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1 Introduction and Summary

One of the most interesting outcomes of the AdS/CFT correspondence [1, 2, 3, 4] is the

ability to study quantitatively the deconfined phase of 3+1 dimensional gauge theories,

something which cannot be done analytically for QCD (except at temperatures much

higher than the QCD scale). For strongly coupled large N gauge theories which have

(at zero temperature) a dual description given by a weakly curved string background,

the deconfined phase has a dual description in terms of a black hole (black brane) back-

ground which can be reliably studied in the supergravity approximation. Of course,

theories with a weakly curved dual are rather different from QCD in various ways, but

one can still hope that their deconfined phase will not behave that differently from that

of QCD, and in some cases these theories are even continuously connected to (large

N) QCD by varying a dimensionless parameter, and one could hope that the depen-

dence on this parameter is small (at least at temperatures of order the deconfinement

temperature).

The simplest theory to study in this way, on which most of the research thus far

has focused, is the strong coupling limit of N = 4 supersymmetric Yang-Mills theory,

whose deconfined phase has a very simple description as a black hole in anti-de Sitter

space [5]. This theory does not confine at low temperatures, but its deconfined phase

still seems to exhibit many similarities to that of QCD. Obviously, it would be nice to

have additional examples of 3+1 dimensional deconfined theories which can be studied

quantitatively by using their gravity dual, and, in particular, examples of deconfined

phases of confining theories, in which one could study the dependence on the temper-

ature compared to the deconfinement scale1. So far there is only one known example

of such a deconfined background, which is that corresponding to 4 + 1 dimensional

supersymmetric Yang-Mills theory (with a specific UV completion) compactified on

a circle with anti-periodic boundary conditions for fermions [5, 6]. It would be nice

to have additional examples, especially since in the example above the physics at the

deconfinement scale is really five dimensional rather than four dimensional.

In this paper we study the deconfined phase of the confining “cascading gauge the-

ories” constructed by Klebanov and collaborators [7, 8, 9]. The equations determining

1Note that in any large N gauge theory with a weakly curved string theory dual the deconfinement

transition is a first order phase transition. This is similar to large N QCD, but it is different from

QCD itself, so one should be careful when comparing the behavior of such theories near the phase

transition to that of QCD.
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the corresponding black hole solutions are quite complicated, and have no known an-

alytic solutions. At very high temperatures it is possible to find analytic solutions in

an expansion in inverse powers of the logarithm of the temperature, and the leading

order solution in this expansion was found in [10]. This solution shows that at high

temperatures the number of degrees of freedom in the theory grows as the square of the

logarithm of the temperature [11, 12, 10]. In this paper we numerically solve the equa-

tions for a wide range of values of the temperature, in the supergravity approximation,

and use the solutions to analyze the thermodynamics of the deconfined phase2.

At low temperatures the “cascading gauge theories” spontaneously break a dis-

crete chiral symmetry (and also a continuous U(1)B symmetry) [9, 14, 15, 16]. At

high temperatures one expects these symmetries to be restored, but apriori it is not

obvious whether there is a single phase transition from a low-temperature phase with

confinement and chiral symmetry breaking to a high-temperature phase with no con-

finement and chiral symmetry restored, or whether additional phases also exist. In this

paper we only study deconfined phases in which the chiral symmetry is restored; we

plan to study the possibility of having other phases in the future [17]. In the classi-

cal supergravity approximation the free energy of the low temperature confined phase

vanishes (since it only arises at one-loop), and thus the phase transition to a black

hole background occurs at the lowest temperature for which the free energy of a black

hole background starts becoming negative. Assuming that this transition goes directly

to the chirally symmetric black holes that we construct, we find that there is a first

order deconfinement transition at a temperature Tcritical = 0.614111(3)Λ, according to

a specific definition of the strong coupling scale Λ that we describe in section 53. The

black hole backgrounds continue to exist also at lower temperatures, but they have

positive free energies so they no longer dominate the thermodynamics. Presumably,

as the temperature is lowered further, the black hole backgrounds eventually become

singular; in this paper we only compute the numerical solutions until a temperature

2Similar numerical solutions were studied in [13], but we do not understand the parametrization

used there to analyze the solutions. Presumably, our solutions should be identical to (some of) the

solutions of [13], but our parametrization allows for a direct computation of the thermodynamical

properties of the solutions.
3It is easy to translate this definition to other definitions of the strong coupling scale, such as the

mass gap. Note that, as in all theories with a gravity approximation, the square root of the confining

string tension is not a useful measure of the strong coupling scale, since it must be much larger than

all other measures of this scale for gravity to be a good approximation.
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slightly below the deconfinement temperature, so we do not see this.

There are several interesting directions for further study. We are currently working

on checking whether the solutions we find are stable to deformations which break

the chiral symmetry, in order to see if there are signs of a deconfined non-chirally-

symmetric phase appearing at intermediate temperatures [17]. The black hole solutions

that we find (numerically) can be used for a detailed analysis of the properties of the

deconfined phase (for instance its hydrodynamical properties [18] or jet quenching

[19, 20]); it would be interesting to understand the similarities and differences between

these properties and those of deconfined conformal theories. It is possible to add flavors

in various ways to the “cascading gauge theories” [21, 22, 23, 24, 25, 26, 27], and it

would be interesting to study the flavor physics in the deconfined phase, and whether

there are any phase transitions associated with the flavor sector.

Our study is purely in the supergravity approximation; it would be interesting to

study the corrections to this approximation, in particular those coming from string

theory corrections to the supergravity action. The cascading gauge theories have a

continuous dimensionless parameter such that in one extreme of this parameter super-

gravity is a good approximation, while in the other extreme they reduce to a standard

N = 1 supersymmetric Yang-Mills (SYM) theory. At zero temperature supersymmetry

tells us that the dependence on this parameter is smooth. However, it is not obvious if

the behavior of the deconfined phase is smooth as this parameter in changed; in fact, it

seems plausible [28] that as in other similar cases [6] there would be a phase transition

in this phase, since the geometry in the supergravity regime does not have any cycles

shrinking at the horizon (except for the thermal S1), while in the SYM regime one

expects the transition to be independent of the KK modes so a two-cycle should still

shrink (as it does in the confined phase). Of course, even in the absence of such a phase

transition, the behavior of the theory could be modified as the dimensionless parameter

is changed, so our analysis does not teach us directly about the phase structure of the

large N N = 1 SYM theory.

This paper is organized as follows. In section 2 we describe our ansatz for the black

hole solutions and the equations of motion that it leads to. In section 3 we describe

the boundary conditions for these equations. In section 4 we analyze the meaning of

the parameters appearing in these boundary conditions, and show how to translate

them into physical quantities such as the temperature and free energy. In section 5 we

describe our numerical procedure and present the “bare” numerical results. In section
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6 we translate these results into physical properties, and present the results for physical

quantities such as the free energy and the expectation values of various operators as a

function of the temperature. An appendix contains a perturbative analysis of the very

high temperature solutions; this is useful both in order to make sure that our analysis

is valid by verifying that it is consistent (at least at very high temperatures) with the

first law of thermodynamics, and in order to test our numerical solutions at very high

temperatures by testing their agreement with the perturbative expansion.

2 The equations for the cascading black hole

In this paper we compute the metrics corresponding to the finite temperature behavior

of the “cascading gauge theory” found in [7, 8, 9]4, which may be thought of as a specific

SU(K) × SU(K + M) N = 1 supersymmetric gauge theory, with a number of colors

K which runs logarithmically with the energy scale [9, 11, 12, 30, 31]. The “cascading

gauge theory” has a single dimensionless parameter (in addition to the integer M),

which in the gravitational description of this theory can be taken to be gsM where

gs is the string coupling (which is constant in the zero temperature solution) and M

is the RR 3-form flux (corresponding to the number of fractional branes). When this

parameter is large, the gravitational description of the background is valid at all scales.

On the other hand, when it is small, the theory at low energies reduces exactly to the

N = 1 SYM theory, but the gravity dual is highly curved. We will only analyze the

theory in the regime of large gsM , where the gravitational approximation is good and

all radii of curvature are large compared to the string scale.

As in any other confining background, the low temperature behavior of this theory

is governed by a gas of hadrons; the gravity dual of this description is simply given by a

thermal identification (t ≡ t+1/T ) of the zero temperature solution found in [9]. As the

temperature is increased one expects the theory to deconfine; in the gravitational dual,

deconfined phases are described by black holes (whose horizon fills all of space, so they

are really black branes). Our goal in this paper will be to compute the gravitational

backgrounds corresponding to the deconfined phase of the cascading gauge theory. Note

that the low temperature phase is stable all the way up to the Hagedorn temperature

of the confining theory (related to the confining string tension); when the gravitational

approximation is valid, this temperature is very large compared to the characteristic

4See [29] for a recent review of this theory.
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mass scale of the gravitational background (which determines the mass of the low-lying

hadrons). Thus, as in all other cases of confining backgrounds with gravity duals, we

expect the deconfinement transition to occur at a temperature which is much smaller

than the Hagedorn temperature, which means that it should be a first order phase

transition.

The cascading gauge theory has a Z2M chiral symmetry [9, 15] which is sponta-

neously broken to Z2 at low temperatures (by gaugino condensation in the limit where

the theory is a pure SYM theory), and it has a U(1)B symmetry which is also sponta-

neously broken [14, 16]. At high enough temperatures we expect these symmetries to

be restored [11, 32]; this expectation is confirmed by the analysis of the asymptotically

high temperature black hole solutions in [10]. Apriori it is not obvious if the decon-

finement transition happens together with the global symmetry restoration transitions,

or if the transitions are separate. In this paper we will only look for solutions which

preserve the chiral symmetry and the U(1)B symmetry; the stability of these solutions

with respect to chiral-symmetry-breaking deformations will be analyzed in [17]. We

also assume that the solutions preserve the SU(2) × SU(2) global symmetry of the

theory, which is preserved also at low temperatures so it is reasonable to assume that

it is preserved at all temperatures.

The form of the gravitational background of the cascading gauge theory at large

radial variables (close to the boundary) was found in [8] and is known as the Klebanov-

Tseytlin solution; this form preserves the full global symmetry. The solution at any

temperature is expected to asymptote to this background near the boundary (the “UV

region”). In the zero temperature solution [9] the Z2M and U(1)B symmetries are

broken far from the boundary (in the “IR region”), but we will look for solutions

where they are preserved. Recall that the solution for M = 0 (where the theory

does not cascade) is [33] AdS5 × T 1,1, and that the solution of [8] has a similar form

but with the radii of curvature (and the flux) varying logarithmically in the radial

coordinate. Since we are looking for solutions that preserve the full global symmetry,

we can perform a Kaluza-Klein reduction on the T 1,1, and leave only the fields which

are singlets of the global symmetry group. In general there are 5 such fields5; the five

dimensional graviton and 4 scalar fields. In the M = 0 limit the scalar fields have

scaling dimensions ∆ = 4, 4, 6, 8. The scalar fields are various linear combinations of

5We only consider the fields which are turned on in the solutions that we are interested in; other

fields, such as the type IIB axion, are consistently set to zero.
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the dilaton, the overall volume of the T 1,1, the relative size of the circle in T 1,1 (thinking

of T 1,1 as a circle fibration over two 2-spheres), and one mode coming from the RR

fields.

