma n^{*}\right| Y_{n M 1}^{\dagger}|n\rangle\langle n p| Y_{t}\left|t^{*}\right\rangle+\langle s| Y_{p}\left|n p^{*}\right\rangle D_{p^{*}}\left\langle\gamma p^{*}\right| Y_{p_{M 1}}^{\dagger}|p\rangle\langle n p| Y_{t}\left|t^{*}\right\rangle\right) \\
= & \frac{1}{2} Q_{t} V_{t}^{2} V_{s} D_{t} \bar{y}_{t} D_{n} D_{p}\left[\left(-\gamma \frac{1}{\sqrt{2}}\right) y_{n} D_{n^{*}}\left(\gamma \sqrt{\frac{2}{3}}\right) \bar{y}_{n_{M 1}}^{\gamma} y_{t}+\left(\gamma \frac{1}{\sqrt{2}}\right) y_{p} D_{p^{*}}\left(\gamma \sqrt{\frac{2}{3}}\right) \bar{y}_{p_{M 1}}^{\gamma} y_{t}\right] \\
& \frac{1}{2} V_{t}^{2} V_{s} D_{t}\left|y_{t}\right|^{2} D_{n} D_{p}\left(-y_{n} D_{n^{*}} \bar{y}_{n_{M 1}}^{\gamma}+y_{p} D_{p^{*}} \bar{y}_{p_{M 1}}^{\gamma}\right)=\frac{1}{2} Q_{t} V_{t} D_{t}\left|y_{t}\right|^{2} D_{n} D_{p} A_{n p}^{\gamma} . \tag{8.7}
\end{align*}
$$

$A_{n p}^{\gamma}$ is given by Eqs. (8.4)-(8.6), where D_{n} and D_{p} correspond to $D_{n^{*}}$ and $D_{p^{*}}$ in Eq. (8.7).

IX. E1 CAPTURE

For $E 1$ capture, the initial $n p$ is in a triplet spin state, with total spin $S=1$ and $M_{S}= \pm 1,0$, and in a relative p wave, with orbital angular momentum $L=1$ and $M_{L}= \pm 1,0$. The final deuteron t is in the 1^{+}ground state, with spin M_{t}, and the final photon has helicity $\gamma= \pm 1$. The intermediate baryon contribution, with no intermediate dibaryon, is similar to the $M 1$ case (Fig. 3), but there is no contribution from the neutron. $Y_{p_{M 1}}$ is replaced with $Y_{p_{E 1}}$, and the eigenvalue $y_{p_{M 1}}^{\gamma}=\sqrt{4 \pi} y_{p} y_{M 1}^{\gamma}$ is replaced with $y_{p_{E 1}}^{\gamma}=\sqrt{4 \pi} y_{p} y_{E 1}^{\gamma}$, with $y_{E 1}^{\gamma}=(-i \gamma)\left(i \omega / m_{p}\right) \sqrt{3 / 16 \pi} \sin \theta e^{i \gamma \phi}$. Note that $y_{E 1}^{\gamma}$ differs from $y_{M 1}^{\gamma}$ by a factor $-i \gamma$ (among other things), because the electric and magnetic fields in electric multipole radiation are "exchanged", relative to those in magnetic multipole radiation, and it is $\hat{\boldsymbol{p}} \cdot \boldsymbol{\epsilon}^{(i)}$ that is replaced with unity instead of $\boldsymbol{\sigma} \cdot\left(\hat{\boldsymbol{p}} \times \boldsymbol{\epsilon}^{(i)}\right)$. The spins satisfy

$$
\begin{equation*}
\gamma+M_{p^{*}}=M_{p}+M_{L}, M_{t}=M_{p^{*}}+M_{n}, M_{p}=M_{p^{*}}, M_{S} \equiv M_{p}+M_{n} \quad \Rightarrow \quad M_{L}=\gamma, M_{S}=M_{t} \tag{9.1}
\end{equation*}
$$

from which it is seen that the final deuteron has the same spin and orientation of the initial $n p$, i.e., $M_{t}=M_{S}$. Because $\gamma=M_{L}$, only $M_{L}= \pm 1$ contributes. The initial $n p$ are in a relative p-wave, so the triplet $n p$ wavefunction is spatially antisymmetric. Adopting the $n p / n^{\prime} p^{\prime}$ notation from Eqs. (3.7)-(3.9) for the $M_{t}=0$ case (and modifying it somewhat), the initial state is (By definition, $M_{n^{\prime}}=-M_{n}$ and $M_{p^{\prime}}=-M_{p}$.)

