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1 Introduction

Since the first edition of this book was published, research involving electron
holography and its applications to the investigation of electromagnetic fields
has made substantial progress, both from the experimental and theoretical
points of view. An influential driving force in this direction has been the in-
terest in dynamical observations of superconducting vortices in conventional
and high-Tc materials using the Fresnel (out-of-focus) method of Lorentz mi-
croscopy. In fact, owing to the large London penetration depth λL typical
of high-Tc superconductors, the need to observe specimens with a thickness
comparable or even larger than λL in order to obtain reliable information on
the vortex core structure has prompted the development of a high voltage (1
MV) electron holography microscope [1, 2]. This instrument, equipped with
two electron biprisms, enables us to explore and develop new modes of elec-
tron interferometry and holography, where fringe spacing and orientation, as
well as field of view, can be independently controlled [4, 5, 6].
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On the other hand, observations of flux line lattices and pancake vortices
in anisotropic and layered superconductors revealed the inadequacy of the
real space approach based on the flux tube model to cope with such struc-
tures, and prompted us to develop a more powerful and general Fourier space
approach. This chapter is devoted primarily to a general review of Fourier
methods for computing electron-optical phase shifts associated to electric
and/or magnetic fields. The phase shift, in fact, represents the link connect-
ing electron holography experiments and the physics of materials, structures
and devices under study in a transmission electron microscope. A link that
can be followed through and exploited properly only when a physically sound
model is available for the interpretation of the phase modulation retrieved
from the experiments.

In this chapter, we will first present an overview of the early steps which
led us to the development of the Fourier approach to phase computations. In
chapter 7 of Ref. [7] [reference to first edition, to be updated and/or
adjusted as appropriate], we introduced the simple model associated to a
flux tube, an elementary quantized vortex where the singular magnetic field
is concentrated in a region of negligible radius. The phase shift associated
with a flux tube can be computed analytically in real space, and represented
a milestone towards the development of realistic models. In fact, by con-
voluting it with a suitable magnetic field distribution, it has been possible
to obtain realistic simulations that contributed to the interpretation of the
very first results obtained by electron holography on vortex matter [8, 9, 10].
The next step, illustrated in section 2, was to realize that in order to calcu-
late the total phase shift associated to a vortex lattice, it was necessary to
evaluate the Fourier transform of the single fluxon phase, and sample it over
the reciprocal lattice. This idea led to remarkable computational benefits,
as it enabled us to simulate lattices at small or large magnetic fields (the
lattice spacing is inversely proportional to the applied field), and interpret
Foucault and Fresnel observations of vortex matter. In section 3, we review
the extension of the theoretical framework leading to the computation of
fields and phase shifts associated to vortices in anisotropic materials. This
extension was particularly useful to interpret experiments on high-Tc materi-
als, especially YBCO, and to demonstrate the capability of Fresnel methods
and electron holography to distinguish between pinned and unpinned vor-
tices by examining the fine features of the image contrast or phase shifts
respectively. In section 4, we examine the problem of layered materials, with
highly anisotropic materials such as BSCCO in mind, where vortices have

2



an instrinsic two-dimensional structure imposed by the supercurrents flow-
ing only within the CuO planes. The main benefit of this extension was
the opportunity to simulate more exotic structures, such as kinked vortices
occurring when the external field is applied at large angles with respect to
the sample perpendicular direction. Simulation of the phase shift associated
with Josephson vortices is also possible, but since no experimental evidence
is yet present in the literature, we choose not to discuss the issue here and
refer the reader to Ref. [11].

While our work was initially motivated by our ongoing research on su-
perconducting vortices, the usefulness of the obtained results prompted us
to apply Fourier methods in other directions. In particular, the analysis
of electrostatic fields associated to reverse-biased p-n junctions, reviewed in
section 5, of magnetic fields produced by stripe domains near the sample
edge, section 6, and finally of magnetic nanoparticles with various shapes,
section 7. In all these cases the Fourier method enabled us to produce a
wealth of unexpected and useful results, very often in analytical form, which
makes this approach invaluable in the theoretical investigation of long range
electromagnetic fields as observed and measured by electron holography and
microscopy.

2 From the isolated vortex to the flux line

lattice case

After the first successful observations of superconducting vortices or fluxons
by means of the Fresnel and holography techniques [8, 9, 10], other Lorentz
microscopy phase contrast methods have been applied, and low angle elec-
tron diffraction and Foucault experiments have been carried out on super-
conducting specimens in a range of applied magnetic fields where vortices
are arranged over a more or less regular lattice [12, 13]. In order to interpret
these results, we started from the flux tube model and we approximated the
fluxon by a suitable bundle of straight flux tubes, relying on the important
result that the phase shift of the flux tube can be calculated analytically
even in the tilted specimen geometry [10, 14]. In this way, by convolving this
elementary phase shift with a chosen projected magnetic field distribution,
we obtain a fairly realistic model capable of describing satisfactorily the main
features of experimental results.
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We considered the case of a London bulk model [15], in which the mag-
netic field is described by the following equation,

B =
Φ0

2πr2
F

K0

(
r

rF

)
(1)

where Φ0 = h/(2e) = 2.07 × 10−15 T m2 is the flux quantum (h being the
Planck constant and e the absolute value of the electron charge), K0 is the
zero-order modified Bessel function, r the radial distance from the vortex
axis and rF a phenomenological parameter linked to the vortex radius, of the
same order of magnitude as the London penetration depth. For thin films
of conventional superconductors like Niobium, where λL ∼ 30 nm and the
film thickness is about t=60 nm, the value rF = 50 nm gives results in good
agreement with the experimental findings [16]. For the sake of generality,
and for an easy extension of the results to other materials, we have kept all
the distances expressed in unit of rF . Therefore, in order to simulate a fluxon
lattice, we started with the idea of taking a large but finite array of fluxons,
calculating the phase shift and selecting the central part of the region. Figure
1(a) reports the results obtained for the case of an ideal triangular lattice of

spacing s =
√

2Φ0/(
√

3B)=6rF =300 nm corresponding to an applied field
perpendicular to the sample surface of B=37.5 mT. Note that in actual
experiments the field is tilted at 45◦ with respect to the specimen normal.
The number of fluxons used in this computation is 331, and only the central
region, a square of side 20rF =1 µm, containing about 20 fluxons, is shown.

The surface plot of the phase shift, to which a linear term has been
subtracted, clearly shows the hills and valleys associated to each fluxon. Note
also that the triangular lattice is distorted owing to its projection onto the
observation plane. Figure 1(b) displays the surface plot of the phase when
the lattice spacing is reduced to s=150 nm=3rF . The number of fluxons is
still 331 as in Fig.1(a), whereas in Fig.1(c) and (d) it has been increased to
1261 and 4921 fluxons respectively. These values stem from the fact that we
surrounded the central region of 20rF by an increasing number of hexagonal
shells along the external perimeter.