We are looking for black hole solutions that preserve spatial rotational and trans-

lational invariance, as well as time translation invariance, so we can always choose a

form of the five dimensional metric where only 3 components are not vanishing – G00,

Gii (i = 1, 2, 3) and Grr (where r is the radial position). We can use the freedom of

reparametrizing the radial coordinate to eliminate one of these degrees of freedom –

we will choose our radial coordinate x to be defined by

G00

Gii
= −(1 − x)2 (2.1)

(with no summation over i). This choice is convenient since at the boundary we expect

the metric to be Lorentz-invariant so x → 0, while at the horizon G00 vanishes so

x → 1; the range of the radial coordinate in our parametrization is thus x ∈ (0, 1).

Note that in the conformal M = 0 case there is a simple form of the black hole solution

in this parametrization, which is given by

ds2
10 = ξ2 (2x − x2)−1/2

(

−(1 − x)2dt2 + dx2
1 + dx2

2 + dx2
3

)

+
dx2

4(2x − x2)2
+
(

dT 1,1
)2

,

(2.2)

where (dT 1,1)
2

is the metric on T 1,1, and the constant ξ is related to the temperature

T as follows:

ξ = πT. (2.3)

Motivated by the form of (2.2), we write down the most general ansatz for a black

hole metric preserving all the symmetries as6 :

ds2
10 =h−1/2(2x − x2)−1/2

(

−(1 − x)2dt2 + dx2
1 + dx2

2 + dx2
3

)

+ Gxx(dx)2

+ h1/2[f2

(

e2
ψ

)

+ f3

2
∑

a=1

(

e2
θa

+ e2
φa

)

],
(2.4)

where h, f2 and f3 are some functions of the radial coordinate x. There is also a dilaton

g(x), and form fields given by

F3 = P eψ ∧ (eθ1 ∧ eφ1
− eθ2 ∧ eφ2

) , B2 =
K

2P
(eθ1 ∧ eφ1

− eθ2 ∧ eφ2
) ,

F5 = F5 + ⋆F5 , F5 = −K eψ ∧ eθ1 ∧ eφ1
∧ eθ2 ∧ eφ2

,
(2.5)

6The frames {eθa
, eφa

} are defined as in [30], such that the metric on a unit size T 1,1 is given by
(

e2

ψ

)

+
∑2

a=1

(

e2

θa
+ e2

φa

)

.
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where K is a function of the radial coordinate x. The constant P appearing in (2.5)

is a constant times the quantized flux M ; we will write down the precise constant in

terms of the five dimensional Newton’s constant below. We will find it simpler to work

in terms of P rather than M , and we will only go back to using the integer flux M

in the final section. After we gauge-fixed the radial coordinate by (2.1), we have a

constraint equation coming from the equation of motion of this variable; we can use

this equation to solve for Gxx, which is given by

Gxx =

√
hf 2

3

2(x − 1)P 2g2(2 − x)2x2∆

(

12P 2f 2
3 g2f2h

2(1 − x)

+ f2x
2(2P 2f 2

3 g2h′2 − 12P 2g2h2f ′2
3 + K ′2hg + 2P 2h2f 2

3 g′2)(x − 1)(2 − x)2

− 4xP 2f3g
2hf2(2 − x)(x2 − 2x + 2)(h′f3 + 4f ′

3h)

+ 4xP 2f3(2 − x)g2h2(2xf ′
3(1 − x)(2 − x) − (x2 − 2x + 2)f3)f

′
2

)

,

(2.6)

with

∆ ≡ K2 + 8h2f 2
3 f2(f2 − 6f3) + 2hf 2

3 P 2g. (2.7)

All in all, we have 5 scalar functions of x that we need to solve for : h, f2, f3, g

and K. We can derive the equations of motion for these fields, in the supergravity

approximation, either directly from the ten dimensional type IIB supergravity action,

or by first reducing this action to five dimensions and then deriving the equations of

motion. The equations that we find take the following rather complicated form :

0 =h′′ − [8hf2(f2 − 6f3) + gP 2]
f 2

3 h′2

∆
+ [8xh2f 2

3 f2(f2 − 6f3)(x − 2)

+ K2(3x2 − 6x + 4) + 4hf 2
3 P 2g(1 − x)2]

h′

x(1 − x)(2 − x)∆

− 6(K2 + hf 2
3 P 2g)

hf ′2
3

f 2
3∆

+ [8h2f 2
3 f2(f2 − 6f3) + 3K2 + 4hf 2

3 P 2g]
K ′2

4gf 2
3P 2∆

+ (K2 + hf 2
3 P 2g)

hg′2

g2∆
− 2h(K2 + hf 2

3 P 2g)[2xf ′
3(1 − x)(2 − x) − (x2 − 2x + 2)f3]

× f ′
2

f3f2x(1 − x)(2 − x)∆
+ 8(x2 − 2x + 2)(K2 + hf 2

3 P 2g)
hf ′

3

x(1 − x)(2 − x)f3∆

− 2[7hf 2
3 P 2g + 16h2f 2

3 f2(f2 − 6f3) + 5K2]
h

(2 − x)2x2∆
,

(2.8)

8



0 =f ′′
2 − f ′2

2

f2
− [4xf ′

3f3h(1 − x)(2 − x)(gP 2 − 8f 2
2 h) + 8f2h

2f 2
3{6xf3(x − 2)

+ f2(4 − 2x + x2)} + xK2(2 − x) − 4hf 2
3 P 2g(1 − x)2]

f ′
2

(1 − x)(2 − x)x∆

+ f 2
3 (gP 2 − 8f 2

2 h)
f2h

′2

h∆
− 6h(gP 2 − 8f 2

2 h)
f2f

′2
3

∆

− (K2 + 24f 2
3 h2f2(f2 − 2f3))

f2K
′2

4hf 2
3P 2g∆

+ hf 2
3 (gP 2 − 8f 2

2 h)
f2g

′2

g2∆

+ 2f 2
3 (x2 − 2x + 2)(gP 2 − 8f 2

2 h)
f2h

′

(2 − x)(1 − x)x∆

+ 8hf3(x
2 − 2x + 2)(gP 2 − 8f 2

2 h)
f2f

′
3

(2 − x)(1 − x)x∆

+ 2[16f 2
3h2f2(2f2 − 3f3) + K2 − hf 2

3 P 2g]
f2

(x − 2)2x2∆
,

(2.9)

0 =f ′′
3 − [2P 2ghf 2

3 + 8f 2
3 f2h

2(4f2 − 15f3) + K2]
f ′2

3

f3∆
+ 4(f2 − 3f3)

f 3
3 f2h

′2

∆

+ 2(f2 − 3f3)
f3hf2K

′2

P 2g∆
+ 4(f2 − 3f3)

f 3
3 h2f2g

′2

g2∆

+ 8(x2 − 2x + 2)(f2 − 3f3)
hf 3

3 f2

(2 − x)(1 − x)x∆
h′

− 8(f2 − 3f3)[2xf ′
3(1 − x)(2 − x) − (x2 − 2x + 2)f3]

h2f 2
3 f ′

2

(2 − x)(1 − x)x∆

+ {8f2f
2
3 [(5x2 − 10x + 8)f2 − 6f3(3x

2 − 6x + 4)]h2 + 2xP 2gf 2
3 (x − 2)h

+ xK2(x − 2)} f ′
3

(1 − x)x(2 − x)∆
+ [4P 2ghf 2

3 + 2K2 − 8f 2
3 f2(3f3 + f2)h

2]

× f3

x2(2 − x)2∆
,

(2.10)

0 =K ′′ − KK ′2

∆
+ [hgf3 + 2hgf ′

3(1 − x) + hf3g
′(1 − x) + gf3h

′(1 − x)]
K ′

ghf3(x − 1)

+ 12P 2gKhf ′2
3

∆
− 2

gP 2Kf 2
3 h′2

h∆
− 2P 2Khf 2

3 g′2

g∆
+ 4[2xf ′

3(1 − x)(2 − x)

− (x2 − 2x + 2)f3]
Kgf3P

2hf ′
2

f2(1 − x)(2 − x)x∆
− 4P 2gK(x2 − 2x + 2)

f 2
3 h′

(2 − x)(1 − x)x∆

− 16(x2 − 2x + 2)
Kf3P

2ghf ′
3

(2 − x)(1 − x)x∆
+ 12

f 2
3 hKP 2g

x2(2 − x)2∆
,

(2.11)
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0 =g′′ − g′

1 − x
− [8h2f 2

3 f2(f2 − 6f3) + 3P 2ghf 2
3 + K2]

g′2

g∆
− P 2f 2

3 g2h′2

h∆
+ 6P 2hg2f ′2

3

∆

+ (8h2f 2
3 f2(f2 − 6f3) + K2)

K ′2

4P 2f 2
3 h∆

− 2f 2
3 (x2 − 2x + 2)P 2 g2h′

(2 − x)(1 − x)x∆

+ 2f3g
2P 2[2xf ′

3(1 − x)(2 − x) − (x2 − 2x + 2)f3]
hf ′

2

f2(2 − x)(1 − x)x∆

− 8(x2 − 2x + 2)P 2 g2hf3f
′
3

(2 − x)(1 − x)x∆
+ 6P 2 g2f 2

3 h

x2(2 − x)2∆
.

(2.12)

3 Boundary conditions

In order to solve the equations of motion (2.8)-(2.12) we need to specify boundary

conditions, both at the asymptotic boundary and at the horizon. We will require that

asymptotically the solution should match onto the Klebanov-Tseytlin (KT) solution,

and that it should be regular near the horizon.

3.1 The UV boundary conditions

Near the boundary x → 0 it is possible to solve the equations by a power series in x

and ln(x), whose leading term gives the KT solution. This expansion takes the general

form :

h =h0,0 −
P 2g0

8a2
0

ln(x) +
∞
∑

n=1

n
∑

k=1

hn,k xn/2 lnk(x),

f2 =a0 +
∞
∑

n=1

n
∑

k=1

an,k xn/2 lnk(x),

f3 =a0 +

∞
∑

n=1

n
∑

k=1

bn,k xn/2 lnk(x),

K =4h0,0a
2
0 −

1

2
P 2g0 −

1

2
P 2g0 ln(x) +

∞
∑

n=1

n
∑

k=1

Kn,k xn/2 lnk(x),

g =g0 +
∞
∑

n=1

n
∑

k=1

gn,k xn/2 lnk(x).

