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Abstract 2 

The actinobacteria Kineococcus radiotolerans is highly resistant to ionizing radiation, desiccation, and 

oxidative stress; though the underlying biochemical mechanisms are unknown.  The purpose of this 4 

study was to explore a possible linkage between the uptake of transition metals and extreme resistance to 

ionizing radiation and oxidative stress.  The effects of 6 different divalent cationic metals on growth 6 

were examined in the absence of ionizing radiation.  None of the metals tested were stimulatory, though 

cobalt was inhibitory to growth.  In contrast, copper supplementation dramatically increased cell growth 8 

during chronic irradiation.  K. radiotolerans exhibited specific uptake and intracellular accumulation of 

copper compared to only a weak response to both iron and manganese supplementation.  Copper 10 

accumulation sensitized cells to hydrogen peroxide.  Acute irradiation induced DNA damage was 

similar between the copper-loaded culture as the age-synchronized no copper control culture, though 12 

low molecular weight DNA was more persistent during post-irradiation recovery in the Cu-loaded 

culture.  Still, the estimated times for genome restoration differed by only 1 hr between treatments.  14 

While we cannot discount the possibility that copper fulfills an unexpectedly important biochemical role 

in a radioactive environment; K. radiotolerans has a high capacity for intracellular copper sequestration, 16 

and presumably efficiently coordinated oxidative stress defenses and detoxification systems, which 

confers cross-protection from the damaging affects ionizing radiation.     18 
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Introduction 

Environmental and endogenous sources of reactive oxygen species contribute to the damage of cellular 2 

components (19,22) and a cell's ability to efficiently and effectively repair this damage is an important 

determinant of survival.  All bacteria are equipped with defense mechanisms for coping with DNA 4 

damage and oxidative stress; however species of the genera Deinococcus (1), Arthrobacter (18), 

Rubrobacter (17), Kineococcus (37), and Chroococcidiopsis (6), among others, are remarkable for their 6 

ability to withstand and survive tremendous cellular insults.  Compared to the majority of bacteria, 

which generally have relatively low thresholds for stress and tolerances for cellular damage, the 8 

extreme- resistant bacteria can survive high doses of ionizing radiation, prolonged desiccation, exposure 

to strong oxidants and other DNA damaging agents.  Three primary models have been proposed to 10 

explain the extreme resistance phenotype; 1) conventional enzymatic defenses operating at extraordinary 

efficiency, 2) the involvement of novel repair functions, and 3) a highly condensed, multigenomic 12 

nucleoid (5,10,31,52).  While no single hypothesis explains in full the underlying genetic complexity of 

the extreme resistance phenotype (i.e., 49), the preferential utilization of manganese is thus far the only 14 

biochemical strategy shown to be broadly conserved among a diverse, but not comprehensive, collection 

of extreme-resistant bacteria (13,14,21).  This finding is important because manganese, unlike iron, does 16 

not catalyze hydroxyl radical formation through Fenton / Haber-Weiss chemistry and may also mitigate 

protein oxidation by scavenging oxygen radicals (14).  Elemental ratios of Mn:Fe have been proposed as 18 

a potentially useful indicator of a cell’s susceptibility to oxidative stress (13,21).  While Mn-

accumulating bacteria accrue comparable levels of DNA damage as Fe-accumulating bacteria for a 20 

given dose of γ-radiation (13), Mn appears to quench secondary chemical reactions that produce reactive 

oxygen species; thus, promoting the effectiveness of enzymatic repair and cell survival.    22 

 

Kineococcus radiotolerans was isolated within a shielded cell work area containing highly radioactive 24 

nuclear waste at the Savannah River Site in Aiken, SC, USA (37).  K. radiotolerans is an orange 

pigmented, aerobic, nonsporulating actinomycete most likely belonging to the Kineosporiaceae family, 26 

though the exact phylogenetic placement of this genus remains unclear.  While only 3 species of the 

genus Kineococcus have been described (29,37,50), each containing only a single cultivated 28 

representative, Kineococcus-like organisms have been detected on masonry and lime wall paintings (44), 

terrestrial soils (38,48), a variety of plant samples (27), marine sediments (29), McMurdo Dry Valleys of 30 

