Innovation for Our Energy Future

Fleet Performance Results Using Biodiesel

Robb Barnitt
National Renewable Energy Laboratory
Golden, Colorado

Clean Cities Coordinators Webcast March 24, 2007

U.S. Department of Energy
Office of FreedomCAR and Vehicle Technologies

Agenda

- 1. Fleet Evaluation Team Background
- 2. NREL Fleet Test Activities
- 3. RTD B20 Evaluation Results
- Project objectives and approach
- Mileage accumulation, fuel economy
- Road calls and maintenance
- Fuel and fuel filter analysis
- Lube oil analysis
- Chassis dynamometer emission results
- Conclusions

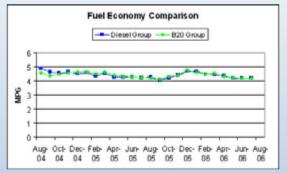
B20 Fleet Evaluation Team

- Early NBB requests of OEMs
 - Warranty support for B20
 - All wanted more field data
- Major OEMs, industry experts, and stakeholders participate
- Biodiesel proponents: "No B20 issues in the field"
- OEMs: "Prove it with quantifiable data"
- Active since 2003
- Gather information about the B20 usage experience
- Now known as the Biodiesel Blend Evaluation Team (BBET), with a focus on B20

B20 FET Team Members

- Bosch
- Case New Holland
- Caterpillar
- Cummins
- DaimlerChrysler
- Delphi Diesel Systems
- Department of Defense
- Engine Manufacturers
 Association
- Fleetguard
- Ford Motor Co.

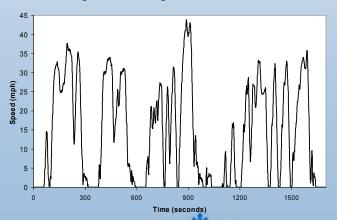
- General Motors
- International
- John Deere
- National Biodiesel Board
- NREL
- Parker Racor
- Siemens Diesel Systems
- Stanadyne Corp.
- Volkswagen AG
- Volvo Truck


NREL's Fleet Test and Evaluation Team

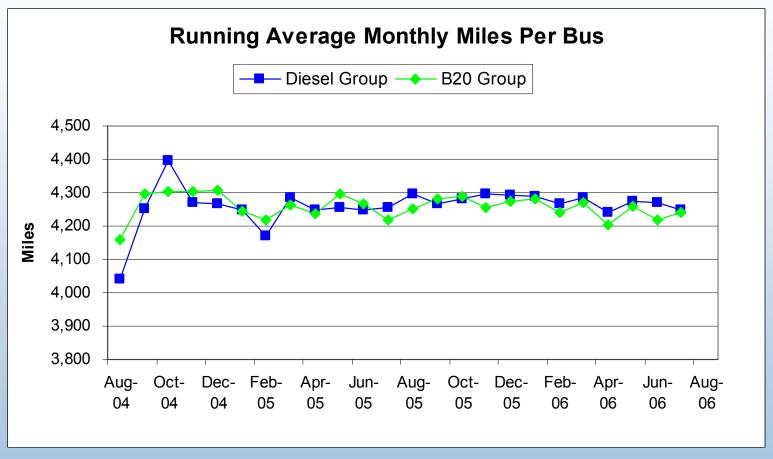
- Focused on evaluating advanced technologies in medium and heavy vehicle applications
- Main goals:
 - Facilitate the transition of advanced technologies from R&D to the marketplace
 - Provide potential users with accurate and unbiased information on vehicle performance and costs
- Fleet projects
 - Denver Regional Transportation District (RTD)
 - United States Postal Service (USPS)
 - St. Louis Metro

