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Abtract

The profound revolutions in particle physics likely to emerge from current and fu-
ture experiments motivates an improved understanding of the precise predictions of
the Standard Model and new physics models. Higher order predictions in quantum
field theories inevitably requires the renormalization procedure, which makes sensible
predictions out of the naively divergent results of perturbation theory. Thus, a ro-
bust understanding of renormalization is crucial for identifying and interpreting the
possible discovery of new physics. The results of this thesis represent a broad set
of investigations into the nature of renormalization. I begin by motivating a more
physical approach to renormalization based on gauge-invariant Green’s functions.
The resulting effective charges are first applied to gauge coupling unification. This
approach provides an elegant formalism for understanding all threshold corrections,
and the gauge couplings unify in a more physical manner compared to the usual
methods. Next, the gauge-invariant three-gluon vertex is studied in detail, revealing
an interesting and rich structure. The effective coupling for the three-gluon vertex,
a(k?, k2, k2), depends on three momentum scales and gives rise to an effective scale

2:4(k2, k3, k3) which governs the (sometimes surprising) behavior of the vertex. The
effects of nonzero internal masses are important and have a complicated threshold
and pseudo-threshold structure. The pinch-technique effective charge is also calcu-
lated to two-loops and several applications are discussed. The Higgs boson mass in
Split Supersymmetry is calculated to two-loops, including all one-loop threshold ef-
fects, leading to a downward shift in the Higgs mass of a few GeV. Finally, I discuss
some ideas regarding the overall structure of perturbation theory. This thesis lays the
foundation for a comprehensive multi-scale analytic renormalization scheme based on
gauge-invariant Green’s functions, in which the scale ambiguity problem is reduced

since physical kinematic invariants determine the arguments of the couplings.
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Chapter 1
Introduction

Quantum field theories form the foundation for our understanding of three of the
four forces of nature. Electromagnetism was the first force to succumb to the charms
of a relativistic quantum field theory. Since its inception in the 1940’s, Quantum
Electro-Dynamics (QED) has been tested and verified to remarkable precision, thus
elevating the principle of gauge invariance to the sacrosanct status it holds today. It
was not until the 1970’s that adequate theories of the strong and weak nuclear forces
were developed, also based on the principle of gauge invariance. The strong force
is described by Quantum Chromo-Dynamics (QCD), which is based on an unbroken
non-abelian symmetry called SU(3).. The weak and electromagnetic forces are mixed
together in the so-called Electro-Weak theory [4] based on the gauge group SU(2) x
U(1)y, which is partially broken (or hidden) in nature, leaving unbroken only the
U(1)gm symmetry of QED. '

Together the SU(3). x SU(2)r, x U(1)y theory, known as the Standard Model
(SM) of particles physics, represents one of the great triumphs of twentieth century
science. To date, no experimental or theoretical evidence against the SM has been
found. All of the particles of the SM have been discovered, with the notable exception
of the elusive Higgs boson, which plays the crucial role of breaking the Electro-
Weak symmetry and generating the masses of all known particles. There is very
good reason to believe that the Higgs boson will be discovered in the near future,
most likely at the Large Hadron Collider (LHC) located at CERN, which is due to
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come online in 2007. Moreover, there is also very good reason to believe that the
Higgs Boson will not be arriving by itself, but rather with a plethora of new physics
associated with the heretofore unknown Higgs sector. The canonical argument fornew
physics near the electro-weak scale is the so-called hierarchy problem. The technical
hierarchy problem derives from the observation that scalar masses (e.g. the Higgs)
are generically unstable to radiative corrections from new physics at large energies.
This means that if there is some new physics at a scale My p between the electro-weak
scale (Mgw ~ 102 GeV) and the Planck scale (Mp; ~ 10! GeV), the minimization of
the loop corrected effective potential will lead to a Higgs mass of order Myp, unless
there is either (a) an extremely unnatural fine-tuning of the parameters of the theory
or (b) a “stabilizing” symmetry principle. On the surface, these arguments would
seem to suggest against new physics above the electro-weak scale, since it is typically
so destabilizing. However, there is likely to be some new physics between Mgw and
Mp,, certainly at least some form of quantum gravitation corrections. Thus, particle
physicists prefer to take the bull by the horns and try to construct new physics so as
to “protect” the Higgs mass from these large unwanted radiative corrections. Once it
is protected near the electro-weak scale, it is presumably safe all the way to the Planck
scale. These considerations stemming from the hierarchy problem have driven most
of the progress in theoretical particle physics in the past twenty-five years, leading to
Supersymmetry [5], Technicolor [6], Extra Dimensions {7], and Little Higgs theories
8], to name some of the most prominent ideas. While the discovery of new physics
may occur at the LHC, it will take the more precise capabilities of the International
Linear Collider (ILC) to distinguish the details of the new physics.

Although past measurements of Charge-Parity (CP) violation are consistent with
the SM, it is only the current generation of experiments, BABAR and BELLE, which
will rigorously test the SM predictions in a quantitative way. The interplay between
experimental and theoretical advances is expected to elucidate the nature of the
matter-antimatter asymmetry of the universe and possibly offer another window on
new physics.

Given the profound revolution(s) in our understanding of nature that is likely(?!)

to emerge in coming years from current and future experiments, it is of the utmost
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importance to have a firm grasp on the precise predictions of the Standard Model, as
well as those arising from new physics models. Higher order predictions in quantum
field theories inevitably lead to the renormalization procedure, which is needed to
make sensible predictions out of the naively divergent results perturbation theory
seems to deliver. Thus, the detailed understanding of renormalization is crucial for
identifying and interpreting the possible discovery of new physics.

A better understanding of renormalization may also lead to advances in the study
of QCD. While the low energy behavior (< 1 GeV) is likely to require (unknown)
theoretical tools beyond perturbation theory, the perturbative regime is plagued by
sometimes large uncertainties due to renormalization ambiguities.

This thesis attempts to study various aspects of renormalization, sometimes from a
slightly non-standard viewpoint, which we will loosely call “physical renormalization.”

In Chapter 2, some motivations for physical renormalization are given. First,
some problematic issues with the standard approach to renormalization (in QCD)
are outlined, including scale dependence, analyticity, and convergence. The-theory of
QED is used for guidance in solving these problems.

In Chapter 3, the unification of gauge couplings is studied in physical renormaliza-
tion schemes, where gauge couplings are defined directly in terms of physical observ-
ables. Such effective charges are analytic functions of physical scales, and thus mass
thresholds are treated with their correct analytic dependence. In particular, particles
will contribute to physical predictions even at energies below their threshold. This
is in contrast to unphysical renormalization schemes such as M.S where mass thresh-
olds are treated as step functions. In this chapter we analyze supersymmetric grand
unification in the context of physical renormalization schemes and find a number of
qualitative differences and improvements in precision over conventional approaches.
The effective charge formalism presented here provides a template for calculating all
mass threshold effects for any given grand unified theory. These threshold corrections
may be important in making the measured values of the gauge couplings consistent
with unification.

In Chapter 4, the methodology for precision gauge coupling unification is syn-

thesized, mostly as a coherent review of known results but with some new formula
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presented. The aim is to be completely general, so as to be able to treat the plethora
of unified models on equal footing in regards to the detailed predictions of gauge-
coupling unification. The pinch-technique scheme provides an elegant formalism for
understanding the various corrections, and the analogous results in the more con-
ventional DR scheme can be obtained in a straightforward manner from the pinch-
technique framework. Some results are given to illustrate the current status of gauge
coupling unification.

In Chapter 5, the gauge-invariant three-gluon vertex obtained from the pinch tech-
nique is characterized by thirteen nonzero form factors, which are given in complete
generality for unbroken gauge theory at one loop. The results are given in d di-
mensions using both dimensional regularization and dimensional reduction, including
the effects of massless gluons and arbitrary representations of massive gauge bosons,
fermions, and scalars. We find interesting relations between the functional forms of
the contributions from gauge bosons, fermions, and scalars. These relations hold only
for the gauge-invariant pinch technique vertex and are d-dimensional incarnations of
supersymmetric nonrenormalization theorems which include finite terms. The form
factors are shown to simplify for A” = 1,2, and 4 supersymmetry in various dimen-
sions. In four-dimensional non-supersymmetric theories, eight of the form factors have
the same functional form for massless gluons, quarks, and scalars, when written in a
physically motivated tensor basis. For QCD, these include the tree-level tensor struc-
ture which has prefactor fy = (11N, —2Ny)/3, another tensor with prefactor 4N, — Ny,
and six tensors with N, — Ny. In perturbative calculations our results lead naturally
to an effective coupling for the three-gluon vertex, a(k?, k3, k3), which depends on
three momenta and gives rise to an effective scale Q2 f f(k:f, k2,k2) which governs the
behavior of the vertex. The effects of nonzero internal masses M are important and
have a complicated threshold and pseudo-threshold structure. A three-scale effective
number of flavors Np(k?/M?2 k2/M?,k2/M?) is defined. The results of this chapter
are an important part of a gauge-invariant dressed skeleton expansion and a related
multi-scale analytic renormalization scheme. In this approach the scale ambiguity
problem is resolved since physical kinematic invariants determine the arguments of

the couplings.
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In Chapter 6, the gauge-invariant gluon self-energy derived from the pinch-technique,
or equivalently Background Field Method in Feynman quantum gauge, is calculated
explicitly at two-loops, including finite terms. Arbitrary representations of fermions,
scalars, and Yukawa couplings are included. Both dimensional regularization (DREG)
and the supersymmetric regulator dimensional reduction (DRED) are used. For the
N = 4 supersymmetric gauge theory, a finite two-loop term remains, in contrast to
the one-loop results for the gauge-invariant three-gluon vertex and gluon self-energy.
The results of this chapter allow for a more precise numerical determination of the the
pinch-technique effective charge, which is derived by re-summing the gauge-invariant
gluon self-energy diagrams and is the non-abelian analog of the on-shell charge of
QED. Furthermore, the longitudinal form factors of the gauge-invariant three-gluon
vertex are determined at two-loops from the Ward identity. The three-loop 8 function
coefficient for the pinch-technique charge in QCD is derived.

In Chapter 7, the mass of the Higgs boson in the Split Supersymmetric Standard
Model is calculated, including all one-loop threshold effects and the renormalization
group evolution of the Higgs quartic coupling through two-loops. The two-loop cor-
rections are very small (< 1 GeV), while the one-loop threshold corrections generally
push the Higgs mass down several GeV.

In Chapter 8, some general properties of perturbation theory and renormaliza-
tion are illustrated through two examples. First, the five-loop terms of order ol
in the Higgs scalar correlator are predicted in the framework of the Brodsky-Lepage-
Mackenzie (BLM) scale fixing procedure, and compared with a recent full calculation.
Next, the relationship between renormalons, BLM scale fixing, and a hypothetical ef-
fective charge running inside of loops is investigated in the context of the two-loop
corrections to a heavy quark mass.

In Chapter 9, future directions for research are outlined.



Chapter 2

Motivations for Physical

Renormalization

The term physical renormalization is used to distinguish approaches that attempt to
relate observables more or less directly to each other, rather than through the use of
theoretically defined constructs, such the MS coupling of QCD. The on-shell charge
of QED developed by Dyson, Gell-Mann, and Low is the canonical example of a
physical renormalization scheme. Physical schemes enjoy superior analytic properties
and have no renormalization scale ambiguity, since the scales are naturally related
to physical kinematic invariants. These points will be discussed in detail throughout

the next few sections, and recur throughout this thesis.

2.1 Three Problems with Perturbation theory

In perturbative QCD (pQCD), the preferred scheme among most practitioners is
modified minimal-subtraction (MS). MS has some very positive calculational ad-
vantages, due to the fact that it is truly the “minimal” subtraction scheme: only the
divergence and associated constants are absorbed into the bare coupling in order to
define the renormalized coupling.

Despite these attributes, the conventional formulation of pQCD as an expansion

in the M S coupling has three main problems :

6
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o Renormalization Scale/Scheme Ambiguity
e Analyticity through thresholds and over timelike and spacelike momenta
e Renormalons which lead to a divergent perturbation series

As we will see in the next three subsections, these problems are related to each other.

2.1.1 The Scale/Scheme Ambiguity Problem

In perturbative calculations, one of the dominant sources of theoretical uncertainty is
the ambiguity in choice of renormalization scale and scheme. For a generic single-scale

observable calculated to order N in perturbation theory,

N

R(Q) =) Ru(Qual(w), (2.1)

n=0

the scale and scheme of the highest order term is considered ambiguous since their

variation leads to a correction which is formally of higher order (N +1) :

!

as(p) = as(u)—%ﬂ/_‘)ﬁolog%
ay(p) = as(p) +Cai(u). (2.2)

Note that a scheme shift can also be viewed as a scale shift at leading order,

d(n) = as(m) + 0(ad)
o = uexp(_ZTrC). (2.3)

Bo

Several proposals have been advanced in order to deal with the scale and scheme

uncertainty.

e The Principle of Minimal Sensitivity (PMS) [9] demands that the perturbative
expansion be as insensitive as possible to the variation of scheme and scale

parameters. In practice usually only scale variation is considered.
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e The Fastest Apparent Convergence (FAC) [10, 11] method demands that the
scale should be fixed so as to make the perturbative expansion appear the most
convergent. This is done by choosing the scale such that the highest order term

computed vanishes.

e In the Brodsky-Lepage-Mackenzie (BLM) [12] method, the scales are chosen at
each order to eliminate the terms which depend on the number of flavors Ny.
The BLM method is inspired by an analogy with QED, as will be explained

- shortly.

2.1.2 Analyticity

The MS charge is not analytic through mass thresholds and does not distinguish
between time-like and space-like virtualities. In MS, the particles contributing to
the renormalization of the coupling constant are treated as massless, so that they are
either fully “turned on” or fully “turned off.” When the scale of the problem is lower
than the mass of some species of quark, that quark must be decoupled by hand. This
artificial decoupling leads to a set of schemes and couplings, defined in each desert
region, which must be mapped together. To any order in perturbation theory one can
in principle derive matching conditions which relate the couplings. To leading order
one simply has ol +1)(MQ) =alf )(MQ), and the coupling has discontinuous derivative
at Mg. At higher orders the coupling itself becomes discontinuous. In section 3.7 a
more detailed account of the decoupling of massive particles will be given.

In addition, the lack of a distinction between time-like and space-like momenta
means, for example, that the appropriate imaginary parts of higher order terms are
missing. While these terms are formally of higher order, they can be taken into
account consistently, as is done in the physical effective charge scheme furnished by
the pinch-technique which is considered in Chapters 3, 5, and 6.

Finally, the issue of analyticity near the origin of the ¢* plane bringé us to the

question of the convergence of perturbation theory.
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2.1.3 Convergence of the series

It is commonly believed that QCD perturbation series is divergent due to the effects
of so-called renormalons, as illustrated in Fig.(2.1). The renormalon analysis of QCD
assumes (a) the existence of a gauge-invariant combination of radiative corrections
which has the structure of gluon self-energy insertions, and (b) these corrections are
the dominant ones at any order of perturbation theory. Provided these assumptions
are true, the bubble chain insertions will lead to a factorial growth in the series
coefficients R, o n!. This can be heuristically understood as the integration over
extremely small momenta where a running coupling inside loops becomes very large.
Thus, it is usually stated that pQCD has an asymptotic series, for which there is
some optimal number of terms that should be computed, and after which the series

begins to diverge.

N insertions

Figure 2.1: Renormalon chain in a quark propagator.

Consider the loop integral
[ dtases, - (2.4)

where f contains the propagators and numerator while o,(/2) comes from re-summing
the gluon self-energy insertions. Using a scheme that does not distinguish between

timelike and spacelike momenta, such as M S, leads to

4
2y _
) = B lea /AL

which is singular for both spacelike and timelike momenta of I>~ 4 A?VI—S. In contrast,
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using an effective charge which distinguishes spacelike and timelike momenta leads to

&) = o (25)

o log|i2/R2| - im6(12))

so that the infrared renormalon is regulated by the imaginary part for timelike
momenta(|a| < [—;% ~ 4/9), although it persists for spacelike momenta.

However, there is by now compelling evidence that QCD effective charges have
an infrared fixed-point [13, 14, 15], defined by &(Q* — 0) — constant. Although
formally beyond fixed order perturbation theory, using some phenomenological fixed-
point behavior for the effective charge will remove even the spacelike IR renormalon
divergence.

If indeed QCD is the complete theory of the strong interactions, then there should
be a meaningfully defined perturbative expansion that is convergent, not asymptotic.

This may be achieved if either

1. the running coupling (defined as some physical effective charge) has a finite IR
fixed point [13, 14, 15], or

2. the assumptions underlying the renormalon analysis, namely the ezistence and

dominance of renormalon contributions, proves false.

Thus far, we have not specified how to construct running charges inside of loops in
QCD. Indeed, no satisfactory method has been yet been developed to accomplish this
task!. In the past, there has been some speculation that the pinch-technique justifies
the renormalon analysis by offering a graphical understanding for the construction
of gauge-invariant gluon self-energy. In section 8.2, some arguments will be given
against this proposal, i.e. that a pinch-technique charge cannot be unambiguous
constructed inside of loops. Section 8.2 is a preliminary effort towards understanding
the relationship between the existence and dominance of renormalons, BLM scale
fixing, and a hypothetical dressed skeleton expansion where charges run inside of

loops.

1See the work of Neubert [16, 17] for another approach, which starts with the assumption of
running charges inside of loops.
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2.2 Lessons from QED

In Quantum Electro-Dynamics (QED) the above three problems are essentially elim-
inated. For the scale ambiguity and analyticity problems, this happy situation arises
largely due to the existence of a dressed-skeleton-expansion, wherein the virtuality of
each photon line uniquely determines the scale of the coupling at the vertex. QED has
a very natural and physically motivated scheme, sometimes called the on-shell scheme,
with an analytic coupling known as the on-shell or Gell Mann-Low-Dyson effective
charge e(g?), which approaches the fine structure constant o = % ~ (137.036)7! in
the limit of zero photon virtuality. Of course, the improved convergence properties of
QED are related to the IR fixed point behavior, which trivially follows because the
theory is Abelian. We will now consider these features of QED in more detail.
Consider the simple example of e”e™ scattering in QED, which at leading order
consists of two graphs: ¢ channel and u channel. The ¢-channel graph is shown
in Fig.(2.2). Re-summing the photon vacuum polarization diagrams naturally leads
to e(t) at both vertices, where ¢ is the Mandelstam variable, and there is no scale
ambiguity in this approach. Nevertheless, if one insists on choosing a different scale
u? # t for this diagram, then there will be an infinite series of corrections proportional
to (e2(u?)log u?/t)" at each order n, which, when re-summed, lead once again to e2(t).
Similarly, the u-channel graph (not shown) is proportional to e?(u), so we can write

the renormalization improved amplitude schematically as

M = Me?(t) + Mye*(u). (2.6)
el

P
_— temp’
P

e(t)

Figure 2.2: QED has no scale ambiguity.
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If instead M S is used, then the scale must apparently be guessed, since there is no
natural diagrammatic understanding of the scale, unlike in the Gell-Man-Low-Dyson
scheme, where the physical kinematic invariants ¢ and u are the scales. Typically in

MS a single scale is chosen for all vertices, so that
Masrs = (M + M) (1?). (2.7)

In general, one can solve for the correct MS scale u by squaring the amplitudes and
and equating with the on-shell result given above. The resulting scale is unlikely to
be correctly guessed. | ‘

Now consider the possibility of choosing different MS scales for each graph. Per-
haps physical intuition will lead one to choose the MS scales u? = t and p? = u
for the two graphs. However, this is incorrect, as can be seen by the relation
e2(Q?) = e2(Q%%?) + O(e"), which implies that the correct scales in the MS
scheme are e~%/3t and e~%/%u, which are also unlikely to be guessed.

The errors due to the wrong scale choice are formally of higher order. However,
using a running charge is supposed to account for a certain subclass of dominant higher
order corrections. It is not clear this is happening when the scale is ambiguous, since
there is only one. choice of scale that re-sums these terms correctly. Note that it is
not the infrared fixed point of QED that allows one to unambiguously fix the scale.
Rather, it is the relative simplicity in the construction of the effective charge from a
gauge-invariant subset of diagrams.

There are also useful lessons from QED in regards to analyticity. The physical
QED charge is in general complex at timelike momenta, with precisely the correct
imaginary parts dictated by unitarity and analyticity. Furthermore, the coupling
has smooth behavior through mass thresholds. These attributes can be seen in the
process ete” — uTu~, shown in Fig.(2.3), which has a complex analytic charge
defined by re-summing the vacuum polarization graphs, with the imaginary part,
Im e*(—s) o« Im II,,(s), determined by the physical cuts of the vacuum polarization
graph.

Finally, the renormalon problem does arise formally in pure QED. However, in this
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e(-s) ¢(-3)
Figure 2.3: The QED coupling is a complex analytic function of physical scales.

case it is the so-called UV renormalons which come from loop momentum integration
near the Landau singularity (> Mp;). Since QED is merged into the electro-weak
theory well below the Landau pole, there is no problem. Here QED offers little
guidance for the QCD renormalon problems, since it is highly unlikely that QCD
merges with another theory at hadronic energy scales.

With the exception of the Landau singularity at unphysically large energies, the
QED charge a(g?) is analytic over the g*-plane. M S does not share this feature.

To summarize, QED offers several important lessons on the construction of a

physical renormalization scheme:

e The effective couplings are complex analytic functions with the correct threshold

structure expected by unitarity.
e Multiple “renormalization” scales appear in a physical process.

e The scales are totally unambiguous since they are related to physical kinematic

invariants.

The generalization of these attributes to non-abelian theories will appear in later
chapters. A useful check is that QCD must match on to an Abelian theory in the
limit of N, — 0 [18].



Chapter 3

Physical Renormalization Schemes

and Grand Unification

3.1 Introduction

Precision measurements of the gauge couplings and their possible unification provides
one of the few windows to the Planck scale. It is thus important to have a firm grasp
of the theoretical ambiguities involved. This chapter attempts to address some of
these ambiguities.

In a physical renormalization scheme, gauge couplings are defined directly in terms
of physical observables. Such effective charges are analytic functions of physical scales,
and thus the thresholds associated with heavy particles are treated with their correct
analytic dependence. This is in contrast to unphysical renormalization schemes such
as the MS scheme where mass thresholds are treated as step functions. In this
chapter we will analyze supersymmetric grand unification in the context of physical
renormalization schemes with the goal of systematizing the effects of light and heavy
mass thresholds and improving the precision of tests of unification compared with
conventional approaches.

In section 3.2, we motivate physical renormalization schemes with a simple ex-

ample and then present the notation and results used throughout the chapter. In

14



CHAPTER 3. PHYSICAL SCHEMES AND GRAND UNIFICATION 15

section 3.3, we discuss the canonical self-energy-like effective charges for the Minimal
Supersymmetric Standard Model (MSSM). These effective couplings run smoothly
over spacelike momenta, have non-analytic behavior only at the expected physical
thresholds for timelike momenta, and more directly measure the strengths of the
forces than the charges of unphysical schemes. The extraction of effective charges
from low energy data is considered. We identify an important modification of the
electromagnetic coupling aqep(Mz) due to the proper inclusion of virtual W= loops,
thus resulting in a 40 change in its numerical value. Similar modifications are found
for the weak mixing angle. As seen in section 3.4, these effective charges provide a
more natural and physical framework for examining gauge coupling unification. In
section 3.4.1, we demonstrate thé invalidity of neglecting heavy threshold corrections
in analyzing grand unified models. The more rigorous treatment of light thresholds
in physical schemes gives rise to new corrections, but these are numerically small for
most sparticle spectra. The treatment of heavy thresholds with various unification
boundary conditions is discussed in section 3.4.2. In the simplest scenario, we find
that the gauge couplings should unify at asymptotically large energies and the only
heavy threshold corrections are logarithms of heavy mass ratios, which can be ob-
tained in unphysical schemes. An effective unification scale, defined in section 3.4.3
as the scale where quantum gravity corrections produce non-negligible splittings be-
tween the gauge couplings, is found to be roughly 10'7 — 10¥GeV, depending on the
specific GUT model used. Section 3.4.4 considers more general unification boundary
conditions with finite unification scale. The resulting heavy threshold corrections are
given in Eq.(3.40). This result combined with the results of section 3.4.2 may be
used to determine the experimental consistency of any given GUT model. Appendix
A discusses the details of constructing the effective charges. Appendix B looks more
carefully at the problem of decoupling heavy particles and the errors induced by
unphysical schemes.

There have been several previous works on threshold effects in grand unification.
In the first such study [19], which appeared just after the discovery of the grand
unification, D.A. Ross used form factors to define § functions which are valid over all

energy scales, including near mass thresholds. The coupling constants run smoothly



CHAPTER 3. PHYSICAL SCHEMES AND GRAND UNIFICATION 16

over all momenta, and nontrivial threshold corrections are found for grand unification.
Despite this early significant work, most subsequent work on GUTs have ignored these
threshold effects, perhaps due to the complexity of the Ross approach.

An exception from the late 1980’s is the work of Kennedy and Lynn [20], who
defined electroweak effective charges similar to the pinch technique charges used in
this chapter.

In several papers [21] by Kreuzer, Kummer, and Rebhan, the authors compared
the Vilkovisky-DeWitt effective action (VDEA), the mass-shell momentum subtrac-
tion scheme(MMOM), and Weinberg’s effective gauge theory (EGT). They wrote
down explicit formula for the running charges which include analytic threshold be-
havior for all particles. In calculating predictions from grand unification, they as-
sume asymptotic unification at energies much larger than heavy particles, so that
the only threshold corrections from heavy particles come from finite constants which
are independent of energy scale or masses. We find similar results in section 3.4.2.
Furthermore, we include the possibility of a finite unification scale in section 3.4.4,
which leads to more complicated corrections.

In [22, 23], the authors include the effects of light supersymmetric scalar and
fermion thresholds, although heavy thresholds and gauge bosons virtual effects are
not treated. In [24], the authors include both light and heavy threshold corrections,
although the treatment of gauge bosons is not complete. In Refs. [25, 26], the authors
come to several conclusions similar to ours. However, their definition leads to gauge

parameter dependent effective couplings.

3.2 Physical Renormalization Schemes and Effec-

tive Charges

In order to motivate the re-analysis of supersymmetric unification given in this chap-
ter, we will first discuss some general properties of renormalization schemes in the
presence of massive fields and determine a criterion for consistent physical renormal-

ization schemes. These criteria will not be satisfied by the schemes conventionally
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used in unification (and most perturbative calculations), WS and DR, which have
persistent threshold and matching errors. Heuristically, these errors can be under-
stood by noting that such schemes implicitly integrate out all masses heavier than
the physical energy scale until fhey are crossed, and then’they are “clicked” on with
a step function. Of course, integrating out heavy fields is only valid for energies well
below their masses. This procedure is problematic since it does not correctly incor-
porate the finite probability that the uncertainty principle gives for a particle to be
pair produced below threshold. Effective charge [11] schemes, derived from physical

observables, naturally avoid such errors and are formally consistent.

3.2.1 A Simple Example

For the purpose of elucidating the benefits of physical renormalization schemes, we
will give a simple toy example using QED with three fermions, e, u, and 7. Consider
the amplitude for the process e~ ~—e~u~. This can be written as a dressed skeleton
expansion, i.e. the dressed tree level graph plus the dressed box diagram plus the
dressed double box, etc.. The tree level diagram, dressed to all orders in perturbation
theory, is equal to the tree level diagram with one modification : the QED coupling

o= % is replaced by the Gell-Man-Low-Dyson effective charge

a(@Q?) = [T TL.(0%) — T (0) (3.1)

Hence, from measurements of the cross section, one can measure the effective charge
at two different scales, a(@?) and «(Q?). Suppose the value of the electron charge
is not known, and we are trying to test the predictions of QED. The way to proceed
is to use one measurement, say at the low scale @, as an input to determine e.
Now the prediction at the high scale @ is well defined, and represents a test of
the theory. More directly, we could just write a(Q?) in terms of a(Q?), leading
to the same prediction. Since the cross section o,-,-_.-,-(Q?) is proportional to
(a(Q?))?, we are clearly relating one observable to another. The procedure just
outlined is simply an on-shell renormalization scheme if ¢; = 0. More generally,

we will refer to such a scheme as an effective charge scheme, since we are writing
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a given observable, here just o.-,-—.-,-(Q}) (or &(Q})), in terms of an effective
charge, a(Q?), defined from a measurement of the cross section at the scale @Q;. One
could equally well write any observable in terms of this effective charge. Note that
this approach to renormalization works for arbitrary scales, even if the low scale lies
below some threshold, say @Q; < m,, while @, > m,. Decoupling and the smooth
“turning on” of the 7 are manifest.

Now we will compare with the results obtained by using the conventional imple-
mentation of ]\_4_3, which is as follows. First, the cross section is calculated at ¢
using the rules of MS, which allows only the electrons and muons to propagate in
loops, since @Q; < m,. Comparing the observed cross section to this result will fix
the value of the MS coupling for two flavors, do(Q;). To predict the result of the
same experiment at scale @, > m,, we need to evolve &, to the tau threshold using
the two flavor beta function, match with a three flavor coupling, &3, through the
relation Go(m.,) = &s(m.,), and then evolve &z(m.) to @y using the three flavor beta
function. We will now have a prediction for o- - .- ,- (Q%) x (a(Q3%))?. One might
expect, from the general principle of RG invariance of physical predictions that this
result should be the same as the prediction derived using the physical effective charge
scheme above. However, there is a discrepancy arising from the incorrect treatment
of the threshold effects in MS. A detailed discussion of this problem will be given
in section 3.7. In any case, the result can be obtained by straightforwardly applying
the procedure outlined above. One finds that the ratio of the cross section derived
using M'S with the cross section derived using effective charges, to first order in

perturbation theory, is given by
a(Q)

5(Q3) _
o =t (Le(@/mr) - 5/3), (3.2)

where L. is a logarithm-like function (the high energy limit is a logarithm) given by

L(Q/m) = /1 dz 62(1 — z) log <1 + %x(l _ x)) +5/3
= (Btanh™(p7Y) — 1)(3 - 3*) + 2, (3.3)
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where 8 = /1+ 46%2 It satisfies the property L,(0) = 5/3, so that there is no
discrepancy when the low reference scale @; is much lower than the tau mass threshold.
This reflects the important, but often overlooked, fact that unphysical schemes, such
as MS, are formally consistent only in desert regions where particle masses can be
neglected. The error is plotted in Fig.(3.1). Notice that in this example there is
an error only for @; < m,. However, in the more general case of multiple flavor
thresholds, there will be errors from both high and low scales. Similar discrepancies

will be found in our analysis of grand unification.

Error in e"u”»e”"u~ Cross Section(%)

0.4
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Q/m,

Figure 3.1: The error in the M S based prediction for the scattering cross section,
5002
100% x (%g;% — 1), plotted against the reference subtraction scale @); for the choice

OZ(QZ) ~ 0.1.

3.2.2 General Properties of Effective Charges and Physical

Renormalization Schemes

Effective charges [11] may be defined for any perturbatively calculable observable

0(Q) = A° + afa°(Q) (3.4)
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by absorbing all of the radiative corrections into the effective charge a®. To one-loop
order using dimensional regularization (DREG) or dimensional reduction (DRED) in
d = 4 — 2¢ dimensions, it is straightforward to show that any unrenormalized effective

charge may be parameterized as’

2

a°(Q) =cm—Z;%;@(%KWm»—nﬂ@hm)—cme%;f)+~4&®

where the sum is over all particles p in the fundamental theory which contribute to
the running of the effective charge. In the QED example above, the sum proceeds
over e, u,7 and L, = L, = L,, and the function n9(Q/m,) = 5/3 is a constant for
the simple observable O = /G- ;——e—-- In Eq.(3.5), Cyv = % — g + log 4 is the
divergence and associated constants, y is the regularization scale, oy is the bare gauge
coupling, and 3, is the contribution of each particle to the one-loop beta function co-
efficient. The L,(Q/m,) are logarithmic-like functions which are characteristic of the
spin of each particle, and are given exactly in Eq.(3.19). They may be approximated

for spacelike momenta to within a few percent? by

2

L,(@/m) =~ tog (7 + ) (36)

p

and have the limits

QZ

R>m
Lo(Q/m) %" log =,

L,(Q/m) =" ny, (3.7)

where the constants 7, have values given in Table 3.1. We will see that these con-
stants are of central importance in physical renormalization schemes. These log-like

functions characterize the self-energy-like effect of each particle, including the finite

1This follows from considering the high energy limit and requiring renormalizability. Note also
that our parameterization can be easily extended to effective charges which have particles with
different masses running together in the loops, and the results are similar. In any case, we will not
have use for such charges in this thesis.

2To be precise, the approximations reproduce the exact functions Lo, Ly /2, and Ly (the subscripts
refer to the spin of the massive field) with maximum error of 3.5%, 0.8%, and 2.2%, respectively,
over the entire range of spacelike Q.
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scalars | fermions massive gauge bosons
Mp 8/3 5/3 40/21(DRED) or 2(DREG)

Table 3.1: Decoupling constants 7,. For massive gauge bosons, this takes different
values for dimensional reduction (DRED) and dimensional regularization (DREG).

spread of the wavefunctions near thresholds due to the uncertainty principle, and
may be calculated in several different ways, as will be discussed in section 3.3 and

Appendix A. Figure 3.2 shows the L, functions for spacelike momenta.