$$
\begin{array}{lll}
M_{t}=0 & \frac{1}{\sqrt{2}}\left|+\frac{1}{2},-\frac{1}{2}\right\rangle-\frac{1}{\sqrt{2}}\left|-\frac{1}{2},+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{2}}|n p\rangle-\frac{1}{\sqrt{2}}\left|n^{\prime} p^{\prime}\right\rangle, & M_{n}=-M_{p}=\frac{1}{2}, M_{n^{\prime}}=-M_{p^{\prime}}=-\frac{1}{2} \\
M_{t}= \pm 1 & \left| \pm \frac{1}{2}, \pm \frac{1}{2}\right\rangle=|n p\rangle, & M_{n}=M_{p}=\frac{1}{2} M_{t}= \pm \frac{1}{2} \tag{9.2}
\end{array}
$$

With this notation (employed only for $M_{t}=0$), there is a contribution from $n p p^{*}$ and another from $n^{\prime} p^{\prime} p^{\prime *}$. Because p and p^{\prime} are the same proton in its two possible orientations, the prime is not included in the subscripts of such variables as $E_{p}, D_{p^{*}}$, etc. Note, however, that the Clebsch-Gordan coefficients are not the same, i.e., $C_{t n p^{*}}=\frac{1}{\sqrt{2}}=-C_{t n^{\prime} p^{\prime *}}$. Let $J_{n p}$ specify the total angular momentum of the initial $n p$, with projection $M_{n p}=M_{S}+M_{L}=M_{t}+\gamma$. $J_{n p}$ is 0,1 , or 2 , corresponding to ${ }^{2 S+1} L_{J}={ }^{3} P_{0},{ }^{3} P_{1}$, or ${ }^{3} P_{2}$; amplitudes with different $J_{n p}, M_{n p}$ do not interfere when integrated over 4π solid angle. In analogy with Eq. (3.5),

$$
\begin{array}{rlrl}
C_{(n p) \gamma\left(n p^{*}\right)} & \equiv C_{11}\left(J_{n p}, M_{n p} ; \gamma, M_{n p^{*}}\right)=C_{11}\left(J_{n p}, M_{n p} ; \gamma, M_{t}\right), \quad\left\langle\gamma p^{*}\right| Y_{p_{E 1}}^{\dagger}|p\rangle=C_{(n p) \gamma\left(n p^{*}\right)} \bar{y}_{p_{E 1}}^{\gamma}, \\
y_{p_{E 1}}^{\gamma} & =i \sqrt{\left(E_{p}-\omega\right) / 4 \pi} \sqrt{4 \pi} y_{E 1}^{\gamma}=\gamma\left(\omega / m_{p}\right) \sqrt{\alpha\left(E_{p}-\omega\right)} \sqrt{3 / 16 \pi} \sin \theta e^{i \gamma \phi} & \quad \text { (circular polarization), } \\
y_{p_{E 1}}^{(\mathrm{v} / \mathrm{h})} & =\left(\omega / m_{p}\right) \sqrt{\alpha\left(E_{p}-\omega\right)} \sqrt{3 / 16 \pi} \sin \theta \sqrt{1 \mp \cos 2 \phi} & \quad \text { (plane polarization). } \tag{9.5}
\end{array}
$$

