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Recent BABAR results for decays of B-mesons to combinations of non-charm mesons are
presented. This includes B decays to two vector mesons, B → η′(π,K, ρ) modes, and a
comprehensive Dalitz Plot analysis of B → KKK decays.

1. Introduction

Decays of B mesons to charmless mesons have once again become a very active field

of study, due to abundance of new data from the B-factories. This data confronts

recent theoretical predictions, including but not limited to approaches using SU(3)

flavor symmetry 1 and QCD factorization 2. The high level of current theoretical

activity centered on this topic is reflected at this conference as well 3,4.

Besides being interesting in their own right, measurements of branching fractions

and CP asymmetry of charmless B decays provide important constraints for the

determination of the unitarity triangle constructed from elements of the Cabibbo-

Kobayashi-Maskawa quark-mixing matrix 5. Systematic study of these branching

fractions can offer insights on the relative contributions of tree-level and penguin

loop-mediated decay modes. It has been argued that the influence of final-state

interactions like charming penguins 6 and similar long-distance rescattering effects 7

on both the branching fraction and CP asymmetry of B decays to pseudoscalar

mesons may be significant.

Here we focus on the most recent charmless branching fraction measurements

performed by the BABAR Experiment. BABAR charm and CP violation results are

discussed separately at this conference 8,9.

The data used in the analyses presented were collected with the BABAR de-

tector 10 at the PEP-II asymmetric-energy e+e− storage ring at SLAC. Charged-

particle trajectories are measured by a five-layer double-sided silicon vertex tracker

and a 40-layer drift chamber located within a 1.5-T solenoidal magnetic field.

Charged hadrons are identified by combining energy-loss information from tracking
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with the measurements from a ring-imaging Cherenkov detector. Photons are de-

tected by a CsI(Tl) crystal electromagnetic calorimeter with an energy resolution

of σE/E = 0.023(E/ GeV)−1/4 ⊕ 0.014. The magnet’s flux return is instrumented

for muon and K0
L

identification.

Unless otherwise stated, the data sample includes 232 million BB pairs collected

at the Υ (4S) resonance, corresponding to an integrated luminosity of 211 fb−1. It is

assumed that neutral and charged B meson pairs are produced in equal numbers 11.

In addition, 40 fb−1 of data collected at 40 MeV below the Υ (4S) resonance mass

were used for background studies.

Common to all analyses presented are two kinematic variables, ∆E = E∗

B−
√

s/2

and the beam energy substituted mass mES =
√

(s/2 + p0 · pB)2/E2
0 − p2

B , which

are used for the final selection of events. Here E∗

B is the B-meson-candidate energy

in the center-of-mass frame, E0 and
√

s are the total energies of the e+e− system

in the laboratory and center-of-mass frames, respectively, and p0 and pB are the

three-momenta of the e+e− system and the B candidate in the laboratory frame.

For correctly reconstructed B meson candidates ∆E peaks at zero.

Continuum quark-antiquark production is the dominant background. It is sup-

pressed by including the event topology in the selection. The decay products of a

BB event will typically have a more spherical distribution of trajectories than a

continuum event. A variety of algorithms is available to describe the event shape,

and often a combination of several is used.

Other B decays which appear to have the same final state as the signal event

because one or more daughter particles were not identified correctly constitute the

most problematic background for charmless B decays. Many combinations can be

effectively suppressed using the kinematic variables mES and ∆E. The remaining

background contributions from other B decays are estimated using extensive Monte

Carlo simulations, often involving 30 or more different decay modes.

Both signal and background yields are calculated simultaneously using an ex-

tended maximum likelihood method. The fit variables always include mES and ∆E

as well as at least one variable characterizing the background. Other variables may

be added according to the methodology of the individual analysis. For this level of

detail we refer to the publications describing the analysis.

Charge conjugation is implied throughout this paper.

2. Decays to final states containing η′

In B decays to final states comprising η(′)K(∗), B → η′K∗ and B → ηK are

suppressed while B → η′K and B → ηK∗ are enhanced. While this was predicted

as early as 1991 12, contradictory explanations for the observed pattern exist 13.

From previous experimental data and flavor SU(3) arguments it is expected that

the branching fractions for B → η′K∗ are less than 10−5 1. The related decays

B → η′ρ occur via CKM suppressed tree diagrams and are expected to be small.

Theoretical approaches using QCD factorization 2 and perturbative QCD 14 predict
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Table 1. B → η′K∗/ρ/f0 results. All branching fractions are in units of 10−6. For
BABAR results with less than 5σ significance the 90% confidence limit is given as well.