The Logarithm-like Functions

5|x¢v‘1||w|<lrl‘ll|\lvr|v

r=Q/m

Figure 3.2: The logarithm-like functions for massive particles of spin 0, 1/2, and 1 are
denoted by L, Ly, and Ly, respectively.

The functions 77;9 (Q/m,) are characteristic of each observable, with a nontrivial
functional form indicating deviations from self-energy like behavior. For a general
observable O, the function 7S (Q/m,) is nontrivial. The constants 7, shown in Table
3.1 correspond to a particularly simple and canonical observable, called the pinch-

technique (PT') self-energy-like effective charge, which may be defined by

n;T(Q/mp) =Tp | (3.8)

and Eq.(3.5). This will be discussed in more detail in section 3.3.



CHAPTER 3. PHYSICAL SCHEMES AND GRAND UNIFICATION 22

The effective coupling renormalized in the most general scheme R at 1-loop is

0®(Q) = ar(Qs) - Zﬁp( (Q/my) = Ly(Qo/m,)
~ 19 (Q/my) + (@o/mp>), (3.9)

where the functions 7/*(Qo/m,) contain all of the information about the scheme. Here
R can be any mathematical scheme for defining the couplings. In the case of MS,
we have 7! M5(Qo/myp) = Lp(Qo/myp) — log (Q3/m2) so that only logarithms of the
renormalization scale, @, are subtracted.?

It is straightforward to relate observables to each other:

) 0 a%( Qz
Q) = a®(Qa) - Zﬁp( (@1/mg) = Ly(Qa/my)
: n;91<c21/mp>+np2<@2/mp>)- (3.10)

This satisfies the transitivity property of the physical renormalization group. As be-
fore, the sum over p runs over all particles in the fundamental theory which contribute
to the effective charges.

For consistency, very massive particles must decouple properly and must not con-
tribute to physical predictions. Taking the m,—oo limit in Eq.(3.9) and Eq.(3.10)

yields a fundamental requirement of renormalization schemes and observables:

1 (0) = nY*(0) = 172(0) = 1. (3.11)

This consistency requirement holds for all schemes R, observables 01, Oy, and for each
massive particle p. These are universal constants for each spin and are equal to the
np given in Table 3.1 above, as can be verified through explicit calculations. Renor-

malization schemes that satisfy Eq.(3.11) will henceforth be referred to as physical

3The term in parentheses in Eq.(3.9) becomes L,(Q/m,) — log (Q3/m32) — nf(Q/mp). Note that
in most calculations the first term is taken to be a logarithm and mass corrections are systemat-
ically added, in order to approximate the full threshold dependence of L,(Q/m;). However, the
log (Q3 /mf,) term does not have the correct threshold dependence, as we will be discussing.
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renormalization schemes, and those that do not will be called unphysical renormal-
ization schemes, for reasons that will become clear. In Appendix B a more thorough
discussion of the decoupling problem in unphysical schemes is given.

The above discussion implies a unique decoupling limit (¢ /m—0) for observables.
It is interesting that there is also a restriction on the high energy behavior (Q/m—o0),
which holds only for supersymmetric theories and takes the form of a sum rule. It is

given by ‘
>pes Bo(G)ng (o0)
ZpES ﬁp(G)
where K© is a constant that depends only on the observable, not on the gauge group
G or the supermultiplet S. The nf (Q/m,) are calculated using DRED, otherwise the

sum rule is true only for differences 79 (c0) ~ 79?(c0) between observables. Further,

= KO, (3.12)

the result holds for any number of supersymmetries, which may be broken or unbroken
at low energies. This can be proven inductively given the result for N’ = 1. It is
easy to check using Table 3.1 above and the corresponding result for massless gauge
bosons given below Eq.(3.15) that K¥7 = 2. The sum rule just expresses the fact
that there is no resolution within a supermultiplet at high energies, and is motivated
from conformal invariance and physical renormalization scheme invariance. Such a
sum rule may provide a powerful link between the contributions of various spin fields
to any observable, particularly if a multi-loop or non-perturbative generalization was

found.

3.3 The Canonical Physical Effective Charges of
the MSSM

The difficulties associated with unphysical schemes (see Appendix B) are circum-
vented in physical renorfnalization schemes (PRS) based on effective charges. "The
consistency conditions which must be satisfied by PRS’s, given in Eq.(3.11), are triv-
ially satisfied by the pinch-technique effective charge (Eq.(3.8)). This is the topic to

which we now turn.
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For any observable @, we define an effective charge scheme R?, by

2 (Q/my) = n2(Q/my), (3.13)

which, after using Eq.(3.9), is equivalent to

a®(Q) = are(Q), (3.14)

thus motivating the terminology “effective charge”. Here R© is the physical subset
of all possible mathematical schemes. The canonical example for using an effective
charge as a scheme is furnished in QED by the Gell-Mann-Low-Dyson charge, which
can be measured directly from scattering experiments. The extension of this concept
to non-abelian gauge theories is non-trivial [29], due to the self interactions of the
gauge bosons which make the usual self-energy gauge dependent. However, system-
atically implementing the Ward identities of the theory allows one to project out the
unique self-energy of each physical particle, resulting in a self-energy that is gauge
independent, may be resummed to define an effective charge, and may be related via
the optical theorem to appropriate cuts of differential cross sections. The algorithm
for performing the calculation at the diagrammatic level is called the pinch-technique
(PT) [30]]31][32][33] *.

The procedure is illustrated in Fig.(3.3) QCD, where momentum factors from
internal gauge boson lines or vertices combine with gamma matrices to cancel internal
fermion propagators, yielding a gluon self-energy-like graph. This is then added to
the usual self-energy to yield the full PT self-energy. ‘

The PT procedure is unambiguous at one loop and is merely an application of
the Ward identities of the theory, which becomes more transparent in a dispersive
derivation from physical cross sections o(qg—gg) [34] (see [33] for such a construc-
tion for the electroweak sector). The generalization of the pinch technique to higher
loops has recently been investigated [35, 36, 37, 38, 39]. In the work of Binosi and
Papavassiliou [37, 38, 39], the authors prove the consistency of the pinch technique to

4The interested reader should consult these references for a more detailed discussion of the pinch-
technique algorithm, which will only be sketched here.
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all orders in perturbation theory, suggesting how to define the QCD and electroweak
effective charges at higher orders. Chapter 6 of this thesis presents a detailed two-loop

calculation of the PT effective charge.

- [gzZ:: self-energy-like projection i::::g
6000600060000000 . o
self-energy-like projection
[00000000006000 Y

gauge—dependent

ot 0

gauge~invariant

Figure 3.3: Pinch-technique for QCD at 1 loop. The unique gluonic self-energy-
like projection of the vertex and box graphs yield terms which must be added to the
conventional self-energy to get the PT effective charge.

Re-summing the PT self-energy leads to the PT charge, &, which can be written

in terms of the bare coupling o for arbitrary gauge theory, broken or unbroken, as®

(@) = oo — i Zﬁp(Lp(Q/mp) —np — Cyv + log (mfp/lﬂ)) Ty (3.15)

where nf7(Q/m,) = 1, are the constants given in Table 3.1 for massive fields and
1y = 64/33(DRED) or 67/33(DREG) for massless spin 1 fields®. The fact that these
17;,9 (@/m) functions are constants is what makes the PT observable the most simple

and natural choice for defining an effective charge scheme. More general physical

51f particles of different mass propagate together in the loops, this formula is modified.

5We will use ‘W’ or ‘1’ subscripts to denote massive spin 1 fields and a 'g’ subscript for massless
spin fields. The constants 64/33 and 40/21 (for DRED) are related straightforwardly. In general,
for a massive gauge boson W in the representation R of group G

11 1 7
fw = =C(R) - gC(R) = 5C(R) (3.16)
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effective charge schemes (see Egs.(3.9,3.10,3.11)) have more complicated running due
to the n9(Q/m,) terms.

Here will use dimensional reduction (DRED), rather than dimensional regulariza-
tion (DREG) in defining the PT coupling &(Q), since this is the appropriate choice for
analyzing supersymmetric unification. We will let PT stand for the renormalization
scheme associated to the PT observable regularized using DRED.

Using the above results, it is straightforward to write down the effective charges

for the standard model through

mQ) = 22

1-3(Q%)
o 2 — a(QQ)
a(@%) = a,(@), (3.18)

where the effective couplings & and $? are defined from PT self-energies I’:I.W and ﬁyz,
respectively [33], as is detailed in Appendix A. It is convenient to write a7 and a3 in
terms of & and 32 since the latter contain the contributions from the mass eigenstate
fields. One could use Eq.(3.15) directly, although the Higgs sector requires care.

Several subtleties should be addressed before the numerical values of the PT
couplings are given.

An important difference between the physical effective charges and the unphysical
MS couplings is a distinction between timelike and spacelike momenta. In conven-
tional approaches, thresholds are treated in a step function approximation, and hence
the running is always logarithmic. The analytic continuation from spacelike to time-
like momenta is trivial, yielding ¢7 imaginary terms on the timelike side. Thus, the
real parts of such couplings are the same modulo three loop (i7)? corrections. In
contrast, the PT couplings on timelike and spacelike sides have considerable differ-

“ences at one-loop. To see this we need the exact expressions for the logarithmic-like

w= 5 (FemE) o) =5 a1

and
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functions of a particle of spin s, which can be written as

Ly(Q/m) = 2[(ﬁtanh‘1(ﬂ_1) -1) (%@) + 11, (3.19)

where S? = s(s + 1) is the total spin squared eigenvalue, 8 = /1 + %’%3, and the
momenta is spacelike (@2 > 0). This formula is merely a compact way to write the
results for massive spin 0,1/2, and 1 fields, and has not been explicitly verified for
higher spins. For example, L, is calculated from the sum of the usual gauge boson
self interaction loop, the ghost loops, the appropriate loops of Goldstone bosons that
are eaten, and the pinched parts of the vertex and box graphs (see Appendix A for
details). In contrast, L1, is simply related to the usual fermion vacuum polarization
graph, and L,—o comes from the usual scalar contribution to the gauge boson self-
energy (two diagrams). It is interesting that such a simple compact form is obtained,
considering the seemingly different derivations of the three L, functions. This may
suggest a more efficient formulation of the perturbative dynamics of quantum fields

that treats the various spins in a unified manner [40]. Notice that

8[1—35(34—1) | (3.20)

Jim Ly(Q/m) = 2 1—4s(s+1)

corresponding to the results of Table 3.1. The analytic continuation of Eq.(3.19) to
timelike momenta below threshold, 0 < ¢ = —Q? < 4m?, is obtained by replacing

B—iB, where § = \/ 4q_rr212 ~1, and tanh™ (B> —itan~!(B ).  (3.21)

Above threshold, ¢? > 4m?, one should replace

4m?2

tanh~*(8~1)—tanh™}(8) — zg where 0= 4/1- e (3.22)

From these results it is clear that significant differences will arise between the spacelike
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and timelike couplings evaluated at scale +A/2, mainly due to the W-boson threshold
asymmetry.

As has been discussed, another distinction of effective couplings is that they are
automatically sensitive to light SUSY thresholds near Mz, since the L, functions are
not zero below threshold (on the spacelike side nor on the timelike side). The effects
of light SUSY thresholds on the values of the couplings at the Z-pole will depend
on the method of extraction from the data. The key question is whether or not the
light sparticles are implicitly included in the measured values of the couplings at
Mjz. For a(Mjz), which is extracted by running the precisely known fine structure
constant from @ = 0 to Mz, we should include corrections from virtual effects of
sparticles (with model-dependent mass), in the self-energy term II..(Mz). However,
these threshold corrections will cancel in any unification prediction, since then one is
essentially running from ) = 0 to @ = Mgyr and the light SUSYs are either fully
decoupled or fully turned on. For the strong and weak couplings we use data from
the Z-pole, and thus no unknown sparticle thresholds must be accounted for since
they are already implicitly contained in the measured values. When these couplings
are run to the unification scale the induced light threshold corrections will not cancel.
Of course, linear combinations of the electromagnetic and weak couplings (Eq.(3.18))
are used for unification, which complicates the matter further, since different methods
of extraction are used for each. It would be unpleasant to quote a different value of
a~Y(My) for each different SUSY spectra considered. However, this approach has the
advantage that the values of the couplings used are the values that one would directly
measure in an experiment at My if a given sparticle spectrum were the correct one.
For convenience, we will quote the QED coupling extracted assuming a fully decoupled
SUSY. When calculating detailed unification predictions in given models, however,
the appropriate terms will be included in the determination of a@~!(Mjz). It should
be emphasized that the above complications are only numerically significant for light
sparticle spectra.

The initial values may be extracted from experimental data and are given in Table
3.2, where spacelike and timelike effective couplings are denoted with a '+’ and '/,

respectively. The MS and DR couplings are on the timelike side.
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M3 DR PT. PT_

a-1(Mz) | 127.934(27) | 127.881(27) | 129.076(27) | 128.830(27)
s2(M7) | 0.23114(20) | 0.23030(20) | 0.23130(20) | 0.22973(20)
as(Mz) | 0.118(4) 0.119(4) 0.140(5) 0.140(5)

Table 3.2: Coupling values at Mz. For timelike couplings only the real parts are
given.

See Appendix A for detailed formulas for the effective couplings.

Notice that the value of the PT, electromagnetic inverse coupling, a=!(Mz) =
129.076(27), does not correspond to the usual value of about 128.968(27). This dis-
crepancy arises because &~ !(Mj) includes the virtual effects of W+~ loops, whereas
the usual construction of aqep(Myz) entirely ignores the virtual effects of the mas-
sive gauge bosons. The proximate cause of this consistent oversight in the literature
is the difficulty in extracting a gauge invariant self-energy-like contribution to the
running couplings for non-abelian theories, a problem which is resolved through the
pinch technique, in particular, and more generally, in any effective charge scheme.
While it is simply a matter of convention whether one includes the virtual effects
of the massive gauge bosons in the running coupling or includes them elsewhere, it
is clear that the former approach, which is used here, yields a coupling which more
accurately reflects the strength of the electromagnetic force. Similar comments apply
to the weak mixing angle.

It should be emphasized that although we have chosen to discuss a particular
physical renormalization scheme (PRS), it will be shown in the next section that all
predictions associated with unification are PRS invariant, as they should be. However,
a definite scheme must be chosen for explicit calculations, and the PT scheme is the
simplest choice. As expected, we will find that PRS invariance does not extend to
unphysical schemes such as M S or DR, because of errors associated with the incorrect

treatment of light and heavy thresholds (see Appendix B).
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3.4 Unification in Physical Renormalization Schemes

Now we are ready to discuss unification. In section 3.4.1, we will consider only the
light spectrum given by the standard model fields and their N = 1 superpartners.
This gives a model-independent starting point for discussing unification, and makes
clear exactly what model dependent heavy threshold corrections are needed for con-
~ sistency with the unification hypothesis. New light threshold corrections, in addition
to the usual light mass corrections, are evident, although they are numerically impor-
tant for only a small range of parameter space corresponding to light sparticles. In
section 3.4.2, asymptotic unification is introduced, leading to substantial qualitative
changes in the usual picture of gauge unification. This particular choice of unifica-
tion boundary conditions will lead to corrections from logarithms of superheavy mass
ratios, just as would be obtained by implementing DR with the step function approx-
imation. This sheds light on the nature of the approximation of the DR approach. In
section 3.4.3, an effective unification scale is derived that is considerable higher than
the usual unification scale. In section 3.4.4, more general non-asymptotic boundary
conditions are considered, and the new non-trivial thresholds corrections are found
to be important.

In performing the analysis, the exact analytic one-loop formulas discussed in sec-
tion 3.3 will be used, as well as the leading two-loop corrections. The analytic mass
dependent two-loop corrections are not known, but these can be estimated to be
numerically small and well within the error bars, and hence can be neglected [41].

We will treat the SUSY spectrum as entirely arbitrary, rather than assume a
particular model or theoretical bias. The advantage of this approach is that impor-
tance of various spectra parameters becomes transparent, and irrelevant details can

be ignored.

3.4.1 The (in)validity of Neglecting Heavy Thresholds

In this subsection only, heavy thresholds will be entirely neglected.
The usual test of unification is to predict az(Myz) contingent upon unification.

Compared with the conventional DR framework, we expect to see improvements
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due to the correct treatment of light thresholds. To be precise, the corrections we
are discussing are to the difference between the &3(Mz) prediction obtained from
the following two methods: (a)using the PT, scheme throughout, (b) using DR
(with the artificial decoupling and theta function treatment of light thresholds) to
predict &3(Myz), which is then translated to a prediction for az(Mz). Both approaches
capture the leading light threshold effects, which appear as logarithms of light masses.
The additional corrections in the PT scheme are from what we will call analytic
light threshold corrections, since they arise from correctly and smoothly interpolating
between thresholds. These are largest when there are light supersymmetric partners
near or below Mz. For most values of the sparticle masses, they fall inside the error
bars. However, such corrections may become more important as the experimental
values of the couplings are determined more precisely. The exact form of the new
corrections will be shown explicitly in section 3.4.2, Egs.(3.27,3.31).

Now let us compare the PT unification predictions with experiment. The predic- |
tions for the PT strong coupling, a3, (obtained through method (a)) are displayed in
Fig.[3.4] against the SUSY scale and in Fig.[3.5] against the mass ratio of the gluino
and wino. These are the two SUSY spectrum parameters to which the a3 prediction
is most sensitive.

Only light gluino scenarios with mgz < mg, are able to correctly predict the strong
coupling for natural SUSY scales (less than about a TeV). However, it is generally ex-
pected that the gluino is several times heavier than the wino for most realistic models
of supersymmetry breaking and spectra. Hence, we reproduce the known result [42]
that, at two loops and neglecting heavy thresholds, gauge coupling unification fails
by several standard deviations. Except for the light gluino escape route, this points

to the need for large heavy threshold corrections if unification is to be achieved.

3.4.2 Heavy Thresholds and Asymptotic Unification

Henceforth, the complete heavy threshold behavior will be included in the running
of the effective couplings. The form of the subsequent corrections will depend on the

particular unification boundary conditions that are chosen, and the numerical values
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Strong Coupling Predictions versus the SUSY scale
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Figure 3.4: The error in the prediction for az(Myz) is plotted against the typical SUSY
mass scale, with different lines corresponding to values of the ratio of the gluino mass
to the wino mass. The relative mass spectrum is roughly the same as most sparticle
spectrum models, including supergravity models, with M, setting the overall scale.
The experimental standard deviation, s.d., is 0.0055 for the PT strong coupling.

of the corrections will depend on the details of the GUT model. In this section we
will choose the simplest boundary conditions, since it will reproduce known results.
Later, more general cases will be considered.

Generally, there are four parameters which specify the unification boundary con-
ditions. These are the unification scale, My, and the values of the couplings at that
scale, &;(My) for i = 1,2,3. For our purposes, we will always assume standard nor-
malizations and take the couplings to be equal at some scale. In this case, the only
free parameter is My. The two distinct cases are for finite My and infinite My. The
so-called asymptotic unification considered in this section corresponds to the latter
choice, namely My—oo and o7} (My) = a5 ' (My) = a3 '(My). The asymptotic unifi-

cation conditions would be appropriate if the standard model group Gy is embedded
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Strong Coupling Predictions versus Gaugino masses
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Figure 3.5: The error in the prediction for az(Myz) is plotted against the ratio of the
gluino mass to the wino mass, which is the sparticle spectrum parameter to which
a3(Myz) predictions are most sensitive. The spectrum is fully specified by the ratio
and ,/mgmg = 500GeV = Mjysy, where Mqysy is the mass of all other sparticles.

in a simple Lie group G which is fully restored before gravitational or other string
interactions become relevant, and neglecting any other exotic phenomena. Hence,
this choice is somewhat simple and naive, but it is very instructive.

‘We will find that asymptotic unification reproduces the same heavy threshold
corrections which can be obtained by unphysical renormalization schemes (DR) with
finite unification scale. The reason is that in taking My—oo, one is essentially looking
at an observable (the unification requirement) in a desert region, which, as we have
seen, unphysical schemes are capable of treating without error. At first sight, it
may seem strange that the infinite unification scale predictions of physical schemes
correspond to finite unification scale predictions of unphysical schemes. However, this

is dictated by the nature of unphysical schemes where masses are turned on and off
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with a step function.

The paradigmatic improvement over conventional methods is summarized in Fig.[3.6],
where asymptotic unification of the couplings occurs at very large energy. For demon-
strative purposes, the parameters are chosen so that unification occurs.

Asymptotic Unification
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Figure 3.6: Asymptotic Unification. The solid lines are the analytic PT effective
couplings, while the dashed lines are the DR couplings. For illustrative purposes,

a3z(Mz) has been chosen so that unification occurs at a finite scale for DR and

asymptotically for the PT couplings. Here Mgysy = 200GeV is the mass of all light
superpartners except the wino and gluino which have values %mg = Mgsysy = 2mg.
For illustrative purposes, we use SU(5).

Now let us derive the analytic formulae for the unification predictions. We will dis-
cuss the most general case of an N = 1 supersymmetric Ggy = U(1)y®@SU(2).®SU(3)¢
embedded in a larger gauge group, G, using any physical RN scheme (all others are

inconsistent), which we label by its associated observable, O.
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In general the running of the couplings can be expressed in the form

agH(Q) = a5 (Qo) + IP(Q, Qo) — 0@, Qo) (3.23)

where the two-loop corrections’ are contained in 6;(Q, @o), and we have defined

HOQQO Zﬁ@( (Q/my)—L <Qo/mp>—nff<c2/mp>+n;°i<@o/mp>)(3-24)

pEG

which contains all of the one loop corrections. Now we separate the sums over the
light and heavy spectra, L = Ggps (Gsy means the standard model fields plus SUSY
partners) and H = G — Ggypy, take Qo = Mz, and let Q) = My be some energy much
larger than the mass of all fields, including the heavy fields; i.e. My>m, VpeL+ H.

The functions ﬁ? can then be written as
IO (My—o00, My) = Ggly ~ AF =65 — 81 — 58 (00) + 57, (Mz ) — $,(o0) (3.25)

where 8e=3_ ¢ Bp lv= 3= log %—IZ’, Ix = log 3&

1
S7:(Q) = Z Eﬂi(l)nlo(Q/ml)a (3.26)
leL
ros~ Lo (Mzy Mz
A= Z 47Tﬂi Ll( my ) log m? )’ (3.27)
leL
and ‘

=3 25" 1og (3.28)

e M2

The exact one-loop analytic light threshold corrections are contained in AL while the
heavy threshold splittings are contained in &/, with some arbitrarily chosen heavy
mass Myx which is conveniently taken to be the mass of heavy gauge bosons.

It is useful to verify that predictions for {x and az(Mz) are invariant under the

choice of physical renormalization scheme. In performing the calculation, one must

"see Appendix B for the details
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use the fact that the 171(,9 functions do not depend on the gauge group or representation
of p, only the spin. These are necessary (but not sufficient) conditions for the sum
rule in Eq.(3.12). This scheme equivalence does not extend to unphysical schemes
such as DR, though the errors are quantifiable.

Due to the physical renormalization scheme invariance, we may choose the simplest
scheme, which is the PT scheme discussed earlier. Because the npﬁf functions are
constants equal to 7, = L,(0), the expressions for the unification predictions are
simple and compact when written in terms of the PT charges &;.

From a;(My) = aa(My), the heavy gauge boson mass, My, is given by

M
log <1\7§> +1 Ayt (Mg) —ay (Mz) 4+ A

5 s (3.29)

where Ay = Ay — Ay, B2 = B1— s, ete., and A; = AL +6F 46,. Notice that My can
be determined explicitly only for the (unlikely) case of a degenerate heavy spectrum
when 67 = 0, otherwise the expression is transcendental in Mx. In the degenerate
case, the gauge boson mass My = M‘L/U /e is equal to the unification scale determined
by entirely neglecting heavy thresholds(denoted byH), divided by e = 2.71828.... This
result relies on use of the sum rule in Eq.(3.12) which gives rise to the 1/27 term on the
LHS of Eq.(3.29). The generalization to arbitrary physical renormalization scheme is
Mx = M?je‘Koﬁ, where K© is defined in Eq.(3.12). Neglecting the light and heavy
analytic non-logarithmic threshold corrections, the gauge boson mass prediction is
the same as the unification scale prediction in the DR scheme. Also, the ‘unification’
scale M’,’; depends on the particular scheme, which makes sense since different schemes
correspond to different observables. In contrast, My is scheme independent.

The strong coupling prediction is

a3 (Mz) = a7 (Mz)+ Qs + % (a’;l(MZ) — a7 (M) + Am), (3.30)
which differs from the prediction obtained by neglecting heavy thresholds by only the
terms 68, 62, which reflect the heavy splitting.

In order to explicitly compare with the DR approach, the artificial decoupling
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treatment of thresholds should be employed, as described in Appendix B. This in-
volves using a step function through each light flield [ € L with mass greater than
Mz, and through every superheavy field h € H. Then one must impose the unifi-
cation condition that the three gauge couplings are equal at the maximum mass of
heavy fields, Mx = max{my,h € H}. At energies above this maximum mass, the
three couplings run identically according to the beta function for the unified group
G; hence there is no arbitrariness in the choice of the unification scale. Next, the pre-
diction for the DR strong coupling should be translated to the PT strong coupling.
Doing this, one finds the exact same form of Eq.(3.30), except that A is replaced by

1 Mz M? 1 g M
Afaml;h =0 (Ll(-n;l—) — log #) ~ mZM =0 <m — log ﬁ) (3.31)
Notice that there are only light threshold corrections beyond the theta function ap-
proximation for particles of mass above Mz, since those below Mz are already implic-
itly accounted for. This formula is in agreement with Eqs.[3.69,3.70], since there is a
residual error proportional to L,(Mz/m,) — n, for each crossed threshold. The anal-
ogous corrections for the heavy thresholds do not arise in the asymptotic unification
scenario, since we are essentially comparing observables at energy scales Mz ~ my,
which is of the same order of magnitude as the light thresholds, and My >>my, which
is much greater than all thresholds when asymptotic unification conditions are as-
sumed. The latter scale is a “desert” scale, and so the step function method has
no errors, giving the same result obtained above in the §7.8 For the more general
unification conditions considered in subsection 3.4.4 there will be additional heavy
threshold corrections.

Eq.(3.30) is a useful result, as it allows one to constrain the heavy spectrum, given
a light SUSY spectrum. Up to two-loop finite threshold corrections, which we have
estimated to be small, and assuming that Eq.(3.30) will yield the experimental value

of the strong coupling given some appropriate full GUT theory (i.e. assuming the

81t should be emphasized that this is only the case when the DR is correctly implemented by
choosing the unification scale to be equal to the heaviest threshold in the theory. Different choices
are sometimes made in the literature.
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asymptotic unification hypothesis is true), we can write

fl = agl(MZ);”d — a3 {(Mp)* Pt~ — 0 — %5{{,, (3.32)
12

where &3 (Mz)" red is the predicted value of the strong coupling obtained by ne-
glecting heavy thresholds, as illustrated in Figs.[3.4,3.5]. We should emphasize the
assumptions leading to this result. First, the standard normalizations of the couplings
are assumed, so that Eq.(3.32) does not hold for higher affine levels or non-standard
hypercharge normalizations, as often occur in string models. Second, we assume that
the gluino is somewhat heavier than the chargino, so that there are serious discrepan-
cies, as in Fig.[3.5], which must be explained by heavy threshold corrections. Finally,
we are using the paradigm of asymptotic unification, wherein the full gauge group G
in which the SM is embedded is restored before other Planck scale physics becomes
relevant. With these assumptions, and noting that heavy thresholds were neglected

in Figs.[3.4,3.5], we find a typical value of

2

H ei%)t th’egry 1 my,
€ ~ -1 = - E Z Bh lOg M—%, (333)
heH
where we have defined® "
B =051 + =013 (3.34)

Values of B” can be compiled for the heavy representations any unified gauge group,
and hence may be used with heavy mass ratios to exclude or provide evidence for a
given GUT theory.

To calculate By, we first write By, = By, Bh, where 8, = —1/3,~2/3,11/3 for spin
0,1/2,1 fields and the remaining group theory factor is B, = 2T1(R)—2T5(R)+T5(R)
for a representation R. It is necessary to decompose all representations in terms of
their U(1)y®SU(2).®SU(3)c content. Here Ti(R) = 23 Y} and Ti(R)§% =
D opeR tr;(t%t%),7 = 2,3. For most grand unified theories of interest, all multiplets

can be decomposed in terms of only eight different standard model multiplets (plus

9 Bia _ 12
Note that A =%
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By(R;) By(R;)
Ri=(321/6) | 372 | B=(LL1) | /7
o= (3.1.-1/3) | 9/14 | Ro=(3,1,0) 3
Ry=(3,1,2/3) | 15/14 | R, =(1,3,0) | —24/7
Re=(1,2,1/2) | —9/14 | Rs=(3,2,5/6) | 3/14

Table 3.3: Heavy threshold constants B},

their conjugate representations, which have the same Bj, and a singlet which has
By, = 0), which are given in Table 3.3 along with the value of Bh.

These same constants will also govern the corrections from analytic heavy thresh-
old corrections that will be discussed later in section 3.4.4. Notice that, by definition,

the constants satisfy the constraint that the sum over all heavy multiplets vanishes,

> Bn=0, | (3.35)

heH

which equivalently reflects the arbitrariness in the choice of which heavy mass scale

deH
Y OMx

holds for any complete representation of the grand unified group. For example, the
24 of SU(5) decomposes into a singlet plus Rs + Ry + Rg + Rg. From the table, we
have Bh(RG) + Bh(R7) + 2Bh(Rg) =0.

As a simple example, let us explore the (unlikely) possibility wherein the only

Myx one chooses to be canonical (see Eq.(3.32)) = 0. A similar relation also

heavy field with significantly different mass than the heavy gauge boson mass Mx is
the 5 dimensional Higgs supermultiplet in which the light Higgs doublets are embed-
ded. The triplet components of the two Higgs supermultiplets contributes —2/5,0, —1
to 1, 32,0, and hence Bp(3 +3) = —9/7. Using Eqs.(3.32,3.33), this leads to
Mz ~ Mxexp ( - %’3), which is of order Mx/100. Such a large splitting is un-
natural and difficult to accommodate in a theory. In general, “natural” splittings
do not lead to € values of the correct magnitude in SU(5). This is not terribly
surprising, since minimal SUSY SU(5) is already known to be strongly disfavored.
In general, the large discrepancies in Figs.[3.4,3.5] imply a large splitting in the

heavy spectrum, which, in turn may imply a multistep unification scenario, e.g.
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SO(10)—Gao4—Ggyr. The reason is that for the heavy fields to contribute to az(Mz),
they must not only have a mass splitting compared to some reference heavy gauge
boson, X, but also must have different first beta function coefficients since only the
differences ﬂg) = ﬁ§h) - éh) and ﬁgf) = ﬂéh) - §h) appear in the corrections.

Before moving to more general unification boundary conditions, we shall give
a simple way to define an effective unification scale in the asymptotic unification

scenario.

3.4.3 Effective Unification Scale

Because the couplings formally unify at infinite energy in the paradigm of asymptotic
unification, there is no apparent unification scale. However, we suspect that in reality
quantum gravitational fluctuations will affect the couplings as they approach the
Planck energy. Hence, one can define an effective unification scale to be where the
splittings between the gauge couplings are of the same order as those induced by
gravitational effects. To be precise, define a dimensionless gravitational coupling

which classically runs with energy as

QQ

G(Q) = M—]%l, (3.36)

where Mp, ~ 1.22x10'°GeV. The leading gravitational corrections to the run-
ning gauge couplings o;(Q) will be proportional to G(Q)a;(Q). Hence, the effec-
tive asymptotic unification scale, M.ss, can be defined as the scale where the split-
tings in the gauge couplings are of order the gravitational corrections, |o;(Mess) —

o;(Mess)| = b2 G(Mess)ay, or equivalently
o (Megs) = 07 (Megs)] = B G(Mepp)oy' = 0g(Megy). (3.37)

where we take aljl ~ 24 to be the typical gauge couplipg near unification. The
unknown parameter b? should be of order one. Estimating M, using a simple SU(5)
model, we find a typical effective unification scale of 1 — 5x107GeV. This is only

intended to a very rough approximation since a naively simple SU(5) model was used.
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Nevertheless, more complicated and realistic GUT models yield a unification scale in
the same ballpark. It is generally true that our effective unification scale is about an
order of magnitude or more greater than what is typically called the unification scale
(~2x10'GeV).

It may seem that our definition of an effective unification scale is rather artificial.
However, it may be physically motivated by the following considerations. If indeed the
standard model is embedded in some unified theory of gravity and gauge forces, then
there may exist a phase at energies below the Planck scale which consists of a simple
Lie group containing the supersymmetric standard model. In the absence of any
gravitational corrections, the running gauge couplings certainly unify asymptotically,
as this is the only case in which the higher group symmetry is fully realized up to
arbitrarily high energies. Hence, the running couplings should only deviate from
asymptotic unification by the gravitational corrections parameterized above. So, by
the above reasoning, the effective unification scale should roughly correspond to the
physical unification scale when the full (quantum gravitational) theory is considered.

