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Abstract - Uranium-series ages, oxygen-isotopic compositions, and uranium contents were determined in outer growth 

layers of opal and calcite from 0.5- to 3-centimeter-thick mineral coatings hosted by lithophysal cavities in the unsaturated 

zone at Yucca Mountain, Nevada, the proposed site of a permanent repository for high-level radioactive waste. Micrometer- 

scale growth layering in the minerals was imaged using a cathodoluminescence detector on a scanning electron microscope. 

Determinations of the chemistry, ages, and delta oxygen-18 values of the growth layers were conducted by electron 

microprobe analysis and secondary ion mass spectrometry techniques at spatial resolutions of 1 to about 20 micrometers 

(pm) and 25 to 40 micrometers, respectively. Growth rates for the last 300 thousand years (k.y.) calculated from about 300 

new high-resolution uranium-series ages range from approximately 0.5 to 1.5 pm/k.y. for 1- to 3-centimeter-thick coatings, 

whereas coatings less than about I-centimeter-thick have growth rates less than 0.5 pm/k.y. At the depth of the proposed 

repository, correlations of uranium concentration and delta oxygen-18 values with regional climate records indicate that 

unsaturated zone percolation and seepage water chemistries have responded to changes in climate during the last several 

hundred thousand years. 
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I. INTRODUCTION 

Seepage of water into emplacement drifts of the proposed high-level radioactive waste repository at Yucca Mountain, 

Nevada (Fig. l), could cause corrosion of waste canisters and transport of radioactive contaminants. During the past million 

years (m.y.), mean annual temperature and precipitation have fluctuated between warmer, drier interglacial climates and 

colder, wetter glacial climates [2-51, with past climates producing infiltration fluxes from 5 to 10 times greater than present 

day values, as estimated from relations between net infiltration (Fig. 4-6 [6]) and mean annual precipitation up to 500 

millimeterslyear for full glacial climates (Table 6-3) [6]. Understanding how percolation and seepage fluxes deeper in the 

unsaturated zone (UZ), at the level of the proposed repository, responded to these climate changes will help to reduce 

uncertainties in predictions of repository performance. 

Meteoric water percolating downward through the 12.7- to 12.8-million-year-old [7] welded Tiva Canyon and Topopah 

Spring Tuffs has deposited secondary minerals (dominantly opal and calcite) in fractures and cavities [8-101. Because less 

than 10 percent of open fractures and cavities contain secondary minerals, the deposits are attributed to seepage water moving 

down fracture flow paths rather than to matrix percolation [9, 101. Although secondary minerals formed over the past 10 m.y. 

or more [9, 111, late-stage opal and calcite deposited in the last 2 to 4 m.y. [12] are most relevant to understanding the 

probable range of UZ hydrologic conditions during the next million years. Due to the slow growth rates of the secondary 

mineral deposits (less than 5 micrometers [pm] per thousand years [k.y.]), high spatial-resolution analyhcal techniques, such 

as secondary ion mass spectrometry (SIMS) and electron microprobe analysis (EMPA), are required to determine the timing 

and geochemical variability of mineral deposition [9, 13-1 51. This paper discusses new uranium (U)-series ages, determined 

by SIMS, that better characterize the late-stage growth histories of lithophysal-cavity-hosted secondary minerals (lithophysal 

cavities are gas-exsolution cavities formed during the initial cooling of the tuffs [lo]). Opal and calcite 6"0 values and U 

concentrations determined by SIMS, and magnesium (Mg) concentrations determined by EMPA, were used to evaluate the 

relations between past climate variations and UZ seepage at the level of the proposed repository. 
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11. METHODS 

Cathodoluminescence (CL) and EMPA were used to investigate micrometer-scale growth layering of the late-stage opal 

and calcite. High-spatial resolution U-series ( 2 3 0 ~ h / ~  and 2 3 4 ~ / 2 3 8 ~ )  ages of Quaternary opal were detennined using SIMS 

with 25- to 30-pm-diameter spot analyses at the StanfordkJSGS SIMS facility at Stanford University in Palo Alto, or by 

sequential microdigestion of opal surfaces with hydrofluoric acid, followed by analysis of the solute by thermal ionization 

mass spectrometry. The details of these analytical procedures are described in Paces and others [13]. Microstratigraphic 

depths of dated layers were measured perpendicular to growth layering imaged by CL and combined with U-series dates to 

calculate rates of opal growth. 
' 

The 6180 values of calcite growth layers coincident with dated opal layers, and of opal growth layers directly, were 

detennined by SIMS at the National Ion Microprobe Facility at the University of California, Los Angeles. The analysis spots 

had approximately 40 pm-diameters and data collection and reduction followed procedures described by Treble and others 

[16]. Oxygen isotope compositions are reported in Bnotation as the permil (%) deviations from the international standard 

VSMOW; the accepted G ~ ~ O V S M ~ W  value for NBS-19 is 28.65% [17]. The average corrected 6180 ofNBS-19 during the 

course of the data collection was 28.63 * 0.30% (2 sigma [o]). 
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11. RESULTS 

