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Abstract: 

 The Cs adsorption on InP(100) surface is studied with Synchrotron Radiation 

Photoelectron Spectroscopy. The charge transfer from Cs to the InP substrate is observed 

from the Cs induced In 4d and P 2p components, and this charge transfer results in 

surface dipole formation and lowering of the work function. The Cs 4d intensity saturates 

at coverage of one monolayer (ML). However, a break point is observed at 0.5 ML, 

which coincides with the achievement of the minimum work function. This break point is 

due to the different vertical placement of the first and the second half monolayer of Cs 

atoms. Based on this information, a simple bi-layer structure for the Cs layer is presented. 

This bi-layer structure is consistent with the behavior of the charge transfer from the Cs 

to the InP substrate at different Cs coverages. This, in turn, explains why the work 

function decreases to a minimum at 0.5 ML of Cs and remains almost constant beyond 

this coverage. The depolarization of the surface dipoles is attributed to the saturation of 

charge transfer to the surface In atoms and the polarization of the Cs atoms in the second 

half monolayer induced by the positively charged Cs atoms in the first half monolayer. 
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1. Introduction: 

 Research on Cs adsorption on metals, oxides and semiconductors has been studied 

for many years. Especially, the research on III-V semiconductors has led to a variety of 

applications including Negative Electron Affinity (NEA) photocathodes because Cs can 

lower the work function of semiconductors considerably1-7. Besides practical applications, 

the NEA surface also offers a very good opportunity to investigate the low-lying 

conduction bands as well as electron transport properties2. Recently,  the low work 

function on Cs covered surfaces enabled interesting discoveries of energy transfer from 

molecular vibrations to electron excitations3.  

 Within the studies of Cs adsorption on III-V semiconductors, Cs/GaAs has been 

the most widely studied system6,8-17. Cs/InP has received less attention and published 

work is concentrated on the InP(110) cleaved surfaces because such surfaces are fairly 

well-defined18-20. Recently, InP(100) is gaining more importance for the next generation 

of night vision technology because it can be lattice matched to GaxIn1-xAsyP1-y band 

engineered materials, serving as the emission surface for the photocathode. This brings an 

imminent demand for a scientific understanding of the Cs/InP(100) interface, which 

serves as the basis for the study of activation of InP(100) by Cs and O to achieve NEA.   

The observed lowering of the work function is normally explained by the 

formation of dipole layer on the surface4,5,6. Assuming a one to one correspondence 

between an individual dipole and a surface Cs atom, the Topping model7 has been used to 

explain the dependence of the overall dipole strength on the Cs coverage. In this work, 

we will show that the experimentally observed charge transfer from the Cs to the InP 

 2



substrate as well as the structure of the Cs layer provides an atomic picture for the dipole 

formations and depolarization. 

 In this study, we observed that the Cs 4d core level intensity as a function of 

deposition time on the InP(100) surface saturates at one monolayer (ML) and a 

breakpoint at 0.5 ML is also seen. Photoemission measurements taken at two different 

photon energies demonstrate that the Cs atoms in the second half monolayer are higher 

than those in the first half monolayer. The charge transfer from the Cs atoms to the InP 

substrate slows down with increased Cs coverage. The surface dipole buildup and the 

work function change as a function of Cs coverage are explained by the bi-layer structure 

of the Cs layer. 

   

2. Experimental: 

The InP(100) wafers used are Zn doped, p-type with a carrier concentration of 5 × 

1017 cm-3 manufactured by Wafer Technology, U.K.. The chemical cleaning process 

developed in our earlier work21 is used to obtain a clean starting InP(100) surface. In this 

process, the sample is first etched in 4:1:100 H2SO4:H2O2:H2O solution for 2 minutes to 

remove the native oxide and grow 0.6 – 1 ML of chemical oxide, rinsed with DI water, 

and then etched in 1:1 H2SO4:H2O to remove the remaining oxide. After this step, the 

surface is hydrogen terminated on the surface P sites. The sample is then transferred into 

the photoemission chamber and heated to 330oC to remove the H termination, resulting in 

an In terminated clean InP surface.  