Antarctica (47), and hot deserts (20).  K. radiotolerans is exceptionally tolerant of environmental 
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stresses, withstanding the damage caused by exposure to 2M hydrogen peroxide and 17 kGy of γ-

radiation (C. Bagwell, Unpublished data).  The physiological determinants and molecular mechanisms 2 

that minimize and repair cellular damage in K. radiotolerans have not been studied, and it remains 

unclear whether this bacterium preferentially incorporates Mn as a means of minimizing the formation 4 

of damaging oxygen radicals, and speeding recovery and survival following environmental assaults.  In 

this study, we examined K. radiotolerans for preferential utilization of different divalent cationic 6 

transition metals for a possible role in anti-oxidative defense.   

 8 

Materials and Methods 

Culture conditions and chemicals. Kineococcus radiotolerans (BAA-149) was obtained from the 10 

American Type Culture Collection (ATCC; Manassas, VA, USA).  Cultures were grown on TGY 

medium (1.0% tryptone, 0.1% glucose, 0.5% yeast extract) at 28°C and shaken at 150 rpm for liquid 12 

cultures.   Frozen stocks were prepared using the Microbank™ Bacterial Preservation System (Pro-Lab 

Diagnostics, ON, Canada) and were stored at -80°C.  Solutions (50mM) of various divalent cationic 14 

metals were prepared in deionized water and filter sterilized.  Metal salts included ferrous ammonium 

sulfate, manganese chloride, zinc sulfate, cupric sulfate, cobalt sulfate, and sodium molybdate (Sigma-16 

Aldrich, St. Louis MO).     

 18 

Gamma Irradiation. Liquid cultures were grown to mid exponential phase in TGY medium or TGY 

medium spiked with 100µM of Fe2+, Mn2+, Zn2+, Co2+, Cu2+, or Mo2+ .  In a reciprocal experimental 20 

design, aliquots (25µl) of each treatment were spread plated on TGY plating medium with or without 

metal supplementation (100µM), respectively.  Plates were exposed to 60 Gy / hr (1 Gy = 100 rad) of 22 

ionizing radiation for 4 days at a constant temperature of 30°C and colony outgrowth was counted 

(colony forming units, CFU).  Our use of colony forming units (CFU) is strictly defined as the total 24 

number of counted colonies per plate following experimental irradiation.  Acute irradiation experiments 

were performed by first harvesting liquid cultures (25 ml) at mid exponential phase by centrifugation 26 

(5,000 x g, 5 min, 4°C).  Cell pellets were washed in ice cold 1x PBS (pH 7.3) and suspended in 10ml, 

1xPBS to stall further growth and development.  Culture suspensions were irradiated at a constant 28 

temperature (30°C) to achieve a total dose of 4000 Gy.  Corresponding non-irradiated control cultures 
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were also incubated at 30°C.  Post-exposure, cell concentrates were diluted into fresh TGY medium 

(n=3) and allowed to recover at 28°C with shaking (150 rpm) for 6 hrs.   2 

 

DNA Damage Repair.  DNA damage and repair was evaluated by Pulsed-Field Gel Electrophoresis 4 

(PFGE) using a modified procedure of Kieser et al. (25).  Briefly, cells pellets (1ml) were collected by 

centrifugation and suspended in 50µl of TE-25 sucrose buffer.  The cell suspensions were combined 6 

with an equal volume of molten (55°C) 4% pulsed field certified agarose and loaded into plug molds 

(Bio-Rad, Hercules, Calif.).  Solidified plugs were incubated in TE-25 buffer and lysozyme (2 mg/ml) at 8 