The Clebsch-Gordan coefficients are

$$
\begin{array}{ll}
{ }^{3} P_{0}\left(\gamma= \pm 1 ; M_{t}=-\gamma\right) & C_{11}(0,0 ;+1,-1)=C_{11}(0,0 ;-1,+1)=+\frac{1}{\sqrt{3}} \\
& C_{11}(1,+1 ;+1,0)=C_{11}(1,0 ;+1,-1)=+\frac{1}{\sqrt{2}}=\gamma \frac{1}{\sqrt{2}} \\
{ }^{3} P_{1}\left(\gamma= \pm 1 ; M_{t}=0,-\gamma\right) & C_{11}(1,-1 ;-1,0)=C_{11}(1,0 ;-1,+1)=-\frac{1}{\sqrt{2}} \\
& C_{11}(2,+2 ;+1,+1)=C_{11}(2,-2 ;-1,-1)=1 \\
{ }^{3} P_{2}\left(\gamma= \pm 1 ; M_{t}=0, \pm \gamma\right) & C_{11}(2,+1 ;+1,0)=C_{11}(2,-1 ;-1,0)=\frac{1}{\sqrt{2}} \\
& C_{11}(2,0 ;+1,-1)=C_{11}(2,0 ;-1,+1)=\frac{1}{\sqrt{6}}
\end{array}
$$

Since the $n p^{*}$ is in a relative s-wave, in the triplet spin state, the vertex correction V_{t} is included at the $n p^{*} t$ vertex, where the final-state deuteron t is created and the $n p^{*}$ are annihilated. The p-wave vertex correction V_{P} is applied to the initial p-wave $n p$ (see Ref. [1]). The amplitudes with an intermediate, off-shell baryon (Fig. 3) are, where $J M \equiv J_{n p}, M_{n p}$,

$$
\begin{align*}
A_{p, J M}^{\gamma, M_{t}} & =\langle\gamma t| V_{t} Y_{p} \boldsymbol{D}_{p} Y_{p_{E 1}}^{\dagger} V_{P}|n p\rangle, \quad A_{p}^{\gamma} \equiv V_{t} V_{P} y_{p} D_{p} \bar{y}_{p_{E 1}}^{\gamma} \tag{9.6}\\
A_{p, J M}^{\gamma, 0} & =V_{t} V_{P}\left[\langle\gamma t| Y_{p}\left|p^{*}\right\rangle D_{p}\left\langle p^{*}\right| Y_{p_{E 1}}^{\dagger}\left(\frac{1}{\sqrt{2}}\right)|n p\rangle+\langle\gamma t| Y_{p}\left|p^{\prime *}\right\rangle D_{p}\left\langle p^{\prime *}\right| Y_{p_{E 1}}^{\dagger}\left(-\frac{1}{\sqrt{2}}\right)\left|n^{\prime} p^{\prime}\right\rangle\right] \\
& =\frac{1}{\sqrt{2}} V_{t} V_{P} D_{p}\left(\langle t| Y_{p}\left|n p^{*}\right\rangle\left\langle\gamma p^{*}\right| Y_{p_{E 1}}^{\dagger}|p\rangle-\langle t| Y_{p}\left|n^{\prime} p^{\prime *}\right\rangle\left\langle\gamma p^{\prime *}\right| Y_{p_{E 1}}^{\dagger}\left|p^{\prime}\right\rangle\right) \\
& =\frac{1}{\sqrt{2}} V_{t} V_{P} D_{p}\left[\left(\frac{1}{\sqrt{2}}\right) y_{p} C_{11}(J, M ; \gamma, 0) \bar{y}_{p_{E 1}}^{\gamma}-\left(-\frac{1}{\sqrt{2}}\right) y_{p} C_{11}(J, M ; \gamma, 0) \bar{y}_{p=1}^{\gamma}\right]=C_{11}(J, M ; \gamma, 0) A_{p}^{\gamma}, \\
\Rightarrow \quad A_{p, J M}^{\gamma, \pm 1} & =V_{t} V_{P}\langle\gamma t| Y_{p}\left|p^{*}\right\rangle D_{p}\left\langle p^{*}\right| Y_{p_{E 1}}^{\dagger}|n p\rangle=V_{t} V_{P}\langle t| Y_{p}\left|n p^{*}\right\rangle D_{p}\left\langle\gamma p^{*}\right| Y_{p_{E 1}}^{\dagger}|p\rangle=C_{11}(J, M ; \gamma, \pm 1) A_{p}^{\gamma} \\
A_{p, J M}^{\gamma, M_{t}} & \tag{9.7}
\end{align*}
$$