Decay mode Theoretical predictions Experimental results
SU(3) 1 QCDF 2 HFAG 2005 16 New BABAR results

B0 → η′K∗0 3.0+1.2
−0.3 3.9+9.2

−5.1 < 7.6 3.8 ± 1.1 ± 0.5

B+ → η′K∗+ 2.8+1.2
−0.3 5.1+10.3

−5.9 < 14 4.9+1.9
−1.7 ± 0.8 < 7.9

B0 → η′ρ0 0.07+0.10
−0.05 0.01+0.12

−0.06 < 4.3 (0.4+1.2
−0.9

+1.6
−0.6) < 3.7

B+ → η′ρ+ 4.9+0.7
−0.7 6.3+4.0

−3.3 < 22 (6.8+3.2
−2.9

+3.9
−1.2) < 14

B0 → η′f0 – – (0.1+0.6
−0.4

+0.9
−0.4) < 1.5
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Fig. 1. mES distribution for B0 → η′K∗0, for η′ → ηππ (left) and η′ → ργ final states (right).
Shown are the fit result (blue solid line), signal component (green dashed line), continuum con-
tribution (dotted red line), and background from B decays (dashed-dotted blue line). The data
points shown represent a subset with a minimum signal/background likelihood ratio.

Table 2. B → η(η′)K(K∗) branching fractions, including the new BABAR

results. Modes predicted to be suppressed (s) or enhanced (e) are indi-
cated.

K± K∗± K0 K∗0

η 2.5 ± 0.3 (s) 24.3 ± 3.0 (e) < 1.9 (s) 18.7 ± 1.7 (e)
η′ 69.4 ± 2.7 (e) < 7.9 (s) 63.2 ± 3.3 (e) 3.8 ± 1.2 (s)

branching fractions for B+ → η′ρ+ of 6−9×10−6 and for B0 → η′ρ0 of 0.5−2×10−7.

We present measurements for the decays B → η′K∗ and B+ → η′ρ+ (Tab. 1) 15.

They allow the level of suppression of these decays, with respect to the enhanced

partner modes, to be determined (Tab. 2). A simultaneous fit of all charged and

neutral η′K∗ modes results in the observation of B → η′K∗ (Fig. 1) with a total

significance of 5.6σ including systematics. In addition, the upper limit for B0 → η′ρ0

has been improved significantly. We have also studied B0 → η′f0(980) for the first

time. The results are consistent with previous upper limits, where they existed. In

all cases, predictions based on SU(3) flavor symmetry and QCD factorization are in
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good agreement with the measured central values. No charge asymmetry is observed

in any of the channels.

Table 3. New 90% confidence upper
limits for B → η(′)π modes, and
for three-body decays with two η′.

B(B0 → η′η) < 1.7 × 10−6

B(B0 → ηπ0) < 1.3 × 10−6

B(B0 → η′π0) < 2.1 × 10−6

B(B0 → η′η′K0) < 31 × 10−6

B(B+ → η′η′K+) < 25 × 10−6

Progress has been made in constraining the branching ratios of other decays

to final states containing η or η′ as well (Tab. 3). New upper limits have been

established for B0 → η(′)π0 modes 17 and three-body B → η′η′K decays 18.

3. Decays to two vector mesons

Hadronic decays of B mesons to pairs of light vector mesons provide a wider set of

observables than decays involving pseudoscalar mesons. In particular, CP asymme-

tries constructed from polarization components 19 complement direct CP violation

measurements. Many of these decays are expected to be completely dominated by

penguin diagrams and may therefore be sensitive to physics beyond the Standard

Model.

Until the fraction of longitudinal polarization was measured to be fL ∼ 0.5 by

BABAR in 2003 20, this parameter had been assumed to be close to unity for both

tree- and penguin-dominated decays 21. Naturally, this discovery boosted interest

in this class of decays.

The longitudinal polarization fraction fL can be defined as

1

Γ

d2Γ

d cos θ1d cos θ2
∼ 1

4
(1 − fL) sin2 θ1 sin2 θ2 + fL cos2 θ1 cos2 θ2,

where the helicity angles θ1 and θ2 describe the direction between the two vector

mesons and their decay products in the vector meson’s rest frame.

The decay B+ → ρ+K∗0 is a pure penguin mode while B+ → ρ0K∗+ also has a

tree contribution. Besides the interest in the polarization, the four B → ρK∗ modes

can also be used to help constrain the angles α and γ of the Unitarity Triangle 22.