B20 Fleet Evaluation – Objectives

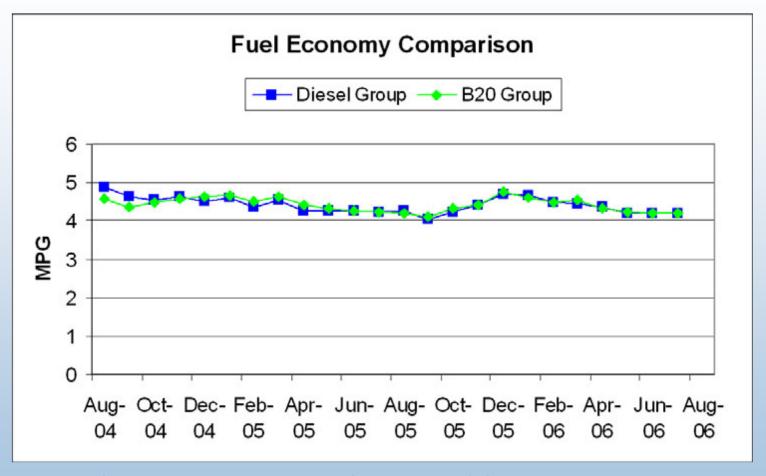
- Compare vehicles operating in the field on B20 and conventional diesel over 24 months:
 - Engine performance
 - Fuel economy
 - Vehicle maintenance cost
 - Fuel-induced variations in operation and maintenance
 - Lube oil performance
 - Emissions


- Exhibit high degree of experimental control in vehicle selection and duty cycle
- Aid engine OEMs in exploring effects of B20 on engine durability
- Aid potential B20 users in understanding costs, benefits, and differences in operation

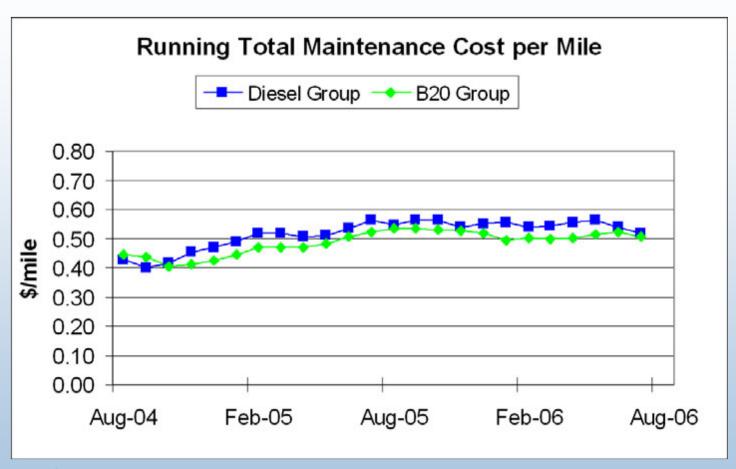
National Renewable Energy Laboratory


B20 Fleet Evaluation – Approach

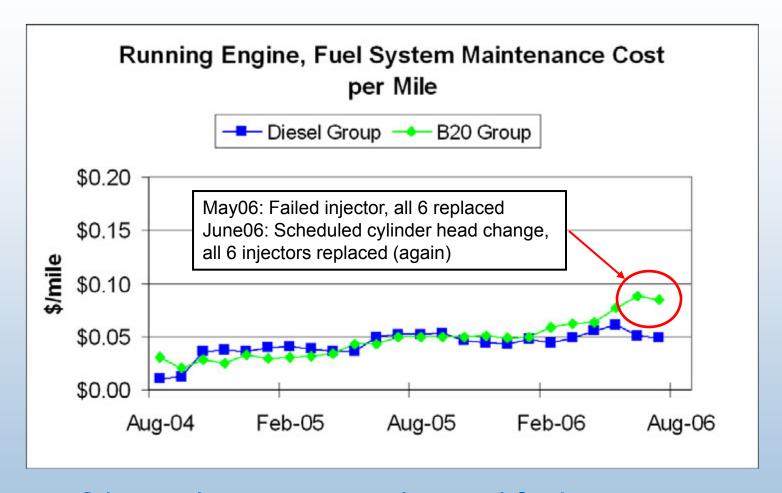
- Nine mechanically identical Denver RTD transit buses:
 - 2000 Orion V, Cummins ISM
 - Five operated on B20, four on diesel
- Dedicated to Skip Route in Boulder identical duty cycle
- RTD submitted data electronically from their internal database
 - Fuel, labor, parts
 - In-use fuel economy and maintenance costs analyzed by NREL
- Fuel delivery and vehicle tank sample analysis
- Periodic oil sampling at drain interval and analysis
- Two study buses emissions tested on chassis dyno at NREL's ReFUEL facility