Contributions from intermediate dibaryons require that the dibaryon posses orbital angular momentum. The p wave dibaryon propagator is take to be the same as the s-wave dibaryon propagator, but with a p-wave propagator correction Q_{P} instead of Q_{t} (see Ref. [1], where it is assumed that a p-wave triplet dibaryon has the same on-shell mass as an s-wave triplet dibaryon). The $t^{*} t \gamma$ vertex is expanded as shown in the right half of Fig. 4. There is a p-wave vertex correction V_{P} at either end of the intermediate dibaryon, applied between the $n p$ legs, and an s-wave vertex correction V_{t} at the vertex where the $n p^{*}$ join to form the final triplet dibaryon in a relative s-wave. A_{p}^{γ} and $A_{p, J M}^{\gamma, M_{t}}$ are given by Eqs. (9.6)-(9.7), where D_{p} corresponds to $D_{p^{*}}$ in the amplitudes $A_{t, J M}^{\gamma, M_{t}}$, which are

$$
\begin{align*}
A_{t, J M}^{\gamma, 0}= & Q_{P} V_{t} V_{P}^{2}\left[\langle\gamma t| Y_{p} \boldsymbol{D}_{p^{*}} Y_{p_{E 1}}^{\dagger} \boldsymbol{D}_{n} \boldsymbol{D}_{p} \frac{1}{2} Y_{t} \boldsymbol{D}_{t} Y_{t}^{\dagger}\left(\frac{1}{\sqrt{2}}\right)|n p\rangle+\langle\gamma t| Y_{p} \boldsymbol{D}_{p^{\prime *}} Y_{p_{E 1}}^{\dagger} \boldsymbol{D}_{n^{\prime}} \boldsymbol{D}_{p^{\prime}} \frac{1}{2} Y_{t} \boldsymbol{D}_{t} Y_{t}^{\dagger}\left(-\frac{1}{\sqrt{2}}\right)\left|n^{\prime} p^{\prime}\right\rangle\right] \\
= & \frac{1}{2 \sqrt{2}} Q_{P} V_{t} V_{P}^{2}\left(\langle\gamma t| Y_{p}\left|p^{*}\right\rangle D_{p^{*}}\left\langle p^{*}\right| Y_{p_{E 1}}^{\dagger}|n\rangle|p\rangle D_{n} D_{p}\langle n|\langle p| Y_{t}\left|t^{*}\right\rangle D_{t}\left\langle t^{*}\right| Y_{t}^{\dagger}|n p\rangle+\right. \\
& \left.\quad \quad-\langle\gamma t| Y_{p}\left|p^{\prime *}\right\rangle D_{p^{*}}\left\langle p^{\prime *}\right| Y_{p_{E 1}}^{\dagger}\left|n^{\prime}\right\rangle\left|p^{\prime}\right\rangle D_{n} D_{p}\left\langle n^{\prime}\right|\left\langle p^{\prime}\right| Y_{t}\left|t^{*}\right\rangle D_{t}\left\langle t^{*}\right| Y_{t}^{\dagger}\left|n^{\prime} p^{\prime}\right\rangle\right) \\
& \quad \frac{1}{2 \sqrt{2}} Q_{P} V_{t} V_{P}^{2} D_{p^{*}} D_{n} D_{p} D_{t}\left[\langle t| Y_{p}\left|n p^{*}\right\rangle\left\langle\gamma p^{*}\right| Y_{p_{E 1}}^{\dagger}|p\rangle\left(\frac{1}{\sqrt{2}}\right) y_{t}\left(\frac{1}{\sqrt{2}}\right) \bar{y}_{t}+\right. \\