(3.1)

Most of the coefficients appearing in this expansion are not independent; the indepen-

dent coefficients correspond either to parameters of the cascading gauge theory or to

vacuum expectation values (VEVs) of the operators dual to the fields we are solving
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for. In the KT case there are 3 asymptotic parameters, which we choose to be g0,

h0,0 and a0. g0 is related to the dimensionless parameter of the cascading gauge the-

ory, and we will see that one combination of the other parameters is related to the

temperature and the other is related to the dynamical scale of the cascading theory.

Naively we would expect to have 5 parameters related to VEVs, but in fact there is

one relation between the VEVs which is given by the conformal anomaly equation (see

[30]), so we are left with four parameters corresponding to VEVs, which we choose to

be {a2,0, g2,0, a3,0, a4,0}. Note that a VEV appearing at order xn/2 corresponds to an

operator which has dimension 2n in the conformal limit of the theory.

Using these 7 parameters we can solve for the coefficients in (3.1) to any order

we wish. It turns out that there are no non-zero coefficients at order O(x1/2). The

non-zero coefficients at the following orders are :

order O(x):

h2,1 = −3g0a2,0

28a3
0

P 2, h2,0 =

(

5g0a2,0

28a3
0

− g0

16a2
0

− g2,0

16a2
0

)

P 2 +
3a2,0h0,0

7a0
, (3.2)

b2,0 = −1

7
a2,0, g2,1 =

6g0a2,0

7a0
, (3.3)

K2,1 = −6g0a2,0

7a0
P 2, K2,0 =

(

g0a2,0

a0
− 1

4
g0 −

1

2
g2,0

)

P 2 +
24

7
a0a2,0h0,0. (3.4)

order O(x3/2):

h3,0 =
g0a3,0

60a3
0

P 2, b3,0 = −1

4
a3,0, K3,0 =

g0a3,0

6a0

P 2. (3.5)

Order O(x2): using the notation δ ≡ 139P 2g0 − 120h0,0a
2
0, we have

h4,3 = −3g0a
2
2,0

196a4
0

P 2 , a4,2 = −12a2
2,0

245a0
, b4,2 = − 12a2

2,0

245a0
, (3.6)

h4,2 =
1

δ

{(

−142637g2
0a

2
2,0

3920a4
0

− 75g2
0a2,0

16a3
0

− 5g2
0

16a2
0

+
75g2

0a4,0

8a3
0

+
5g2

2,0

16a2
0

+
139g0a2,0g2,0

28a3
0

)

P 4

+
1002g0h0,0a

2
2,0

49a2
0

P 2 − 1440h2
0,0a

2
2,0

49

}

,

(3.7)
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h4,1 =
1

δ

{(

95g2
0

32a2
0

+
230383g2

0a
2
2,0

23520a4
0

− 139g0a2,0g2,0

24a3
0

− 35g2
0a4,0

16a3
0

− 7g2
2,0

96a2
0

− 1423g2
0a2,0

224a3
0

)

P 4

+

(

136327g0h0,0a
2
2,0

245a2
0

+
5

2
g0h0,0 −

5h0,0g
2
2,0

g0
− 528h0,0a2,0g2,0

7a0
− 150g0a4,0h0,0

a0

+
570g0h0,0a2,0

7a0

)

P 2 +
5160h2

0,0a
2
2,0

49
+

5760a2
0h

3
0,0a

2
2,0

49g0P 2

}

,

(3.8)

h4,0 =
1

δ

{(

31973g2
0a

2
2,0

17640a4
0

+
11g2

0a4,0

4a3
0

+
201g2

0a2,0

56a3
0

− 219g2
0

64a2
0

− 139g0g2,0

32a2
0

+
695g0a2,0g2,0

252a3
0

− 335g2
2,0

288a2
0

)

P 4 +

(

35g0a4,0h0,0

2a0

+
67g0h0,0a2,0

4a0

− 167g0h0,0

8
− 262231g0h0,0a

2
2,0

2940a2
0

+
28h0,0a2,0g2,0

a0
+

15

4
g2,0h0,0 +

5h0,0g
2
2,0

3g0

)

P 2 + 600a0a4,0h
2
0,0

+
2104a0h

2
0,0a2,0g2,0

7g0
− 535356h2

0,0a
2
2,0

245
− 2280a0a2,0h

2
0,0

7
+

20a2
0g

2
2,0h

2
0,0

g2
0

− 49536a2
0h

3
0,0a

2
2,0

49g0P 2

}

,

(3.9)

a4,1 =
1

δ

{(

−12463g0a
2
2,0

70a0
− 15

2
g0a2,0 −

1

2
g0a0 + 15g0a4,0 +

a0g
2
2,0

2g0

)

P 2

+
26688

245
a0h0,0a

2
2,0 +

48a2
0h0,0a2,0g2,0

7g0

− 1152a3
0h

2
0,0a

2
2,0

49P 2g0

}

,

(3.10)

b4,1 =
1

δ

{(

−7177g0a
2
2,0

490a0
− 15

2
g0a2,0 −

1

2
g0a0 + 15g0a4,0 +

a0g
2
2,0

2g0

)

P 2 − 7872a0h0,0a
2
2,0

245

+
48a2

0h0,0a2,0g2,0

7g0
− 1152a3

0h
2
0,0a

2
2,0

49P 2g0

}

,

(3.11)

b4,0 =
1

δ

{(

6366g0a
2
2,0

245a0
+ 6g0a0 +

74

7
g0a2,0 − 41g0a4,0 −

6a0g
2
2,0

g0

)

P 2 +
126144a0h0,0a

2
2,0

245

− 576a2
0h0,0a2,0g2,0

7g0
− 120a2

0a4,0h0,0 +
480a2,0h0,0a

2
0

7
+

13824a3
0h

2
0,0a

2
2,0

49P 2g0

}

,

(3.12)

g4,2 =
18g0a

2
2,0

49a2
0

, g4,1 =
36g0a

2
2,0

49a2
0

+
3g0a2,0

7a0
+

6a2,0g2,0

7a0
, (3.13)
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g4,0 =
1

δ

{(

214407g2
0a

2
2,0

980a2
0

+
15g2

0

4
+

3243g2
0a2,0

28a0
− 225g2

0a4,0

2a0
+

263g2
2,0

4
+

139g2,0g0

2

)

P 2

+
7200g0h0,0a

2
2,0

49
− 360a0h0,0a2,0g2,0

7
− 360a0g0h0,0a2,0

7
− 60a2

0g2,0h0,0

− 60a2
0g

2
2,0h0,0

g0
+

8640a2
0h

2
0,0a

2
2,0

49P 2

}

,

(3.14)

K4,2 = −12g0a2,0

35a2
0

P 2 , (3.15)

K4,1 =
1

δ

{(

− 4701g2
0a2,0

56a0

− 9719g2
0a

2
2,0

56a2
0

+
195a2

0a4,0

4a0

+
13g2

2,0

8
− 13g2

0

8

− 417g0a2,0g2,0

14a0

)

P 4 +

(

360g0a0a2,0h0,0

7
+

51096g0h0,0a
2
2,0

245

+ 48a0h0,0a2,0g2,0

)

P 2 − 12384a2
2,0a

2
0h

2
0,0

49

}

,

(3.16)

K4,0 =
1

δ

{(

−189g2
0

16
− 123g2

0a2,0

56a0
+

97g2
0a4,0

4a0
+

23885g2
0a

2
2,0

392a2
0

+
139g0a2,0g2,0

14a0
− 139g0g2,0

4

− 57g2
2,0

4

)

P 4 +

(

45g0a
2
0h0,0

2
+

283077g0h0,0a
2
2,0

245
+ 30a2

0g2,0h0,0 − 390g0a0a4,0h0,0

+
2973g0a0a2,0h0,0

7
+

240a0h0,0a2,0g2,0

7

)

P 2 − 1440a3
0h

2
0,0a2,0g2,0

7g0

− 1440a3
0h

2
0,0a2,0

7
+

35712a2
2,0a

2
0h

2
0,0

49

}

.

(3.17)

3.2 The IR boundary conditions

Next, we discuss the behavior of solutions to (2.8)-(2.12) near the horizon, x → 1.

Introducing a near-horizon coordinate

y ≡ 1 − x (3.18)

we find that in order for the solutions (2.4) to have a non-singular Schwarzschild hori-

zon, the functions {h, f2, f3, g, K} must all be even functions of y with a good Taylor
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series expansion around y = 0 :

h =
∞
∑

n=0

hhn y2n, f2 =
∞
∑

n=0

ahn y2n , f3 =
∞
∑

n=0

bhn y2n ,

K =

∞
∑

n=0

khn y2n, g =

∞
∑

n=0

ghn y2n .

(3.19)

When one solves the equations of motion perturbatively in y, one finds that the

solutions are labeled by six independent parameters, which one can choose to be

{hh0 , ah0 , bh0 , kh0 , gh0 , ah1}. Naively one might think that all five equations of motion (2.8)-

(2.12) would have one normalizable mode and one non-normalizable mode near the hori-

zon, so that requiring a regular solution will set the coefficients of the non-normalizable

modes to zero and leave us with 5 parameters. However, it turns out that for one com-

bination of the equations both modes are normalizable near the horizon, leading to the

extra parameter; this is related to a scaling symmetry of the geometry (2.4) which we

will discuss in the next subsection, which implies that one combination of parameters

is not determined before choosing a scale 7.

Using these 6 parameters we can solve for the coefficients in (3.19) to any order we

wish. Using the notation δh ≡ 8hh0(a
h
0)

2 − P 2gh0 , we have

order O(y2):

hh1 =
1

δh

{

8(ah0)
2(hh0)

2 − (kh0 )2

2(bh0)
2
− ah1(k

h
0 )2

(bh0)
2ah0

−
(

3

2
hh0g

h
0 +

hh0g
h
0ah1

ah0

)

P 2

}

,

bh1 =
1

δh

{

1

2
gh0 bh0P

2 − 2hh0b
h
0

(

3(ah0)
2 − 3ah0b

h
0 + 2ah0a

h
1 − 6ah1b

h
0

)

}

,

kh1 =
1

δh

{

P 2gh0kh0 (ah0 + 2ah1)

ah0

}

, gh1 =
1

δh

{

(gh0 )2P 2(ah0 + 2ah1)

2ah0

}

.