Mileage Accumulation

4,200 miles per month per bus


On-Road Fuel Economy

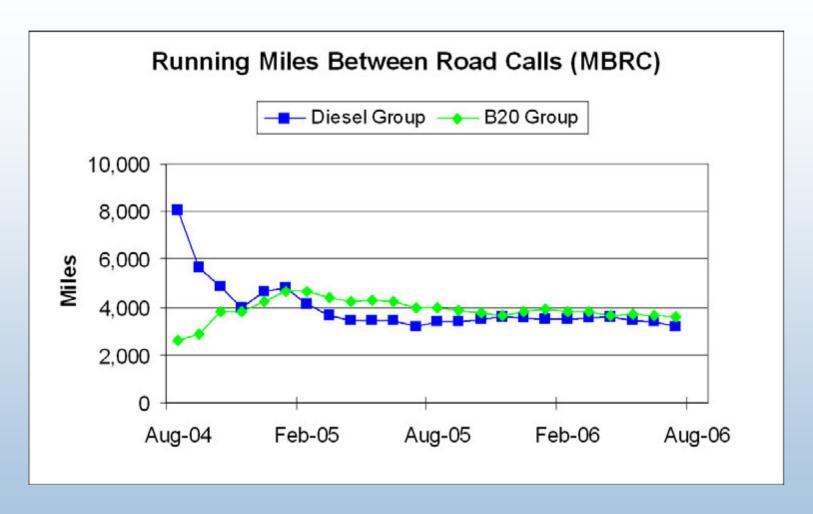
4.41 mpg Diesel, 4.41 mpg B20


Maintenance Costs – Total

- 24-month average maintenance costs:
 - \$0.54/mile diesel, \$0.51/mile B20
 - Diesel transmission repairs drive difference

Maintenance Costs – Engine, Fuel System

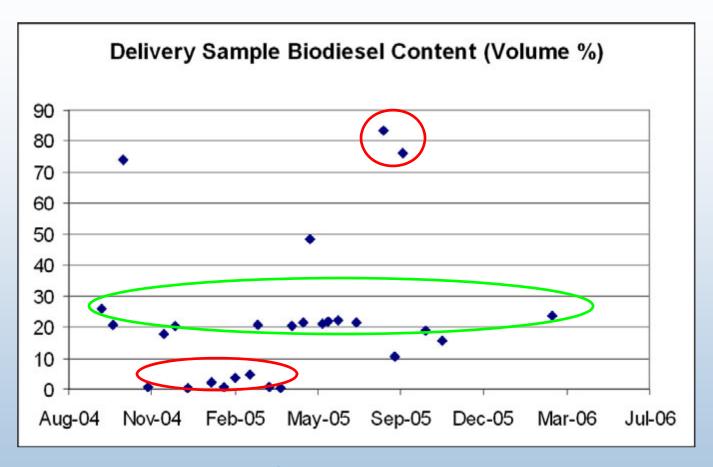
- 24-month average engine and fuel system maintenance costs:
 - \$0.05/mile diesel, \$0.07/mile B20



Maintenance Costs – Engine, Fuel System

	Diesel	B20
Fuel pump	2	1
Fuel injector	1	13

- Injector discrepancy driven by replacement of full set, then cylinder head replacement
- No reason to suspect B20 fuel currently
 - Cummins tear-down analysis of 6-injector set that failed


Road Calls

- Average MBRCs are comparable
 - 3,197 Diesel, 3,632 B20

Fuel Analysis

- Biodiesel content of delivery samples scattered
 - Changes to fuel blending & sampling implemented May '05
- Vehicle samples taken are near B20
- **Knowledge of sampling point is important**