1I.A. Compositional Growth Layering 

Micrometer-scale growth layering of late-stage opal and calcite can be detected by various methods [8, 101. Wilson and 

others [18] showed that Mg concentrations in late-stage calcite range from less than 0.05 to 1 weight percent and define 

complex growth layering. EMPA mapping of Mg, manganese (Mn), strontium (Sr), and iron (Fe) concentrations confirmed 

the oscillatory variation of Mg concentration in calcite. However, the other elements were commonly below EMPA detection 

limits and corresponding variations, if present, could not be resolved. Oscillations of CL intensity, observed in scanning 

electron microscope (SEM),images of late-stage opal and calcite (Figs. 2 and 3), also define growth layering. Opal CL 

intensities in these samples strongly correlate with U concentrations, which range from approximately 4 to 450 micrograms 

per gram (pg/g) [19], whereas growth layering in calcite is caused by variations in trace element concentrations that act as CL 

activators ( ~ n ~ ' )  or quenchers ( ~ e ~ ' )  [20]. EMPA mapping also revealed growth-correlated fluctuations of Mg concentration 

in opal at about the same scale as the CL banding. Preliminary interpretation of these maps indicates that Mg and U 

concentrations in opal are inversely correlated. Similarly oriented growth layering in both opal and calcite, together with 

stepped or intercuspate contact relations in many samples, indicate more-or-less concurrent growth of the two phases (Figs. 2 

and 3). 
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II,B. U-series Ages and Growth Rates 

Approximately 300 new SIMS U-series ages have been determined on profiles across late-stage opal from eight 

lithophysal-cavity-hosted secondary mineral deposits within the proposed repository horizon. The ages range from about 20 

to 1,500 thousand years ago (ka) and increase with microstratigraphic depth. For 1- to 3-centimeter (cm)-thick coatings, 

growth rates calculated for the last 300 k.y. range from approximately 0.5 to 1.5 pmky., whereas coatings less than about 

I-cm-thick have growth rates less than 0.5 pm/k.y. Opal growth rates determined from the best-constrained age-depth 

profiles are remarkably constant, varying by only 20 to 30 percent during the last 300 k.y., despite the presumably large 

differences in infiltration between glacial and interglacial climates. Growth rates for mineral coatings dominated by calcite 

with only minor intercalated opal are similar to rates for thick opal accumulations. The 30-pm spatial resolution of SIMS 

analyses cannot resolve short term (less than 10 k.y.) changes of growth rate. Nonetheless, preliminary numerical simulations 

of growth rate profiles determined using overlapping 25-pm-diameter analysis spots, resulting in an interpolated spatial 

I resolution of 12.5 pm, indicate that depositional hiatuses greater than about 10 k.y. should be detectable. 

Microdigestion 2 3 0 ~ h / ~  ages from 2- to 4-pm-thick opal layers produced progressively older ages from 7.3+0.7 to 

1 37.1*2.3 ka from the outer surface of an opal coating to a depth of about 22 pm. Age-depth relations at this scale of 

resolution may indicate faster opal growth rates (1.2*0.4 prn/k.y.) during the last full glacial period and slower rates 

(0.35*0.19 pm1k.y.) during the more recent glacial-interglacial transition. Both Holocene ages for outermost microdigestions 

and non-zero intercepts for age relative to microstratigraphic depth regressions indicate that mineral growth ceased during the 

most recent dry-climate period [13]. 
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11. C. Oxygen Isotopes in Late-Stage Calcite 

Cathodolurninescence images showing late-stage growth layering were used to correlate contemporaneous opal and 

calcite layers and to locate analysis spots in calcite for SIMS determinations of calcite 6180 values. Late-stage calcite 6180 

values in samples of deposits from the Topopah Spring Tuff range from 15.4 to 18.2% (%0.3%0,20). The feasibility of using 

SIMS to measure 6180 values in opal also was tested. In opal (hydrated silicon dioxide [Si02.nH20]), oxygen can reside in 

silicate tetrahedral sites or as structural hydroxide (OH-) or water (H20), all having different oxygen bonding energies and 

different isotopic compositions [21]. In spite of these complications, the 6180 values of opal layers had within-run precision 

that was similar to calcite 6"0 determinations, excellent reproducibility (*0.20'%60,20) for paired analyses of individual opal 

layers (Table I), and a positive correlation (r2 = 0.77) between the 6180 values of 7 pairs of corresponding opal and calcite 

growth layers (Figs. 3 and 4). These promising results suggest that 6180 value and U-series ages can be determined from 

individual opal layers at 30 pm spatial resolution. The direct relation between age and 6180 value determined within discrete 

grains and a single mineral would eliminate the uncertainty associated with attempting to correlate opal and calcite growth- 

layer microstratigraphies across grain boundaries (see Fig. 3). 
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111. DISCUSSION AND CONCLUSIONS 

Profiles of relative U concentration (approximated by CL intensity) versus microstratigraphic depth in opal samples were 
' 

normalized for different growth rates using SIMS U-series ages; one of these is shown in figure 4. Well-dated profiles from 

five separate deposits in different parts of the proposed repository horizon show similar temporal variations. High-U opal 

formed during three separate periods over the last 300 k.y., all of which correspond to relatively warm interglacial climate 

states, based on 6180 variations observed in the regional climate record at Devils Hole [22,23] (Fig. 4). Age-normalized 6"0 

I variations in late-stage opal and calcite in the UZ also are consistent with the calcite 6180 record at Devils Hole (Fig. 4). 