(3.20)

order O(y4):

kh2 =
1

(δh)2

{

−gh0P 2kh0 (ah0 + 2ah1)
2

2(ah0)
2

(

4hh0(a
h
0)

2 − 12hh0a
h
0b
h
0 − gh0P 2

)}

, (3.21)

gh2 =
1

(δh)2

{

−(gh0 )2P 2(ah0 + 2ah1)
2

4(ah0)
2

(

2hh0(a
h
0)

2 − 6hh0a
h
0b
h
0 − gh0P 2

)}

, (3.22)

7Such a scaling symmetry in geometries with translationally invariant horizons was also noticed in

[34].
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hh2 =
1

(δh)2

{

4hh0a
h
0

(bh0)
2

(

16(bh0)
2(ah0)

3(hh0)
2 − ah0(k

h
0 )2 − 2ah1(k

h
0 )2
)

+
hh0(g

h
0 )2P 4(3ah0 + 2ah1)

2ah0

− gh0P 2

4(ah0)
2(bh0)

2

(

78(hh0)
2(bh0)

2(ah0)
4 + 6(hh0)

2(ah0)
3(bh0)

3 − 8(hh0)
2(ah0)

2(ah1)
2(bh0)

2

+ 24(hh0)
2(ah1)

2(bh0)
3ah0 + 24(hh0)

2(ah0)
3ah1(b

h
0)

2 + 24(hh0)
2(ah0)

2ah1(b
h
0)

3 − (kh0 )2(ah0)
2

+ 4(kh0 )2(ah1)
2

)}

,

(3.23)

ah2 =
1

(δh)2

{

−12(hh0)
2a5

0 + 12bh0(h
h
0)

2(ah0)
4 + 16(hh0)

2(ah0)
4ah1 + 48(hh0)

2(ah0)
3ah1b

h
0

+ 48(hh0)
2(ah0)

3(ah1)
2 + 48(hh0)

2(ah0)
2bh0(a

h
1)

2 +

(

7

2
(ah0)

3hh0g
h
0 − 3

2
bh0g

h
0hh0(a

h
0)

2

− 2hh0(a
h
0)

2ah1g
h
0 − 6hh0a

h
0a

h
1b
h
0g

h
0 − 10hh0a

h
0(a

h
1)

2gh0 − 6hh0(a
h
1)

2gh0 bh0

)

P 2

+

(

−3

8
ah0(g

h
0 )2 − 1

2
(gh0 )2ah1

)

P 4

}

,

(3.24)

bh2 =
1

(δh)2

{

(hh0)
2(−45bh0(a

h
0)

3 + 16(ah0)
3ah1 + 45(bh0)

2(ah0)
2 − 132(ah0)

2ah1b
h
0

+ 180(bh0)
2ah0a

h
1 − 84ah0b

h
0(a

h
1)

2 + 180(bh0)
2(ah1)

2)bh0 +
hh0g

h
0P 2bh0
4ah0

(

6(ah0)
3 + 9bh0(a

h
0)

2

+ 12ah0a
h
1b
h
0 + 8ah0(a

h
1)

2 − 12(ah1)
2bh0

)

− 1

8
(gh0 )2bh0P

4

}

.

(3.25)

4 Mapping of parameters to the field theory

4.1 Translation to the parametrization of [30]

In this section we wish to understand the physical meaning of the 3 parameters which

we used in the previous section to parameterize our theory (in the UV) – h0,0, a0 and g0.

As we mentioned, g0P is the dimensionless parameter of the cascading theory (which

must be large for the gravity approximation to be valid), while h0,0 and a0 are related

to the scale of cascading theory and to the temperature. Note that our ansatz (2.4) is

invariant under a scaling symmetry taking

(t, ~x) → λ−2(t, ~x) , h → λ−2 h , f2 → λf2 , f3 → λf3 , (4.1)
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and leaving all other functions in our solution (as well as the coordinate x) invariant. In

terms of our asymptotic parameters, this scaling transformation leaves h0,0a
2
0 invariant,

meaning that this combination is a function of the dimensionless parameter of our

theory, which is the ratio between the temperature and some scale Λ which characterizes

the cascading theory. We can choose this scale Λ to be, say, the mass of the lightest

glueball, or the square root of the string tension. We will find it more convenient to

use a different definition of Λ which will be described below.

The parametrization (2.4) we used above for the solution breaks down at zero

temperature, since it assumes the existence of a horizon. In order to understand which

combinations of our parameters depend on the temperature and which do not it is

convenient to switch to a different parametrization of the geometry, which is valid also

at low temperatures : an example of such a parametrization is given by [30]

ds2
10 =ĥ−1/2ρ−2

(

−f̂ 2dt2 + dx2
1 + dx2

2 + dx2
3

)

+ ĥ1/2ρ−2(dρ)2

+ ĥ1/2f̂2

(

e2
ψ

)

+ ĥ1/2f̂3

2
∑

a=1

(

e2
θa

+ e2
φa

)

,
(4.2)

where {ĥ, f̂2, f̂3, f̂} are functions of ρ. In this parametrization the supersymmetric

zero temperature solution is characterized by two parameters: the value of the string

coupling ĝ0, and the coefficient of the warp factor ĥ0,0; in terms of these parameters

we can write the asymptotic solution for small ρ as

ĥ = ĥ0,0 −
1

2
ĝ0P

2 ln(ρ) , K̂ = 4ĥ0,0 −
1

2
ĝ0P

2 − 2ĝ0P
2 ln(ρ) ,

ĝ = ĝ0, f̂ = f̂2 = f̂3 = 1 .
(4.3)

Note that the ansatz (4.2) is invariant under a joint rescaling of the x, t coordinates and

the ρ coordinate; such a rescaling leads to a constant shift in ĥ0,0. Thus, we can think

of ĥ0,0 as determining the scale of the cascading theory; note that this is independent of

the temperature, since in the parametrization (4.2) all IR effects (including the effects

of the temperature) are suppressed by powers of ρ.

We would like to match (4.3) with the asymptotic solution (3.1) used above. We

require that as ρ → 0 (and correspondingly x → 0) all the corresponding warp factors

in the metric should agree to leading order, i.e.,

lim
{ρ,x}→0

ρ−2f̂(ρ)2ĥ(ρ)−1/2

(1 − x)2(2x − x2)−1/2h(x)−1/2
= 1 , lim

{ρ,x}→0

ĥ(ρ)1/2f̂2(ρ)

h(x)1/2f2(x)
= 1 ,

lim
{ρ,x}→0

ĥ(ρ)−1/2f̂3(ρ)

h(x)−1/2f3(x)
= 1 , lim

{ρ,x}→0

ĝ(ρ)

g(x)
= 1 , lim

{ρ,x}→0

K̂(ρ)

K(x)
= 1 .

(4.4)
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This matching uniquely identifies:

x =
1

2
a2

0ρ
4 + higher orders , g0 = ĝ0 , h0,0 a2

0 = ĥ0,0 +
1

8
P 2ĝ0 ln(

a2
0

2
) . (4.5)

4.2 Expectation values in the black hole background

In order to proceed, we would like to compute the expectation values of various op-

erators in the cascading theories in terms of our parameters; in particular we want

to compute the expectation value of the stress-energy tensor and of scalar operators

which have dimension four when P → 0. The expectation values of these operators

were evaluated in [30] using the coefficients appearing in the expansion in powers of ρ

of the functions appearing in (4.2), up to order ρ4. In order to recycle those results we

need to translate our boundary expansion of the previous section to the one of [30],

namely to write the leading terms of the expansion of [30] in terms of our parameters

{h0,0, a0, g0, a2,0}, as we did for the zeroth order terms in (4.5) 8.

When we do the matching we have some freedom, since in the parametrization (4.2)

there is a freedom of performing diffeomorphisms of ρ depending on higher powers of

ρ, that only affect the higher order terms in the expansion. Of course this freedom

does not affect the eventual expectation values. We will fix this freedom by making an

explicit choice for x as a function of ρ to order O(ρ8), given by :

x =
1

2
ρ4a2

0 − ρ8a3
0

(

5

24
a0 +

1

14
a2,0

)

+ O(ρ10) . (4.6)

We can now identify all the terms in the expansion of [30] using our expansion of the

previous section. Translating (4.5) to the notation of [30], we find at order ρ0

p0 = g0 , K0 = 4h0,0a
2
0 −

1

2
P 2g0 −

1

2
P 2g0 ln(

a2
0

2
) ,

G
(0)
ij = ηij = diag (−1, 1, 1, 1) .

(4.7)

All the coefficients in [30] at order ρ2 vanish, while the independent parameters ap-

pearing at order ρ4 are given by (again in the notation of [30])

a(4,1) = 0 , a(4,2) = 0 , a(4,3) = 0 , G
(4,0)
tt = a2

0 , G(4,0)
xixi

= 0 ,

p(4,0) =
a2

0g2,0

2g0

+
3

7
a0a2,0 ln(

a2
0

2
) , a(4,0) =

4

7
a0a2,0 +

1

3
a2

0 , b(4,0) =
1

3
a2

0 .
(4.8)

8Note that the parameters {a3,0, a4,0} only show up at orders O(ρ6) and O(ρ8), respectively, so

they do not affect the expectation values of these operators.

17



The one-point function of the stress energy tensor is given by [30]

8πG5〈Tij〉 = −1

2
G

(0)
ij G(4,0)a

a + 2G
(4,0)
ij +

3

2
G

(0)
ij

(

b(4,0) − a(4,0)
)

, (4.9)

where G5 is the five dimensional Newton’s constant obtained after we do the dimen-

sional reduction on T 1,1 (see [30]). In the normalizations that we are using, G5 is

related to the ratio P/M (using the careful analysis of [35]) by G5 = 8π3P 4/81M4.

Using (4.9) we obtain that the energy density E and the pressure P are given in terms

of our parameters by

E ≡ 〈Ttt〉 =
1

8πG5

(

3

2
a2

0 +
6

7
a0a2,0

)

,

P ≡ 〈Txixi
〉 =

1

8πG5

(

1

2
a2

0 −
6

7
a0a2,0

)

.

(4.10)

Since we do not have any chemical potentials, the free energy density F is

F = −P =
1

8πG5

(

6

7
a0a2,0 −

1

2
a2

0

)

. (4.11)

The expectation values of the remaining two scalar operators which have dimension 4

when P = 0 are (using their normalization defined in [30])

〈OK0
〉 =

24a0a2,0

7P 2g0
,

〈Op0〉 = 2
a2

0g2,0

g2
0

+
12a0a2,0

7g0

(

1 + ln(
a2

0

2
)

)

.

(4.12)

Note that in general curved backgrounds there was an ambiguity in some of the one-

point correlation functions computed in [30], but there is no such ambiguity when the

asymptotic four dimensional metric is flat (as in our case).

4.3 The basic thermodynamic relation

The equations above tell us, using the asymptotic values of the fields, that

sT = E − F = E + P =
a2

0

4πG5
(4.13)

in the cascading background, where s is the entropy density. On the other hand, we

can also compute the entropy density and temperature directly at the horizon in terms

of the horizon parameters {hh0 , ah0 , bh0 , kh0 , gh0 , ah1} :

s =
(ah0)

1/2(bh0)
2(hh0)

1/2

4G5
, T =

1

4πhh0b
h
0

√

2(8hh0(a
h
0)

2 − gh0P 2)

ah0 + 2ah1
. (4.14)
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At first sight the previous two equations seem to give a non-trivial relation between

some of our UV parameters and some of the IR parameters related to the expansion near

the horizon. However, it turns out that sT is a renormalization group flow invariant

in supergravity black brane geometries without a chemical potential [36, 37], so this

relation is trivially satisfied in any solution of our equations of motion.