When the lattice parameter is not too small, as in Fig.1(a), the finite sum
of single fluxons gives good results, while if we decrease the lattice spacing
we notice a large residual curvature of the phase, even when the linear con-
tribution is subtracted, as shown in Fig.1(b). This curvature can be reduced
by increasing the fluxon number, Fig.1(c), but it is still detectable even for
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the largest value, Fig.1(d). This is due to the long range behaviour of the
flux tube phase, which depends on the angle and not on the distance from
the fluxon. As a consequence, a very large number of fluxons is needed in
order to smooth the phase and approximate the periodic case. It is therefore
clear that the idea of taking a large but finite array of fluxons, calculating
the phase shift and selecting the basic unit cell in the central part of the
region, and then computing the various images by Fourier methods by pe-
riodic prolongation is not a very efficient procedure, as it leads quickly to
unmanageable computing times and memory requirements.

These effects are particularly important in the case of high-Tc supercon-
ductors, where penetration depth and fluxon radius are of the order of 200-
400 nm respectively, so that highly packed lattices with overlapping fields
are the standard. On the other hand, in these conditions where the phase
presents only a slight modulation with respect to its average value, only a
relatively small number of Fourier coefficients is needed. Therefore, the avail-
ability of the phase shift in Fourier representation could lead to a substantial
gain in computing time and accuracy. For these reasons, the problem of com-
puting the Fourier coefficients of the phase has been reconsidered, and solved,
using a completely different approach, where first the vector potential of the
magnetic field is solved in Fourier space and decomposed into Fourier compo-
nents, and then the phase shift is calculated for each component separately
[17, 18]. In this way the Fourier transform of the phase shift is immediately
obtained, and can be inverted either analytically or numerically.

For the case of the flux tube, this procedure leads to the following result
for the phase shift in Fourier space

ϕ̃(kx, ky) = −2πi
ky

k2
⊥

sin(akx)

kx

+
sin α cos(akx)√
k2

x cos2 α + k2
y

 (2)

with k⊥ =
√

k2
x + k2

y. The equivalence of the Fourier and real space repre-

sentations can be proved by direct computation [17].
As mentioned before, the London model provides a fairly reasonable de-

scription of the field in high-Tc materials. The necessary convolution with
the flux tube is conveniently performed in the Fourier space by multiplying
ϕ̃ and B̃, the Fourier transform of the projected field. As the expression of
B̃ can be easily calculated by means of tables of integrals [19]

B̃(kx, ky) =
Φ0

1 + r2
F (k2

x cos2 α + k2
y)

(3)
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we arrive at the important result that the Fourier transform φ̃(kx, ky) of a
fluxon described by the London field topography is known analytically. Let us
assume that the fluxons are arranged over a two-dimensional Bravais lattice,
having basis vectors projected in the object plane given by a1 = (a11, a12)
and a2 = (a21, a22). In this way, it is possible to locate each fluxon of the
lattice by means of its Bravais vector rn,m = na1 + ma2, where n and m are
integers. The lattice phase φlat(x, y) can be expressed as:

φlat(r) =
+∞∑

n,m=−∞
φ(r− rn,m) = φ(r) ∗2 III(r) (4)

where the symbol ∗ represents the convolution and the function 2III(r) is a
two-dimensional array of Dirac delta functions (bed-of-nails or shah function
[20]) centered on the lattice sites:

2III(r) =
+∞∑

n,m=−∞

2δ(r− rn,m) (5)

Formally exploiting the convolution theorem, we can again express the FT
of the lattice phase as the product

φ̃lat = φ̃ · 2 ˜III = ϕ̃ · B̃ · 2 ˜III (6)

in which all the terms are known. In fact the FT of the function 2III(r) is
another two-dimensional shah function, with the delta functions now centered
on the reciprocal lattice sites kn,m

2III(p, q) = C
+∞∑

n,m=−∞

2δ(k− kn,m) (7)

with a normalization factor C given by:

C−1 =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ (8)

Going back to the lattice phase, we obtain:

φlat(r) = C
∫

e2πir·kφ̃(k)
+∞∑

n,m=−∞

2δ(k− kn,m)dk = (9)
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= C
+∞∑

n,m=−∞
φ̃(kn,m)e2πir·kn,m (10)

which is the expression needed for computing the simulations for the periodic
case. This expression shows that the value of the phase spectrum at the
reciprocal lattice sites plays the role of Fourier coefficient of the lattice phase
described as a Fourier series. This infinite series can be truncated as soon
as the spectrum reaches a value low enough to insure the precision we want
to achieve. It can be ascertained, by calculating the phase for some ideal
lattices, that taking small lattice parameters, i.e. large reciprocal lattice
vectors, helps the convergence, thus obtaining the opposite result, in terms
of computation times, than with the previous approach: the more packed
the lattice is, the shorter and more accurate is the calculation. This is due
to the fact that when the fluxons are very close to each other, the only effect
that they have on the electron beam is a slight modulation of the wave front,
so that a Fourier series with very few coefficients is required to reproduce
it. Figure 2(a) reports the three-dimensional phase plot calculated for the
same data as Fig.1(a), taking |m,n| ≤ 12, Figure 2(b) the plot calculated for
the data of Fig.1(b) with |m, n| ≤ 8, whereas Figure 2(c) shows the results
obtained when the lattice spacing equals rF =50 nm with |m, n| ≤ 8 (higher
Fourier terms are uninfluential). We note that this simulation is beyond our
present computing capabilities if the single fluxon approach is followed.

3 From London to anisotropic vortices

It was soon realized that this new approach to the calculation of the phase
shift could be profitably extended to cope with situations treatable only
approximatively in real space. In particular, the analytical solution in the
Fourier space of a London fluxon in a thin film taking into account the
effects of the surfaces has been found [18] and compared with the previous
approximate one [21] where, relying on the straight flux tube model, the
magnetic field within the specimen was assumed to be constant and equal to
its value at the surfaces. We have also confirmed the substantial correctness
of the earlier error estimate made by resorting to a parabolic approximation
for the trend of the field lines within the specimen [21].

However, more interesting results have been obtained by applying the
Fourier approach to models which are suggested by experiments [22], where
superconducting specimens irradiated with heavy ions in a direction different
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from the normal have been studied in order to directly observe the pinning
of the vortices at columnar defects. In particular, the first analysis of the
contrast features strongly suggested that anisotropy plays an important role
in determining the outcome of transmission electron microscopy experiments
[23] so that we have investigated the model of a tilted London vortex in a
thin anisotropic slab.