The Cs deposition is done by evaporation from a SAES Getters (Italy) chromate 

source. The Cs getter is carefully out-gassed before use22. Photocurrent from the sample 
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is generated by a He-Ne laser (632.8nm). The work function of the sample is measured 

from the low energy cut-off of the photoemission spectra. The lack of core level peak 

shift during the Cs deposition indicates that there is no band bending caused by Cs 

adsorption. 

Experiments are performed at beam line 8-1 (photon energy range 30-190 eV) and 

beam line 8-2 (photon energy range 200-1300 eV) at the Stanford Synchrotron Radiation 

Laboratory (SSRL).  The photon energy range of beam line 8-1 gives the best 

combination of surface sensitivity and energy resolution for the In 4d (Eb = 16.5eV), P 2p 

(Eb = 135eV) and Cs 4d (Eb = 78eV) core levels and the valence band which are 

measured at hν  = 70, 165, 120 and 70 eV, respectively.  Beam Line 8-2 is used when 

photon energy higher than 200eV is required. 

The photoemission spectra are collected with a PHI (model 10-360) spherical 

energy analyzer with a multi-channel detector.  The spectra are fitted with Voigt 

functions, which are Gaussian broadened Lorentzian line shapes.  The spin-orbit splitting 

is fixed at 0.86eV for P 2p, 0.855eV for In 4d and 2.28eV for Cs 4d. 

 

3. Results and discussion: 

 

3.1. Cs Adsorption and the Change of Work Function 

 The Cs 4d intensity at hν = 120 eV as a function of deposition time is plotted in 

figure 1(a). The intensity stops increasing at an exposure time of approximately 250 s. It 

is well established in the literature that Cs adsorption on III-V semiconductor surfaces 

saturates at one monolayer coverage at room temperature14,18 because of very weak Cs-Cs 
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attraction. At this one monolayer of Cs coverage, the P 2p intensity at hν = 165 eV 

decreases to 48% of the value for clean surface and the In 4d intensity at hν = 120 eV 

deceases to 44%. This attenuation by adsorbed Cs is similar to what was reported by 

Kendelewicz et al on the InP(110) surface18. Using an effective electron escape depth of 

7.5Å in Cs,23 we estimate the Cs layer thickness to be approximately 6Å, which is close 

to, but slightly larger than, a single physical layer of atomic Cs atoms. 

A break point in the Cs 4d intensity can be clearly seen in figure 1(a) when 

0.5ML of Cs has been deposited. This is also the point where the work function reaches a 

minimum, as plotted in figure 1(a). After this point, the work function stays almost 

constant. This behavior is similar to what has been reported previously for Cs on 

GaAs(100)24, Cs on InP(110)19,20 and Na on GaP(110)25. As plotted in figure 1(b), the 

photocurrent reaches a maximum at the 0.5 ML point, a direct consequence of the 

achievement of minimum work function. 

The break point in the Cs 4d intensity can not be explained simply by a change of 

the Cs sticking coefficient. We can see this by checking the Cs 4d intensity as a function 

of Cs coverage at hν = 350eV which has a longer electron escape depth than 120 eV.  

This result is plotted in figure 2 where we can see that the change of slope at 0.5 ML is 

less obvious compared with the data taken at hν = 120eV. A plausible explanation for 

this effect is the formation of a Cs bi-layer structure. The second half monolayer of Cs is 

located at a larger distance above the substrate surface than the first half monolayer. 

Therefore, it becomes clear that the intensity of first half monolayer would be attenuated 

by the second half monolayer. This attenuation creates the break point seen in the total Cs 

intensity. At the higher photon energy of 350 eV (i.e. higher photoelectron kinetic 
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energy) the attenuation factor is smaller due to the longer electron escape depth resulting 

in smaller slope change at 0.5 ML. The fact that Cs atoms within the same monolayer are 

not at the same distance above the substrate is not surprising because they are not 

necessarily adsorbed on identical sites. A similar bi-layer structure for a monolayer of Cs 

was also observed on the Cs/GaAs(110) surface by STM17. Since the Cs atoms in the 

second half monolayer are further away from the surface, they can not transfer charge to 

the InP substrate as effectively. That is why the work function reaches minimum at 0.5 

ML of Cs, which is discussed in more details below. 