To simplify notations we rewrite the metric (2.4) as

ds2
10 = −c2

1 dt2+c2
2

(

dx2
1 + dx2

2 + dx3
3

)

+c2
3 (dx)2+c2

4

(

e2
ψ

)

+c2
5

2
∑

a=1

(

e2
θa

+ e2
φa

)

, (4.15)

where ci = ci(x) can be identified by comparing (2.4) and (4.15). Now, from the

relation between components of the Ricci tensor

R x1

x1
= R t

t , (4.16)

we have a constraint9

c4
2c4c

4
5

c3

(

c1

c2

)′

= constant . (4.17)

Evaluating the left-hand side of (4.17) near the horizon, using the standard relations

between the area of the horizon and the entropy and between the surface gravity of

the horizon and the temperature, we have

lim
x→1

−

c4
2c4c

4
5

c3

∣

∣

∣

∣

(

c1

c2

)′ ∣
∣

∣

∣

= 8πG5 sT . (4.18)

On the other hand, evaluating the left-hand side of (4.17) near the boundary and using

the asymptotic solution (3.1) we find

lim
x→0+

c4
2c4c

4
5

c3

∣

∣

∣

∣

(

c1

c2

)′ ∣
∣

∣

∣

= lim
x→0+

h1/4f
1/2
2 f 2

3

(2x − x2)G
1/2
xx

= 2a2
0 . (4.19)

Thus, our equation (4.13) follows in a straightforward way from the equations of motion.

5 The numerical procedure

5.1 Reducing the number of parameters

Before we begin the numerical solution of the equations, we can use the symmetries

of the problem to get rid of some of our parameters. First, as mentioned above, the

9Equation (4.17) can also be directly derived from (2.8)-(2.12).
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parameters h0,0 and a0 are not scale invariant, but only the combination h0,0a
2
0, which

is a function of the temperature divided by the dynamical scale. We will choose as

our parameter which is related to the dimensionless temperature the combination ks

defined by

P 2g0ks ≡ 4h0,0a
2
0 −

1

2
P 2g0 . (5.1)

Equation (4.5) now tells us that [ks − ln(a2
0/2)/2] is independent of the temperature

(it depends only on the dynamical scale of the cascading theory). Thus, we can choose

to define the scale Λ of this theory by a relation of the form

ks ≡
1

2
ln

(

a2
0

Λ4

)

=
1

2
ln

(

4πG5sT

Λ4

)

. (5.2)

Using the expressions for the high temperature entropy density of the theory computed

in [11, 10], we see that at high temperatures ks ≃ (1/2) ln(T 4/Λ4), with corrections

scaling as ln(ln(T/Λ)). We will use ks instead of the temperature as our basic dimen-

sionless parameter, and use (5.2) to translate between ks and T/Λ.

Having understood this relation, we can now use the scaling symmetry (4.1) to

set a0 = 1, or, equivalently, use the fact that the solution to the equations of motion

depends on the 7 UV parameters {g0, h0,0, a0, a2,0, g2,0, a3,0, a4,0} that we used in our

expansion only through the six invariant combinations
{

g0 , ks , â2,0 ≡
a2,0

a0

, â3,0 ≡
a3,0

a0

, â4,0 ≡
a4,0

a0

, g2,0

}

. (5.3)

Recall also that we are solving the theory in the supergravity approximation, which

includes only the leading order terms both in the gs expansion and in the curvature (α′)

expansion. When we neglect gs corrections, the action (and the equations of motion

we wrote) does not depend separately on P 2 and g but only on the combination P 2g.

We can thus set g0 = 1, and recall that whenever we have a factor of P 2 we really

mean P 2g0. Furthermore, when we neglect α′ corrections, the action is multiplied

by a constant when we rescale the ten dimensional metric by a constant factor (and

rescale the p-forms accordingly), so that the equations of motion are left invariant; this

transformation acts on our variables as

h → λ−2h , f2,3 → λ2f2,3 , K → λ2K , g → g , (5.4)

and it changes P by P → λP . We can use this transformation to relate the solutions

for different values of P (as long as we are in the supergravity approximation). Thus,
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we will perform the numerical analysis for P = 1, and we can use (5.4) to obtain the

solutions for any other value of P .

As a test of our numerics, we can check if it reproduces the solution at high temper-

atures which can be computed perturbatively (as was done at leading order in [10], and

at higher orders in the appendix). This computation implies that the correct solution

should obey at large ks (A.35)-(A.38):

â2,0 =
7

12

1

ks
− 7

24
ln(2)

1

k2
s

+ O
(

k−3
s

)

,

â3,0 =
4

5
λ

[2]
3

1

ks
+

((

2

15
− 2

5
ln(2)

)

λ
[2]
3 +

4

5
λ

[4]
3

)

1

k2
s

+ O
(

k−3
s

)

,

â4,0 =

(

ln(2)

30
+

1021

1800

)

1

ks
+

(

167809

108000
− (ln(2))2

360
− 781

1200
ln(2) + η

[4]
4

)

1

k2
s

+ O
(

k−3
s

)

,

g2,0 =

(

−1

2
+

1

2
ln(2)

)

1

ks
+

(

1

4
ln(2) − 1

4
(ln(2))2 + ζ

[4]
2

)

1

k2
s

+ O
(

k−3
s

)

,

(5.5)

where the values of the various constants appear in the appendix, and we used the

high-temperature relation between the value of K at the horizon, which we denote by

K⋆, and our dimensionless parameter ks:

K⋆ = P 2ĝ0

(

ks +
1

2
ln(2) + O

(

k−1
s

)

)

. (5.6)

5.2 Our numerical method

As described above, for a given value of the temperature (or of ks) we have four

parameters controlling the behavior of our solutions near the UV. What we need to

do is to find for which value of these four parameters the solution is regular near

the horizon, and this will determine the correct vacuum expectation values for this

value of the temperature. The most naive way to proceed would be to go over all

possible values of these parameters, use these values to determine the solution near

the boundary, integrate the equations of motion up to x = 1, and see if the solution

there is regular or not. Unfortunately, we cannot integrate the equations analytically

but only numerically, and when we integrate the equations near the horizon, numerical

errors always generate modes that blow up at the horizon, so we cannot really obtain

solutions that are regular at the horizon in this way.

One alternative might be to perform the integration in the opposite direction – start

from a general solution near the horizon, integrate the equations to the boundary, and
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see for which values of our near-horizon parameters we find a regular solution at the

boundary (with the correct KT asymptotics). However, this suffers from the same

problem, that numerical errors generate modes that grow near the boundary.

Thus, we are led to a procedure where we integrate the equations both from the

boundary and from the horizon towards the middle of the interval x = 0.5, and attempt

to match a solution that we get by integrating from the boundary with a solution that

we get by integrating from the horizon. After setting g0 = 1, for a given value of ks, the

UV behaviour (3.1) is determined by 4 parameters (related to operator VEVs) (5.3)

{â2,0 , â3,0 , â4,0 , g2,0} . (5.7)

The IR behaviour (3.19) is determined by 6 horizon parameters

{hh0 , ah0 , ah1 , bh0 , kh0 , gh0} . (5.8)

Matching a UV solution and an IR solution to (2.8)-(2.12) at x = 0.5 implies 10 con-

straints (5 for matching the values of the functions, and 5 for matching their derivative).

Notice that we have precisely the same number of constraints as necessary to uniquely

determine all the UV and IR parameters ((5.7) and (5.8)) for a given value of ks.

Since both the boundary x = 0 and the horizon x = 1 are singular points of the

differential equations (2.8)-(2.12), we integrate the differential equations (2.8)-(2.12)

from x = 0.01 (for the boundary integration) and from y = 0.01 (for the horizon in-

tegration). In the former case the initial conditions are specified by the asymptotic

expansion (3.1) which we developed to order x9/2 (inclusive); in the case of the hori-

zon integration the initial conditions are specified by the asymptotic expansion (3.19)

to order y10 (inclusive). The coefficients of these asymptotic expansions generalize

the results presented in section 3, and are available from the authors upon request.

The mismatch between the boundary and the horizon integrations is encoded in the

‘mismatch vector’ ~vmismatch, defined by

~vmismatch =

(

hb − hh, h
′
b + h′

h, f2,b − f2,h, f
′
2,b + f ′

2,h, f3,b − f3,h, f
′
3,b + f ′

3,h,

Kb − Kh, K
′
b + K ′

h, gb − gh, g
′
b + g′

h

)
∣

∣

∣

∣

x=y=0.5

,

(5.9)

where the subscripts h or b correspond to functions {h, f2, f3, K, g} integrated from the

horizon or boundary, respectively, and the prime denotes derivatives with respect to x
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Figure 1: Mismatch of hb(x) (for x < 0.5) and hh(y ≡ 1− x) (for x > 0.5) for different

values of the parameters, for ks = 0.4. The solid (blue) curves correspond to “correct”

values of the parameters (5.7) and (5.8), with ||~vmismatch|| ≈ 9 × 10−6. The dotted

(green) curves corresponding to all values of parameters 10% larger than the correct

ones, produce ||~vmismatch|| ≈ 3×10−1. The dashed (red) curves correspond to all values

of parameters 20% smaller than the correct ones, giving ||~vmismatch|| ≈ 8 × 10−1.

or y. The UV parameters (5.7) and the IR parameters (5.8) are tuned to ensure that

||~vmismatch|| < 10−5 . (5.10)

An illustration of the integration as a function of the UV and IR parameters is presented

in figure 1.

We performed the numerical integration using Wolfram Mathematica c©6 with 40

digit precision, to ensure sensitivity to the irrelevant operator parameters â3,0 and â4,0.

5.3 The numerical results

We present the numerical results for the UV (5.7) and the IR (5.8) parameters as a

function of ks in two regimes10:

10The IR parameters are presented only for small values of ks. Additional data are available from

the authors upon request.
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Figure 2: Values of the UV parameters â2,0 and â3,0 as a function of ks (blue points).

The dashed/dotted (red/green) curves represent the perturbative O(k−1
s )/O(k−2

s )

asymptotics of the parameters, given by (5.5).
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Figure 3: Values of the UV parameters â4,0 and g2,0 as a function of ks (blue points).

The dashed/dotted (red/green) curves represent the perturbative O(k−1
s )/O(k−2

s )

asymptotics of the parameters, given by (5.5).

for large values of ks, where we can check our numerical results against the pertur-

bative analytic predictions (5.5);

for an interval of small values of ks that includes the first order transition point

to a confined thermal cascading background with broken chiral symmetry (as we will

discuss in the next section).