Again, the analytical solution of this problem has been obtained in the
Fourier approach [24] and Fig.3 shows the phase maps calculated in the three
ortogonal directions (xS,yS,zS) for a vortex laying on the columnar defect
which is tilted at and angle θ = 45◦ with respect to the specimen normal (zS

axis). The projected view of the columnar defect is indicated by the short
bold line (white in Figure 3(c)) in the plots. The first three plots (a,b,c)
correspond to an isotropic material with γ = 1 (γ is the anisotropy parameter,
defined as the ratio between λc and λab, i.e. γ = λc/λab), while the last one (d)
to a medium anisotropic material with γ = 5. In the xS and yS projections,
no visible difference can be appreciated between the plots corresponding to
different values of γ. This is because when we calculate the phase shift in the
xS or yS direction, the only significant contribution comes from the tangential
components of the vector potential, which are independent on λc. Therefore,
the isotropic and anisotropic cases are identical in this case and only one
example, the isotropic case, is reported. On the contrary, the second row
reports a striking difference between the two cases examined. Each contour
line represents a phase shift of 10 mrad, and when the anisotropy parameter
γ is increased, the phase shift decreases drastically, as can be seen in the last
plot, Fig. 3(d). It can be ascertained that increasing furthermore the value
of γ (in real materials it can be equal to 200 or more), the phase shift is in
the order of some µrads, well below the detectability limit of π/100 ' 30
mrad [25].

The following Fig. 4 shows a series of out-of-focus and holographic images
calculated for increasing γ values, from 1 to infinity (corresponding to the
pancake model: see next section 4), for a vortex core pinned at a columnar
defect tilted at θ = 45◦ with respect the specimen normal and rotated of
β = 90◦ around it. Analyzing the progressive disappearence of the apparent
vortex tilt with increasing anisotropy, the conclusion can be drawn that these
phase contrast techniques are enough sensitive on the variation of γ when
the parameter is close to the unity, but they predict almost indistinguishable
images when γ > 10 [23]. The agreement with the experimental results
[23, 24] is excellent and confirms the role played by anisotropy in affecting
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the phase contrast images of pinned vortices.

4 Pancake vortices

One of the most striking features of vortices in layered high-Tc superconduc-
tors (for reviews see, e.g., [26, 27]) is that they can be arranged in pancake
structures [28] where the layer coupling is, for highly anisotropic materi-
als, mainly due to the magnetic field between them. As emphasized in Ref.
[29] this system is qualitatively different from the bulk superconductor, as
there is no phase coherence across the layers. Therefore, whereas in three-
dimensional bulk materials, the fluxons are prohibited from terminating in-
side the material because of topology (the phase changes by 2π when the
vortex core at which the phase is singular is encircled), this restriction is no
longer valid in layered systems with no Josephson coupling. A vortex perpen-
dicular to the layers can terminate at any one of them and channel the flux,
at least partially, into the interlayer space. It has been argued in [29] that
such termination may be energetically favourable in specimens of finite size.
It is therefore exciting to model these structures and ascertain whether they
can be detected by transmission electron microscopy phase contrast/retrieval
techniques. As a first step, we have solved the problem of the Pearl vortex in
a thin film and extended it to the three layers case [18]. Then the case of a
stack of thin layers has been considered, as it can mimic well the structure of
highly anisotropic superconductors [24]. Unfortunately, the number of layers
dictated by the algebric approach followed was limited to seven, a rather
small number to be truly representative of the actual specimen where the
layers may easily be several hundreds. Nonetheless, the contour line maps
of the projected magnetic field showed a strong overall similarity with the
continuous anisotropic case (see below) and also the out-of-focus images cal-
culated for vortices pinned at tilted columnar defects showed no significant
differences [24].

Further experiments carried out with applied magnetic field tilted at a
very large angle with respect to the specimen surfaces [30] showed new in-
teresting features in the out-of-focus images. By increasing the applied field
angle the vortex cores become first elongated as if they were following (with
some lag) the direction of the field and then, at the largest angle, sometimes
exhibit a dumbbell-like appearance. These observations indicate that some-
thing peculiar is happening to the vortex structure. Unfortunately these
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features cannot be interpreted on the basis of the models described so far. In
fact, in the continuous-anisotropic model the vortex core is straight, and with
the pancake model at such large angles the small number of layers becomes
visible in the image, introducing unwanted artifacts.

In order to develop a more flexible model, two options are available:
deforming the core in the continuous-anisotropic model, or giving suitable
coordinates for the location of each pancake in the stack. While the first
turns out to be very cumbersome, the second is more practicable, provided
the number of layers is increased. For this purpose, we followed the approach
proposed by Clem [31, 32] and further developed by Coffey and Phipps [33],
who replaced all the screening layers above and below the layer containing the
vortex with a superconducting continuum that carries supercurrents parallel
to the layers. In this way the algebraic troubles linked to the increasing
number of unknowns arising in the former approach are circumvented and
an analytical expression for the field and phase shift for the single pancake has
been obtained [34]. Then, from the solution, more representative or exotic
vortex structures can be investigated by adding suitably placed pancakes
over a larger number of layers.

It is worthwhile to compare the semi-continuous approach with the pre-
vious one [24]. A 75◦ tilted stack of pancake vortices, aligned to a row of
pinning centers piercing the specimen at the same angle, is shown in Fig.5.
The overall similarity between the two cases is clearly displayed, with small
differences detectable in the curvature of the projected field lines between
the layers, due to the larger magnetic screening power of the superconduct-
ing regions with respect to vacuum areas. Such differences, however, are
hardly detectable in the out-of-focus images due to the feature-broadening
effect typical of the Fresnel technique.

However, when the stack tilt angle is increased up to 85◦, artifacts are
introduced: as visible in the contour line map and in the out-of-focus images,
the single pancakes can be clearly distinguished [34]. If we increase the num-
ber of pancakes to 15, something possible only if the semi-continuous model
is adopted, this artifact becomes undetetectable and the calculated image
is undistinguishable from the one calculated by the continuous anisotropic
model [24], as shown in Fig. 6. This example clearly shows the usefulness of
the new approach.

Let us briefly recall some of the experimental results reported in the
paper by Tonomura et al. [30], whose main purpose was to investigate the
formation mechanism of unconventional arrangements of vortices in high-
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Tc superconducting thin films with an inclined applied magnetic field with
respect to the layer plane. Out-of-focus observations were carried in the
newly developed 1 MV electron microscope equipped with a special magnetic
stage able to provide applied fields up to 10 mT along an arbitrary direction.