These results may have consequences for the paradigm of string unification. In
particular, one problem of string unification [43] is that the couplings seem to unify
at a scale (MER ~ 2x10'%GeV) about twenty times lower than the scale predicted
by four dimensional heterotic string models (Mg ~ 5x10'7GeV). In the approach
presented here, heavy threshold effects seem to push the effective asymptotic unifica-
tion scale to roughly M. Despite the apparent success, this coincidence cannot
be taken seriously until several questions are addressed in regards to this so-called
string gauge coupling problem. First, the calculation of M3 [44] was performed in
the DR scheme, with the field theory step-function treatment generalized to strings.
An analogous calculation for physical renormalization schemes is lacking, so it is
difficult to compare our results with string predictions. Secondly, the asymptotic
unification boundary conditions are probably not valid for many string models, and
so the unification scale will be further changed by more general boundary conditions,
as discussed in the next section. See [45] for a recent string calculation of threshold

corrections to grand unification.
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3.4.4 More General Boundary Conditions

The discussion of this section concerns the next-simplest boundary conditions after
asymptotic unification. In particular, we will impose a1 (My) = ao(My) = az(My)
at scale My~Mj, for some h € H. As discussed in the previous section, one might
expect My to roughly correspond to the asymptotic unification scale, which we found
to be roughly 5x10"GeV. However, we will consider My as an input and find the
corrections for the strong coupling and gauge boson mass predictions.

Before proceeding, there is a subtle point that should be addressed. Notice that in
the previous section, we assumed that unification would have occurred asymptotically
were it not for gravitational corrections. Hence, starting with a finite unification scale
and then neglecting gravitational corrections, as we do in this section, does not seem
logically consistent with what was done in the previous section. This observation
is entirely correct, but the point is that indeed we are considering two orthogonal
scenarios, one where a finite unification scale is obtained from gravity, and another
where finite unification scale is obtained from non-trivial threshold corrections. The
latter case may have its origin in stringy or gravitational physics, but nevertheless
becomes manifest through purely field theoretic mechanisms.

The corrections from imposing finite unification scale are straightforward to derive
and can be stated in terms of the A; = AF + 67 + 0, which we defined earlier. This

gains an additional contribution and can now be written

A; = AF 4+ 67 +6,— A, (3.38)
where
1 M, M?2
AH — E = A, (YUY e 22U _
E = 47Tﬁz h(mh ) 08 mi |’ (3.39)

which is of exactly the same form expected from Eq.(3.69)°. Evidently, these are
finite heavy threshold corrections in addition to the corrections from the heavy thresh-

old splittings. Hence, the e’ defined earlier will get an additional contribution from

10This is not obvious; one must work through the derivation to see that indeed the expected
L, —np correction terms do arise.
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the AF’s and is now
theory 1
EH ~ -— E Bh
4m

H
Ly a0

Experimentally, e/~ — 1, as seen in Figs.[3.4,3.5] for typical gluino to wino mass
ratios; this value can be easily adjusted for nonstandard sparticle spectra. This is
our final formula which may be used to assess the experimental validity of gauge
coupling unification in any specific GUT model where the gauge group, superheavy |
mass ratios, and light SUSY masses are given.

Let us now consider the numerical size of these new threshold corrections. From
Eq.(3.6) one finds that

MU M(2] m,% -
Lh(m—) —log — =~ log <1 + —¢€ ), (3.41)

h my MZ
which can be larger than heavy splitting corrections log %}% for values of My that are
not too large. Hence, such corrections cannot be neglected.

The value of My is not fixed a priori, and corresponds to the physically meaningful
energy where the couplings become equal due to the new nontrivial heavy threshold
corrections. This complicates the analysis of unification by introducing another pa-
rameter beyond those that are usually needed. However, this is to be expected, since
a new physical phenomena (corrections arising from the virtuality of very massive

particles) has been included.

3.5 Conclusions

We have developed a new way of looking at detailed predictions of gauge coupling
unification which is more physically motivated than conventional approaches. In

addition to a dramatic paradigmatic improvement, novel heavy and light threshold
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corrections are obtained, and the resulting corrections to unification predictions are
presented for a general GUT model. A natural extension of this work is a thorough
analysis and classification of various unified theories. By calculating the By, constants
and the heavy spectrum, one may exclude or verify the gauge unification of a given

model.
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3.6 Appendix A : Pinch Technique Couplings for
the MSSM

Here we will give explicit formulae for the pinch technique effective couplings reg-
ularized using dimensional reduction (DRED), which will be denoted with a tilde.
These effective charges will be similar to those constructed in [30][32] for QCD, and
in [31][33] for the electroweak sector. However, we will extend these to the mini-
mal supersymmetric case, which involves explicitly including another Higgs doublet,
and regulating the loop integrals with dimensional reduction (DRED), as opposed
to dimensional regularization (DREG), which is used in most non-supersymmetric
settings. It is well known that DRED preserves both supersymmetry and gauge sym-
metry. Also, the effective charges presented in [33] were in the on-shell subtraction
scheme (Qq = 0), whereas here we will need the result for arbitrary renormalization
scale. In the appropriate limits our results reduce to those given in [32] and [33].
The charges are constructed using the pinch-technique (PT), which allows one to
extract the universal self-energy function in non-abelian gauge theories, thus leading

to gauge invariant effective couplings which
e contain explicit and complete mass-threshold behavior and

e reproduce the conventional massless beta function in the limit where masses

can be neglected.



CHAPTER 3. PHYSICAL SCHEMES AND GRAND UNIFICATION 45

At one-loop, the spin 1/2 and spin 0 contributions to the PT gauge-boson self-
energies are trivially just the usual transverse vacuum polarization graphs. Only the
graph with a gauge boson loop needs to have the self-energy-like part projected, as
described briefly in section 3.3, and in more detail in the references [32][33]. In calcu-
lating the following, we used both the direct diagrammatic pinch technique algorithm
[32] and the dispersive derivation from physical cross sections [33].

The PT effective charges naturally measure the self-energy-like propagation of a
gauge boson and hence can be interpreted as measuring the real force between two
fermions of arbitrary mass, analogous to the QED effective charge. The PT charge
includes finite mass recoil effects that are missed in the heavy quark effective charge
(the V-scheme). In fact, one may obtain the heavy quark potential in the appropriate
kinematical limit of the pinch technique effective charge [32]. The difference between'
the two are due to finite mass test-charge effects that are not present in the (V) charge
but are in the (PT) charge. The extension of the PT effective charge beyond one-loop
has been put forth in Refs.[35, 36, 37, 38, 39].

3.6.1 QCD Effective Charges

The PT self-energy function for supersymmetric QCD, ﬁg, can be used to define the

effective coupling for supersymmetric QCD by

34(0) = — 3(Q0)

- GRo) (3.42)
1+ H3(Q7 QO)
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The function Il can be written down straightforwardly using Egs.[3.5,3.8], and the

unsubtracted result is given by

ﬁg(Q) = aBiQO) [ 3 Ne (1 ,u_22 - Cyy - 64/33>
Sy o5

= (£4(Q/my) + log (m2/1?) ~ Cuv = 5/3)

M =M

Wi

(
(Lo Q/mg) + log (m3/u*) — Cyv — 8/3)]- (3.43)

The four terms correspond respectively to the gluons, gluinos (g), Dirac quarks
(q), and to complex squark doublets(g). For the scalars we will take the left and right
components to be degenerate in mass since such complications do not change the
unification predictions to any numerical significance. In any case, one may trivially
treat the two separately.

To relate the resulting effective charge to other schemes or observables one needs
to use Eq.(3.10).

Eq.(3.43) can be written in a more useful once subtracted form by relating the
effective charges at different scales, leading to an expression governing the running of

the charge given by

ﬁS(Qa QO)

il
QE .':H
S S

— IT5(Qo)
= = lllN(l ggZ)—gN( 3(Q/mg) — %(Qo/mg)>

3 (L4(@/m) ~ Ly(@o/my))
%(LO(Q/ mg) — Lo(Qo/ ma))} : (3.44)

Though the gluon contribution in Eq.(3.43) looks simple, it is actually the most
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difficult piece to compute. As discussed in [32], the pinch technique self-energy that
is used to define the effective charge is gauge and scale independent, and indeed re-
produces the pure gauge term of the 8 function coefficient (11N./3). This of course
is not the case for the full pure gluon vacuum polarization, which is gauge and scale
dependent and does not reproduce the correct § function. The non-trivial and im-
portant part of Eq.(3.43) is the constant 64/33, which specifies the scheme. This
constant may be obtained by calculating the pinch-technique gluon self-energy using
DRED. To translate to DREG one just subtracts 1/11 (from the so-called epsilon
ghosts) to get the constant 67/33.

For comparison, the heavy quark potential effective charge, ay, has the values
28/33 and 31/33 when using DRED and DREG, respectively. Consequently, the V-
scheme doesn’t satisfy the decoupling criterion of Eq.(3.11). This is just a reflection
of the fact that infinitely heavy external quarks are used in the V-scheme calculation,
thus rendering meaningless the limit where internal virtual particles acquire very large
mass. |

Notice that in the a@propriate limit the above reduces to the standard RG
function coefficient for supersymmetric QCD,

2

. ad Qg Q
72130 I3 = 2;(9 —ny) log 0 (3.45)

3.6.2 The Electroweak Sector

The effective QED charge and the effective weak-mixing angle are obtained by diag-

onalizing the electroweak neutral currents and are given by [33]

o _ 62(@0)
DT @ (346
and _
’52 — 'é:'Z gw(QO) H'yZ(Qa QO)
w(Q) W(QO) (1 * g’w(QO) 14 ﬁ’Y’Y(Qv QO)) ' (347)
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For the matter sector, we will write only the subtracted PT self-energies, as it
is now clear how to translate between schemes using the 7, constants as described
before. The quarks (q) and leptons (I), along with their scalar superpartners (q~,7),
yield |

IL,,(matter) = { Z ( 1(Q/myq) ~ %(Qo/mq)>
- Z cheg(Lo(Q/mq) - Lo(Qo/m6)>
- Y= ( 1(@/my) - %(Qo/ml))
z

2
- Z 3 (LO(Q/mT> - Lo(Qo/”””[))] - (3.48)
T

The electric charge of a particle p is denoted e,. The analogous contribution of
individual Dirac mass eigenstate matter fields to the vZ self energy are given by the

relation

- 1 1 ~
0% = (7= - %) ==0%
SwCy

(3.49)

where p denotes any of the fermions or scalars above.

The contribution of the charged vector bosons to the self-energies is more compli-
cated than the matter multiplets. Similar to the QCD case, the non-abelian nature
of the theory implies that W*W~ loops (along with possible gauge dependent ghost
and Goldstone boson loops), do not yield a gauge invariant result, and do not give the
appropriate contribution to the electroweak beta functions. The proper treatment in-
volves calculating the self-energy like part of the one-loop ete™—e*e™ amplitude (or
using any other fermions due to universality), including vertex and box corrections
involving neutrinos. These contribute pinched parts which make the self-energy-like
part gauge invariant and transverse. This calculation was first performed in [31], and
then with dispersion relations in [33], for ng = 1 Higgs doublets and renormalized in
the on-shell scheme at Q9 = 0. Here we need to extend these results to arbitrary ng

and Qo, and would like to have the finite constants in the unrenormalized expression,
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including constant terms arising from using DRED instead of DREG. The most ef-
ficient way to do this is to use the Feynman gauge £ = 1, where W bosons, —G*
Goldstone bosons, and n* ghosts all propagate with —ig,,/(p? — M%,). Hence, the
only factors of transverse momenta arise from the three boson vertex, and so the box
graph and several of the vertex graphs may be neglected, as they do not have pinched
parts. Here, the dependence on the Higgs doublets comes only from the unphysical
charged Goldstone scalars for the ny = 1 case, and also on charged Higgs for ng > 1.
The result for the SU(2),®U(1)y electroweak theory is

s = Q(ZST—O) 2131 (L—l(Q/Mw) + log (Mg, /u*) — Cuv — 64/33)
+ > (— %) (LO(Q/Ma) +log (M2 /%) = Cyy — 8/3)] ;- (3.50)

where the constant 64/33 is the same as appeared for the gluon self energy. The sum
in the second line will be over mass eigenstate charged Higgs scalars; there will be
one of these for each Higgs doublet in the theory. The first scalar (a = 1 in the sum)
is an unphysical Goldstone boson that is eaten by the W=, and hence one identifies
its mass to be M; = My (in the Feynman gauge). The second charged scalar (a=2)
is conventionally denoted by H* in the MSSM, with mass My = Mpy+. Additional
Higgs doublets beyond the MSSM are not considered here so we can take ng = 2.

The function

Li(Q/m) = —(Btanh™ 5712 — 57) + 57 ~ 1), (3.51)
with 8 = /1 + %”23, comes from the W+W~ and ghost loops, the W+G~ + W~-G*
loops, and the pinched self-energy-like part of the YW W vertex where the internal
neutrino line is pinched. The Ly comes from the charged Goldstones and Higgs
loops. As might be anticipated from the fermions and scalars; where, for example,
limy, oo L 1 (Q/m) = 5/3 is the same constant as appears in the self-energy, we also

have the nice property that

Jim Ti(Q/My) = 64/33. (3.52)
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Letting the W-bosons eat the Goldstones by performing simple algebra in Eq.(3.50),

one finds the result written in terms of physical degrees of freedom,

YY 47

o - HQ) [7(L1<Q/MW>+log<M5V/u2>—cw—40/21)

nH

+ D ( - %) (Lo(Q/Ma) +log (MZ/u?) = Cyv — 8/3>} . (3.53)

a=2

The contribution of the physical massive gauge boson is characterized by 7L; =
(22/3)L1 + (—=1/3)L,, explicitly given by

Li(Q/m) = 2Btanh™ 7} (1 ~ (6° — 1)/7) + (2/7)(6* - 1). (3.54)

As expected,

lim Ly (Q/m) =log & tim Lw(@/m) = 10/21. (3.55)

Notice that Eq.(3.54) precisely corresponds to Eq.(3.19) for s = 1.
The separation of pure gauge effects and those arising in the broken phase of the
theory is useful, and allows us to immediately write down the analogous result for vZ

without further calculation :

- ‘gr(cL? [21_31012” (T2(@/Mw) +10g (M3, /1) = Cuv — 64/33) (3.56)
i ; ( B %(cﬁ) B %)> (LO(Q/MG) + log (MZ/p?) = Cyv — 8/3)}

Finally, the wino and charged Higgsino, whose mixing is neglected, contribute

o 5000 (2)-1(2)- () (2)] o
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and
ﬁﬁZW = Qo) _écfv L. Q) L. Qo —é(cfu—l/Z) L. Q\_ L1 Qo
v dme, sy | 3 2\mg 2\mg 3 2 \mgp 2 \myy
(3.58)
The SU(2).®U(1)y effective couplings constructed from the above results are
&(Q) = — Q) (3.59)
1 +T1(Q, Qo)
for i = 1,2 and a;(Q) given in Eq.(3.18). The PT self-energies are related by
o~ —~ Sw ~
I = Iy - C_H’YZ
M, = I, + -z-‘ﬂﬁyz. (3.60)

Notice that ﬁw =2, 1% and ﬁ.,z =3 ﬁEfZ) (as well as II; ) have the correct
beta function coefficients, which are summarized below, and smoothly interpolate
between all mass thresholds. The full mass-dependent beta functions may be obtained
by differentiating the above expressions, but we will just give the massless limits, in
order to make clear our conventions.

The one-loop beta function coefficients are defined by the relations

da dIL,, a?

dlog QO “dlogQ® 4r

By (3.61)

d5’2 dﬁ.yz _ (8%

w

TG~ Tlog @~ T -

b= 20— 8.2) (3.63)

B2 = Sfuﬁw + Bz (3.64)
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One finds
16
5’7’7 = ——é—Ng ‘I" 6 - nH
Byz = —2Ng+ —s.,Ng+6c;, —nu(s — s, (3.65)

3 2

which lead to the correct MSSM coefficients given below in Eq.(4.16).

3.7 Appendix B: Unphysical Schemes and Decou-
pling

A more detailed treatment of thresholds and decoupling will now be discussed. The
intrinsic difficulties with unphysical schemes such as AfS will be highlighted.

Notice that the physical renormalization scheme requirement Eq.(3.11) is not met
by MS, DR, their massive extensions, or similar schemes. It is well known that
MS by itself does not constitute a complete scheme, rather one must truncate the
sum over p to include only particles with masses less than the scale of the problem.
For each region between thresholds a different scheme is implemented and one must
translate between schemes when crossing thresholds. Hence, MS is really a set of
schemes related to each other. We will call such a set an artificial decoupling scheme
(ADS), and now discuss the most general case at one loop. This will give us an
idea of the discrepancies one may expect in ADS’s when compared to the physical
renormalization scheme approach.

Let S = {mjy,ma,...} be the spectrum of massive particles of the fundamental
theory ordered from lightest to heaviest, let Sy be the set of massless particles, and
let SN = Sy@®{mi,mq,...,my} be some subset up to a given mass scale. For any
given renormalization scheme R, let the Nth phase of R, denoted R, be the scheme

used to renormalize observables at energy scales () such that
miy,...my < Q < mpyyq. (3.66)

To use RY, one simply renormalizes the contributions from particles p € SV in the
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usual way dictated by scheme R, and then entirely neglects the contributions from all
p € S —SY. This is a formal statement of the usual implementation of ADS’s using
step functions.

For myq,...,my < @,Q" < my41, the gauge coupling of the RY scheme flows by

om (@) = ap(@) - C2E 5 g (Lp@/mp) — L,(Q/my)

peSY
— n(Q/my) +n§(@’/mp)>, (3.67)
and the most general matching condition between schemes RV~! and R" takes the
form 2 ()
a
-1 (1) = (i) + B By Ay /), (3.68)

where A,(u,/m,) is arbitrary now, but will be specified below by minimizing errors,
and may depend only on the matching scale u, for each threshold m,, for reasons
discussed below. The first § function coefficient of particle N, By, is pulled out by
convention.

For Qn > myin and my,....,my < @Q; < my+1 (the h and [ stand for heavy and
light scales, respectively) one may relate observables by flowing through n thresholds

using the above formulas to obtain

0% Q) = a@‘(czo—(“%j%”z[ S B(La(@u/my) — Ly(Qufmy)

peSN+n

= nS@u/m) + 0P Qump) )+ D By(Aplia/my) = Lylatp/my)
peESN+n_SN

+ nf(ﬂp/mp) + Ly(Qi/myp) — 77;?2 (Ql/mp)>] . (3.69)

Now let us compare this to the relation, Eq.(3.10), obtained in the previous sec-
tion for the tracking of two observables. For the case of a high scale desert region

(Qr<mMpyins1), the first sum reduces to Eq.(3.10). However, when Qn S Mmy4n+1s
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there are errors of one loop order which are proportional to L,(Qn/my) =15 (Qn/my),
and occur for each neglected threshold!! pe S —S~*" such that @, < my,. These errors
are naturally remedied in physical renormalization schemes, leading to heavy thresh-
old corrections which will be of importance when grand unification is discussed later.
There are also analogous light threshold corrections. The second sum in Eq.(3.69)
contains extra terms which arise from the artificial decoupling and matching con-
ditions at each threshold. These terms are also generally of order of the one-loop
corrections and must cancel if the ADS is to be consistent (in the sense of giving
reliable physical predictions in relations between two observables). In general, these
terms do not cancel, since the @;-dependent terms cannot be canceled by the choice
of A,, which depends only on the ratio p,/m,. Suitably choosing A, (see Eq.3.70
below) leaves a term L,(Qi/m,) — 192(Q1/my) for all pe SN+ — SN, Hence, we see
that the high scale and low scale threshold corrections have exactly the same form;
indeed, they have the same origin, namely the necessity of using an ADS, which arises
from improper decoupling. .

In the case of a low scale desert region, Q;<m,¥peSN*™" — SV one finds that
Lp(Qi/mp) — nS?(Qi/mp)—0 by Egs.(3.7,3.11), and the light threshold errors are

eliminated through the choice

Ap(tto/mp) = Lp(ptp/mp) — nf(ﬂp/mp)- (3.70)

In this case, notice that once the A, are chosen suitably, the matching scale u,
exactly cancels and there is no need to fix its value. However, for M.S we have
Ap = log (1u2/m?2) (see the discussion below Eq.(3.9)) and so this choice is equivalent to
using A, = 0 and y, = m,, which is the matching scale typically used at one loop. One
may object that even in non-desert regions the known anomalous matching threshold
errors could be systematically subtracted off for each physical process considered
(equivalently allowing A, = A,(Q)). This is awkward, as it is the same as using a
different coupling for each process, thus losing the remnants of universality left by

ADS’s (i.e. universality in each desert region).

Usimilar errors occur if Qi Smyint1
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We have identified two potential problems in artificial decoupling schemes, which
arise solely from the failure of the decoupling requirement given in Eq.(3.11), regard-
less of whether or not the scheme R has analytic threshold dependence.!? The low
scale errors come from the matching conditions and are exhibited in the last two
terms of Eq.(3.69). These are significant only when @Q;Smy.;. The high scale errors
occur when one is calculating an observable at an energy QpSmyin+1 that is slightly
less than masses that should contribute, but are cut off in an ADS. These two errors
will give rise to light and heavy threshold corrections in unification, as discussed in
section IV.

In practice, both types of errors can often be eliminated through a “threshold shift-
ing” procedure. This involves modifying the definition of RV by replacing Eq.(3.66)
with mq,...,my < a@Q) < my41 and making similar subsequent replacements, and by
choosing a > 1 to be large enough so that the desired thresholds that are slightly
above @; or @y are ‘moved’ below a@);, so that no matching need occur for those
thresholds, since they are already implicitly included in the couplings. The limit of
this procedure as a—oco leads to a formally consistent scheme where no matching or
artificial decoupling is used, but due to the failure of decoupling, it requires inclusion
of contributions from every particle in the (unknown) fundamental theory. This is
the exact situation that caused us to introduce an ADS in the first place, since we
did not want unknown and arbitrarily massive fields contributing to every physical
observable (written in terms of the ADS scheme charge). It is true that such unknown
contributions cancel in relations between observables, but the utility of the interme-
diate ADS scheme is lost since it’s coupling is ill-defined!®. In many calculations
in unphysical schemes such as MS, the “threshold shifting” approach may be used

to yield physical predictions which are arbitrarily accurate by choosing a sufficiently

12Proper analytic threshold dependence may be defined by 775’(@/ m) going to a constant for both
small and large @/m. Consider the analytic extension of MS into the region of mass thresholds,
which we call massive MS, or MMS (similar to that in [27]). This is defined by ni,vlm(Qo/mp) =0
so that the full logarithmic-like functions L, are subtracted and trivially the conditions for smooth
threshold dependence are satisfied. Nonetheless, MMS has matching errors, which result from the
failure of Eq.(3.11) and the subsequent need to construct an ADS from MMS.

13We might as well always write observables in terms of other observables; this is precisely the
philosophy of effective charge inspired physical renormalization schemes.
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large ‘a’. However, the usefulness of this procedure depends on the details of the
mass spectrum. There is no universal algorithm that applies to any field theory. The
complicated nature of such artificial fixes to the decoupling problem are reflections of
the unphysical nature of the schemes and couplings. See [28] for another approach to
fixing MS.

Thus, we have shown that the MS and DR schemes suffer errors unless one is
restricted to observables at energies 7 which lie far between mass thresholds. In
addition, complicated matching conditions must be applied when crossing thresholds
to maintain consistency for such desert scenarios. In principle, these schemes are only
valid for theories where all particles have zero or infinite mass, or if one knows the

full field content of the underlying physical theory.



Chapter 4

Methodology and Selected Results

of Precision Gauge Unification

Given the plethora of unified models and theories of particle physics, it is useful to
be able to treat each of these on equal footing in regards to the detailed predictions
of gauge-coupling unification. Only a small set of formula suffice to fully describe
the running gauge couplings of the Standard Model in any theory at two-loops with
all thresholds treated rigorously. Since only partial and model specific results have
appeared in the literature, it seems useful to collect here some general results. This
chapter represents a synthesis of results from chapter 3 and some additional, more
general, results that are not specific to the physical effective charge approach consid-
ered in that chapter. The results given below have been derived using the canonical
literature [46, 47, 48, 49] and from detailed diagrammatic calculations (see Chapter
6).

S7
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4.1 General Results for the Running Couplings

4.1.1 The RGE and thresholds

The 3 function coefficients are defined by the renormalization group equation (RGE)
for the U(1)y x SU(2)r x SU(3). gauge couplings o; = g?/(47) (i =1,2,3) :

Oy o? 1 2 1 (1)
—_—=—— | G+ — o+ ——=Y,(F) ] . 4.1
Olog@? = 4r <ﬂ+4w;ﬁj%+(4ﬂ)2 2 (F) (41)
The detailed formula for the one-loop 3; terms, two-loop gauge terms (5;;), and two-
loop Yukawa terms (Y (F)) will be considered in succession momentarily. First, the
solution and threshold effects will be discussed.

In the PT scheme used in this chapter the §; are analytic functions of the masses,

| OL,(Q*/m3)

, , — (p) 2P P
G = 8@ = > A" g

p

(4.2)

where the L, functions are given exactly in Eq.(3.19). The numerical approximation

for L, given in Eq.(3.6) is more than adequate for GUT purposes and leads to

QQ) OL,(Q*/m3) 1 (4.3)

L, = log (‘#Jr@ Dlog 07 1+g§e’7p’
where 7, = 8/3,5/3, and 40/21 for massive spin 0,1/2, and 1 particles, respectively.
In this way all one-loop threshold effects (both logarithmic and subleading) are au-
tomatically treated correctly and do not need to be included by hand. Two-loop -
thresholds are implemented through step-functions. As mentioned earlier, the com-
plete two-loop threshold functions are not available, but have been estimated to give

a very small correction to the leading (step-function) two-loop thresholds [41].
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The perturbative solution of the Eq.(4.1) can be written as

67(Q) = a7 (Qu)+ Zﬁ’“’{ (£)-1 (%)]—9(@@0)
T () les 5 (4.4

where the two-loop effects are contained in the terms 6,(Q, Qo) in Eq.(3.23).

%@ )= Zj% (o) 49

+

and the approximation has been made that the Yukawa couplings do not run. For
the purposes of gauge-coupling unification, this is a valid approximation for the SM
and MSSM Yukawa couplings, and can be improved by evaluating Y4(i)(F) at the
geometric mean between @ and Qy. Numerical techniques are required for an exact

solution. In the massless limit Eq.(4.4) becomes

2

a7 (@) = a7 @)+ o= B+ b0 o (&) ~8@.Q @)

One can translate to the DR scheme coupling (&) at the one-loop level through
)

the relations (see sections 3.2.2 and 6.3.1 for details

1L _ 1 1y gw @\ e (L)
@ T w@ (10 (7)1 (7))

~ 1 _i (p)
~ @ wme
1 1 64 20 8
~ m@ﬁa("?@*ﬂﬁ@“)’ (4.7)

where the latter two equations hold in the massless limit and we used the result
ny = 64/33 for massless vector bosons. From the above results for the one can obtain
all of the one-loop threshold corrections in the DR scheme. The two-loop relation

between the pinch-technique and DR (MS) couplings is derived in Chapter 6.
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4.1.2 Group theory basics

First, we should establish some efficient conventions for the group theory. Every
multiplet can be decomposed as a sum of Standard Model multiplets using so-called
branching rules. The multiplets given in Eq.(4.9) below are the most commonly
occurring, although sometimes others such as (—2/3, 1, 6) must be used. In any case,

here we consider the most general case
R= (y,Rg,Rg), (48)

where R, and Rj are the representations under SU(2),, and SU(3),, respectively. The
hypercharge is normalized so that the Standard Model multiplets are

Q=(1/6,2,3) u=(2/3,1,3) d=(-1/3,1,3)
L=(-1/2,2,1) e=(1,1,1) (4.9)
b=(0,1,1) w=(0,3,1) g=(0,1,8)

The dimension of R, d(R) = dads, is the product of the dimensions of R, and Rs.
The group invariants defined by

5T (R) = Tx[TET}) C(R) = TTS (4.10)

are written as

(4.11)

Using the relations
= Cads and T = Cody
T8 2773

we will write all of our results in terms of the quadratic Casimir invariants Cs, Cj, the

I3

(4.12)

hypercharge y, and the dimension of the representation d(R). For the most commonly
occurring representations, such as the 5, 10, and 24 of SU(5) and the 10, 16, and 45
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of SO(10), only the elementary values for fundamental and adjoint reps are needed :

(4.13)
For higher dimensional representations, the tables of [49] are very helpful.

4.1.3 One-Loop ; coefficients

The contribution of a chiral superplet (CS) to the one-loop 3 coefficients is

3y
ARy = -d(R) | 1c, (4.14)

10,

8

from which the results for vector superplets (VS), regular vectors (V), Weyl fermions
(F), or complex scalars (S) can be obtained by multiplying by —3, —11/3, 2/3, and
1/3, respectively. For the SM we have

11 2 ' 1
8 = _?ﬂi(cs)(w +g)+ §N9ﬂ505>(Q tut+d+L+e)+ gNh@?“)(m
B 0 A 1 115 —%
G| = | B |-gN| 1 |-Ne| § |=]| % (4.15)
B3 11 1 0 7
For the MSSM we have
B = =38 w+g)+ N,BQ+u+d+ L +e) + N8 (L)
By 0 L 0 —%
8 | = ~oN, | 1 |=-Ng| L | =] -1 (4.16)
2
Gs 9 1 0 3
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4.1.4 Two-Loop 3;; coefficients

The two-loop coefficients for various multiplets are given below.
Chiral superplets (CS):

=yt 2120 2y*Cs
BV (R)=—d(R) | $°C; 4G,(1+Co)  4GCy | (4.17)
#%9°Cs 30203 3C5(3 +2C)

Chiral fermions (F) :

- ;§y4 3y°Co ngCs
B(R) = —d(R) | 22C, 2Ch(10+3Cy)  2CyCs (4.18)
%ZJZCB 1C2C;5 ;1103(5 + Cs)

Complex Scalars (S):

5 2y Zy2Cy 2y°Cs
BI(R)=—d(R) | $7C, $Co(1+3C,) 200y (4.19)
'1'35y203 %C2C3 %03(1 + 203)

SUSY gaugino-fermion-scalar (GFS) Yukawa vertex:

GFS) =Y A 2Y°Cs
BTN R)=d(R) | 2p°Cp 2Ca(2+Ca)  2CaCi (4.20)
265°Cs 10203 1C5(3 + C3)

Notice that ﬁ(os (R) + ﬁi(f)(R) + ﬂi(f)( )+ ﬁ”GFS (R) = 0, since the contribution
of a chiral superplet is just the same as (F) + (S) + (GFS). The vector superplets
) b

(VS) for representations w = (0,3,1) and g = (0,1, 8) have

o O

00
BY(g) = -85 =] 0 0 (4.21)
00

ot

4
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and
0
85 P w) = =65V (w) = | 0 24 0
0 0
while the non-supersymmetric vector multiplets have
00 0
85(9) =89 -8 (g)=| 0 0 0
0 0 102

and

[y

0 0
85 (w) = 87 (w) - 8 (w) = | 0 16
0

Let us consider some examples.

63

(4.22)

(4.23)

(4.24)

In SU(5) and SO(10), the most commonly occurring representations have the

following branching rules (where X = (—5/6,2,3)):

SU(5) — SM SO(10) — SU(5)
5—->d+1 10, - 5+5
10-Q+u+e 16 - 10,+5+1

24 s g+w+b+X+X 45 —-24+10+10+1,

(4.25)
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These lead to the following results for each chiral superplet.

SU(5) SO(10)
L 2 18 709 32
(©3) 30 10 15 os) L 2 &
Gy B)==| % 3 O Gi7(10,)=~| 2 7 0
: 0 F i u

10 10 5 5 5 15 (4.26)
ﬁ(cs)(lo) % 22_1 8 ﬁ(05)<16) % 148
8 3 17 u g s
44
2—;’ 15 % 11;954 % 515
B9 =-| 5 45 16 | ATV =-| 2 6 32
v 6% 8 1p 2

The results for the SU(5) 5 and 10 agree with [50]. However, for the 24 we disagree
in the 2,2 and 3, 3 entries; the values (823(24) = —33 and (s3(24) = —68/3 were found
n [50]. From the general results of [48] (see also Eq.(6.8)), we have for any chiral
superplet the 3,3 term B33 = —2T3(3 + 2C3)dy = —3d(R)C3(3 + 2C3), from which
it follows that Bss(g) = —1(8)(3)(3 + 2(3)) = —54 and Gs3(X) = —3(6)(4/3)(3 +
2(4/3)) = —34/3, which leads to (s3(24) = Gs3(9) + 20s3(X) = —230/3, confirming
our result and demonstrating that the incorrect result of [50] for the 3, 3 entry is due
to neglecting the g component of the 24. A similar exercise for the 2,2 entry will
convince the reader that the value reported here is correct.