37°C for 2 hr, then transferred to NDS buffer with Proteinase K (1 mg/ml) and incubated at 37°C 

overnight.  Plugs were washed 3 times in TE [10 mM Tris-HCl (pH 7.4), 1 mM EDTA (pH 8.0)] for 1 hr 10 

each and stored at 4°C in 0.5M EDTA prior to electrophoresis.  Samples were analyzed in a 1% pulsed 

field certified agarose gel and 0.5x TBE running buffer using the Chef-DR III Variable Angle System 12 

(Bio-Rad) and the following electrophoresis conditions: 6 V/cm, 120° angle, initial switch time of 70 sec 

and a final switch time of 130 sec for 24 hr at 14°C.  Gels were stained for 30 min with ethidium 14 

bromide in 0.5x TBE and documented under UV illumination using the AlphaImager 3400 (Alpha 

Innotech).   16 

 

Oxidative Stress. Cultures of K. radiotolerans were grown to mid exponential phase in TGY medium 18 

amended with a divalent cationic metal (100µM) as described above.  Cells were harvested (1.0 ml) by 

centrifugation, washed in an equal volume of ice cold 1x PBS (pH 7.3), and suspended in an equal 20 

volume of 4% H2O2.  Cell suspensions were incubated in the dark for 10 min and then inoculated into 

fresh TGY medium (with no metals) and incubated at 28°C with shaking (150 rpm) for 48 hrs.  22 

Recovery and growth was evaluated by protein quantification using the DC Protein Assay Kit (Bio-Rad, 

Hercules, Calif.).       24 

 

Analytical methods. Total intracellular metal contents were quantified by inductively coupled plasma-26 

mass spectroscopy (ICP-MS).  Briefly, cells were harvested by centrifugation (10,000 x g, 5min, 15°C) 

and sequentially washed 3x each in 50mM EDTA / 1x PBS (pH 7.5; 1x PBS = 137mM NaCl, 2.7mM 28 

KCl, 10mM Na2HPO4, 2mM KH2PO4) and 25mM EDTA / 1x PBS in order to remove weakly cell 

surface adsorbed metal.  Cells were then washed 3x in PBS and immediately frozen in liquid nitrogen 30 
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and stored at -80°C.  Effectiveness of the metal chelation wash steps was confirmed by 

spectrophotometry (7).  For intracellular metal analysis, cell pellets were digested at room temperature 2 

in 0.1 ml ACS grade concentrated H2O2 and 0.2 ml concentrated optima grade HNO3.  The samples 

were then diluted with 18.2 MOhm*cm DI water and analyzed in standard mode on a Perkin Elmer-4 

Sciex Elan DRC Plus ICP-MS according to EPA method 6020a.  External calibration was performed 

using NIST traceable standards diluted in the same matrix as the samples and the calibration was 6 

verified against a standard with a different lot number.   

 8 

Results 

Effect of metals on growth during chronic irradiation. Growth experiments were conducted in order to 10 

evaluate the effect of metal supplementation.  Absolute normalization of cell titers between treatments is 

impractical because of the extensive clumping of K. radiotolerans cultures growing in TGY medium; 12 

however, protein determinations and CFUs have proven to be reliably consistent methods of monitoring 

growth (data not shown).  Protein levels and the number of colony forming units (CFUs) were 14 

determined for metal treated (100µM final concentration) cultures at 4 distinct phases of growth; early, 

mid, and late exponential, and stationary (data not shown).  Lag times and growth yields from Fe2+, 16 

Cu2+, Mn2+, Mo2+, and Zn2+ treated cultures were the same as the no-metal TGY control.  Co2+ 

amendments resulted in an exaggerated lag period but protein yields and CFUs at stationary phase were 18 

the same as the other metal treatments and the no-metal control.  These data were used to establish that 

biomass yields were not drastically different between metal treatments, with the exception of Co2+, in 20 

the absence of chronic irradiation.   