Film samples 300-400 nm thick of single-crystalline YBCO (Tc=92 K)
were prepared by thinning a 30 µm×100 µm region with a focused ion beam
machine (Hitachi FB-2000). These samples, whose surfaces were parallel to
the ab-plane, were tilted around the y-axis of 30◦ whereas the electron beam
was incident along the optical axis z. A magnetic field up to 10 mT was
applied obliquely to the surface of the samples at incidence angles θH of 70◦-
90◦, and vortices in arrangements reflecting the anisotropic layered structure
of the materials were observed as Lorentz micrographs. The experimental
results, taken with a defocus of 30 cm and at a temperature of 30 K are
shown in Fig. 7, reproduced at large magnification so that contrast features
of each single vortices are better visualized. The angle between the magnetic
field and the surface normal varied between θH = 75◦ and θH = 85◦.

We note that each vortex has a circular shape for θH ≤ 75◦, as shown in
Fig. 7(a), and gradually elongates in the direction of the field when the angle
is above 80◦, as shown in Fig. 7(b), where the field was applied at θH =
82◦. At slightly higher angles, the shape changes dramatically, becoming
dumbbell-like (Fig. 7(c), θH = 83◦) and even somewhat splitted in some
cases, as emphasized by white arrows in Fig. 7(d), where θH = 84◦. For
the largest angle, θH = 85◦, the vortices appear very elongated, with low
contrast. At least one of them, indicated by an arrow in (e), shows a clear
contrast splitting. These results can be interpreted by considering a core
aligned with the field in the interior of the specimen, at an angle of 85◦, and
kinked near the surfaces and aligned perpendicularly to them. As remarked
before, this fluxon core structure can be analysed only within the realm of
the semicontinuous model. The results are shown in Figure 8 and are in good
agreement with the experimental results, Fig. 7.

5 Parallel array of abrupt p-n junctions in a

half-plane

Stimulated by the results obtained by the Fourier approach reported in the
foregoing sections we endeavoured to apply this approach also to other long-
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range electromagnetic fields. In fact, even if the solution of the problem
is known by real space methods, the Fourier approach can offer a useful
different perspective or, at least, a decrease computing times. This is the
case of a parallel array of abrupt p-n junctions in a half-plane, tilted with
respect to the specimen edge, for which an analytical model for the potential
in the real space has been developed [35, 36]. As the specimen thickness has
been neglected,the problem is equivalent to that of finding the electrostatic
potential V (x, y, z) produced by a parallel array of stripes having width b
(and pitch in the y direction b/ cos α) which lie in the positive half-plane
(z = 0; x ≥ 0), tilted at an angle α with respect to the edge normal (−π/2 <
α < π/2). The stripes are biased at alternate potential, namely −VR/2 for
p-doped and VR/2 for n-doped stripes, so that this model corresponds to an
array of abrupt step junctions. The model can be easily generalized to more
realistic potentials by computing the appropriate coefficients for the Fourier
series.

In Ref. [37, 38], this problem has been recasted in Fourier space. Writing
the potential in the whole space as a Fourier series

V (x, y, z) =
+∞∑

n=−∞
γnVn(x, z)eiypn (11)

with pn = (πn/b) cos α and where γn are the coefficient of the one-dimensional
potential profile across two stripes of the array, we have shown that the 1D
Fourier transform of Vn(x, 0) is given by

Ṽn(kx, 0) = πδ(kx − qn)− i

kx − qn

√
|pn| − iqn√
|pn| − ikx

(12)

where qn = (πn/b) sin α. The time-consuming integration of the potential in
the real space for obtaining the phase shift associated, e.g., to the external
field above the sample ϕI , in Fourier space becomes the multiplication of
the 2D FT of the electrostatic potential in the z = 0 plane by the factor
CE/

√
k2

x + k2
y. Explicitly, we have

Ṽ (kx, ky, 0) = 2π
∞∑

n=−∞
γnδ(ky − pn)Ṽn(kx, 0) (13)

hence

ϕ̃I(kx, ky) = 2πCE

∞∑
n=−∞

γnδ(ky − pn)
Ṽn(kx, 0)√

k2
x + k2

y

(14)
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Therefore, the external upper phase in real space can be written as a simple
Fourier series

ϕI(x, y) = CE

∞∑
n=−∞

γnϕn(x)eipny (15)

where the series coefficients are given by

ϕn(x) =
1

2π

∫
dkx

Ṽn(kx, 0)√
k2

x + p2
n

eixkx (16)

Equation (16) can be evaluated by contour integration in the complex plane,
yielding an explicit analytical expression for the phase coefficients in real
space for the regions x > 0 (the junction array) and x < 0 (the vacuum)

ϕn(x < 0) =
1√

2|pn|
ex|pn|√
|pn| − iqn

(17)

ϕn(x > 0) =
eixqn√
p2

n + q2
n

[
1− Erfc

√
x(|pn|+ iqn)

]
+

1√
2|pn|

ex|pn|√
|pn| − iqn

Erfc
√

2x|pn| (18)

where Erfc is the complementary error function. These results show that the
phase shift of each Fourier component can be written in analytical form, so
that the Gibbs phenomenon present in the former mixed numerical-analytical
approach [37] is eliminated [38], as confirmed by Fig. 9(a) reporting the
calculation of the total phase shift due to the external field above and below
the sample.

Figure 9(b) reports also the result of the numerical calculation of the
phase shift related to the boundary condition obtained by putting equal to
zero the potential in the region x < 0 (i.e. in the vacuum) in the specimen-
plane z = 0 [38]. This is the simplest and most natural choice when the exact
solution of the electrostatic potential in the z = 0 plane is not known. More-
over, if we consider the analogy between electrostatic and optical problem,
this choice reflects the one chosen by Kirchhoff in the analysis of diffraction
problems, which is working well but has several fundamental limitations (see,
e.g., the discussion in the Born and Wolf [39] or Goodman [40] books). The
strong differences between images emphasize that in the electrostatic case
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the phase is very sensitive to the boundary conditions: setting the potential
beyond the edge of the specimen equal to zero is physically equivalent to a
conducting region on the edge where screening charges are free to move and
rearrange, thus modifying the field topography.