The two-loop contributions of any other multiplets can easily be obtained from
the general results given above in concert with the branching rules given in Ref.[49].

For the SM the two-loop matrix of coefficients is

S = (w4 g) + NB(Q +u+d+ L+e) + NuBS (L)
199 27 44
50 5

11

10

10
= - & & 12 |, (4.27)
$ -2
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while for the MSSM

MM = B (w4 g) + NBTV(Q+ut d+ L) + N (D)
1

199 27 88
25 5 5

= —| 2 25 24 |. (4.28)
T 09 14

4.1.5 Two-Loop Yukawa Y;l(i)(F) coeflicients

As seen in Eq.(4.1), the Yukawa couplings contribute to the two-loop running of the

gauge couplings through the invariant

Y(F) = —=Tr [Ci(F)Y*Y*'], 4.29
where notation similar to Machacek and Vaughn [46] is used. The Yukawa interactions
are of the form L;,; = —=Y%0,¥r¢; + h.c. with real scalars and Weyl fermions. Since
it is often tedious to evaluate this invariant for particular theories, an example may
be useful. The gaugino-fermion-scalar Yukawa couplings of supersymmetric theories

can be written as

Lint = ~V29T264G a5 + hoc., (4.30)

where the Greek indices a, 3, run over the representation (R) of the chiral superplet
containing ¢ and ¢ (1,...,d(R)), while A, B,C are the adjoint labels and run from
1,...,d(G). Thus the Yukawa matrix is

0 T¢
Ve =2 af 4.31
IJ g ( Tfly 0 ) ( )

with I and J are summed over 3, B and v, C, respectively. This leads to

(4.32)

(Y“Ya*>u=2gZ(C(R)‘S‘” ’ )

0  T(R)sc
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Similarly, the generators

- TA
= BB 0 (4.33)
0 Tpe(G)
lead to the Casimir operator
C(R)o 0
C(F)1y = (T*T*);; = (B)ds, . (4.34)
0 C(G)dsc

Assembling these results we find Yy(F) = 292ﬁ [(C(R))*d(R) + C(G)T(R)d(G)],
which upon using C(R)d(R) = T(R)d(G) leads to the final result

Y (F) = 2g?Ty(R) [Ci(R) + Ci(G)]. (4.35)

From this expression it is relatively straightforward to derive the matrix in Eq.(4.20).
For the top, bottom, and 7 Yukawa couplings of the SM and MSSM the result is

17 1 3
. 10 2 2
YOF) = 2| & [+4d] 2 [+42] & SM
2 2 0
2 14 15
5 5 5
YOF) = | 6 |+42| 6 |+42]| 2 MSSM  (4.36)
4 4 0

4.2 Additional Corrections

4.2.1 Initial value re-calibration of the QED coupling

As mentioned below Eq.(3.22), the QED coupling o(My) is extracted from the
zero-momentum limit o~!(0) &~ 137.036 limit by running with only the SM par-
ticles included. When there are light charged (s)particles not much heavier than

Mz, these (s)particles induce additional corrections to the initial value a(Mz) used
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for GUT purposes. Since it would be unpleasant to quote different a(Myz) for
each model, we instead consider a(Mz) to be the model-independent value obtained
by neglecting all non-SM particles, and include the corrections explicitly through
a Y Mz) — o Y (Mz) + 6, where

1 M
0o = in Z ﬁ’(\/z’)y) [Lp (m_j> - np] : (4.37)

p £sM
This leads to the corrections
-1 3 5
6(a7"(Mz)) = ¢ (Mz)dq
5oz (Mz)) = s3(Mg)da (4.38)

4.2.2 Gaugino-Higgsino Mixing

Generally the mass eigenstates do not correspond to the SU(2), x U(1)y eigenstates,
which can lead to problems in properly treating thresholds. In the approach used
in this thesis, these effects are naturally accounted for since the o; and as running
couplings are defined in terms of the vy and yZ self-energies, as seen in Eq.(3.18).

To illustrate these corrections, consider the chargino mass matrix

v M VIsM. M(i) 0
\/icﬁMw K 0 M(Xg:)

v < cos¢y sino, ) U= < cos¢_  sing_ >
—sing, cos¢. —sing_ cos¢_

Calculating the chargino contribution to the running couplings in the mass eigenstate

) U*XV-l=
(4.39)

basis (v and vZ) leads to (defining s+ = sin ¢1 and cy = cos ¢y)

(s +s2)

1
3
%(ci +c2).

(4.40)
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Added together we have the expected results 8y (xF+x5) = —2 and Bo(xf+x3) = —2.
However, the splitting in the masses of the charginos induces a decoupling correction
between the two chargino masses which involves the above mixing angles ¢.. Similar
corrections arise for squarks and sleptons when the L and R components have a
significant mass splitting. All of these mass-mixing corrections are usually numerically
small, but possibly relevant in the future. Similar finite non-logarithmic threshold

corrections have been considered in the conventional DR framework in Refs.[23, 51].

4.2.3 Non-renormalizable operators (NROs) from Gravity

Here we will only discuss the leading dimension five operator of SU(5) first introduced
in Refs.[52, 53] and later considered in Refs.[54, 55] :

1 7 v
0L = —§mTr [FluXoa F*] (4.41)
where F,, is the SU (5) field strength tensor, the field X4 is responsible for breaking
SU(5), and n is the unknown dimensionless coefficient. Expanding in terms of SM

gauge fields leads to

1 1 . " 1 y
ﬁkm = _ZGZUGZV (1 —+ 25NRO) — ZW;VWZ-H (]. - 35NRO) — ZB’“’BN (1 — 6NRO)
V2 nMx
h ) = — 4.4
where NRO 5 g e (4.42)

where Mp; ~ 2.4 x 10'8 GeV is the reduced Planck mass, Mx ~ 2 x 10'® GeV is the
mass of the heavy vector bosons of SU(5), and gy is the unification scale coupling.

This modifies the unification condition to

(1 + 25NRO) ag(MU) = (1 - 3(51\130) Otz(Mu) = (1 — 5NRO) Ozl(MU), (4.43)

and leads to corrections given below. The supersymmetric version of the above op-
erator was analyzed in [55] and shown to give corrections to the weak scale gaugino

mass relations.
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4.3 Methodology and Summary of Corrections

The formula given in the above sections suffice to numerically evaluate the running
couplings for most any four-dimensional model. However, in order to better under-
stand the nature of the various corrections it is useful to solve the GUT RGE equa-
tions in Eq.(4.1) analytically. The results here hold for the pinch-technique effective
charges, which have qualitatively different unification behavior compared with the
conventional DR (MS) couplings, as discussed in section 3.4 and shown in Fig.(3.6).

We will impose the following universal (asymptotic) boundary condition at a scale
My much greater than both the light (L) MSSM spectrum and the heavy (H) particles
at the GUT scale :

Oél(MU) = Oéz(MU> = Otg(MU) = Oég(Mu) (444)

leads to
F=1-— BGZU + EHZX + & (4.45)

where we have adopted the efficient three-vector notation :

7 = (o7'(M.), 03" (M.), 05" (M)
agz' (My)(1,1,1)
Ba = 5L+§H=ﬁc(1,1,1) (4.46)

b = 1o My
U_QWgMz

1 My
Ix = 2—7;(10g<Mz>+1)

A= AL + ﬁa + 5}1 + AH + 9_; loop t+ &Yuk + ANRO (4.47)

)
It

and

Here 3 is the vector of one-loop 8 coefficients for the light (L) particles, typically
those of the MSSM. Analogously, By is the vector of one-loop 8 coefficients for the
heavy (H) particles at the GUT scale. Intermediate scale particles may be included

in either L or H. By the unification assumption the sum of these must be universal
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ﬁg = EL + EH = Bg(1,1,1). The scale My is some conveniently chosen scale typical
of the heavy spectrum, usually the mass of the heavy gauge bosons. All predictions
are independent of this choice.

The correction terms are

o Light thresholds (leading-log and finite analytic)
1 My M2
— —log — 4.
ZL 4 ( ( my ) % mzz) (448)

e Initial value re-calibration for QED coupling (Eq.(4.37))

B=-Y ¢ (g E(M), si(Mz>,0> b (4.49)

P éSM

o Leading-log heavy thresholds
2

=Y -l log Tk (4.50)
X

hEH

e Subleading (analytic) heavy thresholds

- M M2
Rp=37 —ﬁh (Lh< U) log —;{) (4.51)
rend Mh h
e Two-loop corrections with thresholds at intermediate scales p; < ... < pn
included
N-1
(92 loop = 0<MX7 ,U/N) + e(un+la ,un) + e(ula Mz) (452)

n=1

where 0,;(Q, Qo) given in Eq.(4.5) uses the §; and (;; appropriate between each
threshold.



CHAPTER 4. PRECISION GAUGE-COUPLING UNIFICATION 71

e Yukawa coupling two-loop corrections

- 1 = M3
Ay = — Y4(F)log —= 4.53
Yuk (471_)3 4( ) 0g Mz2 ( )
¢ Non-renormalizable operators induced from gravity (see section 4.2.3)
2 0
ANRO = (_2a 37 1) MR (454)

agur

Given the assumption of unification, the two independent equations in Eq.(4.44)
yield two predictions among the input parameters. These predictions can most easily
be obtained through the use of traceless projection operators [54] Pon Eq.(4.45). For
example, if the light spectrum is the MSSM then ]3(043) = (5/7,—12/7,1) applied to
Eq.(4.45) leads to

1 5 12 _

=23=——2 4+ —2 — Plag) - A 4.
Otg(Mz) 23 7Z1+ 722 (043) s ( 55)

which expresses the strong coupling prediction in a form that allows one explicitly

see the effects of the various correction terms in A.

4.4 Some examples

The following figures have been obtained using the methodology described above using
the pinch-technique effective charges. The experimental value is taken to be (see Table
3.2) ag—n(Mz) = 0.140 = 0.005, which corresponds to o?8(M,) = 0.118 + 0.0036.
Results similar to those given below can be obtained in the DR approach.

Our starting point is the post-WMAP benchmark scenarios for the supersymmet-
ric parameter space given in Ref.[56], with all high scale threshold effects excluded.
As seen in Fig.(4.1), the MSSM does not unify within the experimental tolerances.
Nevertheless, a variety of methods are available to salvage gauge-coupling unification.

First, in Fig.(4.2), the two-loop predictions of Split Supersymmetry [57][58] are

given. Clearly, values of the scalar masses Mg above roughly 10® GeV are preferred.
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This is also the preferred range for solving problems related to flavor violation, CP
violation, and proton decay in the usual low energy supersymmetry framework.

Another possibility is that GAUT scale threshold corrections help the couplings
unify. As seen in Eqs.(4.50,3.33), this requires a large splitting in the heavy spec-
trum, or large representations which have large group theory factors. In the minimal
supersymmetric SU(5) model with 24y, 5, and b, there are no large representa-
tions. Theréfore, the splitting must be large, and it turns out Higgs triplet must have
a mass much less than 107 GeV, in violation of proton decay constraints. This is
illustrated in Fig.(4.3). In contrast, heavy threshold effects in some SO(10) mod-
els tend to work much better [59], with corrections typically of the correct sign and
correct order of magnitude.

Another option, which may even salvage the minimal SUSY SU(5) model [55], is
that gravitationally induced non-renormalizable operators (NROs) will fix the gauge-
coupling unification. This possibility is illustrated in Fig.(4.4), where the effects of the
leading dimension five operator discussed in section 4.2.3 are included. The coeflicient
n cannot be derived without a complete theory of quantum gravity, but is expected
to be of order one. As discussed in Ref.[55], the interplay between gauge-coupling
unification and weak-scale gaugino masses may provide a testable scenario involving
NROs.
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Figure 4.1: MSSM Benchmarks The error in the prediction for the strong cou-
pling, in standard deviations, for each post-WMAP benchmark scenario of Ref.[56].

Arkani-Hamed Dimopoulos Heavy Scalars (from Benchmark A)
5 T T 1 T T 1

hep-th/0405159

Error in o3(M) prediction

1 1 L 1 1 1
100 10000 1e+08 1e+08 1e+10 1e+12 1e+14 1e+16
) Scalar Mass scale in GeV

Figure 4.2: Split Supersymmetry For scalar masses Mg > 10® GeV, the strong
coupling predictions are in better agreement with the data compared to the MSSM
(Fig.(4.1)). The y-axis is the error in the a,(M,) prediction, in standard deviations.



CHAPTER 4. PRECISION GAUGE-COUPLING UNIFICATION 74

My, required for Unification in Minimal SU(5)
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Figure 4.3: Heavy Thresholds The value of the Higgs triplet mass required for
consistent gauge coupling unification in the minimal supersymmetric SU(5) model.
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Figure 4.4: Gravitational corrections The size of 7, the dimensionless coefficient
of the NRO discussed in section 4.2.3, needed for unification.



Chapter 5

The Form Factors of the Gauge

Invariant Three Gluon Vertex

5.1 Introduction: Gauge-Invariant Green’s Func-

tions

The main purpose of this chapter is to analyze the structure of the gauge-invariant
three-gluon vertex [60], calculate the fourteen form factors at one loop, and outline
some of the phenomenological applications. Before proceeding, it is worthwhile to
review the motivation and current status of gauge-invariant Green’s functions.

In the conventional formulation of gauge field theories, the manifest gauge-invariance
of the original action is lost upon quantization, simply because one has to fix a gauge
in order to perform calculations. Generically, Greens’s functions are gauge-dependent
and thus not physical by themselves. Only the particular combinations of Green’s
functions which form physical observables must be gauge-invariant. In many the-
oretical studies, however, one would like to consider individual Green’s functions
and extract physical meaning from them [30]. For example, studies of the infrared
behavior of gauge theory using Dyson-Schwinger equations [61] often rely on gauge-
dependent truncation schemes which one hopes are not too brutal. The existence

of gauge-invariant two-point functions is crucial for defining meaningful resummed

75
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propagators [34], particularly near threshold, for the construction of effective charges
[32], for a postulated dressed-skeleton expansion of QCD [62], and for justifying renor-
malon analyses [63].

Thus there is strong motivation for gauge-invariant Green’s functions with phys-
ical content. We will now briefly discuss the relationship between three different
approaches to gauge-invariant Green’s functions : (1) the Pinch Technique (PT), (2)
the Background Field Method (BFM), and (3) the * effective Lagrangian scheme of
Kennedy and Lynn. All three approaches will lead to the same Green’s functions.

The pinch technique (PT) was first constructed by Cornwall [30] in order to study
gauge-invariant Dyson-Schwinger equations and dynamical gluon mass generation,
but the approach is much more generally applicable. In the PT approach, unique
gauge-invariant Green’s functions are constructed by explicitly rearranging Feynman
diagrams using elementary Ward identities (WI) as the guiding principle. Longitudi-
nal momenta from triple-gauge-boson vertices and gauge propagators inside of loops
hit other vertices and thus generate inverse propagators (via WI’s), which, in turn,
cancel (or pinch) some internal propagators. In this way, certain parts of Green’s
functions are reduced to parts of lower nm-point functions and should properly be
included in the latter.

As an example of the PT, consider the gluon (or massive gauge boson) self-energy.
The conventional self-energy is gauge-dependent and physically meaningless by itself.
However, when embedded in any physical process, there will be associated parts of
vertex and box graphs which undergo the reduction described above and thus have
the same tensor and kinematic structure as the gluon propagatbr. These pinched
parts are then added to the conventional gauge-dependent self-energy, yielding a
gauge-invariant self-energy and gluon propagator that has the correct asymptotic UV
behavior dictated by the renormalization group equation. The resulting two-point
function has numerous positive attributes [34][31][32][64][65], including uniqueness,
resummability, analyticity, unitarity, and a natural relation to optical theorem, from
which it can also be derived [34](33].

Resumming these two-point functions leads to physical effective charges, dla Grun-

berg [11], which can be extended to the supersymmetric case and leads to an analytic
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improvement of gauge coupling unification with smooth threshold behavior [1].

This method has been applied to a variety of Green’s functions [60][66][67] [68][69],
with applications to electroweak phenomenology [70][71]. In particular, the gauge-
invariant three-gluon vertex was first constructed in [60] to one-loop order, where the
authors showed that the vertex satisfies a relatively simple abelian-like Ward iden-
tity. However, the integrals were not evaluated, so that little could be said about the
individual form factors except that the UV divergent term in the tree level tensor
structure is correct. The main motivation of this chapter is to extend this work by
evaluating the integrals for the fourteen form factors, and expressing the results in a
convenient tensor basis for phenomenological applications. In doing so, an interesting
structure emerges, in which the contributions of gluons(G), quarks(Q), and scalars(S)

are intimately related. These relations are closely linked to supersymmetry and con-
| formal symmetry, and in particular the N = 4 non-renormalization theorems. For all

form factors F' in dimensions d, we find that
Fe+4Fp+ (10 - d)Fs =0, (5.1)

which encodes the vanishing contribution of the N = 4 supermultiplet in four dimen-
sions. Similar relations have been found in the context of supersymmetric scattering
amplitudes [72][73]. In Appendix E, the effects of internal masses are discussed, and

the above sum rule becomes modified
FMG+4FMQ+ (g—d)FMs =0, (5.2)

for internal massive gauge bosons (MG), fermions (MQ), and scalar (MS). The exter-
nal gluons remain massless and unbroken, so the internal gauge bosons might be the
heavy X,,Y, bosons of SU(5), for example. In [74], supersymmetric relations were
found for electroweak gauge boson four-point scattering amplitudes.

The PT method has been explicitly extended beyond one-loop [35][36][75], has
recently been proven to exist to all orders in perturbation theory [37][38][39][76], and
interestingly, each Green’s function is equal to the corresponding Green’s function

of the Background Field Method (BFM) in quantum Feynman gauge {g = 1, a
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result suggested in [77][78]. Heuristically, this is due to the fact that there are no
longitudinal (pinching) momenta in the gauge propagator or the elementary vertices
in this special gauge.

The Background Field Method (BFM) [79] constructs manifestly gauge invariant
Green’s functions in the following way. First, the field variable(A) in the path integral
is separated into a background(B) and quantum(Q) field, A = B + Q. Only the
quantum field ) propagates in loops, since it is a variable of functional integration. In
contrast, the background field B appears only in external legs. By judiciously choosing
the gauge-fixing function, one arrives at an effective action which remains manifestly
invariant under background field gauge—transfofmations 0Bg = —f*W’ B + ;0,w°.
Furthermore, derivatives of the BFM effective action with respect to the background
field B yield the same 1PI Green’s functions as the conventional effective action with
a nonstandard gauge-fixing. Thus, it can be shown [79] that the correct S-matrix is
obtained by sewing together trees composed of 1PI Green’s functions of B fields. In
doing so, one can fix the gauge of B, which propagates only at tree level, independently
of the gauge fixing of Q. For example, convenient non-covariant gauges might be used
for the trees while BFM Feynman gauge {o = 1 (BFMFG) can be used for the loops.

The correspondence between the PT and BEM is not surprising, since the BFM is a
formulation of gauge theory where Green’s functions of the gauge field are manifestly
(background) gauge-invariant. Although this is true for all values of the quantum
gauge-fixing parameter &g, it is only for the special value g = 1 that the BFM Green’s
functions also have the correct kinematic structure of the irreducible PT Green’s
functions. Alternatively, it has been shown [78] that applying the PT algorithm to
the BFM for £; # 1 leads back to the canonical ({§g = 1) PT Green’s functions.

Finally, in the * scheme of Kennedy and Lynn [20], a gauge-invariant effective
Lagrangian was constructed for electroweak four-fermion processes by explicitly re-
arranging the one loop corrections. As in the pinch technique, vertex parts must be
added to would-be two point functions to yield genuine two-point functions. One
particular motivation is that fact that the photon acquires a spurious mass from its

mixing with Z° IL,z(¢* = 0) # 0, unless the correct vertex parts are added. The
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resulting effective charges, a.(q?) and s2(¢?) are in fact precisely equal to the corre-
sponding pinch-technique effective charges at one loop, including all finite terms and
threshold dependence [31].

Thus, all three methods for constructing physical gauge-invariant Green’s func-
tions lead to the same results, which in this chapter will be referred to as either PT
or PT/BFMFG Green'’s functions.

The organization of this chapter is as follows. In section 5.2, we will discuss the
general structure of the gauge-invariant three-gluon vertex, which is constrained by
the Ward identity and Bose symmetry. Two convenient tensor bases and their rela-
tion are discussed. In section 5.3, the main results of this chapter are given. First, the
nontrivial supersymmetric relations between the gluon,. quark, and scalar contribu-
tions to each form factor are discussed. The explicit results for the form factors in the
case of massless internal particles are given in two different bases, with the full mass
effects relegated to Appendix E. In section 5.4, we briefly discuss the phenomeno-
logical application to physical scattering processes, where we derive an effective cou-
pling for the three-gluon vertex, &(k?, k3, k3), and an effective scale, Q2 (K, k3, k3),
both of which depend on three distinct gluon virtualities. In section 5.5, the phe-
nomenological effects of internal masses are discussed. A complicated threshold and
pseudo-threshold structure emerges. Furthermore, a three-scale effective number of
flavors Np(k?/M?, k3/M?, k2 /M?) is defined. Conclusions are given in section 5.6. In
Appendix A, a brief outline of the calculational method is given, and some basic one-
and two-point integrals are given. Appendix B is devoted to a thorough discussion of
the massive triangle integral, and analytic continuations are given for each kinematic
region. Appendix C collects some useful results for special functions. Appendix D
explains the corrections to the form factors when a supersymmetric regularization is
used. Finally Appendix E gives explicitly the corrections to the form factors arising

from internal massive gauge bosons, fermions, and scalars.
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5.2 General Structure of the Three-Gluon Vertex

5.2.1 Symmetries

One of the most important aspects of the gauge-invariant three-gluon vertex discussed
in this chapter is the relatively simple Ward identity it satisfies, which has the same
form as the Ward ID satisfied by the tree level vertex. This was proven at one-loop
in the original paper by Cornwall and Papavassiliou [60] using the explicit one-loop
result, which is the gluon part of Eqgs.(5.17,5.18) below. It is straightforward to show
that the fermion and scalar parts also satisfy the same Ward identity (just as in
QED). Furthermore, the equivalence of the BFMFG and PT to all orders [37] allows

one to write the Ward identity satisfied by the three-gluon vertex to all orders as

BT (21 2.2) = £ (b (o) IS, (52) ) = £ (s (1) 0+ TLE (1)),
(5.3)

plus two other equations which are cyclic permutations. The transverse tensor ¢, (p) =
P?Guy — pup» comes from the tree level term. Here all momenta are defined to be in-
coming and all labels are defined in counter-clockwise fashion, as shown in Fig. 5.1.
This Ward identity represents a great simplification compared to the usual Slavnov-
Taylor identities satisfied by the conventional gauge-dependent three-gluon vertex,
which involves the gluon propagator, the ghost propagator, and the ghost-ghost-
gluon vertex function. The self-energy function in the above equation is not the
usual gauge-dependent self-energy, but rather the gauge-invariant pinch-technique
self-energy, which is the only self-energy discussed in this chapter. An immediate
consequence is that the longitudinal (L) part of the vertex, defined as the part which
contributes to the above Ward ID, must have only the antisymmetric color factor
£ 50 long as gluons conserve the color charge, I1% (g) = 0°I1,,(g). As far as we
know, the transverse (T') part of the vertex (defined by pg‘SFZ?Z(QTMS (p1,p2,p3) = 0)
is not required to be proportional to f%°, but may in principle contain d®*e terms.

Nevertheless, no such terms appear at one or two loop order, and so in the subsequent
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Figure 5.1: The notation and loop momentum routing used throughout this chapter.
The internal particle could be a gauge boson, ghost, quark, or scalar.

discussion we take

FZ?ZZHS (p1, P2, p3) = fabcrmuzua (p1,p2,P3), (5.4)

in terms of which the Ward identity becomes

s’ | (p1,p2,p3) = s (p2)(L + H(p2)) uipa (p1)(L + H(p%)) (5.5)

Bose symmetry, the fact that 3 identical particles are entering the vertex, and the
properties of f2°¢ imply definite properties of Iy, s (D1, P2, p3) under the interchange
of labels. In particular, defining the five elements of the permutation group Sz to act
by

(11, p1) = (2, p2) ( ) = ( )
gi123 = (12, p2) — (13, p3) gi2 = ( i b Hon P2 > (5.6)
(2, p2) = (p1,p1)
(p3,p3) — (p1,p1)
gos = (12, p2) — (3, P3) g3 = ( (3:p3) — (1, p1) )
(13, p3) = (p2,p2) (11, 1) — (p3,p3)
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001 = gpypsP1us 002 = guiusP2us

200 = GupusPou 300 = gyupusP3u

030 = Guap1 P3us 010 = Guap1 Plus
211 = pop PryupPrps | 212 = Pop PrynPrys
232 = poy, P3psP2us | 332 = Pau PspsPoys
331 = D311 P3p2P1ps 311 = P3ua P1uPlys
312 = D3p1 P1ps D2ys 231 = D211 P3uaPlus

Table 5.1: Definition of tensor abbreviations

and gs = g5 one finds that (gios, ga21, G12, o3, ga1) yields (+,+,—,—,—) when
acting on Ty, o8 (D1, P2, P3)-

The nonabelian nature of the permutation group S; prevents one from finding
a basis in which all of the tensors are eigenstates of all of these operators.‘ Thus,
aesthetic and physical principles must guide us in choosing convenient bases, two of

which are discussed momentarily.

5.2.2 Two Convenient Bases

Let us consider the most general tensor structure. The three-index Lorentz-covariant
tensor must be constructed out of the metric g,, and the momenta (p}). Since the
momenta are not independent, p; + p; + p3 = 0, simple combinatorics implies that
there are in general 14 independent tensor components, 6 of which have one power
of momenta and also the metric, and 8 of which have 3 powers of momenta. Many
different basis choices can be made, although we will use essentially two.

In the subsequent discussion, some efficient notation will prove useful. This is
summarized in Table 5.1.

Thus, each tensor is rewritten as a 3-slot object, where slots correspond to 1, po, p43
in that order, and the content of each slot is either ‘1°‘2’, or ‘3’ to represent momen-
tum pq, p2, P3, or a ‘0’, which must occur in pairs and represents that those two indices
are connected by the metric tensor.

The most naive thing to do would be to just eliminate one momenta, say ps =
—p1—p2 and use the following 14 basis tensors : 100, 200, 010, 020, 001, 002, 111, 112,
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121, 211, 122, 212, 221, 222. This is not very useful since the explicit Bose symmetry
between the three gluons has been broken, and thus delicate relations between the

form factors will have to enforce it.

The 4+ Basis A more natural choice is obtained by starting from a manifestly
symmetric, but redundant basis, which has 36 possible basis tensors, 9 with one power
of momenta, and 27 with three powers of momenta. As a step towards our final basis,
we find it convenient to eliminate all such tensors with momenta pf*,ph*, or p§®,
i.e. anything with 1 in the first slot, 2 in second slot or 3 in the third slot. This
yields the 14 basis tensors 001, 002, 200, 300, 030, 010, 211, 212, 232, 332, 331, 311,
231, 312, which are shown in Table 5.1. Note that under the action of gi23 we have
200 — 030, 300 — 010,211 — 232,311 — 212, etc. Also, notice that 200 and 300 are
interchanged by the action of gp3, while 211 and 212 are interchanged by the action
of g1o, etc. Thus, it is convenient to take appropriate linear combinations such that

one of these interchange operators is diagonal for each tensor. Such basis tensors are

A

a1z =

(00—) = 001 — 002, dgs = (—00) = 200 — 300, ds; = (0—0) = 030 — 010
bz = (00+) = 0014002, by = (+00) =200+ 300, bs = (0+0) =030+ 010
(

+
+
.y

Ci2 =

~

bz = (—+1), Ca=HF~-+
dip = (—= dys = +=-), dy = (—+-) (5.7)
ho= (=2 §=@+),

x

where the notation means (x++) = (2+£3,3+1,1+2), so that (++—-) = 231 —
232 4+ 211 — 212 + 331 — 332 + 311 — 312, etc. The subscripts are chosen because, for
example, a1, is an eigenstate of gy, etc.

Suppressing indices and momentum dependence, the three-gluon vertex is then

written as
I'= (Alzdlg + Blgi)lz + 012612 + DlgdAlg + perms) + S5 + HiL, (58)

where the lower case letters represent the basis tensors, while the upper case letters
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are the form factors, which depend on p?, p%, and p2. In addition to indicating which
basis tensors they are associated with, the subscripts on form factors also indicate
the ordering of momenta in the arguments. For example, A1o = A(p}, p3|p3), Az =
A(p?, p2lp?), Az = A(pZ, p}lp3), and the first two arguments are either symmetric or
antisymmetric. The behavior of these form factors under S; can be inferred from
the behavior of the basis tensors under S; (which will be discussed momentarily),
along with the overall requirement for the vertex given below Eq. 5.6. One finds that
A(z,y|z) = +A(y, z|2), and thus A;3 = Ay, ete. Similarly, By = —Bsi, Cr2 = Coy,
and Do = —D»;. H is totally invariant under the interchange or permutation of any
momenta, while S goes to —S under any interchange of momenta, but is invariant
under a cyclic permutation gjo3.

It is straightforward to see that under the action of the permutation operator
(g123) these fourteen basis tensors are organized into four triplets, {dis,ass,da1},
{312,323,?)31}, {é12, €23, 31}, {312,6523,331}, as well as h and 4. The latter two are
eigenstates of all five operators.

Consider the properties of {a12, Gos, 431} under the permutation group. It is easy

to see that under the action of any element g;, we have

arz a1z
ao3 g3 | (5.9)
as1 asi
with the matrices given by
010 0 01
g2z = 0 0 1 ge1=1] 100 (5.10)
100 , 010
100 0 01 010
g2 =-|[ 001 gs=—| 010 gn=—-| 100
010 100 0 01

The transformation rules are identical for {c;;}, and similar for {b;;} and {d;;} with
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the only change being that there is no minus sign in the three interchange operators
912, 923 and ga1.

The basis constructed above (Eq.(5.7)) will be called the + basis. As discussed
later, this basis is the most convenient for phenomenology and furthermore the form
factors exhibit particularly simple relations between the gluon, quark, and scalar
contributions (Egs.(5.45,5.55)).

However, the £ basis as it stands does not contain the tree-level tensor structure.
Thus, one is naturally led to diagonalizing the permutation operator gis3.! Clearly,
this is the most symmetric choice and, more importantly, one of the resulting eigen-
vectors is the tree level tensor structure.

In the triplet representation of Sz, g123 is diagonalized by the similarity transfor-

mation
. 1 11 100
S= 7 1 A X S$7'g12sS = Gs=| 0 X 0 |, (5.11)
1 X A 00 A
where A = exp (&) = -1 + i@, X = \* are cube roots of unity. This results in new

basis tensors and form factors

ag a2 111 O12
ar | = VBSTH | as | = 1 X A a3
a_ a31 DYDY a3
Ao ) A1 . 111 Aqp
AL = %S Ay | = 3 1 f\_ A Az (5.12)
A_ Az 1 A A Az

This procedure is repeated identically for the (b, B), (¢,C), and (d, D) basis tensors
and form factors.

Notice that G0 = Guus(P1 = P2)us T Guzua (P2 — P3)is + Gusp (P3 — P1)u, 18 the tree

1One can readily check that the only two operators in 83 which commute are g123 and its inverse
g321. Thus one can diagonalize these two, OR one of the interchange operators g2, g3, ga1-
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level tensor, which is why the extra factors of /3 were included above.
The transformation properties for the basis tensors é; and ¢ are deduced from

123 given above, g, = diag(1, \, \), and

100 100 1 00
gz=—-1001 Gs=—1 0 0 A gau=—100 X |, (513
010 0 X O 0 X0

while the transformation properties of the form factors are deduced by demanding
that behavior given below Eq.(5.6) is respected. For example, since 4 — —Nay
under gos, we find A_ — MAL so that A_a_ — —A_a_. For (b, B) and (d, D), the
only change in the above is that there is not a minus sign in gi2, g23, and ga;.

We have not touched k and &, as these are already eigenstates of all five operators
(9123, 9321, 912, G23, 931 ), With eigenvalues (+ + — — —) and (+ + + + +), respectively.

We will call the above constructed basis the symmetric + basis. Note that any
basis can be symmetrized in the same manner by diagonalizing the permutation
operator gio3. The basis we started with in Eq.(5.7) is motivated by (a) its simple
and symmetric construction from only metrics and (p;+1£pi—1)y,, (b) it is the most
convenient basis for perturbative calculations, as will be discussed in section 4, and
(¢) The individual form factors have a relatively simple form, as will be discussed in

section 3.

The LT Basis For some theoretical studies, another convenient basis is
determined by the distinction between transverse (T') and longitudinal (L) tensors
[80][81]. The L tensors contribute to the Ward ID (or the more complicated Slavnov-
Taylor ID for the gauge-dependent vertex) while the T tensors satisfy homogeneous
equations p’g:“I’ngg = 0. This is a very convenient basis for evaluating the loop
corrections to the vertex, since the L and T parts separate, as described in Appendix
A. |

The + basis and the LT basis are complementary in the following sense. The
+ basis is constructed out of combinations of longitudinal (+) and transverse (—)

momenta, so that for example (00+) = gy, o (P15 + P2us) = —GuiueP3us vanishes if the
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us index is contracted into a conserved current. Meanwhile, the LT basis distinguishes
between parts of the vertex that do (T') and do not (L) vanish when dotted with
longitudinal momenta. These straightforward relations to current conservation and
Ward identities are essentially the reason these two bases are the most convenient to
work with.