  

3.2. Charge transfer from Cs to the InP(100) substrate 

 The P 2p and In 4d spectra at different Cs coverages are shown in figure 3(a) and 

(b), respectively. Careful examination of the In 4d and P 2p core level line shapes shows 

that a tail on the higher kinetic energy side appears upon Cs deposition. The tail on the P 

2p keeps growing as the Cs coverage increases but for In 4d, the line shape change after 

0.3 ML of Cs is small. The numerical fitting for P 2p at a Cs coverage of 0, 0.25, 0.5 and 

1 ML is shown in figure 4. For the clean InP(100) surface, only one component is needed 

to fit the P 2p spectrum21. When Cs is deposited on the surface, an additional component 

on the high kinetic energy side must be added to fit the peak. This component has a 

chemical shift of 0.47 ± 0.04 eV relative to the P 2p peak in bulk InP, indicating charge 

transfer from the adsorbed Cs atoms. This Cs induced component grows with the 

deposition of additional Cs while the chemical shift remains the same.  

The fits for In 4d at Cs coverages of 0, 0.1, 0.2 and 0.3 ML are shown in figure 5. 

The In 4d for the clean surface (0 ML Cs) is shown in figure 5 (a). It has a surface 
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component with kinetic energy 0.47 eV higher than that of the bulk peak21. When Cs is 

deposited on the surface, this component grows, indicating that the Cs induced 

component overlaps the surface component. Although we are not able to resolve the Cs-

induced component from the original surface shifted peak of the clean surface because of 

their very similar chemical shifts, we will still use the term “Cs induced component” to 

identify this peak for simplicity. This Cs induced component grows at first, but seems to 

be constant when the Cs coverage is higher than 0.3 ML. As in the case for the P 2p, the 

chemical shift of the Cs induced In 4d component does not change during the Cs 

deposition. 

 The Cs induced components for the In 4d and P 2p core levels indicate that some 

surface In and P atoms receive charge from the adsorbed Cs atoms. For simplicity, the 

notations of In(Cs) and P(Cs) are used to represent those atoms. From the ratio of the Cs 

induced peak to the bulk peak, the coverage of In(Cs) and P(Cs) atoms are estimated and 

plotted in figure 6, using the theoretical electron escape depth of InP26. We do not have to 

consider the attenuation caused by the Cs layer here, because this attenuation of the 

In(Cs) and the P(Cs) atoms and the attenuation of the bulk In and P atoms are the same 

and are canceled out in our calculation. The coverage of In(Cs) grows quickly at the early 

stages of Cs adsorption and reaches approximately 1 ML when about 0.25 ML of Cs is 

deposited. This implies that, at this stage, the Cs atoms do not have one-to-one chemical 

bonds with the surface In atoms. Thus it is not likely that the Cs atoms occupy top sites 

on In atoms when the Cs coverage is less than 0.25 ML. The most likely adsorption sites 

for the Cs atoms are hollow sites surrounded by four Indium atoms on the (100) surface. 

If one Cs atom occupies one such site, charge transfer will occur from the Cs atom to the 
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adjacent In atoms. The In(Cs) coverage stays almost constant when the Cs coverage is 

more than 0.25 ML, indicating the saturation of the charge transfer from the adsorbed Cs 

atoms to the surface In atoms.  