6 Stripe magnetic domains in a half-plane

Following the same formalism employed in developing the p-n junction mod-
els, we can extend phase computation through Fourier space to magnetic
domains. The basic difference between electrostatics and magnetostatics, is
that the latter involves a vector, rather than a scalar, potential. In addi-
tion, the absence of free charges in magnetism has the positive consequence
that specifying a fixed and given distribution of sources (the arrangement
of magnetic moments, or spins, in the material) is often more realistic and
physically tenable than specifying fixed electric charge distributions, which is
only reasonable for ideal insulators with no charge carrier mobility. Once the
distribution or moments, i.e. the magnetization of the material or structure,
is assigned, then the general expression linking magnetization and vector
potential

A(r) =
µ0

4π

∫
M(r′)× r− r′

|r− r′|3
d3r′ (19)

which can be found in any electromagnetism book (see, e.g., [41, 42]) rep-
resents the starting point of our calculations. The associated phase shift,
according to equation (7.4) in chapter 7 of Ref. [7] update and/or adjust
this reference if necessary, is then evaluated as a line integral along the
electron trajectory, taken as the z−axis. Equation (19) can be written in
Fourier Space, exploiting the convolution theorem and the linearity of the
cross product, as

Ã =
µ0

4π
M̃×F

[
r

r3

]
(20)

Therefore, by applying the formalism introduced in the previous sections,
we can calculate the phase shift for interesting magnetostatic configurations.
The 3D Fourier transform of the function r/r3, i.e. the kernel of eq. (19),
can be calculated in cartesian coordinates by integrating with respect to each
variable independently. The result turns out to be

F
[
r

r3

]
= −4iπ

k

k2
(21)
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Therefore, once the magnetization is given, the vector potential and the
electron optical phase shift can be calculated in the Fourier space approach
by means of

Ã(k) = −iµ0
M̃(k)× k

k2
(22)

Let us now consider a thin specimen of thickness t, lying on the (x, y)
plane and containing an array of 180◦ magnetic domains of width w each
alternatively oriented along the positive or negative direction on the x-axis.
The specimen is considered semi-infinite, which means that there is an abrupt
termination along the y-axis at x = 0. The set-up is sketched in Fig. 10(a).
Note that this is a truly three-dimensional problem, something that is ex-
tremely difficult to handle in electrostatics: the analogous problem of p-n
junctions (one may imagine to substitute magnetic domains with equipo-
tential regions in Fig. 10(a)) in a specimen of non-vanishing thickness is
tremendously difficult to solve analytically, and escaped a solution so far.

The magnetization can be expressed as

M =
Nφ◦
µ0tw

[1, 0, 0]H(x)Qw(y)Ut(z) (23)

where N is the number of flux quanta trapped inside the domain (not nec-
essarily an integer number, as the flux quantization does not apply here),
H(x) is the Heaviside step function, Qw(y) is a square wave of width w (pe-
riod 2w), and Ut(z) is a hat function representing the thickness t. As the
three functions in eq. (23) depend on different variables, we can express the
Fourier transform of the magnetization as the product of the transforms of
these functions, so that the Fourier transform of the M vector is

M̃ =
Nφ◦
µ0wt

[1, 0, 0]H̃(kx)Q̃w(ky)Ũt(kz) (24)

Considering eq.(22), thus performing the cross product between the vec-
tors [1, 0, 0] and k = [kx, ky, kz], and evaluating the FT of the three functions
with the help of distribution theory, we can directly write the expression for
the vector potential

Ã = 8π
Nφ◦
w2t

[0,−kz, ky]

kykzk2

[
πδ(kx) +

1

ikx

] odd∑
n

δ
(
ky +

πn

w

)
sin

(
tkz

2

)
(25)
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Extracting the z-component of the vector potential, performing the integra-
tion along the z-axis, going back to real space, we obtain the phase shift as
a Fourier series

ϕ(x, y) =
N

2π
Re

(
eiπy/w

+∞∑
n=0

e2niπy/w

(n + 1/2)2

[
2H(x)− S(x)e−nπ|x|/w

])
(26)

Now, recalling the definition of the generalized Φ function (i.e. a generaliza-
tion of the Riemann Zeta and Polylogarithmic functions), also called Lerch
function [19], given by

Φs
v(z) =

+∞∑
n=0

zn

(n + v)s
(27)

where it is assumed that any term with n+v = 0 is excluded, and considering
the values s = 2, v = 1/2, we can sum the Fourier-Series, and obtain the
final result in analytical form as

ϕ(x, y) =
N

2π
Re

[
2H(x)eπ iy

w Φ2
1/2

(
e2π iy

w

)
− S(x)eπ

iy−|x|
w Φ2

1/2

(
e2π

iy−|x|
w

)]
(28)

The phase shift corresponding to a region enclosing three domains each
carrying a single flux quantum is shown in Fig. 10(b) as a 4× amplified
cosine map. The simulated holographic fringes are curved near the specimen
edge indicating a strong demagnetizing effect. Moreover, inside the specimen
(for x > 0) the fringes form a sharp angle over the domain wall, while in
the vacuum they connect more smoothly. This effect is mainly due to the
zero-width model assumed for the domain walls. An experimental example of
stripe domain near the sample edge is shown in Fig. 10(c). The reconstructed
phase shift associated to a stripe-magnetized region of a NdFeB sample is
displayed as cosine map. Note the similarity between the simulated and
experimental images, which, however, start to differ far from the edge because
the sample thickness increases (a typical consequence of ion-milling). More
realistic simulations with non-zero domain wall width can be performed by
changing the square wave function Qw(y), and its Fourier transform, into a
profile more representative of the magnetization topography across the wall.
Clearly, in this case, the analytical expression (28) is no longer valid, but
the phase shift can still be expressed as a Fourier series with suitable known
coefficients.
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7 Magnetic nanoparticles

As a further development of the Fourier space approach, we now turn our
attention to magnetic nanoparticles. The computation of phase shifts asso-
ciated to magnetized nanoparticles via Fourier space may be conveniently
performed by introducing the characteristic function D(r) associated to the
particle shape, i.e. a function equal to one inside the particle and equal
to zero outside. Whenever it is possible to perform the FT of D(r), called
D(k) or shape amplitude, the corresponding phase shift can be derived an-
alytically in Fourier space. In fact, the phase shift in Fourier representation
turns out to be proportional to the value of the shape amplitude over a plane
perpendicular to the reciprocal z-axis kz. Let us briefly recall the procedure.