In our notation, the vertex can be written in the LT basis as I' = I'p, +I'r, where

Iy = (Awai + Bubi + Citiz + perms) + 53
I'r = (Fiafy, + perms) + Hh, (5.14)

and the bar distinguishes this LT basis from the + basis defined above in Eq.(5.7).

The relation between basis tensors is given by

@iz = 001 —002=ay (5.15)

big = 0014002 = by

612 = 211 -212 - (p1p2>(001 — 002> = (612'— dA23 + 6231 — il) - (pl'pg)&lz
Fiz = (rp2) ((p2ps)00L — (5 21)002) = ((2-p3)211 = (pa-p1)212)

= (pgpz) ( — pyass + (P} — p%)?m)

= =

1 A 3 3 7 3 -~ ~ ~
+ g(pg(clz — dys + da; — h) + (P2 — p3)(dia — Ca3 + 31 — 8))

B o= 231-312— ((pl-pg)(030 —300) + (pa-ps)(001 — 010) + (ps-ps)(200 — 002))
= ;:(il + &19 + Co3 + Ca1) + %(pgfhz — (p} - p%)?nz + plags — (p; — pg)i’zz
+ pyas — (03 — P:{)(;sl)

5 = 231+312= i(é + dis + dos + da1),
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and we used (p1-p2) = (p3 —p? — p3)/2. This implies the relation between form factors

p2 .
Ap = Ap- (p1- pQ)Cl’z - ?((Pl Pz)FlZ - H)

Blg = -§12 + pl ;p2 ((pypg)ﬁm — ﬁ) (516)

l/— — 2 -
Crp = Z<H+012+%F12+ 2p3F -I—p 2p3F23>

1l /= — — —
Dy = Z<S+Cz3—031+%F23“ 2F31+p 2p2F12)
l/f— — 2_ — — — —
H = Z(H‘Cm_%F12_C23_&F23_031_%F:ﬂ)
2
S — <S+p22p1F12+ 2p2F +p12p3—F_31>,

The unwritten form factors (Ass, etc.) and basis tensors can be obtained trivially
from the above equations by cyclic permutation (gi23). In doing so it is useful to keep
in mind the properties described under Eq.(5.8), along with 7” = Fﬂ, Aw = Zji,
By = Bﬂ, Cy = C’ﬂ, while H and S have the same transformation properties as

H and S, respectively.

5.3 Results for the Form Factors

In this section, we will present the results for the form factors in arbitrary dimension
d using dimensional regularization (DREG), for gluons in the adjoint representation,
and massless quarks and scalars in arbitrary representations. The corrections due to
supersymmetric regularization and massive fermions, scalars, and gauge bosons are
given in detail in Appendices D and E, respectively.

The gauge-invariant vertex at one loop can be written as

grfmm (p1,p2,p3) = gfee F,(?l)uwg (P1,p2,p3)

;2

(&)

T Ty (CAGuwzua +2 E :TfoQumz;m +2 E :TSNSSMMM)jI (5.17)
f s
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where the gluon (G), quark (@), and scalar (S) integrals are

a1
Guipans = / 2n) PER (Féﬂm(lz,pl, ~15)TF 03, p2, —1)TE L 5(l1, p3, —la)
+ 2+ 1) (Is + 1) (L + l2)ps — 81%(9#1#2171#3 ~ GurpaPips)

- 815(9#2#32’2#1 - guzulp%a) - 81%(9;43“11?3“2 - gusuzp&n))

d?l 1
Quluzﬂs = Trhm l/37/42 ll'yug l/Q]

(2m)? I313

d
Susaso = ~ [ Ggammmle + 1 lls + Wialls + s (5.18)
The gluon contribution was first derived in [60] using the pinch technique(PT), and
is equivalent to the vertex obtained in the Background Field Method in quantum
Feynman gauge(BFMFG). The quark and scalar integrals come straightforwardly
from the one loop triangle diagrams. The notation and routing of the integral are
defined in Fig.(5.1) such that {y = ps + I3, [ = ps + {1, I3 = p1 + 2 and the tree level

vertex T'® and T'F are defined as

FLORMM (plap27p3) = Guipe (7 — pz)us t Guzus (p2 — PB)m + gu3u1(p3 - pl)uz
Fg,uyy(l?apla _l3> = 2plﬁg,u1’y - 2p1’ygulﬂ - (l2 + l3),ulgﬂ’7" (519)

All massless integrals can be reduced to two basic scalar integrals:

_ 2 2 2 ddl 1
Jo= T = | Goimee
dil 1 d?l 1
= 2 = —_—
A= A / (2m)d 1213 / (2m)d (1 + p1)?’ (5:20)

These functions, and the massive integrals which are considered later, are sum-
marized in Appendices A and B, where J is written in terms of Clausen functions.
In the following we will suppress the momentum arguments and write our results in
terms of J, Jy, Jo, Ja.
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5.3.1 (Supersymmetric) relations between gluons, quarks, and

scalars

Before presenting the results for individual form factors, which are somewhat lengthy,
we will discuss the relationship between the gluon(G), quark(Q), and scalar(S) con-
tributions. We will end up finding relations similar to those found in the context of
supersymmetric scattering amplitudes [72][73][82]. For a generic form factor F, let

us write the one-loop contribution as

F=ig*(CaFe +2Y TyNyFq+2 T.N.Fs), (5.21)
f s

where the coupling constant ig? and group theory factors have been pulled out. The
standard notation is used, so that C4 = C»(G) = N, for SU(N,), and Tr[t5t}] =
T#0%. Thus, Fg stands for the contribution of one Dirac fermion in the fundamental
representation of SU(N,), or, due to a symmetry factor of % for Weyl fermions, the
contribution of adjoint gluinos divided by N.. Similarly, Fg stands for the contribution
of one complex scalar in the fundamental representation, or the contribution of a real
scalar in the adjoint, divided by N.. These identifications will be used shortly.

After explicitly calculating the integrals in Eq.(5.18), we noticed that the gluon,
quark, and scalar contributions have a similar structure for each form factor. To make
this explicit, define the following sums for form factor F':

SoclF) = (d— Z)FQ + Fg

2
Sse(F) (d - 2)Fs — Fg. (5.22)

Although the results for each form factor are often long, these sums are particularly
simple, as can be seen in Eqgs.(5.42,5.45,5.55). For all form factors in any basis, it

also turns out that

(d - 10)Ss¢ = 8%gq (5.23)

and Yq¢ is always proportional to d — 10. The above two equations and the results
of Eqs.(5.42,5.45,5.55) can be used to determine the ) and S contributions to any
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form factor, given the gluon contributions written explicitly below. Furthermore,
Eqs.(5.22,5.23) can be combined leading to

Fg+4Fg + (10— d)Fs = 0. (5.24)

Considering the very different origins of each form factor (Egs.(5.17,5.18)), it is re-
markable that they are related in such a simple manner. Note that no such analogous
relation holds for the gauge dependent vertex [81].

This type of relation hints at supersymmetry. To further understand the content

of these relations, we will consider various supersymmetries in d = 4.

e N=1 From the above definitions, it is clear that a vector superplet V; (gluons
plus gluinos) contributes ig> N.(Fg + Fg) = ig>?N.Fy; to a generic form factor
F, while Ny chiral superplets contributes ig*No(3Fo+ Fs) = ig? NoFs. By the
sum rule Eq.(5.24) in d = 4, we have Fy, + 6Fp = 0. Thus any form factor can
be written -

F = ig*(N.Fy, + NgFg) = %ﬁéN=1)FVI, C (5.25)

where ﬁéN=1) = 3N, — %Nq> is the first 8 function coefficient. Hence the contri-
butions of vector and chiral superplets have precisely the same functional form
for each form factor. Furthermore, every form factor is proportional to G, even
though all but one of them are UV finite. ‘

o N=2 Here the vector superplet gives ig? N.(Fg + 2Fg + 2Fs) = ig* N.Fy,, while
Ny, hyperplets (a Weyl fermion of each helicity plus a doublet of complex scalars)
yield ig? Ny, (Fg + 2Fs) = ig? Ny Fy,. The sum rule Eq.(5.24) can be written as
Fy, + 2F, = 0, and thus

: 2
. (4 =
F = ig?(N.Fy, + Ny F) = %ggN 2Fy,, (5.26)

where g{"=% = 2N, — N,.

e N=4 Here the vector superplet (the only multiplet allowed) contributes 2ig? N, (Fg+

4Fg + 6Fs) = N.Fy,, which is identically zero by the sum rule, which of course
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is a consequence of ﬁéN=4) =0.

Thus, the similarities between form factors in d = 4 are related to supersymmetric
non-renormalization theorems. In particular, the exact conformal invariance of N = 4
implies that the gauge-invariant three-gluon Green’s function is not renormalized at
any order in perturbation theory. Furthermore, at one-loop order there are not even
finite corrections, as reflected in Eq.(5.24).

Analogous results hold for supersymmetry in d # 4. Here we must be careful,
because in the sum rules and form factors presented in this chapter we worked in
d dimensions everywhere except in the traces over gamma matrices, where we used
the conventional rule of dimensional regularization tr[y,7v.] = 4g.., and similarly
for other traces. Properly working in integer-valued d dimensions, we should use

tr[v,v.] = ds(d) gy, where the spinor dimension of the gamma matrices is

2d/2 d even
ds(d) = ( (-1 ) for ( 7 odd ) : (5.27)

Thus Fg, = dSTw)FQ is the contribution of a Dirac fermion in d dimensions, and we
have

P+ ES%F% L (10 - d)Fs =0 (5.28)
Rather than using Eq.(5.28), one can alternatively use Eq.(5.24) and be sure to count
fermion degrees of freedom in terms of d = 4 spinors. Thus the Weyl fermions of
d = 6 and the Weyl-Majorana fermions of d = 10 are composed of 2 and 4 Weyl
fermions of four dimensions, respectively. From this, it is straightforward to show
that d = 6, N = 2 and d = 10, N = 1 gauge theory give vanishing contribution to

every form factor. For the d = 6, N = 1 case, one finds
. 292
F=—bokw Bo = 2N — N, (5.29)

where (3 is determined from Eq.(5.37) in d = 6.
Note that it is not straightforward to analytically continue d4(d) into arbitrary

non-integer d, which is the reason for the simple dimensional regularization rule.
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However, the sum rule expressed in Eq.(5.24) is an analytic function of d and thus
represents an analytic continuation of supersymmetric non-renormalization theorems
to arbitrary d. This is intimately related to the existence of a supersymmetry pre-
serving regulator, dimensional reduction (DRED), where vector degrees of freedom
are kept in four dimensions while the integrals are still performed in d dimensions.
Around four dimensions, d = 4 —2¢, we have Fg+4Fg+(6+2¢)Fs = 0 in dimensional
regularization, and we see that the € term plays the role of the so-called e-ghosts of
DRED. We have calculated the form factors in DRED (see Appendix D) and verified
that

Fo+4F,+6Fs=0 (DRED). , (5.30)

In the preceding discussion of supersymmetries in various dimensions we implicitly
used DRED.

The extension of these relations to the massive case is outlined in Appendix E,
where the full effects of internal massive fermions (MQ), massive scalars (MS), and

massive gauge bosons (MG) are included, and the sum rule becomes
FMg+4FMQ+(9—d)FMS=O (531)

in DREG while in DRED the only change is 9 — d is replaced by 5. Note that the
external gluons remain massless and unbroken, so the internal massive gauge bosons
might be the colored heavy gauge bosons arising in GUT models. The change of
10 — d in the massless case to 9 — d in the massive case reflects the fact that massive
gauge bosons “eat” one scalar degree of freedom.

It should be emphasized that relations such as Eq.(5.24) do not exist for the
gauge-dependent three-gluon vertex [81], since the gluon contributions depend on the
gauge-parameter, while the quarks and scalars do not. Indeed, it is uniquely the
pinch technique (or equivalently BEM in quantum Feynman gauge) Green’s function
which satisfies this homogeneous sum rule. For example, calculating in the BFM with
£o # 1, leads to a nonzero RHS of Eq.(5.24).
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Since the sum rule applies to all form factors, one finds
G piaps 4Qu1uw3 + (10 - d)Smuz#s =0, (5-32)

which is remarkable given the expressions in Eq.(5.18). One can explicitly show
this by performing the trace in Eq.(5.18) and some tedious algebra to rearrange the
[EFTFTF term. This can also be seen in the second order formalism of the BFM
[72][73][82].

A similar relation holds for the one-loop gauge-invariant (pinch-technique) gluon

two-point function in d dimensions (the color factor §% is suppressed),

Iy, (p) = (p29muz —pulpm)H(pQ) =ig° <NcGu1uz+2 Z TiN§Qups+2 Z TstSmuz) )
f s

(5.33)
where from Egs.(5.36,5.37) below we find

GMlMZ + 4Qu1uz + (10 - d)Squ =0. (5'34>

Unfortunately, analogous relations do not hold for higher gauge-invariant gluon
n-point functions. This is essentially because the color and spacetime indices mix

nontrivially. However, inhomogeneous relations of the form
G +4Q + (10 — d)S = simple (5.35)

still hold [72][73][82], where “simple” means an integral with fewer powers of loop
momenta in the numerator. In the four-gluon case, this is just a simple scalar integral
with no powers of loop momentum in the numerator. These loop-momentum counting
rules have been derived in the second order formalism, which is reviewed in [82]. Note
that the Ward ID for the four-gluon vertex [69] relates it to the three-gluon vertex,
and thus the longitudinal parts of the four-gluon vertex must satisfy the homogeneous
sum rules Fg + 4Fo + (10 — d)Fs = 0.

It is interesting to see if extensions of these sum rules apply to two-loop calcula-

tions, where the supersymmetric Yukawa vertices must be taken into account. As a
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first application, the two-loop pinch technique gluon self-energy has been calculated
including finite terms. Interestingly, the finite terms do not vanish for N = 4 SUSY,
so it appears that the homogeneous sum rule in Eq.(5.24) does not have a counter-
part at two loops. In any‘ case, the finite parts of the two-loop result allow for an
improved extraction of the PT couplings from data as well as giving the three loop
beta function. This calculation is detailed in Chapter 6.

Now explicit expressions for the form factors will be given, first in the LT basis,
and then in the £ basis.

5.3.2 The longitudinal form factors

It is straightforward to solve the Ward identity (Eq.(5.5)) for the ten longitudinal form
factors, defined in Eq.(5.14), in terms of the gluon self-energy function II defined by
% (p) = 5“b(p2gm, — p.p,)IL(p?). Note that this is not the usual gauge-dependent
self-energy, but rather the gauge-invariant pinch technique self-energy. At one loop
in d dimensions this is given by

d
() = ig*Bo(d) / (zdﬂl)d mr ip)Q, (5.36)

where (Gy(d) is given by
7d — 6 2(d -2 1
Bold) = G Cal6) (<d - 1)> ;szvf - Z:TSNS (5.37)

for massless gluons, quarks, and complex scalars. The mass-dependent results are
given in section 5 and Appendix E. This result holds for dimensional regularization
(DREG), whereas for dimensional reduction (DRED) the gluon coefficient changes
from (7d — 6) to (84 — 10).
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The longitudinal form factors are given by

— () + O(p3)

A = 5
2\ 2
e} _ H(Pg) - H(p%)
12 = 2 2
1 — D3

and of course cyclic permutations yield results for Ass, etc. Note that one of the 14
form factors vanishes to all orders and only the A form factors contain UV divergences.
In the notation of Egs.(5.20,5.21) we have

Au@ = Gggth+ (5.39
An(S) = —Q(dl__l);uluzx

and similarly for the B and C form factors.

5.3.3 The transverse form factors

These form factors cannot be determined from the Ward ID, and must be calculated
explicitly. The algorithm used is briefly described in Appendix A.
Due to the lengthy expressions, the following shorthand notation will be used for

the kinematic invariants:

a=p b=ps c=pi a=pip B=p>ps Y=DsD1 (5.40)
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We also define the symmetric invariants

Q@ = a+pB+y
K = af+By+ra (5.41)
P = aBby.

Note that the dot products can be written in terms of the virtualities a = (c—a—b)/2,
B=(a—b—c)/2,7v=(b—c—a)/2,orviceversaa = —a—7,b=—a—-8,c=—-0F-7,
but the formulae are simpler and more transparent when selectively written in terms
of both «, 8,v and a, b, c.

We will only write the full gluon contribution explicitly, since the quark and scalar
parts can be determined from the results of section 3.1 (see Egs.(5.22,5.23,5.24)) and

the quark-gluon sum rules for the transverse form factors, which are

Sea(Fu) = -1 (w 200800 == ) =1 = m)
Zoa(H) = (d_QIO)J' (5.42)

The gluon contributions to the transverse form factors in the LT basis are

_— 1
F13(G) = W<J<10P+C(K—7a2—3ﬁ’y)> (5.43)
(d+1)8y K
+ (1= S (P + avdi + B+ By = 7= i+ Ja+ J3)
7d — 6 J—Ja
+ Q(d_l)(d_Q)[éSP—i-(d Dac + (d - 2)(4;ca—cﬁ~y)] —
1, 5d—2 . Td—6 2d—15d+1
+ == 1[2ﬁ(d 2) - K - ——af - }JQ—J3
1 9 5d — 2 7d — 6 2d—15d+14
d—1[27(d_2)_ s Mg O"B} )
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and

HG) = 2/162 (J[8/c2 (d—2)PQ+ (d+ 1)‘“;?3}
+ S22 a(K ~ 207) (s = ) + B0 = 260)(Ja = J5) + (K = 28)(Js = h)
+ ng—i [ (Jy+ Jo + Js) + d—,:C—l(omJl +afJs + ﬁvJs)} ) (5.44)

5.3.4 The Form Factors in the Physical Basis

Now we will present the results in the physical & basis (Eq.(5.7)), before symmetriza-
tion, Eq.(5.12), since this is the most convenient way to present the results. Of
course, these results can be obtained from the relation between the £ basis and the
LT basis given in Eq.(5.16), but we write them explicitly for future convenience and
phenomenological applications.

The quark-gluon sums are given by

Soc(An) = (ach + By + by + cads )
- 10
Soc(Br) = — B)abJ + (2a + B)adi — (20 + 7)bJy — a8 — 7)J3)
EQg(Clg) = ( ) <OZCJ + ’}/Jl + /BJQ + CJ3>
Soa(Di) = 0 (5.45)
Soc(H) = 0
Soc(S) = 0,

and the remaining sums (for A;, etc.) are related trivially by permutations o —

B—~v—a,a—b—oc—a, Jy = Js— J3— J.
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The gluon form factors in d dimensions are

2
—4 K% A12(G) = abeJ(TK + B7v) + adq (7165 + 3%y + m%) (5.46)

+ bk (Tiy + 872+ Kﬁ%%%) + e (TKa+ P+ Kt —2)

—4KC? BulG) = abJ(TK + By = B) + ads (TKG ~ by (5 = ) +

20(7d — 6) + 3
d-1

a(7d — 6) + v
1)

) + (v—ﬁ)J3<7ICa+P+ICcZ:?>

- by <7IC7 +aB(B—7)+K

16 K3 C12(G) = ¢J <3IC2(100¢ +¢) + K(a® = 6¢87) + PK(d+4) — P(d+ 1)(® + 2ﬁ'y))

+ J (l@ [(3d__21d)a - 7<d2 _d32d1+ 24) + 36} +P(d+1) [% +v(2Q - 3a)}

+ wc{@%a? _ 652 + Eﬁ;%{;——?—)ﬁv _ 472(2—:?}> (5.47)
+ D (zc? [(3d‘_21d)a _ g ‘d?’fdl* 24? + 3]+ P+ 1) b’f—l +5(20 - 30)|

e T )

(30d - 31) ., s L o(d—2) (d®—4d+1)
+ cJ3< lC-i—IC{a —4c o1 T

By] +(d+1)P20 - 3a)>
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16 K3D12(G) = ab(a — b)J(iC(Q +2a) — (d + 1)73> —alJ <C§__14/C2 (5.48)

+ [ﬁ ﬁ’y(cil =3 _ aﬂ(dz ;il_dl-i_ D, + 40? (j:?)} - (2a+ B)P(d + 1))

(d? — 4) (d® - 3) (d® - 4d + 1) (d—2)
+bJ2<———_1 IC2+IC{ — 0By T —ay 71 +4a2d_1}

d

—(2a+’y)P(d+1)>+(a—b)J <(d_1)162+/c[ ﬁ»y(;"g’)}—w(dﬂ))

+ aJ1<3d—_21dIC2+ [‘fj__f’m—ﬁﬂ/c+(d+1)m?>
+ bJ2<3d__21dlC2+ {‘fj_’f’aﬁ—ﬂ/u(dﬂ)w) (5.49)

+ cJ3<3d—_21dIC2 + [‘g__f’m - o/ﬂ/c +(d+ 1)a73>
16 K3 S(Q) = (a — b)(b— c)(c — a)J(BICQ —(d+ 1)73) (5.50)
4+ (b—c)J (3’C2 +/c[4a2d dfl_dl“ —352} —(d+ 1)73(29—35))
L (c—a)] (W +IC[4b2Z dfdl“ - 3] —(d+1)73(2Q—37)>
+ (a—b)J <3K2 +/<;[4c2j dfdlﬂ —3042} ——(d+1)7>(2Q—3a)>

Now we turn to the physical symmetrized basis. From Eq.(5.12), we see that for
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any triplet of form factors, say A,;, we have

where we have defined

= é(Alz + Ags + A31)
%(Am + AAos + :\-A31> = A +i4,
%(Alg + Moz + )\A31> = Ay —idy,
A = %(Am - %(Azs + A31)>
Ay, = ? (AQS - ASI)-

101

(5.51)

(5.52)

A; and A, correspond to the real and imaginary parts of A; only when J, Ji, J2, J3

are real. This occurs (in the massless case) when K > 0, which can only happen if all

three gluon virtualities are of the same sign, either all spacelike or all timelike. This

is often not the case for real problems. In general, however, it can be shown that

Ai(a,bc) = Az(—a,—b,—c)
Bj(a,b,c) = By(—a,—b,—c)
Bi(a,b,¢) = By(—a,—b—0)
Ci(a,b,c) = —Co(—a,—b,—c)
Cila, bc) = —Cz(—a,~b,—c)
Di(a,b,c) = —Do(~a,—b,—c)
Di(a,b,c) = —Dzg(-a,—b,—c)
H*(a,b,c) = —H(-a,—b,—c)
S*(a,b,c) = —S(-a,-b,—c).

(5.53)

Furthermore, all of the above form factors except for Ay are scale invariant,

F(X\a,\b, \c) = F(a,b,c) = F(a/c,b/c,1) A >0.

(5.54)
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Only A, is not scale invariant and does not satisfy a simple reality condition.

The quark-gluon sums are given by

Sao(de) = ey soa(an) =0

SaotBr) = -0

Soa(Bs) = 36IC ( 3 Q@2+ICJ(6—7)>:|:2'\/§<Q<I>1—ICJ(Q—Ba)))
Soc(Co) = "10 @d-10), |

Yoa(Cy) = < ®y+iv/3 <1>2> (5.55)

Yoc(Do) = ZJQG( =
Yoc(H) = ¥gc(S )

where we have defined the commonly occuring functions

®y = abeJ + afJy + byJs + cads
d, = (K—-38v)J—3vJ1 —38J2+3(8+7)Js (5.56)
P a(B—=7)J+ Qo+ — Qa+B8) s+ (B-7)Js

From the definition of Yg¢ in Eq.(5.22) we see that the quark and gluon (and
thus scalar, by Eq.(5.23)) contributions have the same functional form for the seven
form factors which have a zero in the above. Letting F stand for Ay, Dy, Dy, H or
S, we find that

F=ig (Nc - % S TiNs + % Y TSNS>F(G), (5.57)
f s

which, in d = 4 QCD, reduces to F = ig?(N, — N;)F(G).

In addition, both Ay and By are governed by one function, since they satisfy
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different sum rules. In particular, the tree level tensor structure has coefficient

1, w 8)
Ay = — ;%( ZTf ;- d 3 ZTN)@O (5.58)

This form factor will be discussed in more detail in the next section.
Also, one finds from explicit calculation that the scalar contribution to By van-
ishes,
By(S) =0 Bo(G) + 4By(Q) =0, (5.59)

and thus

1
By, = ig? (Nc —5 ZTfo) By(G)  where
f

By(G) = ;C <(a —-bb—c)c—a)J+(b—-¢c)(2Q—-308)J1 + (c — a)(2Q — 3v)J>

+ (a—b)(20- 3a)J3> (5.60)

Finally, since S = 0 exactly, we know that our fourteen-dimensional basis is
degenerate, which is reflected in the fact that S + 3Dy = 0. Hence we define a new
basis tensor c% = dy — 34 so that Dodo + S5 = Do(azo —35) = Doc%.

Thus, we find that eight of the thirteen nonzero form factors have the same func-
tional form for gluons, quarks, and scalars. Only the five form factors B+, Co and Cy
do not. These statements are basis dependent. One can always find bases where none
of the form factors have a vanishing QG sum rule. In the course of our calculations,
we found that the & basis gives the maximum number of such zeroes among bases
which are reasonable and contain the tree-level tensor structure. In this sense the
(symmetric) + basis is the simplest and most compelling. We will see in the next
section that this is also the most convenient basis for perturbative calculations. Of
course, as discussed in a previous section, with supersymmetry every form factor is
proportional to Gy, and so supermultiplets are governed by the same function in any

basis.
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5.4 Three-Gluon Vertex in Perturbation The‘ory

Applying the pinch-technique (PT) construction to the three-gluon vertex occurring
in a physical process involving three external on-shell legs, one arrives at a dressed
tree-level skeleton graph, dressed with pinch-technique vertices and self-energies as

shown in Fig. 5.2. Generically the amplitude of the three-gluon graph can be written

(A)

Figure 5.2: The tree-level skeleton graphs dressed with pinch-technique vertices and
self-energies, which are used to define effective charges both for the quark-quark-gluon
vertex (depending on a single gluon virtuality) and for the three-gluon vertex, which
depends on three different momenta.

M= ngvlyl %Uz%VBDﬂlul(kl)Du'm(k2)DM3V3(k3)F#1M2H3(/€1a k2a k3)a (5'61)

where C is the overall color factor and go is the bare coupling. The PT vertices V; are
for gluons coupled to external particles, whose indices are suppressed; this is shown in
Fig.5.2 for external quarks. I' = 21121 F; fi is the gauge invariant three gluon vertex,

whose thirteen form factors ( F;) are given in the preceding section. Finally the “gauge



CHAPTER 5. THE GAUGE-INVARIANT THREE-GLUON VERTEX 105

invariant” PT gluon propagator is-

Dy (k) = % (1—% +§lul/(k>)

kuky :
_ uv — 52 . covarlant
tw(k) = { G — . }m{ el gauges

n-k
k—‘;? . covariant
Lw(k) = ok, (1D - gauges, (5.62)
W axla.

where £ is the gauge-fixing parameter. This is “gauge invariant” in the maximal sense,
i.e. the gauge dependence comes only from the tree level terms, and in particular
T1(k?) is totally gauge invariant.

Regardless of whether the external particles are quarks, gluons, or scalars, the
vertices satisfy 4’V , = 0 when these particles are on shell (OS). One can then show
that the gauge dependent terms coming from Eq.(5.62) vanish in the full amplitude
consisting of all of the graphs in Fig.(5.2). This can be seen trivially in the covariant
gauges where the gauge cancelations occur graph by graph, and with some work in
axial gauges, where the cancelation occurs between all of the graphs. In the latter
case, one must use the fact that the three gluon vertex satisfies the Ward ID in
Eq.(5.3). Therefore we can take

Juv
D, (k . 5.63
wF) = s ) (5:63)
Also, in the £ basis (Eq.(5.7)) any tensor with a '+’ in any slot gives vanishing
contribution to M. For example, (+00) = (k2 + k3) 41 Guops = —F1,u1 Gpuaps> and ki
dots into Vi, yielding zero. Hence only (00—),(—00), (0—0), and (———) contribute,
and we find

Cgd VAR VAsh Vol
9o 1 V2 V3 QOFOS

M= T A+ MR A+ ) KKk Y

(K1, ko, k3), (5.64)



CHAPTER 5. . THE GAUGE-INVARIANT THREE-GLUON VERTEX 106

where the three-gluon vertex connected to on-shell (OS) external particles is

TOS (ki ko k) = (1 + Ag)ao + Ardy + A_a_ + Hh, (5.65)

B1p2443

in the notation of section 5.2 where hatted objects are three index basis tensors.

757
50

25

LI T T
1 2 4 6810 20 50 100 200 400
pr2(GeVA2)

Figure 5.3: The effective scale Qeff(10 GeV?, 10 GeV?,p?) is the lower blue curve,

while Q2;(—10 GeV?,—10 GeV?,p?) = Q%;,(10 GeV?,10 GeV?, —p?) is the upper
red curve. These both asymptote to zero, although very slowly for the upper curve.

Now one naturally defines PT effective charges by?

2
2012y — 90 .
2\ = J0 =1.2.3. i

Since we only have a single power of go for each 1/(1 + II(k?)), this leaves the factor

[, 1//1+10(k?) =~ 1 — L(II(k?) + TI(k3) + II(k3)) to be absorbed into the three

gluon vertex. Thus we have

k1,k27k3) = (14 Ao)ao + Aray + A_a_ + Hh

H \/H——H(k_z Mmzua

1
Ao(k2, K2, k2) = Ao(K2, k2, K2) —

5 (T(kD) + TI(k3) + T1(k3)) (5.67)

2Eq.(5.66) holds for external fermions or scalars, but for gluons one would instead have three
additional three gluon effective couplings, as is clear from the derivation of Eq.(5.69).
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1 2 4680 20 50 100200400

pr2(GeVA)

Figure 5.4: The effective scale Q2,(10 GeV?, p?,p?) is the lower blue curve, while
Q%;(-10 GeV?,p?, p?) = Q%,(10 GeV?, —p?, —~p?) is the upper red curve. These
both asymptote to 10e? GeV? ~ 31.25 GeV?,

and

Vlﬂlvzuzvus - .
A4=Cg@ﬂg%@g%@—jﬁﬁzf—%hl+fhﬁo+fhd++fL&_+fﬂ4. (5.68)
1723

This naturally leads to the effective coupling of the three-gluon vertex

?(aabv C) ~ Qo
4m 1-— ZKO(a,b,c)’

ala,b,c) = (5.69)

first obtained by Lu in [83]. Our amplitude then takes the final form

H1Y/H2 T H3
VitVat Vs

M = Cq(R)g()g (G2, K3, k) s
1723

@+&m+mm+mﬂ(mm

Recall from the previous section that Ay, H & N, — Ny in QCD.

The three-gluon effective coupling evolves according to

62(ao,bo,co)

1-— Q(Zo(a, b,c) — zzio(ao, bo,co)> (57

ala,b,c) =
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In four dimensions with regularization scheme R = DRED or DREG we have

o~ as
AO(a7b7c> = —gﬂo I:L(aabac) - log:uz - C'UV -3
11 2 1
where ﬁo = ?Nc — §Nf - ENS
1 .
Cyv = -~ E + log4m (5.72)
N,
ns = (2+Q)+ %5R,DREG
16
Q = —=Cly(n/3)~3.125
L Clun/3)

The scheme dependence dg prrc is explained in more detail in Appendix D. Here we
have defined

L(a,b,c) = %(oxy loga + aflogb + Bvlogc — abc(a, b, c)) +Q, (5.73)

and the (massless) triangle integral function J = J(a,b,c) = —16ir*J(a,b,c) is
given in Appendix B in terms of Clausen functions, Eqs.(5.121,5.122). This result
(Eqs.(5.69,5.72)) differs from Lu [83] by only the finite constants which (slightly)
affects the numerical extraction from data. The discrepancy can be traced to the
inconsistent application of dimensional regularization in [83].

The logarithm-like function L satisfies
L(a,a,a) =loga (5.74)

since

J(a,a,a) = ai\/gcb(w/s). (5.75)

One can use the real part of this function to define an effective scale of the three-gluon

vertex:

L(a,b,c) = log (ngf(a, b,c)) + ilm L(a, b, c)

Q2%4(a,b,c) \a|a7/'c\b\a5/’clc|ﬁ'y/’cexp(Q—%Rej(a,b,c)). (5.76)
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This is sensible since the dimensions of Q2 f f(a, b, c) are indeed mass squared.

Figure 5.5: A contour plot of szf(l,:c,y). The contours, from red to blue, are at
2,4,6,8,10,12, 14, 16, 18, 20.