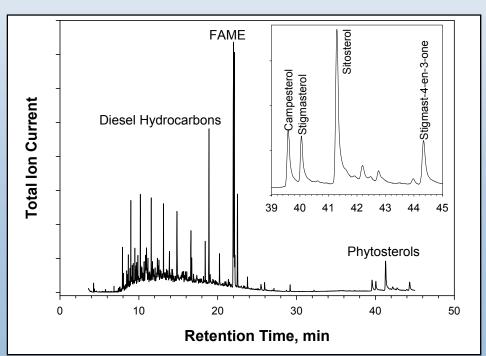
14

Fuel Analysis

- March 2006 vehicle fuel sample analysis
 - Acid value, peroxides, aldehydes (alkanals) determined by Saftest
 - Acid value and peroxides consistently low as compared to NREL B20 fuel quality survey
 - Alkanals indicate some oxidative degradation, but are not high

Vehicle Number	B100 Content Volume %	Acid Value mgKOH/g	Peroxide Saftest™ ppm	Aldehyde Saftest mmol/mL
2207	20.3	<0.1		58.212
2208	18.4	<0.1	13.22	57.902
2209	17.4	<0.1	11.59	55.696
2210	18.7	<0.1	16.75	73.35
2211	19.7	<0.1	11.42	61.546

Fuel Analysis


- Composite March 2006 vehicle fuel samples had more detailed analysis
 - Higher cetane number
 - Lower sulfur content
 - 2.4% lower B20 energy content

Analysis	ASTM Method	B20 Composite	Diesel Composite
Water and sediment vol %	D2709	0.01	0.01
Cloud point ^o C	D2500	-13	-14
Sulfur ppm	D5453		324
	D2622	272	
Aromatics vol %	D1319		25.6
Olefins vol %			1.3
Saturates vol %			73.1
C mass%	D5291	84.7	86.6
H mass%		12.9	13.2
Derived cetane number	D6890	51	48
LHV BTU/lb	D240	17,860	18,307

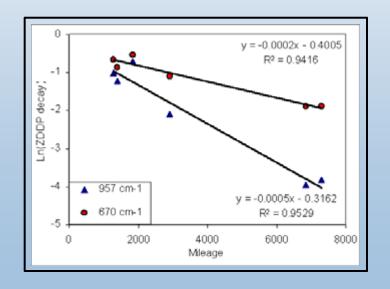
B20 Fuel Filter Plugging

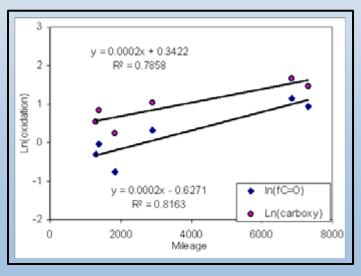
Three filter plugging events:

- 1. April 2005 Two buses
 - Brown slime. Cold snap?
 - Biocide applied to next fuel delivery

Bus	% Biodiesel	CFPP °C	Water (ppm)	Bug Alert
	18.4			(med)
2208	16.9	-25	77	27 (low)
2209	19.2	-25	88	57 (low)
2210	20.3	-25	97	1 (very low)
2211	15	-30	78	93 (low-med)

 Filter residue analysis indicated presence of plant sterols


B20 Fuel Filter Plugging

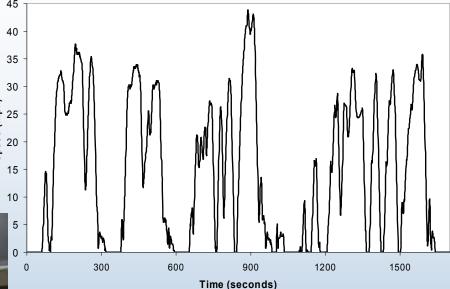


- 2. June 2005 One bus
 - B20 storage tank fuel level low
 - Sediment plugged dispenser and fuel filters
 - Fuel filter samples collected
- Preliminary GC-MS results indicate high levels of phytosterols
- 3. July 2006 Two buses
 - B20 storage tank fuel level low (end of project)
 - Sediment plugged fuel filters (Soap?)
 - Fuel filter samples, fuel storage tank samples collected
- Preliminary GC-MS results indicate high levels of phytosterols