In general, we can write the magnetization vector associated to a uni-
formly magnetized nanoparticle as M(r) = M0m̂D(r), where M0 is the
saturation magnetization, and m̂ is the unit vector representing the mag-
netization direction and orientation. Hence, the Fourier representation of
the magnetization is M̃(k) = M0m̂D(k). From equations (19) and (22) we
can calculate directly the vector potential in Fourier space

Ã(k) = −iB0D(k)
m̂× k

k2
(29)

where µ0M0 = B0 is the saturation magnetization expressed in Tesla.
From the knowledge of A, one can easily calculate the magnetic induction,

as B(r) = ∇×A(r), which in Fourier representation reads B̃(k) = ik×Ã(k),
and the phase shift as a line-integral along the electron trajectory. The
magnetic induction is computable as

B̃(k) = ik× Ã(k) = B0D(k)
k× m̂× k

k2
(30)

which, exploiting the vector identity k × m̂ × k = m̂k2 − k(k · m̂), can be
also written, after an inverse Fourier transform, as the sum of the induction
proportional to the magnetization and the demagnetization field:

B = µ0M− B0

8π3

∫
d3k

D(k)

k2
k(m̂ · k)eik·r. (31)

The identification, based on the standard relation B = µ0(M + H) link-
ing the three fundamental magnetic fields, of the second term in equation
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(31) as the demagnetization field generated by a uniformly magnetized par-
ticle of arbitrary shape led to an extensive treatment of demagnetization and
shape effects in micromagnetism, ranging from the analytical solution for the
point-function demagnetization tensor for faceted particles, to the exact com-
putation of the demagnetization factors for important shapes such as disks,
elliptic cylinders, rings, etc., to the development of a compact expression for
the interaction energy between arbitrarily shaped magnetized shapes. De-
tails of these advances are beyond the scope of this chapter, and the reader
may refer to Refs.[43, 44, 45, 46, 47, 48, 49, 50, 51, 52]

The electrostatic phase ϕe, in absence of external charge distributions or
applied electric fields, is simply proportional to the projected thickness of
the particle tp

ϕe =
πV0

λE
tp, (32)

where V0 is the effective mean inner potential, i.e. the difference between the
mean inner potential of the material and of the medium in which the particle
is embedded (the vacuum is considered a medium with vanishing mean inner
potential).

The magnetic phase ϕm, as usual, can be calculated from the knowledge
of the vector potential. After integration along the z-axis, which is performed
in Fourier space, we obtain

ϕ̃m(k) =
iπB0

φ0

D(kx, ky, 0)

k2
⊥

(m̂× k)|z , (33)

where k⊥ =
√

k2
x + k2

y. Equation (33) suggests that, in order to calculate the

phase shift of a uniformly magnetized nanoparticle, all we need to know is the
shape amplitude, along with the direction and intensity of the magnetization.
Note that equation (33) can be interpreted as a manifestation of the Fourier
projection-slice theorem (see e.g. [53]).

7.1 Basic shapes and faceted magnetic nanoparticles

With the availability of equation (33), we only need to provide the shape
amplitude in order to calculate the phase shift in Fourier space. We list a
collection of shape amplitudes for the most basic shapes (prism, cylinder,
ellipsoid, sphere), for less common but important shapes (ring and ellip-
tic cylinder), and for faceted particles. For each of the shapes considered,

18



sketched in Fig.11(a-c,g-i), we also write explicitely the Fourier representa-
tion of the phase shift. For all shapes, the magnetization (M0 = B0/µ0 is
the particle saturation magnetization) is assumed uniform along the x-axis
without loss of generality.

7.1.1 Prism

A rectangular prism (P) of sides (2Lx, 2Ly, 2Lz), Fig.11(a):

DP(k) = VPsinc(Lxkx)sinc(Lyky)sinc(Lzkz), (34)

where VP = 8LxLyLz is the prism volume, and sinc(x) = sin(x)/x;

ϕ̃P
m(k) =

iπB0VP

φ0

ky

k2
⊥

sinc(Lxkx)sinc(Lyky), (35)

7.1.2 Ellipsoid and sphere

An ellipsoid (E) of semi-axes (a, b, c), Fig.11(c):

DE(k) = 3VE
j1(q)

q
(36)

where j1(q) is a spherical Bessel function and q2 = a2k2
x + b2k2

y + c2k2
z . Note

that limq→0 j1(q)/q = 1/3, so that DE(0) = (4/3)πabc = VE, which is the
volume of the ellipsoid, as it should be. When a = b = c = R, the expression
reduces to the shape amplitude for a sphere (S), Fig.11(b):

DS(k) = 4πR2 j1(kR)

k
(37)

The phase shifts are:

ϕ̃E
m(k) =

3iπB0VE

φ0

ky

k2
⊥

j1(q
′)

q′
(38)

with q′ =
√

a2k2
x + b2k2

y, and

ϕ̃S
m(k) =

3iπB0VE

φ0

ky

k2
⊥

j1(k⊥R)

k⊥R
(39)
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7.1.3 Cylinder

A cylindrical (C) particle of radius R and thickness t = 2d, Fig.11(g):

DC(k) =
2πRt

k⊥
J1(k⊥R)sinc(dkz), (40)

where J1(x) is the Bessel function of first order and VC = πR2t is the particle
volume; the phase shift is:

ϕ̃C
m(k) =

2iπB0VC

φ0

ky

k2
⊥

J1(k⊥R)

k⊥R
. (41)

7.1.4 Elliptic cylinder

An elliptic-cylindrical (EC) particle of semi-axes (a, b), and thickness t = 2d,
Fig.11(h):

DEC(k) = 2VEC
J1(q)

q
sinc(dkz), (42)

where now q2 = a2k2
x + b2k2

y and the particle volume is VEC = πabt. Note
that when a = b = R the shape amplitude reduces to the cylindrical case.

ϕ̃EC
m (k) =

2iπB0VEC

φ0

ky

k2
⊥

J1(q)

q
(43)

7.1.5 Ring with rectangular cross section

A ring (R) particle of inner radius R1, outer radius R2, and thickness t = 2d,
Fig.11(i):

DR(k) =
2πt

k⊥
[R2J1(k⊥R2)−R1J1(k⊥R1)] sinc(dkz), (44)

where

ϕ̃R
m(k) =

2iπ2B0t

φ0

ky

k3
⊥

[R2J1(k⊥R2)−R1J1(k⊥R1)] (45)

The phase shift associated to each of these basic shapes is shown in
Fig.11(d-f,j-l) as a cosine map. Each of the shapes carries a single flux quan-
tum, i.e. B0S = φ0, where S is the appropriate cross section perpendicular
to the magnetization direction (S = 4LyLz for the prism, S = πR2 for the
sphere, S = 2Rt for the cylinder, etc.). By imposing this condition of flux
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equality between shapes, one can observe the different degree of demagnetiza-
tion: the number of fringes is different for each shape, indicating a different
intensity of the demagnetization field which effectively decreases the mag-
netic induction, and hence the strength of the dipole field at large distances,
associated to each nanoparticle. Note also the flat phase in the inner region
of the ring, Fig.11(l), indicating a degree of magnetic shielding as the in-
duction lines flow preferentially in the permeable ferromagnetic part of the
element.