The latest BABAR results 23 are summarized in Table 4. The B+ → ρ+K∗0 (Fig. 2)

branching fraction and longitudinal polarization fraction are in good agreement with

the recent measurement by the BELLE Collaboration 24.

The vector-vector decays discussed above are penguin-dominated. For decay

modes with the K∗ replaced by a ρ, ω, or φ meson, tree diagrams are expected to

play a bigger role. A recent search by BABAR for seven charmless hadronic B decays

to ω plus another light vector meson has yielded the observation of B+ → ωρ+ with
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Fig. 2. mES and ∆E projections of the fit results for B+ → ρ+K∗0. See Fig. 1 for legend.

Table 4. New results for B → ρK∗ modes.

Decay mode B × 10−6 Upper limit fL ACP

B+ → K∗0ρ+ 9.6 ± 1.7 ± 1.5 0.52 ± 0.10 ± 0.04 −0.01 ± 0.16 ± 0.02
B+ → ρ0K∗+ 3.6 ± 1.7 ± 0.8 < 6.1 (90% CL) 0.9 ± 0.2 –
B+ → f0(980)K∗+ 5.2 ± 1.2 ± 0.5 – – −0.34 ± 0.21 ± 0.03

a significance of 5.7σ 25. The longitudinal polarization fraction for this mode was

measured to be fL = 0.82±0.11±0.02. No charge asymmetry was observed. For the

other six branching fractions improved upper limits could be established (Tab. 5).

Table 5. New results for B → ωX modes. Upper limits
at 90% confidence.

Decay mode B × 10−6 central value Upper limit

B0 → ωK∗0 2.4 ± 1.1 ± 0.4 < 4.2

B+ → ωK∗+ 0.6 +1.4
−1.2

+1.1
−0.9 < 3.4

B0 → ωρ0 −0.6 +0.7
−0.6

+0.8
−0.3 < 1.5

B+ → ωρ+ 10.6 ± 2.1+1.6
−1.0 –

B0 → ωω – < 4.0
B0 → ωφ – < 1.2
B0 → ωf0 0.9 ± 0.4 ± 0.2 < 1.5

4. B → KKK Dalitz analysis and other results

The abundance of statistics accumulated at the B-Factories now allows for com-

prehensive Dalitz plot analyses to be carried out for decay modes where previously

only inclusive branching fractions and CP asymmetries could be measured. This is

the case for the decay B+ → K+K−K+, for which BELLE published a first Dalitz

plot analysis in 2005, based on 152 × 106BB events. More recently, BABAR com-

pleted a similar study based on 226×106BB events 27. The total B+ → K+K−K+
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branching fraction obtained from this analysis is (35.2± 0.9 ± 1.6)× 10−6, slightly

bigger than BELLE’s result. This discrepancy may be entirely due to a difference

in background treatment. BABAR observes a broad scalar resonance centered at

∼ 1.55 GeV/c2, and a significant non-resonant component which is not uniformly

distributed across the Dalitz plot. The f0(980) resonance is observed as well.
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Fig. 3. B+ → K+K−K+ Dalitz analysis: Dalitz plot of the 1769 B+ and 1730 B− candidates
(left); Projected m(K+K−) invariant-mass distribution (right). The inset shows the fit projec-
tion near the φ(1020) resonance. The histogram shows the result of the fit, B-background and
continuum contributions are shown shaded in dark and light gray, respectively.

A search for the decay B0 → a+
1 ρ−, with a+

1 → π+π−π+, has been completed

using 110 million BB events. A new 90% confidence limit of 30 × 10−6 was estab-

lished 28, improving the previous limit 29 by almost a factor 100.

The decay B → φπ is strongly suppressed in the Standard Model, and a mea-

surement of its branching ratio of more than 10−7 would be evidence for new

physics, for example supersymmetric contributions 30. BABAR has recently com-

pleted a search for this decay, both in its charged and neutral modes, resulting

in updated upper limits at 90% confidence of B(B+ → φπ+) < 0.24 × 10−6 and

B(B0 → φπ0) < 0.28× 10−6 31.

5. Conclusions

The physics of charmless hadronic B decays is an active field today and will continue

to be exciting for years to come, as more data is pouring in from the B-Factories

and theoretical predictions become more and more precise. Numerous charmless

decays have been instrumental in constraining the description of Standard Model

parameters such as the angle α of the unitarity triangle. With the statistics now

available, branching fractions as small as 10−7 can be measured, opening the door

for the kind of sensitivity one needs to detect signs of physics beyond the Standard

Model in B decays.
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