Unlike In(Cs), the P(Cs) coverage increases with Cs adsorption until a full layer 

of Cs is deposited, but the rate of increase becomes smaller with higher Cs coverage. The 

growth of the P(Cs) at the beginning is slower than the In(Cs) because the clean InP(100) 

surface is In terminated. However, after the charge transfer from the Cs to the In has 

saturated, additional charge transfer from the Cs must go to the P. Therefore, the P(Cs) 

coverage continues to increase. The ultimate coverage of P(Cs) is about 1 ML, similar to 

In(Cs), indicating that the Cs can only transfer charge to the surface In and P atoms but 

not to In and P atoms in the layers below the surface. 

 

3.3. Surface Dipole and Depolarization 

The dependence of the InP work function on the Cs coverage can be explained 

conceptually by the formation of surface dipoles and dipole depolarization as a result of 

dipole-dipole repulsions7. However, we need to go beyond the conceptual explanation 

and try to understand this work function dependence at the atomic level. A side view of 

the Cs/InP(100) interface is shown schematically in figure 7. All the atoms are drawn to 

scale according to the assumptions given below. Indium atoms have a diameter of 2.81Å 

and P atoms have a diameter of 2.26 Å when they are in an InP single crystal. We can 

only estimate the sizes of the Cs atoms on the InP(100) surface because we do not know 

their exact charge state. A Cs atom has a atomic radius of 2.6 Å, and an ionic radius 

between 1.81 Å and 1.88 Å, depending on the coordination27. We know that the charge 
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donation from the Cs to the InP substrate is partial, i.e., the Cs atoms are only partially 

ionic, so the covalent radius of 2.25 Å is probably the best approximation for the Cs 

atoms in the first half monolayer. This is also very close to the average of the atomic and 

ionic radius, so we believe that it is a reasonable approximation. The atomic radius is 

used for the Cs atoms in the second half monolayer because they only transfer a very 

small amount of charge to the substrate, as shown in figure 6. The actual size and location 

of the surface atoms, which require more careful studies, may differ from this drawing. 

However, the bi-layer structure of the Cs layer, on which our discussion is mainly based, 

will not be affected 

In section 3.1, we attributed the break point in figure 1(a) to the bi-layer structure, 

with Cs atoms in the second half monolayer being higher above the substrate than those 

in the first half monolayer. We can learn why this is the case by examining the structure 

shown in figure 7. On an InP(100) surface, the distance between two adjacent In atoms, 

which represents the size of the surface unit cell, is only 4.15 Å. This is smaller than the 

estimated Cs diameter of 4.5 Å, which means that it is impossible to form one monolayer 

of Cs at the same vertical level on InP. Even if the actual diameter of Cs atoms were 

smaller than our estimate so that there would be just enough space for all of them to fit on 

the surface, this will force the positively charged Cs atoms to pack very close to each 

other. Without negatively charged atoms in between to hold them together, such as in 

ionic crystals, mutual repulsion will make such surface highly unstable and will cause the 

rearrangement of the Cs layer. Some of the Cs atoms will be pushed up, resulting in the 

bi-layer structure, as depicted in figure 7. 
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With this model of surface structure in mind, we will see how the Cs adsorption is 

correlated with the change of the surface dipole layer and the lowering of the work 

function. Before 0.25 ML of Cs coverage is reached, the rapid lowering of the work 

function is caused by the large charge transfer from the adsorbed Cs atoms to the 

substrate, which builds a surface dipole layer. Between 0.25 ML and 0.5 ML of Cs 

coverage, Cs atoms continue to occupy the available adsorption sites. However, since the 

charge transfer to the surface In atoms has already saturated, further charge transfer can 

only go to the surface P atoms, which are further away from the adsorbed Cs atoms. As a 

result, this charge transfer is much smaller than the initial charge transfer from Cs to In, 

leading to less dipole strength being built in this stage. Therefore, the change of work 

function is smaller.  

Between 0.5 ML and 1ML, Cs atoms are adsorbed above the first half monolayer 

of Cs. They are further away from the InP surface, so only a very small amount of charge 

is transferred to the substrate. However, this limited charge transfer does not cause 

further reduction of the work function. We postulate that it is because of an induced 

polarization of the Cs atoms in the second half monolayer. Those Cs atoms are almost 

neutral, with a large radius and a loosely bound 6s electron which is highly polarizable. 