7.1.6 Faceted particles

The shape amplitude of a faceted particle (F) with E edges and F faces is
given by [54]:

DF(k) = − 1

k2

F∑
f=1

k · nf

k2 − (k · nf )2

Ef∑
e=1

Lfek · nfesinc(
Lfe

2
k · tfe)e

−ik·ξC
fe . (46)

This equation is only valid if the second denominator is non-zero. If k =
±knf (in other words, if k is parallel to any one of the face normals), then
the contribution of that particular face (or faces) must be replaced by

DF
f (k) = i

k · nf

k2
Pfe

−idfk·nf , (47)

where Pf is the surface area of the face f , and df the distance between the
origin and the face f . In the origin of Fourier space, the shape amplitude is
equal to the particle volume, i.e. D(0) = V . The symbols in equation (46)
are defined as (see also figure 12):

• ξC
fe: coordinate vectors of the center of the edge e of face f ;

• nf : unit outward normal to face f ;

• Lfe: length of the e-th edge of the f -th face;

• tfe: unit vector along the e-th edge of the f -th face, defined by

tfe =
nf ×Nfe

|nf ×Nfe|
,

where Nfe is the unit outward normal on the face which has the edge
e in common with the face f ;
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• nfe: unit outward normal in the face f on the edge e defined by nfe =
tfe × nf .

The input parameters needed to complete this computation for an arbitrary
polyhedron are the Nv vertex coordinates ξv and a list of which vertices make
up each face (counterclockwise when looking towards the polyhedron center).
All other quantities can be computed from these parameters.

The phase shift can be calculated by inserting D(kx, ky, 0), i.e. the limit
kz → 0 of the shape amplitude (46), into equation (33). Its expression, how-
ever, requires the help of a computer algebra software such as Mathematica
[55] in order to be evaluated explicitely. In fact, only in a few simple cases
the explicit analytical expression for the phase shift is compact enough to be
written conveniently. Two examples which are simple enough to be evalu-
ated explicitely are the triangular platelet, and the sheared rectangle, both
described in [57], and both important building blocks for constructing more
complex regular or irregular polygonal shapes. Having simple building blocks
available is important to simulate phase shift associated for instance to the
triangular closure-domains often observed at the edges of a sample, or, more
in general, magnetization topographies which differ substantially from the
simple uniform case within a basic shape.

Figure 13 shows the magnetic and electrostatic phase shifts for all Platonic
and Archimedian shapes. For each polyhedron, a pair of grayscale images is
shown. The image on the left corresponds to the difference between the mag-
netic phase shift for the uniformly magnetized polyhedron and the magnetic
phase shift for the uniformly magnetized sphere with the same volume. The
volume was taken to be 106 nm3 for all particles, so that the edge length cor-
responds to the values shown in table 1. All magnetic phase shift differences
are shown on a common intensity scale. The phase shift for a polyhedral
particle may locally be up to about 15% different from that for a sphere of
the same volume. In the vacuum area surrounding each particle, the phase
shift is almost identical to that for the sphere. This is due to the fact that
at a large distance the fringing field for all particles approaches that of a
magnetic dipole. The phase difference images in figure 13 indicate that in
order to determine the magnetic component of the phase shift, both a high
spatial resolution and a high phase resolution are required. Furthermore,
the electrostatic phase shift adds to the magnetic phase shift, complicating
further the determination of the magnetization state of the particle. The
electrostatic phase shift is shown as a grayscale plot on the right hand side
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of each pair of images in figure 13. Superimposed on the projected thickness
is a projection of the polyhedron in the orientation used for the computa-
tion. The fine structure of both magnetic and electrostatic phases depends
sensitively on the precise orientation of the polyhedron.

7.2 Electrostatic versus magnetic phase-shifts

It is of importance to compare the electrostatic and magnetic contributions to
the phase shift in a circularly magnetized spherical particle, as this can give
useful hints on the capabilities of TEM to retrieve a magnetic signal from
nanoparticles. The electrostatic and magnetic contributions to the phase
shift strongly depend on the particle radius. If we choose a favorable condi-
tion for the observation, i.e. a reasonably high accelerating voltage (300 kV),
and an embedding medium with a mean inner potential not very different
from that of the magnetic particle (e.g. ∆V = 10 V), we can plot ϕ as a
function of the particle radius R (figure 14(a)). We can define the charac-
teristic radius Rc = 4φ0∆V/πλEB0 = 34 nm, for which electrostatic and
magnetic contributions are equal. For smaller R, the electrostatic contribu-
tion is predominant, and overwhelms the magnetic phase, which reaches the
limit of detectability (here assumed equal to π/20) around the R = 7 nm, as
displayed in figure 14b.

For a spherical particle of radius R = Rc/2 = 17 nm the magnetic signal
can be considered as a perturbation with respect to the predominant electro-
static phase shift shown in (e). This poses a serious limitation in the TEM
usefulness for magnetic observations. However, with a careful choice of the
experimental set-up and specimen geometry, it is possible to reach the now
inaccessible region under Rc.

The assumed limit of detectability π/20 is actually very dependent on
the experimental set-up, and on the phase retrieval technique employed. As
electron holography is generally claimed to be a technique capable of retriev-
ing the phase shifts as small as π/100 [25], in principle there is no lower limit
for extracting the magnetic signal for nanoparticles with TEM, as π/100 cor-
responds to a particle radius smaller than 3 nm, which is very close to the
atomic scale. Certainly, the electrostatic contribution should be precisely
taken into account first, otherwise the real limit for magnetic observation in
TEM remains Rc. A thorough analysis of the problems involved in the sepa-
ration of the magnetic and electrostatic components by in-situ magnetization
reversal was given by [58].
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8 Conclusions

It has been shown in this work that the Fourier space approach can be fruit-
fully applied to the calculation of the fields and the associated electron optical
phase shift of several magnetic and electrostatic structures, like supercon-
ducting vortices in conventional and high-Tc superconductors, reverse biased
p-n junctions, magnetic domains and nanoparticles. In all these cases, this
novel approach has led to unexpected but extremely interesting results, very
often expressed in analytical form, which allow the quantitative and reliable
interpretation of the experimental data collected by means of electron holog-
raphy or of more conventional Lorentz microscopy techniques. Moreover, it is
worth recalling that whenever long-range electromagnetic fields are involved,
a physical model of the object under investigation is necessary in order to
take into account correctly the perturbation of the reference wave induced
by the tail of the field protruding into the vacuum. For these reasons, we
believe that the Fourier space approach for phase computations we have in-
troduced and discussed in this chapter will represent an invaluable tool for
the investigation of electromagnetic fields at the meso- and nano-scale.
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Table 1: Number of vertices Nv, edges Ne, and facesNf for the 5 Platonic and
13 Archimedian solids, along with the volume factor Vs. The total volume
is given by V = VsL

3, with L the edge length. The edge length L for a
representative volume of 106 nm3 is shown in the last column.