5.3.1 Large values of ks

Figures 2 and 3 present the dependence of the UV parameters {â2,0, â3,0, â4,0, g2,0} on

ks ∈ (4.29, 24.0), with a step of ∆ks = 0.01 (blue points). In this regime the typical
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Figure 4: The values of the UV parameters â2,0 and â3,0 as a function of ks.
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Figure 5: The values of the UV parameters â4,0 and g2,0 as a function of ks.

norm of the mismatch vector (5.9) ||~vmismatch|| ∼ 10−10 or less. The dashed and dotted

(red and green) curves represent the perturbative O(k−1
s ) and O(k−2

s ) asymptotics

(5.5), respectively. Note that the dotted (green) curves track our numerical data quite

well in this regime11.

5.3.2 Small values of ks

Figures 4-8 present the dependence of the UV {â2,0, â3,0, â4,0, g2,0} and the IR {ah0 , ah1 ,

bh0 , gh0 , kh0 , hh0} parameters on ks ∈ (0.25, 0.48) with a step of ∆ks = 0.01 (∆ks = 0.005

near the transition) (blue points). In this regime the typical norm of the mismatch

vector (5.9) ||~vmismatch|| ∼ 10−5 or less. A highly non-trivial check on our numerics is

the consistency of the holographic flow invariant sT . The latter can be computed in

11In appendix A we confirm using the perturbative high-temperature expansion that the cascading

geometry thermodynamics satisfies the first law of thermodynamics up to order O(k−3
s ).
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Figure 6: The values of the IR parameters ah0 and ah1 as a function of ks.
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Figure 7: The values of the IR parameters bh0 and gh0 as a function of ks.

the IR using (4.14), or in the UV using (4.13). We find that

∣

∣

∣

∣

sT |IR
sT |UV

− 1

∣

∣

∣

∣

∼ 10−5 (5.11)

or less, which provides an independent check on the accuracy of matching the IR and

UV solutions (5.9).

The special (red) point in figure 4 denotes a critical value of ks = kcritical, for which

the corresponding value of the parameter â2,0 = â2,0(kcritical) = 7
12

leads to a vanishing

of the free energy density (4.11). We find kcritical by performing a linear fit of the first

5 numerical points:

kcritical = 0.25712(1) . (5.12)

Our available numerical data shows that the free energy density (4.11)

F =
3a2

0

28πG5

(

â2,0 −
7

12

)

(5.13)
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Figure 8: The values of the IR parameters kh0 and hh0 as a function of ks.

is negative when ks > kcritical and is positive when ks < kcritical, so we find that at

temperatures lower than ks = kcritical the black hole solutions are not thermodynami-

cally preferred over the gas of particles in the background of [9]. Thus, if we assume

that these are the only two possible configurations, kcritical gives a critical temperature

corresponding to a first order confinement transition, with chiral symmetry breaking,

in the gravitational dual to the cascading gauge theory. Examination of the infrared

parameters in figures 6-8 shows that the geometry at this transition is non-singular

(as expected for a first order transition), and can be made arbitrarily weakly curved

for large values of P , justifying the validity of the supergravity approximation. This

observation is the main result of our paper.

6 The physical results obtained from our numerical solutions

In this final section we translate the results of the previous section into physical quan-

tities in the theory as a function of the temperature. We present all the results as a

function of T/Λ, where the temperature T is given by (4.14), and the scale Λ enters

through the temperature dependence of ks. Recall that the numerical results presented

in section 5 were obtained when setting P = g0 = 1 and a0 = 1. It is easy to restore

the correct powers of P using the scaling symmetry (5.4), and to then put a factor of

g0 = ĝ0 together with every factor of P 2. In order to relax the a0 = 1 condition, all

the dimensionful quantities must be computed in units of (see (5.2))

Λ = e−ks/2 . (6.1)
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In particular, from (4.14) we have

T

Λ
=

eks/2

4πhh0b
h
0

√

2(8hh0(a
h
0)

2 − gh0 )

ah0 + 2ah1
, (6.2)

enabling us to translate the dependence on ks into a dependence on the temperature.

Equations (4.10) and (4.11) imply that the simplest expressions arise for the free

energy density and the energy density divided by sT , which are given by

F
sT

=
3

7

(

â2,0 −
7

12

)

,
E
sT

=
3

4

(

1 +
4

7
â2,0

)

. (6.3)

Equations (5.2) and (4.14) allow us to compute the entropy density divided by the

temperature cubed, which is a measure of the number of degrees of freedom in the

theory :

4πG5

P 4ĝ2
0

s

T 3
=

32π4 sT

81M4ĝ2
0 T 4

=
32π4 sT

81M4ĝ2
0 Λ4

(

Λ

T

)4

=

(

1

4πhh0b
h
0

√

2(8hh0(a
h
0)

2 − gh0 )

ah0 + 2ah1

)−4

.

(6.4)

Notice that at high temperatures we can use the perturbative expression (A.42) of

Appendix A and (4.13) to determine

s

T 3
=

sT

T 4
=

a2
0

4πG5T 4
=

π4K2
⋆

64πG5

(

1 + O
(

P 2ĝ0

K⋆

))

≃ 81

128
M4ĝ2

0 ln2(
T

Λ
) . (6.5)

Finally, we can evaluate the vacuum expectation values of the two dimension 4 scalar

operators (4.12) :

〈OK0
〉

Λ4
=

24

7

e2ks

P 2ĝ0
â2,0 ,

〈Op0〉
Λ4

=e2ks

(

2
g2,0

ĝ2
0

+
12(1 − ln(2) + 2ks)

7ĝ0
â2,0

)

.

(6.6)

Figure 9 presents ln(T
Λ
) as a function of ks at low and high temperatures. This is

useful to determine the temperature dependence of the various UV and IR parameters

presented in figures 2-8. Notice that the high temperature dependence of ks is in a good

agreement with the high temperature asymptotic analysis of appendix A. Indeed, a

straight line fit of the points in the plot on the right determines the slope to be 0.46(3),

while the ks → ∞ slope is expected to be 1
2

(A.40).
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Figure 10: The free energy density F , divided by sT , as a function of T
Λ
. On the left

we plot temperatures at and slightly above the deconfinement transition, and on the

right much higher temperatures.

Figure 10 presents F
sT

as a function of T
Λ

at low and high temperatures. Using a

straight line fit of the first 6 points in the (left) free energy density plot, we determine

the deconfinement and chiral symmetry restoration temperature to be

(

T

Λ

)

critical

= 0.614111(3) , (6.7)

by requiring that the free energy density vanishes at T = Tcritical. Notice that there are

noticeably large deviations from scale invariant thermodynamics even for rather large

temperatures. Indeed, for T
Λ
∼ 10, the deviation of F

sT
from the conformal result

F
sT

∣

∣

∣

∣

conformal

= −1

4
(6.8)

is about 12%.
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Figure 12: The temperature dependence of the effective number of degrees of freedom

in the strongly coupled cascading gauge theory, as defined by N2
eff ∝ s/T 3.

Figure 11 presents E
sT

as a function of T
Λ

at low and high temperatures. Here, the

deviation at high temperature from the conformal result

E
sT

∣

∣

∣

∣

conformal

=
3

4
(6.9)

is three times less than the corresponding deviation in the free energy density (or

pressure). Such a suppression is easy to understand once we notice from (6.3) that

F
sT

=

(

1 − δ

)

× F
sT

∣

∣

∣

∣

conformal

,
E
sT

=

(

1 +
1

3
δ

)

× E
sT

∣

∣

∣

∣

conformal

, (6.10)

where δ ≡ 12
7
â2,0. Note that the lattice results for QCD also imply that the energy

density of the QCD plasma near the deconfinement transition is much more similar to

that of scale-invariant thermodynamics than the QCD pressure [38].

Figure 12 presents the temperature dependence of the effective number of degrees of

freedom of the strongly coupled cascading gauge theory at low and high temperatures,
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Figure 13: The temperature dependence of the vacuum expectation values of the di-

mension 4 operators 〈OK0
〉 and 〈Op0〉. The operators are normalized such that they

are invariant under the scaling transformation (5.4).

as defined by N2
eff ∝ s/T 3. One way to characterize the phase transition temperature

is by the effective number of degrees of freedom (in the deconfined phase) at this

temperature. Using the straight line fit of the first 6 points in the (left) effective number

of degrees of freedom plot, we find that at the deconfinement and chiral symmetry

restoration temperature (6.7)

32π4

81M4ĝ2
0

s

T 3

∣

∣

∣

∣

T=Tcritical

= 3.4291(5). (6.11)

Figure 13 presents the temperature dependence of the vacuum expectation values

of the dimension 4 operators 〈OK0
〉 and 〈Op0〉 (see (6.6)) at low temperatures. At

high temperatures we can use the perturbative expressions (A.42), (A.35) and (A.38)

of appendix A to determine

P−2ĝ−1
0

〈OK0
〉

Λ4
∝
(

T

Λ

)4

ln(
T

Λ
) ,

P−4ĝ−1
0

〈Op0〉
Λ4

∝
(

T

Λ

)4

ln2(
T

Λ
) .

(6.12)
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A Appendix : Perturbative evaluation of the solutions at high

temperature

In this appendix we analyze the high temperature thermodynamics of the cascading

gauge theory perturbatively in P 2ĝ0/K⋆, where

K⋆ = P 2ĝ0

(

ks +
1

2
ln(2) + O

(

k−1
s

)

)

(A.1)

is the five-form flux evaluated at the horizon, and ks is defined by (5.1).

The purpose of this perturbative analysis is twofold: first, we would like to test our

asymptotic identification of the cascading geometry parameters (4.5), of the temper-

ature and of the dynamical scale Λ, against the first law of thermodynamics; second,

we would like to obtain analytic predictions for the high-temperature values of the UV

(5.7) and the IR parameters (5.8) perturbatively in P 2ĝ0/K⋆, in order to benchmark

our general numerical analysis. We will test the first law of thermodynamics to order

O
(

P 6ĝ3
0

K3
⋆

)

inclusive, and evaluate the UV parameters (5.7) to order O
(

P 4ĝ2
0

K2
⋆

)

inclusive.