They are easily polarized by their nearest neighbors—the positively charged Cs atoms in 

the first half monolayer. This induced polarization causes a slight separation of positive 

and negative charge in the Cs atoms in the second half monolayer and is the very reason 

for the attraction between the two half monolayers. The induced polarization of the Cs 

atoms in the second half monolayer builds two additional dipoles D2 and D3, as depicted 

in figure 7. The combined effect of D2 and D3 cancels out the additional dipole strength 
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built by the small charge transfer from the Cs atoms in the second half monolayer to the 

InP substrate. Therefore, the work function does not change significantly when more than 

0.5 ML of Cs is deposited even though there is additional charge transfer to the substrate 

at this stage. 

As discussed above, our understanding of the Cs/InP(100) interface explains the 

dependence of the work function on the Cs coverage. At the same time, it provides the 

atomic origin for the depolarization effect of the surface dipoles when the Cs coverage is 

high: the saturation of the charge transfer and the induced polarization of the Cs atoms in 

the second half monolayer. 

 

4. Conclusions: 

 The Cs/InP(100) interface formation at room temperature is studied. Cs coverage 

saturates on InP(100) surface at 1 ML with a bi-layer structure. Cs induced components 

for both In 4d and P 2p core levels indicate charge transfer from the adsorbed Cs atoms to 

the InP substrate. The change of the charge transfer as a function of Cs coverage, together 

with the bi-layer nature of the Cs layer, helps us to explain the change of the work 

function as a function of Cs coverage. The initial quick decrease of the work function is 

caused by the large charge transfer from the Cs to the InP substrate, while the saturation 

of the Cs charge transfer to the surface In atoms causes the decrease of the work function 

to slow down between 0.25 ML and 0.5 ML of Cs coverage. Lastly, the lack of change in 

the work function between 0.5ML and 1 ML of Cs coverage is consistent with the 

polarization of the Cs atoms in the second half monolayer induced by the positively 

charged Cs atoms in the first half monolayer, which generates a dipole in a reverse 
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direction to offset the limited additional charge transfer from the Cs atoms in the second 

half monolayer to the substrate. 
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Figure Captions: 
Figure 1. (a) Cs 4d Intensity at hv = 120 eV and work function change at different Cs 

coverage (Cs intensity: •, work function: ) (b) Photo current from InP(100) during Cs 

deposition (Cs intensity: •, photocurrent: curve) at different Cs coverage. 

 

Figure 2. Cs 4d intensity as a function of Cs coverage at two different photon energies 

(hv = 120 eV: •, hv = 350 eV: �).  

 

Figure 3. (a). P2p  (b) In 4d spectra at different Cs coverage. A component at higher 

kinetic energy side grows with more Cs deposited. Spectra are normalized to the same 

height to show the line shape change. 

 

Figure 4. Fit for P 2p at different Cs coverage. (a) 0 ML, (b) 0.25 ML, (c) 0.5 ML, (d) 1 

ML. Dots are experimental data and lines are the fitting result. 

 

Figure 5. Fit for In 4d at different Cs coverage. (a) 0 ML, (b) 0.1 ML, (c) 0.2 ML, (d) 0.3 

ML. Dots are experimental data and lines are the fitting result. 

 

Figure 6. Coverage of In(Cs) and P(Cs) at different Cs coverage (P(Cs): •, In(Cs): Δ). 

 

Figure 7. Schematic side view of the Cs atoms on InP(100) substrate. All atoms are 

drawn to scale with their assumed sizes. The covalence diameter (d1) is used for the Cs 

atoms in the first half monolayer while the atomic diameter (d2) is used for the Cs atoms 
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in the second half monolayer because they donate little charge to the substrate. D1 is the 

dipole between the substrate and the first half monolayer of Cs, D2 is the dipole between 

the first and second half monolayer of Cs and D3 is the dipole caused by the induced 

polarization of the second half monolayer of Cs. 
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