The three-gluon effective charge a(a,b,c) is related to the usual MS coupling
a(q®) by

1 1 2rr(arb,
— — + S ( log —————Qeff(a )
ala,b,c) a(p?)  4n 2

B 1 o |
= e, @) + 247r1m L(a,b,c). (5.77)

+4Im L(a,b,c) — 773>

Since exp (ﬂ;) ~ 14, we see that when using M S, the scale should be fourteen times
lower than the typical virtualities of the gluons, given by Q.fs(a,b,c). Of course,
this is true only if the three-gluon vertex diagram dominates the physical process. In
general there will be different scales at the various quark-gluon vertices when using
the PT scheme (as seen in Eq.(5.70)). In contrast, in MS the same scale is used
at every vertex. The following approximate values of the three-gluon coupling are

derived from Eq.(5.77) (including the effects of quark masses which discussed in the
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Figure 5.6: A three-dimensional contour plot of Q%;(1,z,y).

next section) for various symmetric timelike(T) and spacelike(S) configurations :

5SS : &(—M3, — M2, —M32) ~ 0.192

SST : &(—M3, — M2, +M2) =~ 0.157 + 0.0231
STT : (= M2, + M2, +M32) ~ 0.156 + 0.0251
TTT: G(+M2, +M2,+M2) ~ 0.170 + 0.062]

It is clear that the three-gluon coupling is stronger than naively expected from

agrs(Mz) ~ 0.118.

The effective scale Q? #7(a, b, c) satisfies the following relations:

gff(aa b,c)
ngf(Aaa Aba AC)
)

Q

Q

ngf(_a’v _b’ '—C)
|>‘|Qeff(a7 ba C)

|al (5.78)
5.54|a|

lcle®2  for |a| > |c|

lcle?  for |a| > ||

8llel o

for |a| > |b], ||
o]
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Lu [83] has previously found the last of these limits in the case where all momenta are
spacelike, giving an effective scale QminGmed /Qmaz- 1t should be noted that the rate of
convergence to the above limits strongly depends on the signatures (S = spacelike <
p? < 0, T = timelike < p? > 0) of the virtualities a, b, c. If the signatures are mixed
(TTS) or (TSS) then the convergence is very slow, and the effective scale tends to
stay larger compared to the cases (SSS) or (TTT).

Some plots demonstrating the novel behavior of szf are given in Figs.(5.3,5.4,5.5,5.6).

5.5 Phenomenological Effects of Internal Masses

So far, all fields propagating in the triangle graphs have been treated as massless. This
was useful for simplifying the discussion and elucidating the general structure of the
radiative corrections and the N = 4 sum rules. However, in real world applications
one usually does not have all three gluon virtualities in the same desert region M; <
a,b,c € M;.,. Thus, mass corrections should be taken into account. We have
calculated the effects of massive fermions (MQ), massive scalars (MS), and massive
gauge bosons (MG) for all of the form factors; the complete results are given in
Appendix E. The corrections for the case of massive fermions were first obtained in
Ref.[84] and we are in agreement. Here we will focus on the massive quark (MQ)
contribution to the form factor multiplying the tree level tensor structure, which from

Appendix E and section 3 is

am? o 348
3(d—2)"" " 6K(d—2

Ao(MQ) = ) [achM + aB iy + byan + caJ3M} . (5.79)
Here Jus, Jinm, Jour, and Jsy are the massive analogs of J, Ji, Jo and Js, respectively.
The two-point function Jij and tadpole Ths are reviewed in Appendix A, while
Appendix B is devoted to a discussion of the massive triangle integral, Jys, and its
analytic continuations and various limits.

As in the previous section, when considering a physical matrix element we always
have the combination ]fo = Ay — %(Hl + Il + H3) multiplying the tree-level tensor

structure. This leads us to consider the massive quark contribution EO(M Q) =
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T a2
Figure 5.7: Lasg(a/M? a/M?,a/M?) vs. a/M? for timelike @ > 0. The solid line is
the real part and the dashed line is the imaginary part.

A(MQ) - L(T1;(MQ)+TI5(MQ) +T5(MQ)), which upon using Eq.(5.135), inserting
the prefactor ig?, and expanding around d = 4 becomes

~ o |1 M? 1 —
Ag(MQ) = I {5 <CUV — log —MT) + 3K (abeJy — ayL(a) — aBL(b) — BvL(c))
2 2/ 92— - -
L 2, (JM+2 La) , 2- L) 2 .c(c)>} (5.50)
3 3 a b c
Here Jy = —16i72Jy and
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Figure 5.8: Lyo(—Q?/M?,—Q?/M? —Q?/M?) vs. Q/M for spacelike —Q* < 0.

comes from Jijs and has the analytic continuations given in Eq.(5.106). The three-

scale logarithm-like function for massive quarks (MQ) is thus given by

Ly (Ma_z % I%) _ %(afy/.’(a) + aBL(b) + B1L(c) — abcT(a,byc) ) +©

L oon? <[,(a) -2 N L(b) -2 N L(c)c- 2 —E> (5.82)

a b
2

~ g a b c M
Ai@) = (52 o (337 + 108 ~ v =@+

This massive logarithm-like function has the following limits :

a b c 2
Lo (]\_/IE’W’T/[—?) ~ 240 M? > |al, b, ||

a b c
Lo (g as) = Llosbio) =logh Ml bl (9

with the number Q =~ 3.125 defined in Eq.(5.72). The convergence to the mass-
less limit is very slow, indicating that threshold effects must be included for most
applications. ,

In Figs.(5.7,5.8) we have plotted Ly for the symmetric case a = b = ¢ for

timelike and spacelike momenta. For the timelike case, the threshold at ¢ = 4M 2

E
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Figure 5.9: Lyg(a/M? a/M? —a/M?) vs. a/M?. The solid line is the real part and
the dashed line is the imaginary part. The real thresholds are at a = £4M? while
the pseudo-threshold is at a = 5M2.

and the pseudo-threshold at a = 3M? are evident. In Fig.(5.9) the mixed case (TTS)
Lyo(a/M? a/M? —a/M?) is plotted, where the thresholds at a = +4M?® and the
pseudo-threshold at a = 5M? are evident. For the purely timelike (TTT) case in
Fig.(5.7), there is a discontinuity in the imaginary part and the real part diverges at
the pseudo-threshold. In contrast, for the mixed signature case (T'TS) the imaginary
part diverges while the real part is discontinuous. This pseudo-threshold phenomena
is explained in more detail in Appendix B.

From the above results, one can define the effective number of active quarks which

characterizes the effects of quark mass :

a b ¢ 5 d a b c
Ne (M_‘M_'M—> = - M mtue (Vﬁﬁ) (5.84)

This clearly goes to zero and one in the limits M? > |al, |b], |¢| and M? < |al, |b], ],

respectively.

To motivate this definition, let’s.look at the single-scale pinch-technique effective
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Figure 5.10: The effective number of quark flavors. The lower blue solid curve
is Nr(Q?/M?) for the symmetric spacelike (a = b = ¢ = —Q?) three-gluon vertex,
while the upper dashed red curve is the fermion number of flavors Ny, (Q?/M?) for
the single scale effective charge.

charge (using the notation of [1]) as a function of spacelike momenta a = -Q?
1 1 1 Cou?
= =+ — 35, [ L(Q*/m?) — log 5 — Cuv — 5.
Oé(Q2) Qo + A - /612 ( P(Q /mp) 0g mzz) CUV np) ) ( 85)

where (3, is the contribution of each particle p to the first 5 function coefficient, and

to a very good numerical approximation (for spacelike momenta)

2

L@ ) og (& + Z) (5.56)
p

where the constants 7, are 5/3,8/3, and 40/21 for massive fermions, scalars, and gauge

bosons, respectively. The exact one-loop formula are given in Eq.(23-26) of Ref.[1],

although the analytic continuation in Eq.(26) of that paper should have opposite
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‘imaginary part. This effective charge satisfies the RGE

da(Q?) & dLy(Q*/m3) & Q?
dlog@® _Z?Xp: P dlogQ2p _Ez;ﬁ”Np (Eg)

(@2) L (QYmY)  dL(Q@YmY) 1

FLE dlog@? dlogm3 Nl_,_gégenp'

N,

P

(5.87)

The function NN, goes to one when Q? > m2 and zero when @* < m} and unambigu-
ously measures what fraction of particle p is “turned on” at scale Q.
Moving back to the three-scale case, we now have the complication that our effec-

tive charge is a solution of a multi-scale RGE
da(a, b, c) a? d a b ¢
Jukd St et et Al — L _ 88
dloga 4772p:ﬁpdloga MR\ M2 M2 M2 ) (5.88)
and two other permutations with a — b or a — ¢. This leads to three different Ny’s :

a|b ¢ d a b ¢
v (sl 1) = qogae (337 3 (589)

and two cyclic permutations, each of which goes to 1/3 in the symmetric desert

a =b=c> M?. This suggests adding all three together to define a symmetric

a b ¢ d d d a b ¢
Np (=, —— | = Lo | ~—, —, — .
F(M2’M2’M2> (dloga+d10gb+d10gc) Me <M2’M2’M2>’ (5.90)

which is in fact the same as given in Eq.(5.84).

The results for Ny can be obtained with the help of the results in Appendix
B. Instead of presenting these lengthy results, let us focus on the symmetric case

a = b = ¢, where we find for spacelike a < 0

a d a a a d a a a
Nr (W) = Tlogal M@ (mw m) =~ Jlog IZ LM (m’ e M‘z)
54 M2 L(a)(a — 2M?)
(a — 3M2)(a — 4M2)’

M? —_
= 1+18—+ 2M?*Jy(a,a,a) + (5.91)



CHAPTER 5. THE GAUGE-INVARIANT THREE-GLUON VERTEX 117

In this example, spacelike a is chosen to avoid the pseudo-threshold a = 3M? and
the threshold a = 4M?. Fig.(5.10) shows a plot of this along with single-scale quark
number of flavors function Ny— /2 from Eq.(5.87).

The negative value of Np at 0 £ @ < 4M is not entirely novel, as a similar
behavior was also found in the context of two-loop quark mass corrections to V-
scheme effective charge [85]. It is essentially due to the anti-screening of color charge,
this case in the triangle interaction, and does not arise in the one-loop single scale
effective charge, as seen in Fig.(5.9).

Using the results of Appendix E, the above analysis can be easily extended to the
case of massive scalars (MS) or massive gauge bosons (MG), which have the following

logarithm-like functions

Luss (% Mfz.z_ ﬁci) _ % (a7£(a) + aBL() + Br£(c) - abéTr(a,b,¢)) +
— 4N (ﬁ(a) —2, LB -2 Lo =2

- ‘Jﬂ) (5.92)

a b c
L (%, %’ %) = %(oryﬁ(a) + aBL(b) + BvL(c) — abcTy(a, b, c)) +Q
N éM2 <£(a) -2 N L(b) — 2 L L(c) -2 —E) (5.93)
7 a b c

The qualitative behavior is the same as the quark case.

Finally, we should consider the limitations of the effective scale ngf(a, b, c) in-
troduced in the last section and effective number of flavors Np(a/M?,b/M?, c/M?)
discussed in this section. Given the complicated structure of the full mass dependent
form factors, such tools for characterizing and understanding the behavior of the ver-
tex are helpful. However, in a real calculation such methods may be of limited use
and the full mass dependent results should be used. For example, the effective scale
Q? t7 has been defined only in the massless case so far because the definition becomes

complicated and somewhat arbitrary in the massive case. In particular, consider the
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possible definition (for QCD):

11 a b 9
ECAL(a,b,c) = (LMQ <M2’ 3 M2> + log M3 )]

q

C
= <11 4 _ —Z <M27 M27 M2> ) longff(a,b,C), (594)

[\)

Re

w

where ]7,1 is some suitably defined number of flavors, possibly a step function such as
6(a + b+ c—3M?), possibly the N defined in Eq.(5.84), or some other definition.
It should be clear that any choice of ]Tf; determines ézf s> and vice versa, and there
seems to be no compelling choice for these quantities. Furtherrﬁore, in the approach
advocated here, the couplings at each vertex depend on physical momentum scales
which will typically be integrated over in the phase space. Thus, matching onto a
conventional MS type approach can only be done at the end of the calculation, so
that trying to define a @Q? ¢; at an intermediate stage is not very useful.

Thus, in real-world applications, one should generally use the full results for the
mass dependent form factors. This constitutes a multi-scale analytic renormalization
scheme that contains information which cannot be obtained in the simple single-
scale leading-log renormalization methods. In other words, every three-gluon vertex
(at tree-level) can be dressed, or “RG improved”, with this gauge-invariant effective
coupling and the associated form factors, which are process independent and contain

more information than the M S procedure.

5.6 Conclusions and Future Directions

The results of this chapter represent only a fraction of what is needed for a re-
organization of perturbation theory into fully gauge-invariant pieces with physical
content, each of which can be renormalized independently, leading naturally to a
physical multi-scale analytic renormalization scheme. This is possible due to the re-
markable properties of the pinch technique (PT)/ Background Field Method quantum
Feynman gauge (BFMFG) Green’s functions. There is still much progress that can
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be made in calculating these Green’s functions in perturbation theory.

The present chapter gives a complete and general characterization of the off-shell
three-gluon vertex at one-loop. A similar study of the gauge-invariant triple gauge
boson vertices of the Standard Model [66] would be very useful. It may also be possible
to quantitatively look at the unification of triple gauge boson vertices and couplings,
in analogy with the work on the unification of single-scale PT couplings[l]. Some
progress has been made on the conventional gauge-dependent three-gluon vertex at
two loops [86][87], which gives hope for eventually treating the gauge-invariant three-
gluon vertex at two-loops.

The gauge-invariant PT/BFMFG quark self-energy turns out to be equal to the
conventional self-energy in the Feynman gauge [75], and so is known through two-
loops [88]. Due to the Ward identity [36] satisfied by the PT/BFMFG quark-gluon

vertex, this also yields the longitudinal form factors of I'#%

through two loops.

In QCD, another logical step is the four-gluon vertex at one-loop. In the general
off-shell case, there are hundreds of independent tensors structures and form factors.

Beyond perturbation theory, the study of Dyson-Schwinger Equations [61] and
renormalons [63] in the PT/BFMFG approach may yield new insight.

To summarize, in this chapter we have analyzed the behavior of the gauge-
invariant three-gluon vertex at one-loop. Starting from the symmetry principles gov-
erning the vertex, a convenient tensor basis decomposition was given in Egs.(5.7,5.12).
As seen in Eq.(5.65) and the subsequent discussion, this basis is the most convenient
for phenomenological studies, since it is built out of “transverse” (—) and “longitu-
dinal” (+) momenta, the latter of which vanish when dotted into external on-shell
vertices, thus leading to relatively simple matrix elements. In the case considered
in section 5.4, only four form factors remain, rather than the thirteen which would
be present in a generic basis. Nonetheless, the choice of basis is only a matter of
convenience, and the real physics lies in the thirteen non-vanishing form factors given
explicitly in section 5.3.

The supersymmetric relations between the scalar, quark, and gluon contributions
leads to a simple presentation of the results for a generic (unbroken) gauge theory.

Only the gluon contributions to the form factors are given explicitly in section 5.3,
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while the quark and scalar contributions are inferred from the homogeneous relation
Fg +4Fg + (10 — d)Fs = 0 and the results for the relatively simple sums Zge(F) =
Ld;—z)FQ + Fg which are given in section 5.3 for each form factor F'. The extension to
the case of internal masses is outlined in Appendix E and leads to the modified sum
rule Fyg + 4Fug + (9 — d)Fys = 0.

The phenomenology is largely determined by the form factor of the tree-level
tensor structure, which in section 5.4 is used to define a three-scale effective charge
a(a,b,c). In addition, the characteristic scale ngf(a, b, c) governing the behavior of
the vertex and the effective charge was analyzed, thus providing a natural extension
of BLM scale setting [12] to the three-gluon vertex. Physical momentum scales always
set the scale of the coupling. The phenomenological effects of quark masses are dis-
cussed in section 5.5 and are found to be important for generic physical applications,
since decoupling is slow and a complicated threshold and pseudo-threshold behavior
is observed. An important next step is to fully apply these techniques to a physical
process. In the future we will present such an analysis for the hadronic production of
heavy quarks, where the importance of the form factors other than the tree-level one
(Ag) will be addressed. The interpretation of the pseudo-threshold phenomena also

deserves further study.

Acknowledgements I would like to thank Lance Dixon for useful dis-
cussions regarding the second order formalism of the BFM and the supersymmetric

decomposition of one-loop amplitudes.



CHAPTER 5. THE GAUGE-INVARIANT THREE-GLUON VERTEX 121

5.7 Appendix A : Reduction to Scalar Integrals

First, we will describe the evaluation of the massless integrals, and then briefly men-
tion the modifications due to internal masses. As before, we will use the shorthand

notation

a=p> b=p: c=p5 a=pps B=p2ps  V=Dpsh (5.95)

In order to evaluate the integrals in an efficient manner, it is very convenient to
choose a manifestly symmetric routing of the loop momenta, as shown in Fig.5.1,
where clearly

h=ps+ls la=ps+l lL=p+Llb (5.96)

Of course there is only one integration momenta [, which can be chosen to be [, l3, or
I3, thus breaking the cyclic symmetry. However, using the symmetric labeling greatly
simplifies the analysis.

First we decompose the full vertex I into longitudinal (L) and transverse (1) parts,
I' =1 +T7, as in Eq.(5.14). The tensor integrals in Eq.(5.18) are then converted into
scalar integrals by applying projection operators. In doing so, the longitudinal (L)
and transverse (1) parts essentially decouple, and the ten independent L form factors
are easily found either directly, or by solving the Ward ID, resulting in Eq.(6.22). The
remaining four T parts are found by applying the following four projection operators
to Eq.(5.18) : 200,030,001, and 231, where as in Table 5.1 we have defined 030 =
P3usGuiuss €tc. Thus, for the gluon contribution G we have four scalar integrals :
G(200) = pou, Juops Guipans: G(030),G(001), and G(231). Similarly, there are four
integrals for the quarks and scalars as well. In the numerator of each of these integrals
there will be various dot products of momenta, which can always be reduced to
momentum squares using Eq.(5.96). For example, p;-lo = (12 13 —p})/2 and l;-l3 =
(12 + 12 — p2)/2. Thus we are left with integrals of the form

]ijkz/w, (5_97)

Rl
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where [ = [ (Td%g and 7,7,k € {0,1,2}. Using the standard rules of dimensional
regularization, it is easy to see that any integral with any two of 4, j, kK nonzero must

vanish. Furthermore, it is straightforward to show that
Inoo = =BLio  lozo = —7Iow0  Loo2 = —door- (5.98)

Thus we are left with only two types of integrals: (1) the trivial two point integrals
Ji, Jo, and J3, where

1 1
h=tn= [ = | ey 599

and (2) the master triangle integral
— 222 1
J = J(p1,p3:p5) = /lgl—glg (5.100)
16243

For the gluon contribution, for example, one then has a system of four equations
with four unknowns, the transverse form factors. Denoting the gluon contribution to
the longitudinal projections by Lg(200) = 200-I'L(G), etc. we solve for the transverse

form factors

F13(G) G(200) — Le(200)
Fi(G) | _ - | G(030) ~ Lo(030)
F31(G) T G(001) — Lg(001)
H(G) G(231) — Lg(231)

B (d-1)8 B 2-d

where My = -K i v =Dy 2=d 0
(d-1)a a o 2—d
K K K 0

and similarly for the quark and scalar contributions.
The above procedure can also be followed for the massive case, with only a few

modifications. First, the tadpole M?Ty; = [ 7= does not vanish. Thus, instead of
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[ =
= = —(3J; we now have

bl3

1?2 — M? )
(2 = M?)(12 = M?) = —0BJiy + MTyy, (5.102)

where Jiy = f@_—w)l—(l?_M—z) = [ (lz_Mz)((llerl)g_Mz). We also need the following

result and permutations :

= aM*Ty;. (5.103)

/zg—MZ_ 12— M?
2-M2 ) 12— M2

Finally, we have the master triangle integral with nonzero masses

1
— 2 .2 2 _
Ju = JM(p17p2ap3) / (lf _ M2)(l§ _ MZ)(lg _ M2)'

(5.104)

To summarize, in the massive case we need Jyr, Jiar, Jour, Jaumr, and Ty In the
massless case we need J, Ji, J, and Js. For each of these we pull out the factor #
and define Jyr = 5 Ju, ete.

Some formula for these integrals in d dimensions can be found in [81]. Here we
will give only the expansions in four dimensions and define Cyy = % — vp + log4m
where d = 4 — 2e.

The tadpole integral is

— M?
Ty =Cpy +1—log 7 (5105)

The two point integral is

- M?

Jiv = Cyv+2-—log ?— — L(a) (5.1086)
2vtanh ™ (v71) = vlog L a<0

L(a) = 20tan~! (T7}) for ¢ 0<a<d4dM?

14v
1-v

2utanh™" (v) — imv = vilog ¥ — ixy a > 4M?
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and the generalized velocities are

_4M2 4M?

v=14/1 7= - 1. (5.107)
a a
In the massless limit this becomes
—_— a .
J=Cpy +2— IOgL_J + 176(a). (5.108)

5.8 Appendix B : Results for the Triangle Integral

The massive triangle integral

d*l 1
In = Ju(p3, 05, 15) = / 1
m = Ju(p1, P2, P3) (2m)E (B — M2 + i€) (B — M2 + i€) (2 — M2 + ie) (5.109)
is finite in four dimensions. We will give the results for Jy; = —71672J);. This integral

has been discussed previously in the literature [89][90][91]{84]. In particular, 'tHooft
and Veltman [89] derived a formula which is valid for all values of the kinematic vari-
ables a, b, c and mass M, although careful analytic continuation is required. We will
first write the results of [89] in our notation and then discuss the analytic continu-
ations. The various functions involved and some reference formula are summarized
below in Appendix C.

Defining p = v/—K, where as before

, ,
K=aB+8y+ya= +Z(a2 + %+ —2(ab + be + ca)), (5.110)

we have
1

T =5

(I3(alb, ¢) + Is(b|c, a) + I3(cla, b)). (5.111)

1— 4(M2—ie)

The results for I3(alb, c) can be expressed in terms of the velocity v = -
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and the variable z = §/p :

Ii(alb,c) = Liy(21) — Liz(Z7) + Lis(22) — Liz(Z2) — n(z — v,z + v) log “

21
1 1
-1- 1 —n(l - logz3
+ v, ——)logz —n(l — v, ——)log %
1
-1 1 —n(l log z7 5112
+ n( +v,x+v) og 22 — (1 +v,— v) 0g 71 ( )
where we have defined
z+1 r+1 z—1 z—1
= = ¥ = Ty = 5113
A T — 2 r+v ! r+v 22. T —v ( )

and the function 7(z, y) compensates for the branch cut in the logarithms:

logzy = logz +logy + n(z,y) (5.114)
247 (9(—Im 7)8(=Im y)0(Im zlm y) — 6(Im z)6(Im y)0(—Im zIm y))

n(z,y)

The other two integrals I3(b|c, a) and I3(c|a, b) are easily obtained by permutation
of the above results, so that ¢ = v/p,v = 4/1 — 5“\5—2 and z = a/p,v=14/1— f“\f—z, re-
spectively. Although these results entirely characterize the massive triangle function,
it is a rather tedious exercise to analytically continue the results to the six different
physical kinematical regions. To our knowledge, such complete analytic continuations
have not appeared in the literature thus far.

Jur takes different forms for £ > 0 and K < 0 since then the variable z is
imaginary and real, respectively. The case K > 0 can occur only if all momenta
are spacelike (a,b,c < 0) or timelike (a,b,c¢ > 0). The case £ < 0 can occur for
momenta of any signature. Thus, if all momenta are spacelike or all timelike, the
ratios of momenta will determine if £ > 0 or £ < 0. For each of these two cases,
we must also distinguish when a is spacelike, timelike below threshold, and timelike
above threshold. For timelike above threshold and spacelike, the generalized velocity
v=4/1— i%f_i is real, except for the ie term which is used in the analytic continuation

4M2
- 1.

and hence not included below. Below threshold v = i =i
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Case £ >0

For K > 0 we have

v = B/p = —iBlp = —iu (5.115)

e K>0 and vreal <= (a <0ora>4M?)
Ii(alb,c) = Z(2012(2@51) — Cla(261 — 2¢2) — Cly(2¢1 + 2¢2)

+ 2im(¢; — ¢2)0(a — 4M2)>

¢ = tan"!(w) ¢ = tan"Hw/v) (5.116)
e X>0 and v=1<+= (0<a<4iM?)

I3(alb,c) = i<2C12(2$1) — Cly(28, — 26,) — Cly(2¢; + 26,)

w—T

+;’ — 276, 0(|jw| — v))

6, = tan™'(1/w) ¢, = tan"}(1/7) (5.117)

+ 2¢,log

w

Note that the prefactor of i in the above equations cancels against the ¢ from p = ip
in the prefactor of Eq.(5.111), so that the terms involving the Clausen function Cly(z)
(discussed in Appendix C) contribute to the real part of Jy;.
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Case £ <0

Here z is real.

e <0 and vreal <= (a<0ora>4M?)

L(alb,c) = Re (Lig(zl) — Lig(77) + Lis(22) — Lig(z—2)>
+ 22'7r<<,010(a)9(|x] —v) + pab(a — 4M2)>

o1 = —;-log iii‘ Yy = %log %%;—%\ (5.118)
e <0 and v=10+< (0<a<4M?)
L(ajb,c) = 2Re (Liz(zl) - Lig(z_1)>

Several features of these results deserve comment.

First, in the KX > 0,v = 4T case, there are anomalous thresholds which give rise
to a nonzero imaginary part and a diverging real part. As seen in Eq.(5.117), these
anomalous thresholds occur in I3(alb, c) (and similarly for I3(b|c, a) and Is(c|a, b) by
permutation) when

|w| =7 <= abc = 4M*K. (5.120)

There will be a nonzero imaginary part for |w| > 7 <= abc > 4M?*K. Note that since
here 4M? > a > 0 and K > 0, we must have b, ¢ > 0. Let us now look at some special

cases:

e a=b=c Here the condition for an anomalous threshold reduces to a > 3M?,

which was found in [84].

e b=c This leads to (a/M?) = (b/M?)(4 — (b/M?)), which is possible only if
b < 4M>.

There are also anomalous thresholds for the case of K < 0 and a > 4M?. For example,

for the mixed signature symmetric case a = b = —c > 0, there is a discontinuity in
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the real part of Jy(a,a, —a) and a divergence in the imaginary part at a = 5M 2 as
seen in Fig.(5.9). Anomalous thresholds were analyzed long ago [92](93].

In the case K > 0,v real, there is an imaginary part above threshold, a > 4M 2,
which vanishes in the massless limit 7z — 0.

In [91], the authors find an interesting geometrical interpretation and derivation
of the triangle integral (and higher n-point integrals).

In the symmetric limit a = b = ¢, the above results reduce to those given in
Eqgs.(55-62) of [84].

In the massless limit, we obtain

e £>0
F(a,be) = —%(012@%) + Cla(205) + Cla(26,))

$o = arctan <§>’ etc. (5.121)

e £ <0
F(a,bc) = —% (61E(2¢a) + Clhy(265) + Clhy(2¢-)
+ imgaf(a) + imgsf(b) + irqb.,@(c))

Vo = %log Ztg‘, etc. | (5.122)

where

(5.123)

Clhy(2¢,) = ( Clhy(2¢) for ab>0 ) |

AClhy(2¢,) for ab< 0

and similarly for @1}(2(;55) when (be > 0,bc < 0) and 61\52(2@) when (ca >
0,ca < 0).

The results for the massless case are well known [89][80][81][83], although the notation
is non-standard. Here we have adopted the notation of [83] by using the hyperbolic
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Clausen function Clhy(z), and alternating hyperbolic Clausen function AClhy(x),

which are discussed below.

5.9 Appendix C : Special Functions

Here we collect some useful results, mainly taken from [94]. The dilogarithm function

is defined for complex z by

Lig(2) = — /0 4z log & ;m). (5.124)

In order to find the real and imaginary parts of this function, one should first ensure
that the modulus is less than unity by judiciously using
|

Liz(2) = —Lig(1/2) — 5 51og2 (=2). (5.125)

The notation Liy(r, §), with two arguments, is used for the real part of Lis(re®). For

modulus less than unity, » < 1, we have the integral representation

1 (" log (1 — 2z cosf + 2
Liz(r,9)=—§/ o8 ( 9’;03 + o) (5.126)
0

The imaginary part for r < 1 is

Im (Lig(re®®)) = Tlogr + % (Cla(26) + Cly(2T) — Clp(26 + 2T))

_ 1 rsin
T = tan (————1 — rcosf))' (5.127)
In particular,
C 0V I NS N T
Im (Lig(e?)) = Clp() and  Cly(6) = = (Liz(e®) — Lis(e™™)) . (5.128)

21
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The Clausen function frequently appears in the triangle integral and has the following

representations :
’ LY . sinnz
Cl =— [ dylog|2sin=Z| = E
2(T) /o ylog | 1n2\ s n2

Furthermore, Cly(z) is odd, Cly(—z) = —Cly(z), satisfies periodicity, Cly(z + 2nw) =
Cly(z), and a duplication formula Cly(2z) = 2Cly(z) + 2Cly(z — 7). Many other
properties can be found in [94] and the some are conveniently summarized in the
appendix of [83].

We have used the notation of Lu[83], who used the hyperbolic Clausen function,
Clhy(z), and alternating hyperbolic Clausen function, AClhy(a), defined by the inte-

gral representations

Clhy(z) = —/ dylog\Zsinh%|
0

AClhy(z) = —/ dylog|2cosh%|. (5.129)
0

These can also be written as

Clhy(z) = %Re (Lig(e”) — Liz(e™))

ACIhy(z) = %Re(LiQ(—ew)—Liz(-e—w)) (5.130)

in analogy with Eq.(5.128).

Finally, some elementary relations which are used often include (for z,y real)

arg (z + 1y) = tan™* <%) + mh(—z)o(y)

tan"!(z) 4+ tan"*(y) = tan™" (fj-myy) + 7o (z)8(xy — 1)
tan~!(z) + tan~! (1/2) = a(x)g. (5.131)

where o(z) = «/|z| is the sign function and the step function 6(z) = (o(x) + 1)/2
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should not be confused with the angle 6.

5.10 Appendix D : Form Factors with Supersym-

metric Regularization

Here we discuss thé form factors regularized using dimensional reduction (DRED) in
integer number of dimensions dg, defined analogously to the usual dg = 4 DRED
scheme. This could be used for dg = 6 or dp = 10 theories, but of course we mainly
have in mind the four-dimensional case.

It is easy to see that the quark and scalar contributions are unchanged from
DREG, and only the gluon contribution is different. This is most easily expressed in

terms of the modified sum rule
Fo(DRED) + 4Fg + (10 — dg)Fs = 0, (5.132)

which implies Fg(DRED) = Fg(DREG) + (dg — d)Fs. Expanding d = dg — 2¢
around the real number of dimensions dg leads to F(DRED) = Fg(DREG) +
2¢Fg, which makes manifest the role of the 2e adjoint DRED “ghosts” which preserve
supersymmetry.

In four dimensions we have
Fo(DRED) +4Fy +6Fg = 0. (5.133)

Since only the A form factors have a UV divergence in four dimensions, only these

form factors will be changed when using DRED:

1 1

6prep(A12(G)) = Sprep(A1a(G)) = ~376m7 (5.134)

)

—1-i; and all other

In the symmetrized physical £ basis we have dprep(Ao(G)) =

form factors are unchanged.
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5.11 Appendix E : Quark and Squark Mass Cor-

rections

Here the corrections to the form factors due to fermion and scalar masses will be
given. The massive quark (MQ) contributions were first obtained in [84], and we
obtain exactly the same results. To our knowledge, the squark contributions, either
massless or massive (MS), have not yet appeared in the literature.

First, the well known formulas for the scalar and fermion self-energies are repro-

duced in our notation :

L(MQ) d—2J1M+2M2<2J1M—(d—2)TM>

a(l —d)

2Jip — (d—2)Ty
a(l —d)

I, (MS) = —delM—zW( (5.135)

2(1 -
with the integrals Jias, Ths given in Appendix A. These yield the massive fermion and
scalar contributions to the longitudinal form factors through Eq.(6.22).