 22 

Irradiated no-metal control cultures consistently yielded 75 CFU.  This value established the baseline for 

which to evaluate the effects of the metal additions on growth of K. radiotolerans during chronic 24 

irradiation.  The results in Figure 1 were interpreted conservatively by permitting a variance of ± 25 

CFU around this reference line.   26 

 

The effect of metal supplementation on growth during chronic irradiation (Black bars) was mostly 28 

neutral; though surprisingly, Mn2+ appeared to have a detrimental impact on growth.  As expected, 

cultures plated on Co2+ supplemented medium yielded fewer CFUs (∼1/3) than the controls, though the 30 

combination of Co2+ and chronic irradiation was not lethal. Conversely, pre-growth on metal amended 
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medium prior to irradiation (white bars) yielded different results.  In this case, only Fe2+ 

supplementation was inhibitory to growth.  Cobalt appeared to be more toxic to growth than chronic 2 

irradiation as growth yields improved when metal stress was relieved.  Pre-growth with Mo2+ resulted in 

higher CFU yields during chronic irradiation, while the effect of both treatments combined was neutral.   4 

 

The most striking results were obtained for the Cu2+ treatments.  Not only did the Cu2+ primed cultures 6 

form a lawn during chronic irradiation, but the TGY grown culture also achieved a lawn of growth 

during chronic irradiation when Cu2+ was added to the plating medium.  Bars for the Cu2+ treatments 8 

were conservatively plotted to 200 CFUs since a closer approximation of the actual CFUs could not be 

determined.   10 

 

Growth recovery from oxidative stress.  Experiments were conducted to determine whether K. 12 

radiotolerans cultures pre-grown on TGY in the presence of various divalent cationic metals exhibited 

differential sensitivity to hydrogen peroxide (Figure 2).  Five percent hydrogen peroxide is lethal to 14 

exponentially grown K. radiotolerans cultures in TGY (data not shown), and TGY-grown control 

cultures resumed cell growth approximately 24h after exposure to 4% H2O2.  Growth recovery of Fe2+, 16 

Mn2+, and Mo2+ pre-grown cultures were similar to the TGY controls, but the Mn2+ and Mo2+ treated 

cultures required approximately 5-10 hr longer to enter into exponential growth.  No difference in 18 

protein abundance was measured for the Cu2+, Zn2+, and Co2+ grown cultures for up to 48 hr following 

exposure to H2O2.         20 

 

Intracellular accumulation of metals. K. radiotolerans cultures were grown to early stationary phase in 22 

TGY medium amended with 0.1mM Mn2+, Fe2+, or Cu2+ and intracellular metal contents were quantified 

by ICP-MS (Figure 3).  Biomass yields were not statistically different among each of the metal 24 

treatments (p < 0.05, data not shown).  The TGY growth medium contained 0.2 µM both for Mn and Cu, 

and 5.8 µM for Fe.  K. radiotolerans no-metal control cultures had higher levels of intracellular Fe (∼50 26 

ng / mg protein) than Mn or Cu (< 5 ng / mg protein) which capitulated the relative levels in the TGY 

medium.  Metal supplementation of the growth medium significantly increased intracellular quantities 28 

for each of the metals examined relative to the controls (p < 0.05).  Iron amendment resulted in only a 

slight increase in intracellular Fe (1.4x), while Mn2+ amendments increased intracellular levels by nearly 30 

7x.  K. radiotolerans cultures grown in TGY medium with no metal had intracellular Fe contents that 
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were approximately 8x higher than Cu, but cultures actively accumulated Cu when the growth medium 

was supplemented.  Copper amendments increased intracellular Cu by 80x over the controls.  It is also 2 

interesting to note that Mn2+ and Cu2+ supplementation and enhanced intracellular accumulation of these 

metals reduced the intracellular quantity of co-accumulated Fe.              4 

 