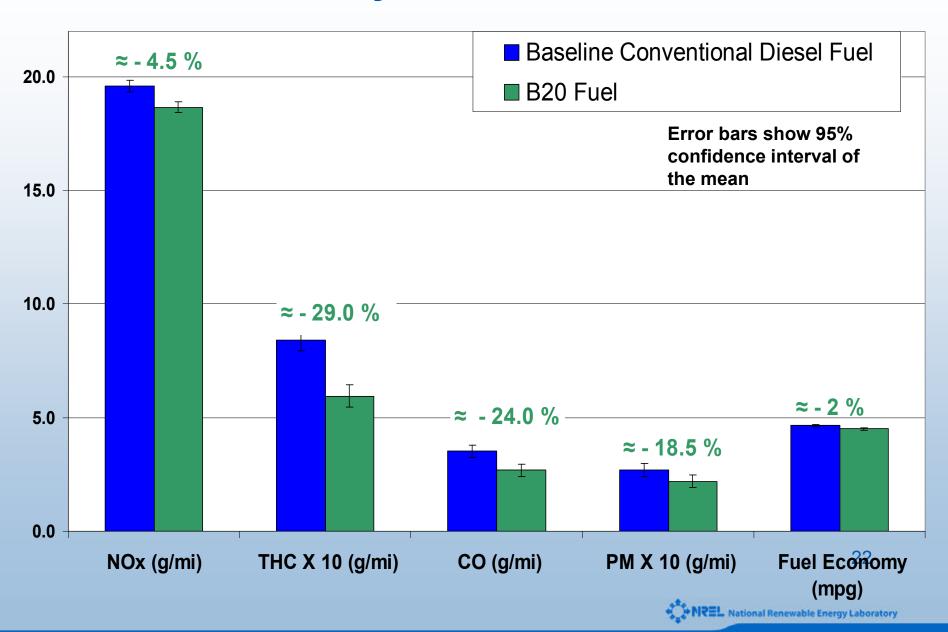
Lube Oil Analysis

- One set of oil drain samples (March/April 2006) analyzed by Cummins
- Exponential decay of ZDDP and TBN consistent with previous Cummins testing
- No difference in ZDDP decay between diesel and B20 samples
- TBN decay may be occurring more slowly in B20 samples

Lube Oil Analysis


	Diesel	B20
Fuel Dilution	Low	Lower
Metals (evaporative)	No difference	
Metals (engine wear)	Low	Lower @ high mileage
Soot	Low	50% lower
Viscosity, Viscosity Index	No difference	

Bus Chassis Dynamometer Testing


- Two in-use buses tested
- Cummins ISM 2000 engine – no EGR
- In-use B20 vs. diesel fuel

	Skip Bus Route	CSHVC
Avg Speed	15.6 mph	14.2 mph
Max Speed	40 mph	44 mph
Stops/Mile	0.78	0.75 ²¹

Bus Chassis Dynamometer Test Results

Conclusions

- No significant difference between B20 and diesel baseline:
 - On-road fuel economy
 - Reliability (road calls)
 - Total maintenance costs
 - Fuel System and engine maintenance costs
- Filter plugging issues plant sterols one potential cause
- Early B20 splash-blending issues, generally B20 in tank
- Limited lube oil data suggests no harm with B20 use, some potential benefits
- Significant emissions reductions including NOx
- SAE Paper 2006-01-3253

Information

- SAE Paper 2006-01-3253 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20)
 - www.nrel.gov/vehiclesandfuels/npbf/pdfs/40128.pdf
- Contact information
 - Robb BarnittEngineerNational Renewable Energy Laboratory

Golden, CO

303-275-4489

robb_barnitt@nrel.gov