Notice that the terms proportional to M? in the above two equations are equal up
to a factor of —2. After explicit calculation, it was discovered that the scalar mass
correction terms (dg) are just minus one-half of the quark mass correction terms

(6uq) for all form factors. Thus, for generic form factor F

F(MS) = F(S)‘M+5MS(F)

F(MQ) = F(Q)\MMMQ(F) (5.136)
5MQ = —251\/15

The notation F(S) g simply means to take the appropriate massless result for the
form factor F, as given in section 3, and replace J — Jy, J1 — Jinr, Jo — Jom,
Js — J3pr everywhere. |

Because of the relation &y9 = —20)5, we need only write either the fermion

or scalar mass correction terms explicitly. Here we choose the scalar contributions,
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which for the transverse form factors are

us(Fua) = — 22422 { (ch— _3§V> g+ o 20;’(%—_7; )(?; _+12)7—/3) Jie  (5.137)
- B QO;’(Cﬂiﬂ;)(fda—JrSﬂ L - dz_c e ;2(d_—d)1’)CaO;TM
and
ous(H)= 22/‘;2 d3f2 Iu— ’Cd__in Jin - %—@ Janr— %JBM + ’;((5:12)) TM}

(5.138)
The results in the physical 4 basis can be obtained from those of the LT basis
through the use of Eq.(5.16), and are included here for completeness.

dns(Ar2) = — (5.139)

co vJim + BJan + cJzy
d—2 d—1

(a—b)aJ +

(2a + )i —(2a + 8)Joyr+(B = v) Jam
d—2 "M d—1 |

}(5.140)

M2
Sms(Bia) = a {

M? | 8P + a’c+38% (e — ) + 37*(a - B)
4K d_

2 Jr
8P + (B — )+ (5a+ 78+ 4y)

ous(Cr2) =

Jint (5.141)

5a—|—77+4ﬁ)J
-Jom

~— T

4 + 20y - K (d —2)K(a® + 207y + 3K)

T
-1 * d—1)2ab M
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M? | (K+3a%)(a—b K + 4a? + 20
ous(Dr2) = 1Kz ( da—)éa )JM+ T 2 Jing (5.142)
K + 4a® + 203 28y — 3K)(a —b) (d - 2)K(a —b)
- i-1 UM o(d—1) Jonr + 2(d — 1)c T
M? | 2P + ab K-2 K-2 K—-2
IustH) = 4/@[ i g e+ S+ S
Cd-2K
SR (5.143)
M?|3(a=b)b—c)c—a 4a® + 20y - 3K)(b—¢
SRR | CELTLEY LD PYNCLES S L R P
(402 + 2a8 ~ 3K)(c — a) (4c® + 23~ — 3K)(a — b)
- bd—1) Jane + d=1) Jant
(d-=2)(a=b)(b-c)(c—a)Kk
S ek Ty | |. (5.144)

It is straightforward to see that all of the correction terms are ultraviolet finite.

The relation —28y;5 = 6mq is necessary for the preservation of the form of a
quark/scalar sum Ygo = 2Fg + Fg, which is equal to d—_%ZQG using the results of
section 3. In other words 2Fy s + Fiyg = 2Fg| u T FQ| 4 SO that this quantity has
no correction terms proportional to M?.

However, the relations between massive gauge bosons and massive fermions and/or
scalars will be different, since the gauge bosons eat a degree of freedom to acquire
mass. Consider the contribution of a massive gauge boson to the gauge-invariant

gluon self-energy 3 :

8 —dp -7 OM? (dp — 1 1
IL(MG) = J1M|: R } (dr— 1)

2(d — 1) . @d-1 i + 5(2 = d)To | (5.145)

3This is also the contribution of W#* to the photon self-energy.
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where as before dg = d in dimensional regularization (DREG) and dg = 4 (or the
real integer number of dimensions) in dimensional reduction (DRED). From this and
Eq.(5.135) we deduce

and thus the massive N = 4 sum rule becomes
Fuo +4Fuo+ (9 — dp)Fus =0 | (5.147)

for the longitudinal form factors. It can also be shown that this holds for the trans-
verse form factors and so the results of this chapter also give the contributions of
massive internal gauge bosons. Proving this involves detailed analysis of the vertices
and diagrams that contribute to the triple gluon vertex when the PT/BFMFG is ap-
plied to a spontaneously broken gauge theory that leaves a non-abelian subgroup (of
gluons) intact. This can be done following a pinch-technique route similar to [67][71].
Due to the equivalence of the PT and BFMFG, it is more convenient to follow the
BFMFG route similar to [95]. For example, in SU(5) GUTSs the colored superheavy
X and Y gauge bosons give a contribution which satisfies the above massive sum
rule. We should emphasize that these sum rules are simply a convenient way of relat-
ing the contributions of various spin particles, all with hypothetical mass M, but no
assumption is made about the actual masses for a given theory under consideration;

the sum rules are entirely stripped of color factors.



Chapter 6

The Pinch-Technique Effective
Charge at Two and Three-Loops

6.1 Introduction

The conventional formulation of gauge theories leads to gauge-dependent Green’s
functions which are, by themselves, devoid of physical content even though the par-
ticular combinations which form physical quantities are gauge-invariant. For many
purposes, however, it is desirable to have Green’s functions which are gauge-invariant
and physically meaningful by themselves. The two most well developed methods
are the pinch technique (PT) and background field method (BFM). It was shown
in [96] that the two methods were equivalent at one-loop. The two-loop PT gluon
self-energy was explicitly constructed by Papavassiliou [36] through the rearrange-
ment of the conventional two-loop corrections to a physical scattering process, and it
was shown that the equivalence of the PT and BFM persisted at two loops. Recent
progress has shown that the PT and BFM in quantum Feynman gauge (BEMFG) are
equivalent to all orders in perturbation theory [37][38][39][76].

These special Green’s functions have numerous positive attributes [34][31](32][64],
including uniqueness, resummability of two-point functions, analyticity, unitarity, and

a natural relation to optical theorem, from which they can also be derived [34](33][36].

136
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Resumming these two-point functions leads to physical effective charges, dla Grun-
berg [11], which can be extended to the supersymmetric case and leads to an analytic
improvement of gauge coupling unification with smooth threshold behavior [1]. More-
over, these Green’s function can be renormalized independently and furnish a natural
multi-scale analytic renormalization scheme, which was explored for the three-gluon
vertex in [97].

The purpose of this chapter is to calculate the PT gluon self-energy to two-loops.
This is interesting for several reasons. First, the finite parts will yield an improved
numerical extraction of the PT effective charge from experimental data, as encoded in
the MS coupling. Second, the three-loop S-function coeflicient of the PT renormal-
ization scheme is then easily derived. Third, the results here also give the longitudinal
form factors of the gauge-invariant three-gluon vertex at two-loops. Finally, the status
of a N = 4 supersymmetry sum rule can be investigated. In [97] (see also [72, 73, 82]),
it was found that the triple-gluon vertex and the gluon self-energy of the PT were
exactly zero in N' = 4 theory at one-loop. Interestingly, at two-loops there remains a

finite constant for A" = 4 supersymmetry, as seen in Eq.(6.15).

6.2 Notation and Setup

The diagrams contributing to the PT two-loop gluon self-energy are shown in Figures
6.1, 6.2, and 6.3 in the Appendix. The results in Tables 6.1, 6.2, 6.3, 6.4, and 6.5 are

given in terms of A and B, which are related to the gluon self-energy by

2 YE —2€

. a —loo . a _p €

—{IT% (3100P) (12) = g5 color x (Ap®guy — Bpupy) - (6.1)
4

diagrams

The standard notation for the color factors is used, so that C4 = Co(G)(= N, for
SU(N,)), Tr[tath] = Trd®, Tr[t2t}] = Ts6%, t5t% = Cr, and t5t¢ = Cs. The fermions
are Dirac and the scalars are complex.

For the Yukawa graphs in Table 6.4, the notation of Machecek and Vaughn [46]
(in Appendix A of paper I) has been used for the group theory factors Y, (F) and
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Y4(S) which are in the “color” column of Table 6.4. These are defined by

1

Yy (F) = m’l‘r [C‘(F)Y“Y"T]
Yi(S) = ﬁﬂ [C(S)YeyeT], (6.2)

and the Yukawa interactions are of the form Ly = —Y%0,¥1¢s + h.c.. Since these
contain two powers of coupling, the gj in the above formula (Eq.(6.1)) should be
replaced by g2. For the Yukawa graphs the fermions are Weyl and the. scalars are
real. Note that although the Y;(S) term does not contribute to the § function [46],
it does contribute finite parts which are important here. In this chapter we will only

be interested in supersymmetric Yukawa couplings, which have the particular values
(see Eq.(4.29))

H(F) = 2g2Ty(Cy+CA)
Yi(S) = 4¢°TyCy. ‘ (6.3)

Here Tr[t3ty] = Tyd® and tty = Cy are just the usual trace and Casimir color
factors for the chiral supermultiplet (®) to which the gaugino is coupled in the loops.
These are labeled separately to take into account the possibility of multiple supersym-
metric Yukawa vertices. For example, momentarily we will be interested in N = 4
supersymmetry, which has the values Ty = 6C4 and Cy = Cjy.

Of course the totals for each independent color structure must be transverse (A =
B), which is a useful check. In [79][98] it was noted that the % pole terms were

transverse graph by graph. Here we find that the finite 72

and (3 terms are also
transverse graph by graph.

The results for both dimensional regularization (DREG) and dimensional reduc-
tion (DRED) are given through the use of the parameter dg [99]. This appears in
the dimension d = 4 — 26z when performing internal metric contractions, which are
treated differently in the two schemes. The values 0 and 1 correspond to DRED and
DREG, respectively. The results of Tables 6.1, 6.2, 6.3, and 6.4 are the results for

DREG, while Table 6.5 gives the terms proportional to (1 — dg), i.e. the correction
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terms for DRED.

The divergent parts of the BFMFG gluon self-energy were first given in [79] for
the pure gluon and fermion contributions. The divergent parts of the full quantum-
gauge-parameter dependent results for the pure-gluon case at two-loops were given
in [98]. Finally, the finite terms which depended on the difference between MS and
DR schemes (8r) were calculated in [99]. The results of this chapter are in complete
agreement with these previous calculations. The new results presented here are the
finite parts of all of the graphs, including gluons, fermions, scalars, and Yukawa

couplings, all given in the massless limit.

6.3 Results and Applications

6.3.1 The effective charge and relation to MS

The gauge-invariant gluon self-energy derived from the PT/BFMFG is used to define

the pinch-technique effective charge through the relation
a(p’) = ——=——, (6.4)

where the bare (dimensionful) coupling is ap = g3/(47) and we expand through two
loops

~ A

(p?) = L (p?) + ML (p*) + -+ . (6.5)

Defining the bare, MS, and PT couplants by

o7
apg = —

_ « R
= a = — a =
4r 47

the results this chapter can be written as
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where L, = log (—p?) + vg — log 4. The first two 3 function coefficients are

11 4 1
fo = —?)—CA - ETF - gTs (6.8)
34 20 2 1
81 = ?C’i - TF <§CA + 4CF) - Ts <§CA + 4CS> + EYLL(F)
and the finite terms are
64 1 20 8
= [|———= — =T .
C1 ( 5 35R>CA+9TF+QS (6.9)
659 7 158 49
Cy, = (6( TR §(5R> C% + <8C3 + —9—> CaTr + (—16C3 + 3 + 26R) CrTr
43 43 1
+ 3(3 + I—S' CuTs + —4<3+§- CsTy — 4—92(3Y4(S)+ 11Y;1(F))

The two-loop constant term Cs is a new result, while the C) term and of course fy
and (; are known.

In order to extract the numerical value of the PT coupling we have to compare to
the data for some physical observable(s). Since most of the relevant data has been
incorporated into the MS coupling (@(u?)) over the years, the relation between &
and @ should be used. In the convention where the bare coupling is dimensionful, the
bare and M S couplants are related by

e 2

oo = a07)e | 1= () 2+ ) (Z-2)] (6.10)

where L = log > + vg — log 4w. Substituting this into Eq.(6.4) leads to

1 1 —p2 _ 9
ap?)  alp?) + folog <—M%) +Cr+a(p?) [ﬁl log <7€—> + Cz}
1 1

fL(—QQ) = E(QQ) + 01 +E<Q )Cg (611)

Comparing with MS value &@(M2) = 0.118 £0.003 and using the proper QCD values
of the color factors at scale Mz (C4 =3, Tr = Np/2=5/2, Cr =4/3, Ts = Cs =



CHAPTER 6. THE PINCH-TECHNIQUE AT TWO AND THREE-LOOPS 141

Ty = Cy = 0), we find

(=M2%) = 0.1413+£0.0043 2 loops
a(—M2) = 0.1401£0.0042 1 loop, (6.12)

>

The small upward shift from the two-loop corrections is in very good agreement
with predictions using BLM methods (see Chapter 8). The BLM predictions for the
constant Cy (in QCD) is within 10% of the correct value.

Eq.(6.12) was obtained using dg = 1, appropriate for DREG and MS. The same
results would be obtained by relating the PT coupling to the DR coupling, with
g = 0. In fact, the relation [99] between the MS and DR couplings can be obtained
by requiring that the value of the PT coupling does not depend on the choice of

regularization.

6.3.2 N =4 supersymmetric gauge theory

For N' = 4 supersymmetry, the supersymmetric values for the Yukawa invariants
given in Eq.(6.3) should be used in Eq.(6.9), along with the following values for the

color factors :

Cr = Cs=Cy=0C4

T = 4 <—;—CA> =2Cy (6.13)
1
TS = 6 <§CA> = 3CA
Ty = 6Cy4 (6.14)
This leads to
A )
Hl = CLOER'CA

I, = a (13¢3 + 2 - 253> C?. (6.15)
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Using the supersymmetric regulator DRED (éz = 0) yields I, = 0 but I, # 0. Thus,
the N = 4 gauge supermultiplet gives a nonzero finite contribution at two-loops.

It should be noted that the Yukawa graphs do not have any (3 terms, which arise
from only the master-type graphs S3, S4, F4, G3, and H6. Thus, it is only necessary
to look at these graphs to see that in fact (N =4) #0.

6.3.3 Three-loop § function

The definitions of the 3 functions for the PT and MS couplings,

s 0a A
s = W——a [ﬁo+ﬂ1a+ﬁga -l-]
- _ 0Oa — =
ﬁ - alogq2 —a l:ﬁo+ﬁla+ﬂ2a +:], (616)
combined with Eq.(6.11) leads to
By = By + C181 — Caffo. (6.17)

Using the known [100, 101] results for the three-loop §-function coefficient of QCD
in the M S scheme '
_ 2857 . 1415

205 158
B cy - CATF—- 9 CACFTF+—270AT]%+

44
= Ci- = —CrT: +2C%Tr (6.18)

9

we obtain the three-loop B-function coefficient of the PT scheme in QCD

. 334 845 542 176
B = (-— - 22<3> ( + ca) CiTr — (— - —<3> CaCrTF

3. 9 9 3
130 184 64
("'9_ + CS) CATI%' + (—9— - ?<3> FT}27' + 2C%TF (6.19)

It is interesting to compare to another effective charge, ay, defined from the
heavy quark potential [102], even though use of this charge has fallen out of favor
due to its infrared problems. Nevertheless, both the PT and the V-scheme share
the philosophy of trying to construct physically meaningful Green’s functions that
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measures the actual strength of the forces. The two-loop finite terms and three-loop
B function of the V-scheme were calculated in [103].

Numerically we find

B, ~ 2292 —516Np + 18.7N}
B, ~ 1429 — 280NF + 6.0N%
Y~ 4224 — TABNp + 20.9N7 (6.20)

and

Nr | B, Bs 8y

644 914 2174
406 529 1574
181 182 1016
—-33 | =127 | 500

SOt e~ W

It is interesting the PT and M S values are numerically similar in comparison to the

V-scheme, which has a rather large .

6.3.4 The longitudinal form factors of the gauge-invariant

three-gluon vertex

In Chapter 5, the form factors of the gauge-invariant three-gluon vertex [60] are given
at one loop. An all-orders relation between the gauge-invariant gluon three- and

two-point functions is encoded in the Ward identity

pgsrmuzua (p17p27p3> = b (pQ)(l + H(pg)) = Ly (pl)(l + H(p%)) (6-21)
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which can be solved for the ten longitudinal form factors, yielding

A, = f[(p%)-i—ﬁ(pg)

12 2
_ T(n2) — TI(p2
B, = H(&)_Qﬂ (6.22)
o D) - 1)

12 = 2 _ 2

b1 —p3
5 _ 0

and cyclic permutations Ao, Asy, Bas, Ba, Coas, C3;. The bars on the form factors
simply denote the LT basis [97] and have nothing to do with MS. The results of
section 6.3.1 combined with Eq.(6.22) lead to the two-loop longitudinal form factors.

Acknowledgements The author would like to thank Lance Dixon for

providing a check on some of the diagrams.
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6.4 Appendix : Results for Diagrams

Fi,S1,Gl1, Hl

Figure 6.1: The Diagrams with fermions (F) and scalars (S). The blob in the bottom
diagram represents the one-loop quantum gluon self-energy insertion. The diagrams
implicitly include any mirror image diagrams which are not shown, so that S6 repre-
sents 4 diagrams, while F3 represents two diagrams, etc.
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[ Diagram | color(xTr) A B
839 5,2 13 101 436 5.2 401 10 1
‘ gy CA 56%8 _2571- _GTI—FIE—z ; +2§7T -14?1; —4?16—2_
2 2
O e S T 00 0 SIS T
| F3 Ca 3T T3t U-—gm+F etz
| F4 Cr—3Ca 37+2w2+16c3—%§—§§2 1012721162124
2008 2841 201 2008 5.2 2841 201
R B S g T B S STy
2 2
\ RE2 Ca ST threteae ST wl Tt
| Total(A = B) | TrCrp( — % +16¢; — %) + TrCa (— 188 8¢, — L4
Table 6.1: Diagrams with Fermions
| Diagram | color(xTy) A B
1133 2_491_ 51 293 5,2 251 _ 51
I I N 0 o N WS P o
2
‘ 32 CS 213 11+2 _?10;1:3?1 1 691 —]1-;7+§7T —235_52511 1
2
I I VO I oo ol B P L
| o4 (Cs—3Ca) | -T2 +187r 244G 01 1L | A da2ygc -2l 1g
i Sh (Cy — 4Cs) 183+%i 0
1 115 1.2, 131 11 63 1,2,91 11
| So o |eGsoion | Hewtaiind | RIS
2
‘ RSl CA 38881 +El')087r _65—71; —5§1€_2 3§+? 2 ._Gg—flE —551;2-
2
| RS2 Ca S TET Taretia S TET Taret s
| Total(A = B) | TsCs(— £ +4¢—2) +TsCa( - § 3¢ — 31)

Table 6.2: Diagrams with Scalars
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.....

.....

G2 G3
oGRSy T a8 1AL L 1) A
G5 0
S e o
H4 H5
rews 3}'@
H7

RF1, RSI, RGHI1

RF2, RS2, RGH2
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Figure 6.2: The Diagrams with only gluons (G) and ghosts (H). The ) in the bottom
two diagrams represents the gauge-fixing-parameter counterterm insertions.

| Diagram A B

oHl | W-oESo gl E e G TR T

G | B gr oo SR L Tt

RGIEE S LRI TR PR S R AL SRR T

| G4 -6 — 3 0

| G5 —2+m-B_ 5 -+ 5

| m B-gr i AR

| H3 184 4d 0

| U+ gt~ 21 - ik gt -3 -

| H5 R Ui Tt ~B T BT ne

| oHs | Bl Rkl | W o g -6 Sl

AT g Rl TR - RELON TRET

| RGH1 | ER-gwelifd | BE- e le Ry

| RGH2 | -l so_mml_ny | ke me -2
| Total(A = B) | C4(3% —6Gs+ 1)

Table 6.3: Diagrams with only gluons and ghosts. Each term has color factor CA.
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Y1 Y2
000‘... ,mem\
Y3 Y4

| Diagram color(xTr) A B

3 . 1.2 _ 51_ 11 19 1.2_31_ 11
| Y1 Y4(S) % tnT —3c 3@ | Tz THT T332
1 43, 1.2 71 _ 11 5 1,2 _1__11

’ Y2 Yy(F) — 3Y4(5) 2T 87T T §e 3 >y T 7T ~ ¢ T 3@
19 _ 1.2, 51 .11 | 22 12,31 11

‘ Y3 Yi(F) 3 ~ 17 T3 T3 1 T tie T3z

15 _ 1 o2, 181,11 | 1w_ 1.2 .1 11

‘ Y4 Yy(S) 50 36" T e T e : "% tetEa

IS [
+
vl
=
X

| Total(A = B) | 3Y4(S) + (

Table 6.4: Diagrams with Yukawa couplings

| Diagram | color(x(1 = dg)) A B
| F1 Te(Cr—3Ca) | -8 -31 | —4-32
| F2 TrCr W4l | g4 4
B T T R
| F4 TrCa 1842l 4+ 21
101 31 9 31
em )G e R
& B I R I I AT
| G3 Ca Ttic | ¥Tiac
| G4 c3 -3 0
2 6 51 46 51
| mom 2 B R Rl h t
‘ RGH?2 CA 5 +3 >+ s5%

1
| Total(A = B) (—%Ci + QTFCF) (1 — 53)

Table 6.5: Corrections due to Supersymmetric Regularization. dg = 0 in DRED, and
0r =1 in DREG.



Chapter 7

The Higgs Boson Mass in Split

Supersymmetry at Two-Loops

7.1 Introduction

The gauge hierarchy problem of the Standard Model (SM) of particle physics has
been a fruitful source of inspiration for beyond the SM physics. Most notably, a main
reason for the prominence of supersymmetry was its natural solution to this problem.
In recent years additional circumstantial evidence for supersymmetry (SUSY) has
arisen from gauge coupling unification and from dark matter, although these successes
have been partially offset by difficulties with flavor changing neutral currents and
CP violation which arise from light SUSY scalars. Thus, it may be reasonable to
abandon the original motivation for SUSY and consider the implications of a theory
which maintains all of the successes of the MSSM, except for the hierarchy problem,
and does away with some of the difficulties. This proposal, called finely tuned, or
split supersymmetry, has appeared in [57][58], and some phenomenology has been
discussed [104, 105, 106, 107, 108, 109, 110]. In split supersymmetry, & single Higgs
scalar is fine tuned to be light, with the understanding that the fine tuning will be
resolved by some anthropic-like selection effects. This approach may have a natural

realization within inflation and string theory [111], where an almost infinite landscape

149
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of vacua may contain a small percentage which have the desired fine-tuned parameters
necessary for life and the properties of our universe.

The prediction for the Higgs boson mass is typically higher in Split SUSY than
MSSM scenarios, and is thus a key distinguishing feature. The MSSM Higgs mass is
known to two-loop accuracy [112]. The purpose of this chapter is to bring the split

supersymmetry Higgs mass prediction to a similar level of precision.

7.2 Corrections to the Higgs Mass

The starting point for our analysis is the split SUSY Lagrangian [57][58]

\ A ) ,
L = m?H'H - —Q—(HTH)Q + FyH'Qu + FpH'Qd + F H'LE + h.c.
_ ﬂg_lég _ %WIWI _ M;gaga _ pHTeH,

- (o T4 Bk (- rao W+ wB) At e (1)
where H = —iooH*, H = (H*,H°)T, and € = i0,. The predictions for the Higgs
mass will be derived from this Lagrangian using methods similar to the work of Sirlin
and Zucchini on the SM Higgs boson [113] and the subsequent work of Hempfling and
Kniehl on the SM top quark [114].

After electroweak symmetry breaking, the bare Higgs mass is related to the bare

quartic coupling A and vacuum expectation value (vev) vy = V2(H®) by

Mio(B) = v/ do(H)vo(R) (7.2)

where the dimensional regularization scale T is introduced into loop integrals through
[ d*z — % [ d%z and is elevated to the renormalization scale in MS. Each of these
bare quantities must be related to physical quantities in order to obtain a meaningtul

relation.
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The pole mass is related to the bare mass by

T.(T
M} = M} (B) + Re Zp(My, 1) + 3 hf}”), (7.3)

where X, is the Higgs self energy and T}, is the tadpole'. The bare vev is related to

the renormalized vev via muon decay [115] :

v (m) = vp (1 + Mww(0,70) + E(R) — 2%2) , (7.4)

where vp = 1/+/ V2Gr = 246.22GeV, Iyw(0,7) is the W* boson self-energy at
zero momentum, and E represents vertex and box corrections to muon decay in the

standard model. Finally the bare coupling is related to the MS coupling by
vy L
Ao(T) = A(E) + _Q_CUV7 (7.5)
where Cyy = % — g + log4n and By = W%\g‘ﬁ' Putting these together, one finds

My = VA@ve(l+ (7))

Re Xn(M,, 10 T, (T
Sn(m) = é( © I;\S[}% wE) + Mhégi + E(@) + Myww(0,7) +§—;\\CUV). (7.6)

This formula includes all one-loop threshold and renormalization group (RG) cor-
rections, and can be improved to include the two-loop RG corrections to the running
of A(f). The scale i should be chosen to minimize large logarithmic corrections, al-
though at one-loop the 77 (and Cpv) dependence formally cancels from Eq.(7.6). The
results for 0;(77) in the SM were given in [113]%. The split supersymmetry threshold

corrections are discussed in detail in section 7.2.5.

1No tadpole counterterm is used in this chapter. It is a matter of convention whether or not one
uses such a counterterm, and the final results are easily seen to be independent of this choice.
2The convention used here is related to [113] by 65 (this paper) = —£65™ ([113])
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7.2.1 The algorithm used to calculate the Higgs mass

The input parameters for the Higgs mass analysis include supersymmetry breaking
scale Mg, tan 8 at Mg, and the soft gaugino and higgsino masses M;, M, M;, and
1 (not to be confused with the RN scale 7i) which are specified at the scale of gauge

coupling unification Mg ~ 3 x 10'°GeV and are assumed to be universal
Ml/Q = Ml(.]\/[(;) = Mz(Mc;) = Mg(Mg) = M(MG) (77)

Of course, the u-term may take different values from the gaugino masses, but we have
explicitly verified that the Higgs mass prediction is very insensitive to the u initial
value, so the results in Figs.(7.1, 7.2, 7.3, 7.4) are valid for most other reasonable
values of u.

First, the coupled system of differential equations [58] for g1, go, g3, Fv, Fb,
Fi, ky, Kq, K, K} are solved numerically. The gauge couplings are run at two loops,
whereas the seven other couplings are run at one loop. We keep only the top, bottom,
and 7 Yukawa couplings, and so we can replace Fyy — Y;, Fp — Y3, F, — Y7 in the all
of the following formulae. The boundary values of the gauge couplings g1, g2, g3 and
Yukawa couplings Y3, Y, are given at scale Mz from the latest world averages [116].
As will be discussed in section 7.2.3, Y; is given at the top pole mass M, including
three-loop QCD corrections and one-loop threshold corrections from electro-weak and
split supersymmetric interactions. The new split SUSY Yukawas are given at scale

Mg through the relations:

/iu(Ms) = gg(Ms) sinﬁ

ky(Ms) = g2(Ms)cosf

K (Ms) = ggl(MS) sin

kh(Ms) = \/ggl(Ms) cos 3. (7.8)

Because the boundary values for the couplings are given at different scales, it is neces-

sary‘to take an iterative approach to solving the differential equations. The couplings
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which are specified at low scales, such as y;(M;), are guessed at the high scale M;, the
differential equations are then solved, and the resulting value for y;(M;) is compared
to the correct value in order to obtain a better guess, at which point the procedure
is repeated. Five iterations are usually sufficient. An additional complication arises
because the split SUSY corrections to Y;(M;) (detailed in section 7.2.3) depend on
U,V, and N, which depend on the solutions of the RGE’s for the gaugino/higgsino
masses, which depend on the solutions of the RGE’s for the dimensionless couplings,
which in turn depend upon Y;(M;). Thus, this entire analysis should be performed
iteratively.

Armed with the RGE evolution of the dimensionless couplings, the RGE’s for the
soft masses Mi, My, Ms, and u are then solved and are run down to scales My, Mo,
M, and u, respectively, where the physical pole masses are extracted, as detailed in
section 7.2.2. The chargino and neutralino mixing matrices U, V, and N will appear
in the threshold corrections.

In section 7.2.4 the two-loop running of the Higgs quartic coupling will be given.
The solutions for g1, go, 93, Fu, Fp, FL, ku, kd, K, Ky yield the required inputs to
" solve the A RGE, with the gaugino and higgsino masses providing the appropriate
matching scale between the Standard Model and split supersymmetric running. The

boundary value of the Higgs quartic coupling in minimal split supersymmetry is

A(Ms) = i(g%%) + %g%uws)) cos? 25, (7:9)

Finally, all that remains is to include the finite threshold corrections in Eq.(7.6).
These are detailed in section 7.2.5. Results for the Higgs mass are given in section
7.3.

7.2.2 The gaugino and higgsino mass spectrum

The formulae for the running of the gaugino and higgsino masses are given in Eqs.(57-
63) of Ref.[58].

The gluino mass appears in our analysis as the threshold for the running of the
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strong coupling. It is straightforward to evaluate M3 at scale M3 and deduce the pole

mass

Mz = Ms(Ms) (1 +12 gfgy) . (7.10)

The chargino and neutralino mass matrix diagonalization proceeds similar to the

MSSM [5]. The mass matrices are given by

KV Ko, ¥V
My 0 =% K
M, s 0 M, v s
X:(M2 ﬁ) e \65 vz (7.11)
vz M -YZ V2 —H
LA )] 7 0
Vi T

These are diagonalized by matrices U,V in the chargino sector (x7x;) and N in

the neutralino sector (x?):
xi =Vydy  xi =Uydy X) = Nyl, (7.12)

where the gauge eigenstates are

W+ W™ <
+ — - _ 0 __ 0 ONT
Uf = ( g ) U5 = ( i ) w2 = (B, Wy, HY, HY)T. (7.13)

The matrices U, V, N are specified by

NYN=MN = diag{M™, 5™, 0V, MMy
NY'YN-! = (M2
* - . C C
UXvt = MO = diag{ M, M9}
VXXVt = (MOY =UXXUT o (7.14)

The running mass parameters M;, My, p are evaluated at the scales My, Ma, u,
respectively, in an iterative fashion. This minimizes the threshold corrections relating
the pole masses and running masses, which are not considered in detail. In any case,

the results are very insensitive to the exact scale chosen. The threshold effects due
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to gaugino masses are incorporated into the running of the dimensionless parameters

appropriately.

7.2.3 The Top Quark Yukawa coupling and pole mass

Since the Higgs mass is most sensitive to the top Yukawa coupling, it is important
to carefully extract this from the pole mass, which is taken from the 2005 summer
average of CDF and DO [117] to be M, = 172.7£2.9 GeV. The leading corrections are
from QCD and were calculated to two-loops in [118] and to three-loops in [119]. The
full electro-weak corrections at one-loop were considered in [114], where the authors
found the following relation between the pole mass, the MS Yukawa coupling, and

the vacuum-expectation-value vg :

M,
w(®) = VI (1+0(m)). (7.15)
vr
The correction term is derived analogous to Eq.(7.6) and is given by
_ _, _ Oww(0,m) E@ 8
(5,5(,11) = ReZt(Mt,u) — QM‘?V — ) — 2—;:10[]‘/. (716)

In this formula T; represents the top quark self energy and E is the vertex and box
corrections to muon decay, neither of which receive new contributions in split SUSY
at one-loop. However, the W boson self energy, Ilyw, does receive corrections, which
are calculated below. The UV divergence, Cyy, multiplying the top Yukawa beta
function 8,, = IZ%% comes from the relation between the bare and MS Yukawa
coupling and is canceled by the divergent parts of ¥;, llyyw, and E.

It is convenient to decompose the correction term into parts arising from QCD,

electro-weak theory (EW), and split-supersymmetry (SS) :
5/(|) = 87°C(A) + 07 (1) + 67°(F) (7.17)

The three-loop QCD term derived from [118][119] for the top quark at scale & = M,
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is

R <a—3(M—t)>2—80 (aa(Mt>>3

3 T T T
—0.046 — 0.011 — 0.003 ~ —0.060 (7.18)

Q

for as(Mz) = 0.118. While the EW term given in Ref.[114] formally depends on
M, and M, it turns out that in the range of Higgs and top masses of interest, this .
contribution is negligible |6F%| < 0.001.

Now we turn to the SS corrections, which arise only from the gaugino and higgsino
contribution to the W# self-energy. The W% —x9—x; vertex is given by ig,(Ly; Pr+
R;;Pr), with '

1 . .
Lij = —ENZA 72 + NiQ i1
1
Ry = _\/—'_2_N:3Uj2+N:2Uj1' (7.19)

This vertex is used to derive the split SUSY corrections involving charginos and

neutralinos :

4 2
16 P2 TSN (0,7) = —2MECov Xa(SS) + g2 > Y ((Ling‘j + Ry;RY)
2 2 2p2 2
9 a 9 b a“b a
X {a (1ogﬁ3—1/2>+b (logﬁg—l/Q — logﬁ}

. .. ab 0 a’ 9 b?
+ Q(Linij + R’ijLij)m —a IOg ﬁ —1]+5b IOg ﬁg -1 ,

where we used the shorthand a = Mj(c), b= MY and X,(SS9) is given in Eq.(7.23).

)

N——
+

(7.20)

The resulting correction term

C,N —

575(m) = 212, (7.21)

Cyv=0

depends on the soft gaugino mass terms, tan 3, and the scalar mass scale Mg. The
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scale 77 must be chosen in accordance with the decoupling scale Mss imposed on ¥,
at the chargino/neutralino thresholds, i = Mgs. The exact scale is not very impor-
tant, but consistently applying the choice to both the running of y; and the threshold
correction 07° is important. For the explicit results given in Figs.(7.1, 7.2, 7.3, 7.4),
the decoupling scale was chosen to be the mass of the lightest supersymmetric par-
ticle, which is typically a neutralino. Generically the split SUSY correction is small,
655 (7 = Mss)|<0.01, but should be included since it can lead to a shift in the Higgs
mass of up to 2 GeV.