 Intracellular metal contents and ratios of transition metals in K. radiotolerans were compared to other 6 

radiation resistant and radiation sensitive bacteria (Table 1, see also 13).  Grown in TGY medium, K. 

radiotolerans had lower intracellular Fe levels (0.86 nmol/mg protein) than any of the other radiation 8 

resistant bacteria (> 1.4).  Only when grown in Fe2+ supplemented TGY medium (1.25 nmol/mg protein) 

did intracellular iron levels approximate those for Deinococcus spp (1.45-1.7 nmol/mg protein).  10 

Likewise, levels of Mn were also markedly lower (0.075 nmol/mg protein) than levels previously 

reported for other radiation resistant bacteria (>0.3 nmol/mg protein), though not as low as the radiation 12 

sensitive strains (<0.019 nmol/mg protein), but when grown in Mn2+-supplemented medium levels (0.51 

nmol/mg protein) exceeded those for D. radiotolerans (0.36 nmol/mg protein).   14 

 

In general, Mn/Fe ratios for K. radiotolerans were more closely aligned with values reported for the 16 

radiation resistant bacteria than the very low ratios for the radiation sensitive strains, though metal levels 

varied considerably with growth conditions.  Mn/Cu ratios were generally quite high (i.e., favorable 18 

ratio for resistance) except for cultures grown in Cu2+ supplemented medium, and then this ratio was 

more closely aligned with the Mn/Fe ratios for the radiation sensitive strains.  Given the responsiveness 20 

of uptake and accumulation mechanisms for Cu2+, Mn/Fe+Cu ratios were also determined.  In general, 

ratios were more closely aligned with Mn/Fe ratios of the radiation tolerant than radiation sensitive 22 

strains, except when grown in Mn2+ supplemented medium, where the ratio was exceptionally high (i.e., 

purportedly favorable for resistance) and in Cu2+ supplemented medium the ratio was lower than the 24 

Mn/Fe ratio for E. coli (i.e., taken to indicate sensitivity).   

 26 

DNA damage repair following acute irradiation. Experiments were conducted to evaluate the effects of 

copper accumulation on DNA elicited by acute exposure of K. radiotolerans cultures to ionizing 28 

radiation.  PFGE was used to qualitatively evaluate the extent of radiation-induced DNA damage and 

repair between copper and no-metal control treatments.  K. radiotolerans possesses 2 plasmids (183 and 30 

14 kbp), but only the smaller plasmid is reliably resolved on these gels and thus provides a useful visual 
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marker to approximate the completion of genome restitution.  Based on protein determinations, cell 

titers were equivalent between the Cu2+- loaded and control cultures (Figure 4BC).  In Figure 4A, the 2 

occurrence of DNA double strand breaks was γ-radiation dose dependent.  Relatively low radiation 

doses (40 Gy) produced a full range of damaged DNA fragments in K. radiotolerans as indicated by a 4 

long smear, and DNA from cells exposed to 4,000 Gy was predominately visualized as low molecular 

weight DNA which co-migrated near the bottom of the gel.  In the no-metal TGY grown control culture, 6 

the low molecular weight damaged DNA disappeared and the 14 kbp plasmid appeared within 3 hr 

following acute irradiation (Figure 4B).  Comparable levels of radiation induced DNA damage (i.e., 8 

relative intensity of the smear) were noted for the copper loaded culture but the smear itself may have 

been slightly longer (Figure 4C).  DNA damage repair in the acutely irradiated Cu2+-loaded culture 10 

required 4 - 5 hr for the low molecular weight damaged DNA to fully disappear and for the 14 kbp 

plasmid to be clearly visible, though the intensity of the plasmid was notably less than in the control.                      12 

 

 14 

Discussion 

Copper is an essential cofactor for a variety of enzymes involved in aerobic respiration and energy 16 

production; however, excess copper is toxic and thus, intracellular levels are tightly regulated by the cell 