The appendix is organized as follows. In subsection A.1 we derive the perturbative

equations of motion to order O
(

P 6ĝ3
0

K3
⋆

)

inclusive. In subsection A.2 we present the

near horizon and the near boundary expansions of the solutions, outline our numerical

method for the computation of the UV/IR parameters of the perturbative solutions,

and collect numerical expressions for some of these parameters. In subsection A.3 we

present perturbative expressions for the thermodynamics of the deconfined cascading

gauge theory, and verify the first law of thermodynamics.
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A.1 Perturbative equations of motion

As discussed above, without loss of generality we can set g0 = ĝ0 = 1. We use the

following parametrization for the solution in perturbation theory in P 2

K⋆
:

h(x) =
K⋆

4ã2
0

+
K⋆

ã2
0

3
∑

n=1

{(

P 2

K⋆

)n(

ξ2n(x) − 5

4
η2n(x)

)}

+
K⋆

ã2
0

O
(

P 8

K4
⋆

)

, (A.2)

f2(x) = ã0 + ã0

3
∑

n=1

{(

P 2

K⋆

)n(

−2ξ2n(x) + η2n(x) +
4

5
λ2n(x)

)}

+ ã0 O
(

P 8

K4
⋆

)

,

(A.3)

f3(x) = ã0 + ã0

3
∑

n=1

{(

P 2

K⋆

)n(

−2ξ2n(x) + η2n(x) − 1

5
λ2n(x)

)}

+ ã0 O
(

P 8

K4
⋆

)

,

(A.4)

K(x) = K⋆ + K⋆

3
∑

n=1

{(

P 2

K⋆

)n

κ2n(x)

}

+ K⋆ O
(

P 8

K4
⋆

)

, (A.5)

g(x) = 1 +

3
∑

n=1

{(

P 2

K⋆

)n

ζ2n(x)

}

+ O
(

P 8

K4
⋆

)

. (A.6)

The advantage of this parametrization is that the equations for {ξ2n, η2n, λ2n, ζ2n}
decouple, once the (decoupled) equation for κ2n is solved, at each order (n = 1, 2, 3) in

perturbation theory. We find (for n = 1, 2, 3)

0 = κ′′
2n +

κ′
2n

x − 1
+ J [2n]

κ , (A.7)

0 = η′′
2n +

η′
2n

x − 1
− 8η2n

x2(x − 2)2
− 2

5
κ′

2 κ′
2n −

8κ2n

3x2(x − 2)2
+ J [2n]

η , (A.8)

0 = ξ′′2n +
(3x2 − 6x + 4)ξ′2n
x(x − 1)(x − 2)

− 2

3
κ′

2 κ′
2n + J [2n]

ξ , (A.9)

0 = λ′′
2n +

λ′
2n

x − 1
− 3λ2n

x2(x − 2)2
− 2κ′

2 κ′
2n + J [2n]

λ , (A.10)

0 = ζ ′′
2n +

ζ ′
2n

x − 1
+ 2κ′

2 κ′
2n + J [2n]

ζ , (A.11)

where the source terms {J [2n]
κ ,J [2n]

η ,J [2n]
ξ ,J [2n]

λ ,J [2n]
ζ } are functionals of the lower

order solutions: κ2m, ξ2m, η2m, λ2m, ζ2m, with m < n. Explicit expressions for the

source term functionals are available from the authors upon request.
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The perturbative solutions to (A.7)-(A.11) must be regular at the horizon, and

must have the appropriate KT asymptotics (3.1) near the boundary.

The leading order (n = 1) solution to (A.7)-(A.11) was obtained in [10]:

κ2 = −1

2
ln(2x − x2) , (A.12)

η2 =
(x2 − 2x + 2)

20(2x − x2)

(

dilog(2x − x2) − 1

6
π2

)

− 1

15
+

ln(2x − x2)

15
, (A.13)

ξ2 =
1

12
ln(2x − x2) , (A.14)

ζ2 =
π2

24
− 1

2
dilog(1 − x) +

1

2
dilog(2 − x) − 1

2
ln(x) ln(1 − x) . (A.15)

There is no simple expression for λ2 — it is straightforward to write an appropriate

solution using the Green’s function for (A.10), but this explicit expression is not useful.

Similarly, although the higher order n = 2, 3 solutions to (A.7)-(A.11) could be pre-

sented in quadratures, these expressions are not useful. Rather, we identify the higher

order solutions by specifying their asymptotic expressions near the horizon and near

the boundary, along with the numerical values for the relevant integration constants.

A.2 UV/IR asymptotics of the perturbative solutions

The UV/IR parameters of the higher order perturbative solutions are found by solving

the differential equations (A.7)-(A.11) numerically from the boundary (x = 0), and

requiring the proper boundary conditions at the horizon, which are

lim
x→1

−

κ′
2n = lim

x→1
−

η′
2n = lim

x→1
−

ξ′2n = lim
x→1

−

λ′
2n = lim

x→1
−

ζ ′
2n = 0 , n = 2, 3 . (A.16)

To begin, we present the asymptotics of λ2. As x → 0+ we find

λ2 =
2

3
x+λ

[2]
3 x3/2+

11

15
x2+

3

4
λ

[2]
3 x5/2+

176

315
x3+

9

16
λ

[2]
3 x7/2+

676

1575
x4+

7

16
λ

[2]
3 x9/2+O

(

x5
)

,

(A.17)

where λ
[2]
3 is related to the condensate of the dimension 6 operator at order O

(

P 2

K⋆

)

.

Nonsingularity of the λ2(x) solution to (A.10) at the horizon, together with

lim
x→1

−

λ′
2 = 0 ,

determines

λ
[2]
3 = −0.872358024(9) . (A.18)
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Near the horizon, as y ≡ 1 − x → 0+, we find

λ2 =λh2,0 +

(

−1

4
+

3

4
λh2,0

)

y2 +

(

33

64
λh2,0 −

7

64

)

y4 +

(

107

256
λh2,0 −

181

2304

)

y6

+

(

− 3181

49152
+

5913

16384
λh2,0

)

y8 + O
(

y10
)

,

(A.19)

where λh2,0 can be determined numerically to be

λh2,0 = 0.16806(9) . (A.20)

A.2.1 Order n = 2 asymptotics

As x → 0+ we find

κ4 =

(

κ
[4]
2 − 1

2
ln(x)

)

x +
2

15
λ

[2]
3 x3/2 +

(

−106

225
+

7

30
ln(2) +

1

2
κ

[4]
2 − 1

60
ln(x)

)

x2

+
1

50
λ

[2]
3 x5/2 + O

(

x3
)

,

(A.21)

η4 =

(

− 1

12
+

1

18
ln(2) +

1

18
ln(x)

)

+

(

13

360
− 1

30
ln(2) − 7

30
κ

[4]
2 +

1

12
ln(x)

)

x

− 4

225
λ

[2]
3 x3/2 +

(

η
[4]
4 +

(

7

360
− 1

36
ln(2) +

1

15
κ

[4]
2

)

ln(x) − 11

360
ln2(x)

)

x2

− 97

1575
λ

[2]
3 x5/2 + O

(

x3
)

,

(A.22)

ξ4 =
1

36
ln(x) +

(

−1

6
κ

[4]
2 +

11

144
− 1

24
ln(2) +

1

24
ln(x)

)

x − 2

225
λ

[2]
3 x3/2

+

(

− 191

43200
− 1

36
κ

[4]
2 +

1

80
ln(2) − 1

144
ln2(2) +

(

19

720
− 1

72
ln(2)

)

ln(x)

− 1

144
ln2(x)

)

x2 − 229

3150
λ

[2]
3 x5/2 + O

(

x3
)

,

(A.23)

λ4 =

(

−14

9
+

4

3
κ

[4]
2 +

2

3
ln(2)

)

x + λ
[4]
3 x3/2 +

(

67

450
+

22

15
κ

[4]
2 +

1

3
ln(2) − 2

5
ln x

)

x2

+

(

4

5
λ

[2]
3 +

3

4
λ

[4]
3

)

x5/2 + O
(

x3
)

,

(A.24)
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ζ4 =

(

ζ
[4]
2 +

(

−13

12
+ κ

[4]
2 +

1

2
ln(2)

)

ln(x)

)

x

+

(

−13

24
+

1

2
ζ

[4]
2 +

1

8
ln2(2) +

(

−13

24
+

1

2
κ

[4]
2 +

1

2
ln(2)

)

ln(x) +
1

8
ln2(x)

)

x2

− 4

75
λ

[2]
3 x5/2 + O

(

x3
)

,

(A.25)

where the new UV parameters {κ[4]
2 , η

[4]
4 , λ

[4]
3 , ζ

[4]
2 } are determined numerically from the

horizon boundary condition (A.16):

κ
[4]
2

∣

∣

∣

∣

numeric

= 0.73675974(3) , (A.26)

and

η
[4]
4

∣

∣

∣

∣

numeric

= 0.0053421556(6) ,

λ
[4]
3

∣

∣

∣

∣

numeric

= −1.1156300100(2) ,

ζ
[4]
2

∣

∣

∣

∣

numeric

= 0.622262593(4) .

(A.27)

With (A.26) and (A.27) there are no additional UV parameters to tune in order to

enforce the horizon boundary condition (A.16) for ξ4. We find

ξ′4(x = 0.99999)

∣

∣

∣

∣

numeric

∼ 10−6 , (A.28)

which is of the same order of magnitude as the error in (A.16) for all other functions.

The asymptotic expressions of the n = 2 solutions near the horizon y ≡ 1 − x → 0+

take the form

κ4 =κh4,0 + κh4,2y
2 + κh4,4y

4 + O(y6) ,

η4 =ηh4,0 + ηh4,2y
2 + ηh4,4y

4 + O(y6) ,

ξ4 =ξh4,0 + ξh4,2y
2 + ξh4,4y

4 + O(y6) ,

λ4 =λh4,0 + λh4,2y
2 + λh4,4y

4 + O(y6) ,

ζ4 =ζh4,0 + ζh4,2y
2 + ζh4,4y

4 + O(y6) .

(A.29)

To verify the first law of thermodynamics to order O
(

P 6

K⋆3

)

we will need the numerical

expressions only for {κh4,0, ξh4,0, ξh4,2}. We find

κh4,0

∣

∣

∣

∣

numeric

= 0.62226(3) , (A.30)
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and

ξh4,0

∣

∣

∣

∣

numeric

= −0.079819(3) ,

ξh4,2

∣

∣

∣

∣

numeric

= 0.019198(8) .

(A.31)

A.2.2 Order n = 3 asymptotics

To verify the first law of thermodynamics to order O
(

P 6

K⋆3

)

we will need the asymptotic

expression for κ6 only. We find

κ6 =

(

κ
[6]
2 +

(

13

12
− κ

[4]
2 − 1

2
ln(2)

)

ln(x)

)

x +

(

1

45
λ

[2]
3 +

2

15
λ

[4]
3

)

x3/2

+

(

281821

216000
− 2587

3600
κ

[4]
2 − 509

720
ln(2) +

31

288
ln2(2) +

1

2
κ

[6]
2 +

13

4
η

[4]
4 +

1

4
ζ

[4]
2

+
1

4
ln(2) κ

[4]
2 +

(

− 49

3600
+

13

60
κ

[4]
2 − 1

8
ln(2)

)

ln(x) − 7

60
ln2(x)

)

x2

+

(

1153

10500
λ

[2]
3 − 4

25
λ

[2]
3 κ

[4]
2 +

1

50
λ

[4]
3 +

2

25
λ

[2]
3 ln(x)

)

x5/2 + O
(

x3
)

(A.32)

as x → 0+, with

κ
[6]
2 = −0.62226259(3) (A.33)

determined from the horizon boundary condition (A.16).