To summarize, we have found

M,

) (1 + 655 (Mss)) (7.22)

7.2.4 The 2-loop running of the Higgs Quartic Coupling

It is useful to define the following invariants involving the standard model Yukawa

couplings and the new split SUSY Yukawa couplings :

Yo(SM) = Tr|3F}Fy +3F,Fp+ F,{FL}

[
Yi(SM) = Te[3(FiFu)? +3(FbFo)? + (FLFLY
Yo(SM) = Tr|

T [3(F Fu)® + 3(FhFD)’ + (FLFL)|

17
Yo(SM) = (209? 1% +893> Te(F} Fy)
3
b (Go+ 308+ 56) Te(FbD) = S0t + D THFLFL)
X5(SS) = 3(kZ+ kD) + KL+ Ry

3(k;,
X4(SS) = B(k: + kL) + 262K2 + 2(kyukl, + kel + (k7 + k7). (7.23)

The running of the quartic coupling A of the Higgs boson is governed by

“Bu T+ B+ | (7.24)

br= (1672)2
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The one-loop beta function is given by [58]

(1) 2 1, 2 27 9 9 4
= 12X\* -9\ | = —
By 9 ,(591 +92> + (10091 109192 + 792
+ 4NY5(SM) — 4Yy(SM) + 22 X5(SS) — X4(SS). (7.25)
The 2 loop result is conveniently divided into two terms,

P =8P (SM) + 87(SS9), (7.26)

where SS is the new split SUSY contribution and SM’ denotes the standard model
result modified to include gauginos and higgsinos in gauge boson self-energies. This

is accomplished by replacing the number of generations in the SM result with

N,(1) =3+3/10=33/10  N,(2) =3+3/2=9/2 (7.27)

B (SM') = —78)3 — 24N°Y5(SM) — AYy(SM) — 42XTx(F}, Fy F Fp) + 20Ys(SM)
- 12TI”[F[J5FU(FUFU + FZT)FD)F%FD] + 10>\YG SM + 5422 ( + g1>

o 687 ur,,
- B4giTy [(FJ,FU )2+ (FhFp) ] gTr [2(FLT,FU) ~ (FhFp)? + 3(F}F1)?]
5
497 97 . 8
) et + (5 - sm0) o8 - (35 530 oef

3, 9

5 92 2g

717 8 531 24
mwwNuoﬁﬁ—(——+—Mﬂ0ﬁ (7.28)

171 7 9
4nmmw{( 5MJWW%H< G+ 166t ) TH(FbFD)

1000 © 25

- (5
(0
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The new split SUSY Yukawas contribute

B83(SS) = —12)2X,(S8S) - %[S(Rﬁ 4 KY) + 4R34 2KZKE + KRS + K + Ky
— 1262} SOk R] + 4—27013 +14) + ngf +Kq) + gn%(ni + K3)
+ —121(52/@;2 + KaKZ) + %fci/@?j(/@f + K2) 4 19k, kakl k(K2 + K3)
+ 2Qkykakl Ky (K2 + KT) + EQZ(&Z/{Z‘ + K2kl + K2R+ KIRL)
b Dzt + )+ [+ 3000%(59) + 8ah0d + )

3
— 4g2 [5(ﬁi + né) + 2/@2/@3 + (kyki, + mdm'd)z} — gg [ZXQ(SS) +36(K2 + ng)}

3 . 9
+ —g?g2 [21(k2 + K3) — (K2 + k)] — =01 Xa(SS). (7.29)

10 100

In deriving these, I relied on the useful papers of Luo, Wang, and Xiao [47], which
corrected some typographical errors from the seminal works of Machacek and Vaughn
[46]. Another useful paper is Ref.[120].

7.2.5 The Higgs Self Energy and Tadpole Corrections

In split supersymmetry there are corrections to X, Ty, and Iww, but not to E.
The Higgs tadpole and self-energy depend on the mass mixing matrices which
appear in the Feynman rules. The interaction Lagrangian in terms of the physical

mass eigenstate Dirac and Majorana fermions is given by

h —+ h—o «
Lo = =70, (PuLG + PRROYUT + 50 (PL(RG) ) + PafGy)w, - (7:30)

where the mixing matrices are
Rg = (LJC;)* = IﬁuVigUﬂ + /@dVilUﬂ
R = (kuNig — K, Na)Njs — (kaNiz — KalNit) N
1
N _ N N
Ry = (R + Rji). (7.31)
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The split-supersymmetric contribution to the Higgs tadpole i1} = i(T, @+ N))

involves charginos and neutralinos :

167277 (m) = —2v/2 Z Re [RC (MC)? (cw — log (Aic)z +1)} (7.32)

1672TV (1) = 22Re [R T (M3 (CUV — log (Aic)g + 1)} (7.33)

The Higgs self energies are easily written in terms of the canonical one-loop basis
functions A(M), Bo(k?; M, M) [121]:

2

167 S () =Y

i,j=1

(LG + | RGI®)
LT (AL + AQM) + (P + M} = ) Bolp®; M, M;) )

4
1672 2 Z

+ |REP(AE) + AQG) + (M7 + M} —7) Bo(p?: zmzw))}

2Re M;M;RS(LS)" Bo(p?; M;, M;)

2Re M;M;R(}; (R(;))" Bo(p®; Mi, M;) (7.34)

The above results lead to the following correction term for the Higgs mass:

575(m) = 1 (=M, B) + TV (My, T) T;SC( )+ T () + 1IN (o,
h \M) = 5 M’% MZ’UF 'u)

Cyyv=0

(7.35)
As discussed below Eq.(7.21), the scale I must be chosen in accordance with the
decoupling imposed on ) at the chargino/neutralino thresholds, 77 = Mgs. Combined
with the SM results of [113], which should be evaluated at Mj, the total threshold

correction is given by

Mh = )\(Mh)UF(l + 5h<Mh>)
6h(Mh) = (5;?M(Mh) -+ 5ES(M55). (736)
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A useful check of these results is the cancelation of divergences Cyy in Eq.(7.6). This

involves repeated use of the definitions in Eq.(7.14), and has been explicitly verified.

7.3 Results for the Higgs Mass

The corrections to the Higgs mass considered in this chapter are of three varieties:

e Top Yukawa Coupling. The threshold corrections to the Yukawa coupling
initial value given in Eq.(7.17) are amplified because y; is raised to the fourth
power in Bg\l). The QCD corrections to y;(M;) are dominant (~ —6%) and lead
to a downward shift in the Higgs mass of about 15 GeV. The electro-weak

corrections are negligible over the entire parameter range of interest.

The split SUSY correction is small but not negligible. For each choice of pa-
rameters tan 3, My, and Mj,, there will be a correction term 675 to the initial
value y;(M;). However, y,(M;) is required input for solving the coupled differ-
ential equations which eventually lead to 675, Thus, in principle, an iterative
approach must be taken. After performing this type of analysis we found that it
could be circumvented by using the output 67 along with the following simple
rule of thumb: every shift in y;(M;) of £0.0045 will shift the Higgs mass by
+1 GeV. The contributions of the bottom and 7 Yukawa couplings turn out to

be completely negligible and can be omitted from the beginning.

e Two-loop running of A. The two-loop correction to the beta function is
numerically very small, which is partiallly due to cancelations between the SM
and split SUSY contributions in Eqs.(7.28,7.29). The shift in the Higgs mass
due to including ﬂf\z) is less than 300 MeV for all relevant values of Mj, tan 3,
and M ;.

e Threshold corrections (). The correction given in Eq.(7.36) typically
pushes down the Higgs mass by several GeV, with a larger shift occurring for
small tan 3 and small M,. Typically, the SM contributes most of this shift, with
the split SUSY corrections < 1 GeV.
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All of the above corrections should be considered in the context of two sources
of uncertainty. First, the uncertainties in the top mass M; = 172.7+£2.9 GeV and
as(M,) = 0.118£0.003 translate into uncertainties in M, of about +(3—5) GeV and
7(0.3-1.2) GeV, respectively. Second, there are model specific “theory uncertainties”
at the high scale [104].

Some representative plots of the Higgs mass are shown in Figs.(7.1, 7.2). In
Figs.(7.3, 7.4), the two-loop and threshold corrections discussed above are plotted.
The large QCD corrections to Mj, (~ —15 GeV) arising from Eq.(7.18) are not shown
explicitly in Figs.(7.3, 7.4) in order to clearly illustrate the other much smaller effects.
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Figure 7.1: The Higgs mass prediction versus M, for tan 3 = 2 (lower dotted lines) and
tan 8 = 50 (upper solid lines). For each set of three the middle line is with a,(M,) =
0.118, M, = 172.7 GeV; the upper line is with a,(M,) = 0.115, M; = 175.6 GeV;
and the lower line is with a,(M,) = 0.121, M; = 169.8 GeV. These correspond to
the 1o variations of a,(Mz) = 0.118 + 0.003 and M; = 172.7 £ 2.9 GeV, with the
resulting uncertainties in the Higgs mass considered additively. The gaugino and
higgsino masses at Mg are taken as universal M;,» = 500 GeV. The experimental

lower bound [122] of M}, > 114.4 GeV (at 95%) is shown.
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Fi%ure 7.2: The Higgs mass versus tan 3, for M, = 10° 107,10%,10°, 10'°,10", and
1012 GeV, from bottom to top. Here a(M,) = 0.118 and M; = 172.7 GeV.
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Shift in Higgs Mass due to Two-Loop and Threshold Corrections
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Figure 7.3: The Higgs mass shift for tan 3 = 2 and M/ = 500 GeV due to four types
of threshold corrections. The correction due to the two-loop running of A is shown
in the thick dense dotted line near zero. The Standard Model (SM) correction from
[113] is the dashed line. The split SUSY (SS) correction from Eq.(7.35) is the thick
dotted line. The thin dotted line is the SS correction to the Higgs mass through the
correction to the top Yukawa initial value, Eq.(7.21). The solid line is the total of

these four corrections. Here a,(M,) = 0.118 and M, = 172.7 GeV.
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Higgs Mass Shift (GeV)

Shift in Higgs Mass due to Two-Loop and Threshold Corrections
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Figure 7.4: Same as Fig.7.3 except with tan 8 = 50.
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Chapter 8

On the Structure of Perturbation

Theory

8.1 Predicting Higher Order Terms Using BLM

methods

Even without considering the complicated diagrammatic construction of a QCD ef-
fective charge analogous to QED, the BLM method can be used to reliably estimate
the renormalization scale. This is done by choosing the scale at each order to ab-
sorb the terms arising from the running of the coupling, which are identified by the
dependence on the number of flavors f. In this approach, the renormalization scale
ambiguity problem is closely related to the conformal expansion, since after BLM
scale fixing, the series takes exactly the same form as a related conformal theory. In
this context, the ‘conformal’ terms are those that would arise in a theory with zero 3
function, i.e. without any breaking of scale invariance. Likewise, the non-conformal
terms are those which are associated with the running of the coupling.

One way to test the efficacy of BLM scale-fixing methods is by verifying that in
fact the BLM scales do “automatically re-sum” the dominant part of higher order
corrections. In particular, starting with some series truncated at order N, we can use

BLM methods to predict part of the order N +1 term, and then compare with known

167
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results.

In this section, a prediction for the NNNLO (O(a$)) term in the hadronic decay
rate of Higgs bosons will be estimated, and compared with the exact calculation. The
explicit results are derived in [123][124] by calculating the Higgs two-point function
with a quark loop dressed by QCD corrections. The optical theorem then relates the
imaginary part to the partial decay rates.

The partial decay width of the Higgs boson into a quark-antiquark pair is

I'(H— ff) = Z%ifmfcﬁ(s = M%)

R(s) = 1+%7aH(s), (8.1)

where the effective charge agy(s) is defined in the second line. The perturbative

expansion is given by
ag(s) =a(s) + @ (s)(A+ Bf) +@(s)(C+ Df + Ef*) + - - (8.2)
where @(s) = agz(s)/m. The values for the Higgs scalar two-point correlator are
A=635 B=-024 (C=290 D=-455 E=0.0438 (8.3)

Using Eqns.(3.6-3.16) of [125] we can rewrite the result as a conformal relation

an(s) = a(Q}) + AT(Q3) + O a%(Q3), (8.4)
where
A= a+8%p o 93 |
C = —3—%‘1(7CA+110F)B+0+11§AD+ 12140315 ~ —24.0
O = Jsexp (3B+18(B2—E)ﬁoa> ~ 0.49/5
0s = iexp (—57B+182;+396E) ~ 0.3073 (85)
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The scales Q; and Q, are the BLM scales for the LO and NLO terms. The scales are
chosen so that all of the non-conformal terms are summed into the running coupling.
These are approximations to the physical virtualities of the gluons and control the
effective number of flavors in the running coupling. The terms A, C are known as the
conformal coefficients at NLO and NNLO, respectively.

We now will try to predict the NNNLO terms associated with the running of the
QCD coupling. In general one might expect such terms to have renormalon n! growth.

The 8 function for MS through 3 loops is given by

Bo = (11-2f/3))/4
B, = (102 —38f/3)/16
By = (2857 —5033f/9 + 325f%/27)/128, (8.6)

which has the perturbative solution:
5
a(Q}) =a+a Bl +@(Bi Ly + B LT) + (ﬁle + §ﬁoﬂ1Lf + @?L?) ,  (87)

where L; = logs/Q? and @ = a(s). We also will need the analogous expansion of
a(Q3?) through 2 loops :

a(Q3) =a+aBoLy + @ (61 L2 + G5 L3). (8.8)

Next we substitute Eqs.(8.7,8.8) into Eq.(8.4), and expand, keeping terms through
order @*. This yields the same @* and @3 terms that we started with, and also gives
the BLM prediction for the a* term :

ar(s) =a+a2(A+Bf)+a(C+Df+ Ef?) +a*(60—46f +2.3f2—0.0081f%) (8.9)

To get an idea of how seriously to take these predictions, we have performed the

analogous procedure on the one-loop conformal relation to predict the @® terms. The



CHAPTER 8. ON THE STRUCTURE OF PERTURBATION THEORY 170

result is
a=a+a(A+ Bf)+a(44 — 4.2f + 0.0582). (8.10)

Comparing with Eq.(8.3), we see that this gives roughly the correct answer for the f
and f2 terms, with errors of 8% and 26%, respectively. The f° term is not necessarily
reliable, since it neglects the conformal contribution of that order. However, the
analogous “prediction” in the a® case is 44, whereas the correct result is 29, indicating
‘that perhaps the BLM “residue” (the f° term resulting from expanding the conformal
relation) might be the same order of magnitude as the correct result which contains
the conformal term as well. This is only the case if the conformal term is small
compared to the non-conformal terms.

In any case we estimate that the f, f2, and f3 x @* terms in Eq.(8.9) should be
correct to about 30%. The prediction for the total coefficient of the @* term is —114
for the physically relevant case of f = 5.

8.1.1 Banks-Zaks Method

A useful check of the BLM procedure is furnished by the Banks-Zaks method [126].

First, we solve for the value of f that such that the three-loop § function vanishes :

33 321_ 11675
f=5 -5t g © (8.1)

At this number of flavors, the theory is effectively conformal. This value for f is
then substituted into Eq.(8.9), and it is verified that we recover the same conformal
coefficients through order a® as predicted by the BLM method

a =1+ Aa® + Ca’. (8.12)

Note there is no @* conformal term until it is explicitly calculated.
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8.1.2 Results and Limitations

The full five-loop results reported in [124] are

a+a%(A+Bf)+3(C+Df + Ef?) +a*(6.95—39.03f + 1.71f — 0.0036°),
(8.13)
which is in reasonably good agreement with the predictions in Eq.(8.9). For f =5,

aH(s)

the @* term is —146, to be compared with our prediction of —114.
Finally, the conformal relation for the full NNNLO result is'

an(s) =~ a(Q%) +2.39 7%(Q%) — 24.0 B*(Q3%) — 76.3 T*(Q3), (8.14)
while the usual fixed scale relation is
ag(s) = a(s) + 5.15@%(s) + 7.37 @ (s) — 146 @*(s). (8.15)

It is interesting that the latter result seems more convergent than the conformal rela-
tion until the NNNLO terms are added. The somewhat better overall behavior of the
conformal relation at NNNLO might be interpreted as the absence of n! renormalon
growth, but this is inconclusive, since the NNLO conformal coefficient is rather large
compared with the NLO coefficient.

In the preceding analysis, it was assumed that all of the flavor dependence is
associated with the QCD § function. In that case one can use the f dependence to
identify the non-conformal contributions. However, at higher orders there are more
complicated triangle and light-by-light diagrams which are not obviously associated
with the running coupling. However, in Chapter 5 we demonstrate that the dominant
part of triangle diagrams are related to coupling renormalization, albeit in a novel way.
Similar considerations should hold for the box diagrams. Thus it is assumed that the
f dependence coming from fermion triangle and fermion box diagrams renormalize
the three and four gluon vertices, respectively.

The ability to predict higher order non-conformal terms using BLM methods is

15 is the NNLO BLM scale which has not been specified since the Banks-Zaks method was used
to derive the conformal series. It is a tedious exercise to derive this scale.
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limited by: (1) ignorance of the BLM scale of the highest order term, (2) ignorance
of the higher order corrections to the lower order BLM scales (for example the a’
terms in Q1 in our case), and (3) terms proportional to f from the light-by-light and

fermion triangle diagrams which should be considered conformal.

8.2 An Inquiry into the Dominance of Renormalons,
BLM Methods, and Effective Charges Run-

ning Inside of Loops

At the end of section 2.1.3, we discussed how the dominance of renormalon-type
contributions at each order in perturbation theory was a key ingredient for the con-
jectured divergence of perturbation theory. In general, this dominance conjecture is
very difficult to test since it involves higher order calculations. However, the relation
between the quark pole mass Mg and running MS mass (u) provides a simple test-
irig ground for this assumption of the renormalon analysis. In particular, we would
like to see if the renormalon-type graphs (shown in Fig.(8.1)) are in fact the domi-
nant contribution at the two-loop level. By “renormalon-type”, we mean precisely the
first iteration of the infinite sequence of gauge-invariant bubble-chain graphs shown
in Fig.(2.1). To reliably re-sum these (and only these) N-bubble graphs, they should
give the dominant contribution to the full N + 1 loop calculation. The first order at
which this can be tested is at two-loops (N = 1). The full two-loop graphs are shown
in Fig.(8.2), and were calculated in [118]. The notation of [118] will be adopted here.

Figure 8.1: The renormalon-inspired approximation to the quark mass at two-loops.
The blob represents some gauge-invariant gluon self-energy including gluons, ghosts,
and quarks.
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Figure 8.2: The two-loop graphs renormalizing the quark mass. The quark loops in
(c) include both the light quarks and the massive quark under consideration.

To two-loop order, the mass relation can be written as
Mg = W(Mq) 1+ CFE(MQ) + Dzﬁz(MQ) , (816)

where @(Mg) = @(Mg)/x. The one-loop term is easily calculated to be Cr = 4/3

while the two-loop term was found in Ref.[118], and can be written numérically as

Dy =~ 3.33C4Cr + 1.51C% + Dy(fermion loops)
Np—1
D; (fermion loops) & 0.08CF — 0.78Cr > _ (1 — M;/My), (8.17)
i=1
where the linear mass terms are an approximation to the exact result, and in any
case are not important for out purposes. For the case of QCD Cp =4/3 and Cy =3

and this becomes
Np—1

Dy~ 16.11 - 1.04 > (1 — M;/Mg). (8.18)

=1
8.2.1 A Renormalon Inspired Approximation

In order to obtain an analogous result in the renormalon-inspired approximation
(RIA), only a few simple changes must be made to the results of Ref.[118]. In that
paper, the two-loop term is written as a sum over color factors and loop factors, with

coefficients C;; which depend only on the dimension of spacetime d. These coefficients,
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which are given in Table 1 of Ref.[118], will be changed in the RIA to

Cll = ClS = 021 = C'22 = 023 =0

. 16% (d-1)
Ciz = =5 h(d) (3d — 8)(3d — 10)”

(8.19)

while Cs1, Csz, Cs3, Cy1 , Cyo, and Cy3 remain unchanged. In the same manner
as Ref.[118], a linear combination of these coefficients with color factors and loop
factors yield the results for the two-loop term D, given below for the RIA. Here Eo(d)
is a function which parameterizes the non-abelian part of the gauge-invariant gluon

self-energy insertion

d? 1
2m)e (1 1 p)?

i) = i Cabild) [ - (820)
as shown in Fig.(8.1). Only the purely non-abelian part is included in this definition
since the fermion part is unchanged in the RIA (which is reflected in the fact that
Cs1, Css, Css, Cy1 , Cy, and Cy3 remain unchanged). In four dimensions ﬁ~o(d) must
take the specific value (o(4) = 11/3. Different schemes for defining 11 lead to different
forms of this function, and subsequently different predictions for Dy due to the finite
terms from the expansion in dimensional regularizaﬁion of d = 4 — 2¢. This can be

parameterized in general by

11 9
Bo(d) = 5 T + be. (8.21)
The results for the RIA are then

Dy = (4.81+0.36a + 0.095)C4Cr — 3.89C% + D,(fermion loops)
‘ Np-1
= 13.48 +1.44a + 0.380 — 1.04 Z (1 — M;/Mg). (8.22)
=1
Before proceeding, it should be admitted that in fact no satisfactory method exists
for constructing a gauge-invariant running charge inside of loops. However, we will

proceed using various ansatz for this coupling, which amounts to specifying the form
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of ,6~’0 and thus a and b.

First, let us consider the naive values a = b = 0, for which the term 13.48 in
Eq.(8.22) is in very reasonable agreement with the exact result 16.11 in Eq.(8.18).
However, since the fermion bubble graphs are unchanged in the RIA, a better test is
to see whether the individual color coefficients are in agreement.

The C4Cp term in the first line comes from Fig.(8.1) in the RIA, and from graphs
(a), (b), and (d) of Fig.(8.2) in the full two-loop case. This term is only within 50%
of the exact result. Meanwhile, the C% term in the exact result arises from graphs (e)
and (f) in Fig.(8.2) and from the square of the one-loop graph. In the RIA, only the
latter contribution is present and so the clear disagreement between the C% terms in
Eqs.(8.17,8.22) is expected. Thus the better agreement of Eq.(8.18) with Eq.(8.22)
compared to the individual color factors is due to an accidental cancelation between
the errors in C4Cr and C% terms for the particular value N, = 3.

Now let us turn to other possibilities. For example, the self-energy of the pinch-
technique (PT)/background field method in quantum Feynman gauge (BFMFG) has
the value?

~ 7d—6
Bo(d) = =1

as seen from Eqs.(5.37,5.36), so that a = 1/9 and b = 2/27. This ansatz leads to

(8.23)

D, = 4.86C,Cp — 3.89C% + Dy(fermion loops)
Np-1
= 13.67-1.04 Y (1— Mi/My), (8.24)

i=1 -

2A caveat is in order. The procedure of inserting the PT/BFMFG gauge-invariant self-energy
into the loop is questionable in both the PT framework and in the equivalent BFMFG framework.
In the BEMFG, it is the background gluons which have gauge-invariant self-energy, giving Eq.(8.23).
However, these background gluons cannot propagate in loops; they may only appear in external legs.
Moreover, the quantum gluons which propagate in loops do not have a gauge-invariant self-energy,
but instead the usual gauge-dependent one that gives the coefficient 5/3 rather than 11/3. From the
PT point of view, the difficulty can be seen by explicitly attempting the pinch-technique construction
starting from the graphs in Fig.(8.2). It becomes clear that there is no natural kinematic criterion
as in the on-shell case, where physical (external) gluon momenta can be singled out. The pinching
procedure inside of loops is ambiguous and in general leads to new unwanted vertices. Nevertheless,
we know of no other possible QCD effective charge which has been suggested to run inside of loops,
so we persist in testing the RIA despite the above objections. After all, this is merely a theoretical
Gedanken experiment.
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which is very similar to the naive a = b = 0 case.
Now let us heuristically consider having the A S coupling running in the loop®.

First, expanding around four dimensions, we find
~ Qg 11 —p? 22
(p?) = ——Ca | = | Cyv — log —- — 8.25
W) =204 (5 (Cov —roe ) +at (5.25)
where ap = g8/ (47) is the bare coupling and Cyy = 2 — yg + log4n. The value of
the parameter ‘a’ can be fixed by the requirement that re-summing this self-energy

leads to the MS coupling. Since we know that the MS coupling is related to the
bare coupling by

HOY) ~ao |1 220, (152 — 0 (8.26)
~ Qo in 3 A g 12 uv .
it must be that a = —22/3. This argument does not fix b. However, if the well

motivated parametrization Go(d) = 1—1+dc—£‘i_—41 is assumed, then b = 2a/3. In any case,

the results are fairly insensitive to b. We have

D, = 1.7204Cr — 3.89C% + Dy (fermion loops)
Np-1
110 - 1.04 > (1 - M;/My), (8.27)

i=1

which is in terrible agreement with the correct results, Eqs.(8.17,8.18).
Similar machinations using the V-scheme effective charge [103] defined from the

heavy quark potential also lead to results in very poor agreement.

8.2.2 BLM Methods

Now let us turn to a BLM analysis similar to that of section 8.1. An effective charge

aq = ag/7 associated with the M.S/pole mass relation is defined from the original

3 Again, we know of no construction that could accomplish this. See the previous footnote.
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series in Eq.(8.17) to absorb all of the radiative corrections (see Eq.(3.4))

MQ = W(MQ) {1 + CFaQ(MQ)]
ao(Mg) =~ (M) +a*(Mg) [3.33CA 4+ 1.51CF + 0.08 — 0.78(Np — 1)]
~ a(Mg) +a(Mg)[12.78 — 0.78NF], (8.28)

where @ = @/ is the MS coupling and for simplicity we have neglected the light-

quark mass corrections. For the charm, bottom, and top quarks we have
ag=(ebr)(Mg) =~ @(Mg) + (9.74,8.96,8.18) @*(My). (8.29)
Meanwhile, the conformal relation for ag obtained using BLM methods is

ag(Mg) ~ a(Q1) — 0.80 T*(Q1), (8.30)

where Q; ~ 0.096Mg. The conformal coefficient is quite small, suggesting that the
dominant source of radiative corrections are non-conformal, i.e. associated with the
- running coupling.

We can also use Eq.(8.30) to predict the NNLO (three-loop) correction term, using

the same methods as section 8.1. The BLM prediction for the @3 term is

ag(Mg) ~ a(Mg) + a(Mg) [12.78 — 0.78NF| + @ (Mq) [175.2 — 22.6Np + 0.61NZ],
(8.31)

which can be compared to the recently completed exact three-loop calculation [119]

ag(Mg) ~ a(Mg) + @ (Mg)[12.78 — 0.78NF| +@*(Mg)[179.5 — 22.3Np + 0.49NZ].

(8.32)
Thus, the BLM prediction is in remarkable agreement with the exact results, with
errors of 2%, 1%, and 24% for the N%a@®, Nia®, and N2a® terms, respectively. Fur-
thermore, the prediction for the full @ term is accurate to within 3 — 4% for the
physically relevant cases of charm, bottom, and top quarks.

Since the conformal coefficient is small and the BLM predictions are so accurate, in
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the BLM parlance one would associate most of the radiative corrections at this order
of perturbation theory with the running of the coupling. However, our above attempt
at an explicit construction of these gauge-invariant contributions in the renormalon-
inspired-approximation generally did not reproduce the correct results and were in
fact plagued by scheme ambiguities. These results suggest that perhaps the success of
the BLM method may not be tied to a hypothetical skeleton expansion with running
charges inside of lobps. |

Furthermore, it seems that the dominance assumption of the renormalon analysis
is questionable in this case, although it certainly may be the case that renormalon-
type graphs only begin to dominate at higher orders. The analysis is plagued by
ambiguities in how to actually construct the gauge-invariant running charge inside of

loops. These interesting issues deserve further study.



Chapter 9

Future Directions

The results of this thesis can be extended in a number of directions:
Four-gluon vertex A calculation similar fo the one presented in Chapter 5 would
be interesting. Of particular interest is whether the logarithm-like function of the
four-gluon vertex, Ly(ki, ks, k3, kq), analogous to Eq.(5.73), has the same form for
gluons, quarks, and scalars in the massless limit. Also, the general behavior of the
effective scale of the four-gluon vertex will be useful for phenomenology. However,
the calculation is challenging since in this case there are hundreds of distinct form

factors.

Standard Model triple-gauge-boson vertices and uniﬁcation The form fac-
tors of the gauge-invariant triple gauge boson vertices of the Standard Model can be
calculated in analogy with Chapter 5. It might be interesting to look at the multi-
scale unification of the triple gauge boson vertices. In this way, one would see the
unification of the strength of the forces between (three) test fermioms, in analogy
with Chapter 3. To be clear, this is not an independent test of unification (even
if the various form factors were measured very precisely), but rather it gives a nice
qualitative picture of how the various forces reconstruct back into one force smoothly
at the GUT scale.

179
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Monte Carlo Generator ‘A program which constructs any process by stringing
together trees of primal gauge-invariant PT/BFMFG Green’s functions, which can be
renormalized independently. The approach presented in Chapter 5 can be applied to
other Green’s functions, as discussed above, and represents an optimal improvement
of perturbation theory. Thus, for example, a process fully dressed at tree-level is
expected to be a good approximation of the full one-loop result. Since the gauge-
invariant Green’s functions are universal, only a small set of formula is required input

into such a program.

Heavy quark hadroproduction As an application of the results of chapter 5,
a preliminary analysis has been made of heavy quark production in proton-proton
collisions. In particular, we can study the three-gluon vertex by considering the
production of two heavy quarks plus two associated transverse jets in proton-proton

collisions :
pp = QQ + 2 jets(pr # 0), (9.1)

which is illustrated in Fig.(9.1). The various kinematic variables control the gluon
virtualities, and so in principle one can see the non-intuitive behavior and running
the three-gluon vertex discussed in section 5.4. Preliminary results suggest that the
effective scale is much lower than would be expected, and so the overall process is
enhanced compared to the MS scheme predictions when the scale is chosen as the
heavy quark pair invariant mass. It is believed that the tree level graphs dressed with
gauge-invariant self-energies (Chapter 6) and vertices (Chapter 5) account for most of
fhe full one-loop corrections. However, this can not be tested until the full one-loop

calculation of the 2 — 4 process is performed.

Survey and analysis of perturbation theory Inspired by the preliminary results
of Chapter 8, it would be useful to undertake a comprehensive study of perturbative
QCD series, taking into account as many observables as possible. For each, BLM,
FAC, and PMS (see section 2.1.1) can be used at each order to “predict” the next
higher order terms, and then compared with the actual results. This should yield

a large sample of “data” to compare the scale-fixing approaches rigorously. Also it
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proton

proton

where k = }!ﬂr\{ +K+ crossed

Figure 9.1: The hadro-production of heavy quarks and two associated transverse jets,
as a direct probe of the three-gluon vertex.

would be interesting to see which observables seem to have the n! (renormalon) growth
in their series, and which observables have relatively small conformal coeflicients.
What, if any, relation is there between successful predictions, renormalon growth
of the series, and conformal coefficients? For some observables the “renormalon-
inspired-approximation” of section 8.2 could be computed as well, and used to further

understand these issues.

Dyson-Schwinger Equations A new approach to Dyson-Schwinger equations (DSE’s)
is suggested by

(1) the equivalence of the pinch-technique and the background field method in quan-
tum Feynman gauge, and

(2) the arguments given in the footnote below Eq.(8.23) of section 8.2.1 that the
gauge-invariant Green'’s functions should not appear in loops.

There seems to be a “two-level” structure, which is best understood in the BEMFG
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approach. First one solves the DSE'’s for the quantum Green’s functions, which sat-
isfy the normal DSE’s, but in Feynman gauge. Then the resulting solutions are “pro-
cessed” through a one-loop integral representing a graph with external background

gluons attached. This is illustrated in Fig.(9.2) for the gluon propagator.

Figure 9.2: A conjecture on the structure of DSE’s in the PT/BFMFG approach.
The quantum (Q) gluon Green’s functions satisfy the typical recursive DSE’s shown
in the bottom line, which should be solved in the Feynman gauge. These solutions are
then “processed” through a (non-recursive) one-loop type of integral, shown in the
top line, to form the gauge-invariant PT/BFMFG Green’s function of the background
(B) gluons (the blob labeled ‘PT’). Other terms with four-gluon vertices, fermions,
and ghosts are not shown explicitly.

One of the original motivations for the PT [30] was to develop manifestly. gauge-
invariant approach to DSE’s in order to study confinement and dynamical gluon mass
generation. The conjectured approach presented here may provide a solution to this
problem, albeit circuitously. The gauge-invariant PT/BFMFG Green’s functions of
the background (B) gluons themselves do not appear recursiVely, but they arise out
the solution of the DSE’s for the (un-physical) quantum (Q) gluons, which must be
solved in Feynman gauge. In some sense there is no gauge-arbitrariness and it is
plausible that a reasonable truncation of the quantum gluon DSE’s will still result

in a gauge-invariant PT self-energy. This issue deserves more study. In contrast to
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this conjectured approach, perhaps a new method will be found to incorporate the
gauge-invariant Green’s functions inside of loops and have them directly satisty a

manifestly gauge-invariant set of DSE’s, as originally envisaged in Ref.([30]).
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