(39).  Copper toxicity manifests itself through indiscriminant binding to cellular ligands or competitive 18 

displacement of other metal cofactors (4,11), as well in the production of intracellular reactive oxygen 

species (ROS), namely hydroxyl radical, via Fenton chemistry (22,26).  While copper catalyzed 20 

reduction of H2O2 to hydroxyl radicals can be demonstrated in vitro (3,16), the significance of this 

reaction in mediating DNA damage in vivo remains a controversial issue.  This reaction is considered 22 

unfavorable on account of the low physiological concentrations of oxygen radicals, the virtual absence 

of ‘free’ copper inside the cell, and the maintenance of a neutral pH cytosolic environment (39, 45); 24 

however, numerous studies have demonstrated that these reactions do occur (32) and are a significant 

threat to cell viability and survival (26).  Copper homeostasis is critical as evident by the cell’s capacity 26 

for copper chelation and complex detoxification systems (15,28,36,39) which are often interconnected 

through transcriptional regulation of oxidative stress pathways (24,46).  In Gram negative bacteria, 28 

periplasmic sequestration of metals is an important resistance mechanism to prevent accumulation of 

toxic levels of Cu2+ in the cytoplasm (8,9,32,41), but K. radiotolerans is Gram positive and 30 

unequivocally accumulates copper intracellularly.  Moreover, heightened sensitivity to a strong oxidant 
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and the persistence of low molecular weight DNA following acute irradiation of copper-loaded cells is 

suggestive of copper-catalyzed hydroxyl radical formation.     2 

 

It is unclear why K. radiotolerans accumulates copper but it appears that this organism possess uptake 4 

and transport mechanisms that are Cu2+-specific.  It would seem unlikely that K. radiotolerans possesses 

a unique, copper-dependent defense system for oxidative and radiation stress, yet more probable that 6 

cells are sufficiently equipped to sequester excess copper (or redox active metals) at high efficiency, 

thus preventing metal toxicity and production of reactive oxygen species.  This conclusion would appear 8 

to be supported by the observation that Fe loaded cells were not differentially affected by chronic 

irradiation or H2O2 relative to the no-metal control.  Possible mechanisms for copper sequestration based 10 

on preliminary genome sequence examination include the Fe-containing superoxide dismutase (SOD), 

glutathione (GSH), and DNA binding protein (Dps).  Orthologs of putative low molecular weight Cu-12 

induced metallothioneins or metallochaperons have not been identified in K. radiotolerans.  

Additionally, conventional copper homeostasis pathways (i.e., cop operon; 45) appear to be absent, 14 

though numerous heavy metal transporters and multiple copies of the CopC copper resistance gene were 

identified.  Copper toxicity can manifest itself through the displacement of iron, or other metals, for 16 

specific ligands and cofactor binding sites; though, growth characteristics were unaffected by high 

cytoplasmic copper levels.  Adaptation to copper supplemented growth medium may induce the 18 

expression of additional or redundant defense and detoxification systems that counter metal toxicity, as 

well as excessive production of reactive oxygen species.  Intracellular sequestration may be important 20 

for copper resistance but the cupro-chaperons or enzymes involved and the potential coordination with 

other defense systems has not been experimentally determined. 22 

 

We have repeated the experiments performed by Daly et al. (13) to evaluate whether certain transition 24 

metals might fulfill an important physiological role in the radioresistance phenotype of K. radiotolerans 

as they appear to in other extreme resistant bacteria.  High levels of intracellular Mn relative to Fe have 26 

been shown to contribute to γ-radiation resistance by mitigating protein oxidation that occurs during and 

after irradiation (14).  Conversely, the high intracellular Fe, relative to Mn, apparently contributes to the 28 

sensitivity of bacteria like E. coli and S. oneidensis to radiation and oxidative stress through the 

production of reactive oxygen radicals that exacerbates cellular damage.  The apparent biochemical 30 