Polyhedron Nv Ne Nf Vs L [nm] Fig. 13
tetrahedron 4 6 4 0.118 204.0 a
cube 8 12 6 1.000 100.0 b
octahedron 6 12 8 0.471 128.5 c
dodecahedron 20 30 12 7.663 50.72 d
icosahedron 12 30 12 2.182 77.10 e

truncated octahedron 24 36 14 11.31 44.54 f
cuboctahedron 12 24 14 2.357 75.14 g
rhombitruncated cuboctahedron 48 72 26 41.80 28.81 h
snub cube 24 60 38 7.890 50.23 i
rhombicuboctahedron 24 48 26 8.714 48.59 j
truncated cube 24 36 14 13.60 41.89 k
truncated icosahedron 60 90 32 55.29 26.25 l
icosidodecahedron 30 60 32 13.84 41.65 m
rhombitruncated icosidodecahedron 120 180 62 206.8 16.91 n
snub dodecahedron 60 150 92 37.62 29.84 o
rhombicosidodecahedron 60 120 62 41.61 28.86 p
truncated dodecahedron 60 90 32 85.04 22.74 q
truncated tetrahedron 12 18 8 2.711 71.72 r
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Figure 1: Vortex finite-lattice phase shift with variable spacing s and total
number of vortices nv: (a) s=300 nm, nv=331; (b) s=150 nm, nv=331; (b)
s=150 nm, nv=1261; (b) s=150 nm, nv=4921. Only the central part of the
finite-lattice, containing about 20 vortices, is displayed.
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Figure 2: Vortex lattice Fourier-series phase shift with variable spacing s: (a)
s=300 nm (to be compared with Fig. 1(a)); (b) s=150 nm (to be compared
with Fig. 1(b)); (c) s=50 nm. The number of Fourier coefficient was suitably
chosen depending on the lattice spacing.
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Figure 3: Figure 3: Contour line plots representing the phase shift in three
orthogonal directions xS (a), yS (b) and zS (c,d). (a,b,c) isotropic case γ = 1;
(d) medium anisotropy case γ = 5. The contour lines represent phase shifts
of 200 mrad in (a,b) and of 30 mrad in (c,d). Simulation parameters: tilt
angle θ = 45◦ , λab = 200 nm, plot region 4 µm.
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(a)

(b)

(c)

(d)

Figure 4: Out-of-focus images (left column) and holographic contour maps
32× amplified (right column) for the following values of the anisotropic pa-
rameter: γ = 1, 5, 50,∞ (from top to bottom). The columnar defect tilt
angle is θ = 45◦ and the specimen rotation is β = 90◦.
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Figure 5: Contour line plots representing the phase shift along yS calculated
with the the pancake (a) and semicontinuous (b) models (nL=5 layers). The
phase lines represent shifts of 200 mrad. Simulation parameters: tilt angle of
the stack of pancakes θ = 75◦, plot region 2×1 µm, specimen thickness t=400
nm and λ=200 nm. The dots marks the positions of the pancake vortices.
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(a) (b)

(e) (f)

(d)(c)

Z=300 mm Z=300 mm
1.5 mm

Figure 6: Comparison between the semi-continuous (left column) and the
continuous-anisotropic (right column) models. (a,b) Phase contour line plot
over a region of 5×1 µm; (c,d) holographic contour maps 32× amplified, (e,f)
out-of-focus images (defocus value Z = 300 mm). Simulation parameters:
pancake stack/vortex core tilt angle θ = 85◦, specimen tilt and rotation
α = 30◦, β = 0◦, number of layers nL = 15, specimen thickness 400 nm,
anisotropy factor γ = 200, λ=200 nm. Each contour line superimposed to
the out-of-focus images represents a contrast variation of 3%.
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(a)

qH=75°

(b)

qH=82°

(d)

qH=84°

(c)

2mm qH=83°

(e)

qH=85°

Figure 7: Lorentz micrographs of vortices in YBCO film sample at tilted
magnetic fields (T=30 K, |Happ|=0.3 mT, angles indicated in the figure).
When the tilt angle becomes larger than 80◦, the vortex images start elon-
gating (b,c). For the applied field angle of 84◦ we observe dumbbell features,
and apparent splitting of the vortex contrast, as indicated by white arrows
in (d). For the largest angle, 85◦, vortices appear very elongated, with re-
maining indication of stack splitting.
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Figure 8: Simulation series for exotic (kinked) core structures, where the
pancakes are distributed according to the dots in the phase contour line
plots. From top to bottom: phase contour line plot over a region of 2.5×1
µm, where each contour line represents a phase variation of π/16; holographic
cosine map, 32× amplified; out-of-focus images with Z=300 mm. Simulation
parameters: specimen tilt and rotation α = 30◦, β = 0◦, specimen thickness
400 nm, number of layers nL=15, λ=200 nm.
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Figure 9: (a) analytical phase shift for a semi-infinite array of abrupt p-
n junctions tilted at 45◦ with respect to the specimen edge and with an
alternating bias of 1 V. (b) phase shift resulting from a non-physical choice of
the electrostatic potential in the specimen plane. The phase shift is displayed
as a 2× amplified cosine map.
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Figure 10: (a) magnetic stripe domains near the edge of a thin film; (b) phase
shift, displayed as a 24× amplified cosine map, associated to stripe domains
each carrying a single flux quantum (the grey dashed line in (b) indicates the
sample edge); (c) experimental phase shift retrieved by electron holography
over a region near the edge of a NdFeB sample.
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Figure 11: (a-c,g-i): basic shapes considered; (d-f,j-l): phase shift, displayed
as cosine map, associated to each of the basic shapes magnetized along the
x-axis.
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Figure 12: Schematic representation of the face normals nf , edge vectors tfe

and outward edge normals nfe used in equation (46).
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Figure 13: Magnetic and electrostatic phase shifts for the 5 Platonic and 13
Archimedean shapes. All particles have identical volumes (106 nm3). The
magnetic phase shifts are divided by the phase shift for an equal volume
sphere with the same magnetization. The projected edge drawing of each
polyhedron is superimposed on the electrostatic phase shift. (ar) refer to the
entries in the last column of table 1.

42



Figure 14: (a) Comparison between the electrostatic and magnetic compo-
nents of the phase shift in a spherical particle; (b) expansion of the region
around R = 0 to emphasize the detectability limits; (c) total phase shift,
clockwise magnetization; (d) total phase shift, counterclockwise magnetiza-
tion; (e) electrostatic component of the phase shift for a spherical particle of
radius R = Rc/2 = 17 nm.
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