A.2.3 Perturbative expressions for UV parameters (3.1)

Finally, we collect perturbative expressions for the various independent UV parameters

a2,0, a3,0, a4,0, g2,0 as defined by (3.1). Because of the scaling symmetry (4.1) it is

convenient to quote these parameters relative to a0. Also, in the next subsection we

show that the first law of thermodynamics requires that

κ
[4]
2 =

13

12
− 1

2
ln(2) . (A.34)

Note that (A.34) agrees with (A.26) up to an error of order 10−10. In the following

expressions for the UV parameters in (3.1) we use the analytic expression (A.34).

We find

a2,0

a0
=

7

12

P 2

K⋆
+ O

(

P 6

K3
⋆

)

, (A.35)
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a3,0

a0
=

4

5
λ

[2]
3

P 2

K⋆
+

(

4

5
λ

[4]
3 +

2

15
λ

[2]
3

)

P 4

K2
⋆

+ O
(

P 6

K3
⋆

)

, (A.36)

a4,0

a0
=

(

1

30
ln(2) +

1021

1800

)

P 2

K⋆
+

(

η
[4]
4 − 661

1800
ln(2) +

1

72
(ln(2))2 +

167809

108000

)

P 4

K2
⋆

+ O
(

P 6

K3
⋆

)

,

(A.37)

g2,0 =

(

−1

2
+

1

2
ln(2)

)

P 2

K⋆
+ ζ

[4]
2

P 4

K2
⋆

+ O
(

P 6

K3
⋆

)

. (A.38)

A.3 Perturbative thermodynamics of the non-extremal cascading geome-

try

One of the interesting properties of the deconfined cascading geometry is the tempera-

ture dependence of the five-form flux evaluated at the horizon K⋆ = K⋆(T ). The need

for such dependence was first pointed out in [10]; it stems from the fact that when

studying the thermodynamics of non-conformal gauge theories (such as the cascading

gauge theory) one must keep the intrinsic scale of the cascading gauge theory fixed12,

rather than keeping fixed the five-form at the horizon.

The fact that K⋆ is temperature dependent introduces additional temperature de-

pendence into the thermodynamic potentials (the free energy density F (4.11), the

energy density E (4.10), and the entropy density s (4.14)) via the UV parameters a0

and a2,0, both of which depend on K⋆. As a result, the first law of thermodynamics

dF = −s dT (A.39)

would not be valid, unless the temperature dependence of K⋆ is properly determined

and taken into account. One possible approach is to use the first law of thermodynamics

(A.39) as a way to determine K⋆(T ). Such an approach was proposed and implemented

in [30] to leading order in O
(

P 2

K⋆

)

, where it was found that validity of (A.39) requires

that
dK⋆(T )

dT
=

2P 2

T
+ O

(

P 4

K⋆

)

(A.40)

(this was also proposed in [10], based on the requirement of keeping the glueball spec-

trum scale of the cascading gauge theory fixed). Equation (A.40) was also shown to

12This fact was not clearly taken into account in previous numerical studies [13].
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be required for the consistency of the hydrodynamics of the cascading gauge theory

plasma in [18].

The main observation of this paper is that one can rigorously determine the tem-

perature dependence of K⋆ without referring to the first law of thermodynamics. In

the bulk of the paper this was implicitly done in our solutions. In the context of the

perturbative high-temperature expansion, we can obtain such an identification pertur-

batively by expanding the exact matching condition (4.5), enforcing the fixed scale

of the cascading gauge theory, perturbatively in P 2

K⋆
. We will demonstrate here that

this identification is consistent with the first law of thermodynamics. This provides a

non-trivial consistency check on our solutions.

In the rest of this subsection we present explicit expressions for a0 as a function

of the temperature T to order O
(

P 4

K2
⋆

)

. One can then use (A.35) to compute the

thermodynamic potentials of the cascading black hole geometry. We present explicit

perturbative expressions for dK⋆(T )
dT

, and verify the first law of thermodynamics to order

O
(

P 6

K3
⋆

)

.

A.3.1 Cascading black hole thermodynamics to order O
(

P 2

K⋆

)

Explicitly evaluating the temperature of the black hole to order O
(

P 2

K⋆

)

we find

ã0 =
π2K⋆T

2

4

(

1 +
2P 2

3K⋆
+ O

(

P 4

K2
⋆

))

. (A.41)

Using (A.12)-(A.15), we further determine

a0 =
π2K⋆T

2

4

(

1 +
P 2

2K⋆
+ O

(

P 4

K2
⋆

))

. (A.42)

The matching condition (4.5) then determines

O
(

P 4

K⋆

)

= 4ĥ0,0 − K⋆ + P 2

(

1

2
ln(

π4T 4K2
⋆

16
) − 1

2

)

. (A.43)

Assuming that K⋆ = K⋆(T ) and differentiating (A.43), we find (A.40).

A.3.2 Cascading black hole thermodynamics to order O
(

P 4

K2
⋆

)

We can evaluate the black hole temperature to order O
(

P 4

K2
⋆

)

by requiring that the

Euclidean continuation of the metric (2.4) does not have a conical singularity as y → 0+.
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We find13

T =
2

π

(

ã0

K⋆

)1/2{

1 − P 2

3K⋆
+

P 4

K2
⋆

(

(π2 + 8)2

1920
+

1

30

(

λh2,0
)2 − ξh4,0 + 2ξh4,2 −

2

3
κh4,0

)

+ O
(

P 6

K3
⋆

)}

.

(A.44)

Solving for ã0 from (A.44), and reading off {a0, a2,0} in (3.1) from (A.2)-(A.6), we find

a0 =
1

4
T 2π2K⋆

{

1 +
P 2

2K⋆
+

P 4

K2
⋆

(

13

180
+

1

18
ln(2) − π4

960
− π2

60
− 1

15

(

λh2,0
)2

+
4

3
κh4,0

+ 2ξh4,0 − 4ξh4,2

)

+ O
(

P 6

K3
⋆

)}

,

(A.45)

a2,0 =
7

48
T 2π2P 2

{

1 +
P 2

2K⋆
+ O

(

P 4

K2
⋆

)}

. (A.46)

Additionally we find (see (5.1))

P 2ks ≡ 4h0,0a
2
0 −

1

2
P 2 = K⋆

{

1 − ln(2)

2

P 2

K⋆
+ O

(

P 6

K3
⋆

)}

. (A.47)

We are now ready to verify the first law of thermodynamics. The matching condition

(4.5), to order O
(

P 4

K2
⋆

)

, gives

O
(

P 6

K2
⋆

)

= 4ĥ0,0 − K⋆ + P 2

(

1

2
ln(

π4T 4K2
⋆

16
) − 1

2

)

+
P 4

2K⋆
, (A.48)

which results in the following ordinary differential equation for K⋆ ≡ K⋆(T ) :

dK⋆

dT
=

2P 2

T

{

1 +
P 2

K⋆
+ O

(

P 4

K2
⋆

)}

. (A.49)

Now, given (A.45) and (A.46) we can evaluate the energy density E and the pressure

P. The first law of thermodynamics (A.39) leads to

dK⋆

dT
=

2P 2

T

{

1 +
P 2

K⋆

(

ln(2) − 7

6
+ 2κ

[4]
2

)

+ O
(

P 4

K2
⋆

)}

. (A.50)

Consistency of (A.49) and (A.50) makes a prediction

κ
[4]
2 =

13

12
− 1

2
ln(2) . (A.51)

13We used from (A.19) λh2,2 =
(

− 1

4
+ 3

4
λh2,0

)

.
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As a highly non-trivial check on our numerical analysis of the perturbative expansion,

note that (A.51) agrees with (A.26) to within a factor of order 10−10.

With (A.51) we can also evaluate the speed of sound squared

c2
s ≡

∂P
∂E =

1

3
− 4

9

P 2

K⋆
+

10

27

P 4

K2
⋆

+ O
(

P 6

K3
⋆

)

. (A.52)

A.3.3 First law of thermodynamics to order O
(

P 6

K3
⋆

)

For the temperature dependence of K⋆ to order O
(

P 6

K3
⋆

)

we can again find two expres-

sions — one involving both the UV parameters and the IR parameters, and the other

one parameter-independent. These parallel the expressions (A.50) and (A.49) :

dK⋆

dT
=

2P 2

T

{

1 +
P 2

K⋆

+
P 4

K2
⋆

(

− 1

480
π4 − 1

30
π2 +

1

9
ln(2) +

71

180
− 2

15

(

λh2,0
)2

+
8

3
κh4,0

+ 4ξh4,0 − 8ξh4,2 + ζ
[4]
2 + 2κ

[6]
2

)

+ O
(

P 6

K3
⋆

)}

,

(A.53)

dK⋆

dT
=

2P 2

T

{

1 +
P 2

K⋆
+

1

2

P 4

K2
⋆

+ O
(

P 6

K3
⋆

)}

, (A.54)

where we used (A.34). Consistency of (A.53) and (A.54) leads to a prediction

− 1

480
π4− 1

30
π2+

1

9
ln(2)+

71

180
− 2

15

(

λh2,0
)2

+
8

3
κh4,0+4ξh4,0−8ξh4,2+ζ

[4]
2 +2κ

[6]
2 =

1

2
. (A.55)

We can estimate the error in our solutions by comparing the two sides of (A.55). Using

the explicit expressions for the perturbative UV parameters (A.27) and the perturbative

IR parameters (A.30) and (A.31), we find
∣

∣

∣

∣

LHS

RHS
− 1

∣

∣

∣

∣

∼ 2 × 10−5 . (A.56)

Finally, the speed of sound can be expressed either in terms of the UV parameters

or the IR parameters

c2
s =

1

3
− 4

9

P 2

K⋆
+

10

27

P 4

K2
⋆

+

(

−16

81
− 4

9
ζ

[4]
2 − 8

9
κ

[6]
2

)

P 6

K3
⋆

+ O
(

P 8

K4
⋆

)

, (A.57)

c2
s =

1

3
− 4

9

P 2

K⋆
+

10

27

P 4

K2
⋆

+

(

− 1

1080
π4 − 2

135
π2 +

4

81
ln(2) − 11

45
− 8

135

(

λh2,0
)2

+
32

27
κh4,0 +

16

9
ξh4,0 −

32

9
ξh4,2

)

P 6

K3
⋆

+ O
(

P 8

K4
⋆

)

.

(A.58)

Consistency of (A.57) and (A.58) is guaranteed by (A.55).
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