preference and utilization of a non-Fenton redox metal by the Deinococcus spp. and other extreme 
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radiation resistant bacteria tested by Daly et al. (13), though, does not satisfactorily explain the radiation 

tolerance of K. radiotolerans because Cu2+ does participate in Fenton / Haber-Weiss chemistry for the 2 

formation of reactive oxygen species (30).  These results strongly indicate an important role for Cu2+ for 

enhancing the metabolic efficiency and / or anti-oxidative capacity in K. radiotolerans to compensate 4 

for the chemical reactivity of this element.  It is relatively simple to envision that the copper-induced 

response could afford cross-protection from other stressors (particularly oxidative stress), but it is not 6 

clear how a stress response would dramatically increase energy production and growth but only when 

the compounded stress of ionizing radiation is applied.   8 

 

Mattimore and Battista (33) postulated that mechanisms of extreme radioresistance in Deinococcus 10 

radiodurans did not evolve under direct selection by ionizing radiation, but more likely evolved as a 

consequence of selection for desiccation resistance. This explanation continues to gain credence as more 12 

examples arise (e.g., 2,20,40,47). These observations imply certain overlap among the underlying 

resistance mechanisms, but there may also be some important stressor-specific distinctions.  Here, high 14 

intracellular levels of copper inhibited growth of H2O2 exposed cells, though the expectedly toxic 

combination of copper and γ-radiation proved stimulatory to the growth of K. radiotolerans.  Exposure 16 

of a Cu-loaded culture to 4% hydrogen peroxide exceeded the cells capacity to effectively quench 

reactive oxidants, resulting in significant cellular damage, consistent with the expectation that copper 18 

catalyzed the production of oxygen radicals.  The sensitivity of Cu-loaded cultures to more closely 

approximated physiological concentrations of hydrogen peroxide was not determined; though, we have 20 

measured heightened sensitivity of Cu-loaded cultures to methyl viologen (0.2 mM), a known producer 

of superoxide anion (C.E. Bagwell, Unpublished data).  Thus, the levels of oxidative stress resulting 22 

from chronic irradiation of Cu-loaded cells should be less than that imposed by the H2O2 used in these 

experiments.  We presume that exposure of Cu-loaded K. radiotolerans cultures to a strong oxidant is 24 

capable of liberating ‘bound’ intracellular Cu which is then available to react with lethal consequences 

to the cell.  Consequently, Cu-dependent growth stimulation during chronic irradiation may mean that 26 

radiation-induced oxidative stress is below threshold and any oxidant produced is readily quenched, so 

then a beneficial role for copper is conceivable.       28 

                  

The relative amount of direct DNA damage resulting from acute irradiation was comparable between the 30 

Cu-loaded and control cultures, whereas Cu-dependent damage was more pronounced during post-
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irradiation recovery and repair.  The Cu-loaded culture may suffer from a higher level of indirect 

cellular damage due to Cu-dependent production of reactive oxygen species, which would interrupt the 2 

efficiency of DNA stabilization and repair.  Decreased intensity of the restored plasmid in the Cu-loaded 

culture implies that some of the low MW DNA could not be salvaged for genome reassembly and was 4 

either degraded or exported.  We presume that the type or extent of DNA damage accrued in the Cu-

loaded culture was more severe than the control; however, it is interesting to note that DNA stabilization 6 

and repair functions were preserved and operated at nearly the same efficiency as the control.  Daly et al. 