& \left.\quad-\langle t| Y_{p}\left|n^{\prime} p^{\prime *}\right\rangle\left\langle\gamma p^{\prime *}\right| Y_{p_{E 1}}^{\dagger}\left|p^{\prime}\right\rangle\left(-\frac{1}{\sqrt{2}}\right) y_{t}\left(-\frac{1}{\sqrt{2}}\right) \bar{y}_{t}\right] \\
= & \frac{1}{4 \sqrt{2}} Q_{P} V_{t} V_{P}^{2} D_{p^{*}} D_{n} D_{p} D_{t}\left|y_{t}\right|^{2}\left[\left(\frac{1}{\sqrt{2}}\right) y_{p} C_{11}(J, M ; \gamma, 0) \bar{y}_{p_{E 1}}^{\gamma}-\left(-\frac{1}{\sqrt{2}}\right) y_{p} C_{11}(J, M ; \gamma, 0) \bar{y}_{p_{E 1}}^{\gamma}\right] \\
= & \frac{1}{4} C_{11}(J, M ; \gamma, 0) Q_{P} V_{P} D_{n} D_{p} D_{t}\left|y_{t}\right|^{2} A_{p}^{\gamma}, \tag{9.8}\\
A_{t, J M}^{\gamma, \pm 1}= & Q_{P} V_{t} V_{P}^{2}\langle\gamma t| Y_{p} \boldsymbol{D}_{p^{*}} Y_{p_{E 1}}^{\dagger} \boldsymbol{D}_{n} \boldsymbol{D}_{p} \frac{1}{2} Y_{t} \boldsymbol{D}_{t} Y_{t}^{\dagger}|n p\rangle \\
= & \frac{1}{2} Q_{P} V_{t} V_{P}^{2}\langle t|\langle\gamma| Y_{p}\left|p^{*}\right\rangle D_{p^{*}}\left\langle p^{*}\right| Y_{p_{E 1}}^{\dagger}|n\rangle|p\rangle D_{n} D_{p}\langle n|\langle p| Y_{t}\left|t^{*}\right\rangle D_{t}\left\langle t^{*}\right| Y_{t}^{\dagger}|n p\rangle \\
= & \frac{1}{2} Q_{P} V_{t} V_{P}^{2} D_{p^{*}} D_{n} D_{p} D_{t}\langle t| Y_{p}\left|n p^{*}\right\rangle\left\langle\gamma p^{*}\right| Y_{p_{E 1}}^{\dagger}|p\rangle y_{t} \bar{y}_{t} \\
= & \frac{1}{2} Q_{P} V_{t} V_{P}^{2} D_{p^{*}} D_{n} D_{p} D_{t}\left|y_{t}\right|^{2} y_{p} C_{11}(J, M ; \gamma, \pm 1) \bar{y}_{p_{E 1}}^{\gamma} \\
= & \frac{1}{2} C_{11}(J, M ; \gamma, \pm 1) Q_{P} V_{P} D_{n} D_{p} D_{t}\left|y_{t}\right|^{2} A_{p}^{\gamma} . \tag{9.9}
\end{align*}
$$

Acknowledgments

This work was supported by the United States Department of Energy, under Contract No. DE-AC02-98CH10886.
[1] R. W. Hackenburg, BNL Report BNL-77483-2007-JA, submitted to Phys. Rev. C (2007).
[2] J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (John Wiley \& Sons, Inc. New York, 1952).
[3] Particle Data Group, Phys. Lett. B592, 1 (2004).
[4] A. J. F. Siegert, Phys. Rev. 52, 787 (1937).
[5] J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley Publishing Company, Inc., 1987), 11th ed.
[6] R. P. Feynman, Quantum Electrodynamics (W. A. Benjamin, Inc., 1962).

[^0]: ${ }^{1}$ Equation (2.4) often appears with a conventional normalization $1 / \sqrt{2 \omega}$, where ω is the photon energy [5, 6]. The amplitudes as defined here do not include this normalization, which occurs instead in a covariant phase-space factor [1].