~ These correlations of U concentration and 6180 values with regional climate records indicate that UZ percolation and seepage 

i water chemistries have responded to changes in climate during the last several hundred thousand years. 

I The deposition of free-standing secondary opal and calcite in UZ lithophysal cavities indicates seepage into those 

I lihtophysae, probably from fracture-hosted flow paths. Most samples of surface runoff and UZ flow (pore water from non- 

1 zeolitized units, seepage, and perched water) are near saturation with respect to both opal and calcite [9,24-271. Deposition 

I of opal and calcite, therefore, requires only evaporation or carbon dioxide (C02) degassing of seepage water [8-101. This 

mechanism is consistent with the concurrent deposition and similar growth rates of opal and calcite. Free movement of gases 

I through the welded tuff fracture network is likely - down-hole pneumatic testing shows that changes in atmospheric pressure 

1 are transmitted to the repository horizon with little attenuation or phase lagging [28]. Therefore, water vapor and C02 

I evolved during opal and calcite deposition should readily escape from lithophysal cavities; if they could not escape, H20(,) 

and C02 saturation of the cavity atmosphere would inhibit mineral growth. Consequently, the absence of secondary minerals 

in 90 percent or more of the fiacture or lithophysal cavity openings in the UZ must reflect a lack of seepage into those 

1 openings rather than differences in gas permeability. 
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Marshall and others [26] presented an equilibrium geochemical model of mineral deposition at Yucca Mountain that 

assumed seepage flux was an important control on mineral growth rates. Evidence used to support this model came from 

other studies of UZ environments where both water fluxes and mineral growth rates were measured [29,30]. The much 

I slower growth rates measured for Yucca Mountain UZ minerals indicate less seepage than other depositional environments. 

The 0.5 to 1.5 pm/k.y. growth rates determined for material deposited in the last 300 k.y. are similar to the rates of 0.3 to 

1.8 pm/k.y. calculated using the 0.3 cm (median) and 1.8 cm (95' percentile) coating thicknesses reported by Marshall and 

others [26] and an assumed 10 m.y. depositional history. The consistency between measured Quaternary growth rates and 

long-term growth rates [26] is interpreted as evidence for the long-term hydrologic stability of the deep UZ environment. 

Long-term average Miocene growth rates (1 to 5 prn1k.y.) of opal and calcite in older portions of the same samples [ l  11 are 

I slightly faster than the Quaternary growth rates (0.5 to 1.5 pm1k.y.) in the late-stage. This difference may reflect an overall 

I decrease in seepage flux as climate shifted from wetter conditions in the Miocene to more arid conditions in the Quaternary 

[13]. A direct relation between seepage flux and mineral growth rate also is supported by sequential opal microdigestions of a 

single opal grain that indicated higher growth rates during the last full glacial climate (dates between 37 and 25 ka), lower 

I growth rates during the last glacial transition period (dates between 25 and 7 ka), and a cessation of growth during the present 

interglacial climate stage 1131. Furthermore, thinner coatings have lower growth rates, which may indicate that percolation 

fluxes at these sites only infrequently exceeded thresholds allowing seepage of fracture flow or, alternatively, that there was 

less evaporation/C02 degassing at these sites. The ages reported here indicate that seepage fluxes and secondary mineral 

I growth rates are proportional within a given lithophysal cavity; i.e., relative differences in growth rate during the last two to 

three climate cycles (300 k.y.) reflect relative differences in seepage flux. Changes in opal and calcite U and Mg contents 

and 6'80 compositions during the last 300 k.y. record shifts in seepage chemistry that correlate with variations in late 

Quaternary climate conditions. However, at current levels of analytical resolution mineral growth rates in the Topopah Spring 

Tuff lithophysal cavities have remained relatively constant. These results indicate that changes in mean annual precipitation 

I and temperature between wetter and drier climate states during the past 300 k.y., which should have produced large variations 

I in near-surface infiltration, did not produce similarly large variations in seepage flux at the proposed repository horizon. 
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portal of the ESF). Also shown for comparison are the temporal variations of calcite 6180 values from the Devils Hole 

climate record (numbered glacial substage designations and dotted segment as shown in Fig. 7 of Winograd and others [22]). 

Dotted segment of opal 6180 record reflects a data gap and is inferred from that of correlative calcite. 
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