(14) have emphasized the importance of protein oxidation for bacterial radioresistance, and we 8 

hypothesize that Cu-adaptation may preferentially or differentially protect cellular proteins from 

oxidative damage.   10 

 

Microbial communities do inhabit radioactive environments (18,23,37,42,51), and bacteria isolated from 12 

such habitats are generally much more tolerant of exposure to ionizing radiation and oxidative stress 

than their counterparts from environments experiencing background levels of radiation (35).  Melanin 14 

producing microfungi obtained from the Chernobyl Atomic Energy Station display directional growth of 

hyphae towards ionizing radiation (51).  Dadachova et al. (12) recently demonstrated that melanin 16 

enhanced the growth and metabolic activity of certain fungi during chronic exposure to low levels of 

ionizing radiation relative to non-melanized cells.  Though the exact mechanism(s) is unknown; melanin 18 

may serve to shield these fungi, perhaps scavenging reactive oxygen species (43), but a role for the 

electron transfer properties of melanin cannot be ignored (12,34).  To the best of our knowledge this 20 

study marks the first documented case whereby bacterial growth is legitimately enhanced during chronic 

irradiation.  Here, growth conditions that were expected to prompt copper catalyzed production of 22 

oxygen radicals actually promoted the growth of K. radiotolerans, and this response could not be 

duplicated by chronic irradiation or copper supplementation alone.    24 
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Table 1.  Intracellular metal contents of extreme resistant and sensitive bacteria.   2 

Strain                                   Radiation Resistance        Mn/Fe          Mn/Cu          Mn/Fe+Cu                       

K. radiotolerans                               RT             

     TGY                                                                          0.087              0.75                   0.078 

     TGY + Fe2+                                                                  0.0048            0.545                 0.044 

     TGY + Mn2+                                                              0.91                3.778                 0.734 

     TGY + Cu2+                                                               0.087              0.0071               0.0066 

Deinococcus radiodurans ‡            RT                           0.24 

Enterococcus faecium ‡                 RT                           0.17 

Pseudomonas putida ‡                    RS                         <0.0001 

E. coli ‡                                           RS                           0.0072 

Shewanella oneidensis ‡                 RS                           0.0005 

 

K. radiotolerans cultures were grown to stationary phase and cell pellets were washed sequentially in 4 

EDTA and PBS prior to metals analysis by ICP-MS.  All values are presented as metal / protein (nmol / 

mg).  ‡ Comparative data for other bacterial strains were taken directly from Daly et al. (2004).  Levels 6 

of radiation resistance were categorized by strain as either radiation tolerant, RT, or radiation sensitive, 

RS.   8 
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Figures 

 2 

 
 4 

 

Figure 1. The effect of different transition metals on the growth of K. radiotolerans during chronic 6 

irradiation.   Black bars indicate cultures that were grown to exponential phase in TGY medium and then 

streak plated onto metal supplemented TGY plates.  White bars indicate cultures that were pre-grown to 8 

exponential phase in metal supplemented liquid medium and then streak plated onto no-metal containing 

TGY plates.  The horizontal baseline (gray bar) of 75 ±25 CFUs was established from the no-metal, 10 

irradiated control cultures.  All plates were irradiated for 4 days at 60 Gy/hr at a constant temperature of 

30°C.      12 
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Figure 2. Recovery response of K. radiotolerans following H2O2 exposure.  Cultures (n = 3) were 4 

grown to exponential phase in TGY or TGY amended with a divalent cationic metal (100µM), incubated 

in H2O2 (4%) for 10 min, and then allowed to recover in fresh TGY medium at 28°C and 150 rpm.  6 

▲TGY (Control), ■ TGY + Mn2+, ♦ TGY + Cu2+, • TGY + Fe2+, ο TGY + Zn2+, □ TGY + Mo2+, and ∆ 

TGY + Co2+.  8 
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Figure 3. Intracellular accumulation of transition metals in early stationary phase K. radiotolerans 4 

cultures. Bars indicate normalized metal content of Fe2+ (solid), Mn2+ (grey), and Cu2+ (white) 

respectively in no-metal control and metal supplemented cultures (X-axis).         6 
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Figure 4.  DNA damage repair in K. radiotolerans cultures following acute irradiation. Panel A, DNA 8 

damage as a function of radiation dose.  Panels B and C, The timing of radiation induced DNA damage 

repair for control and Cu-grown cultures.  10 
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