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Abstract 

Fires in facilities containing nuclear material have the potential to transport radioactive 

contamination throughout buildings and may lead to widespread downwind dispersal threatening 

both worker and public safety. Development and implementation of control strategies capable of 

providing adequate protection from fire requires realistic characterization of ventilation system 

response which, in turn, depends on an understanding of fire development timing and 

suppression system response. This paper discusses work in which published HEPA filter data 

was combined with CFAST fire modeling predictions to evaluate protective control strategies for 

a hypothetical DOE non-reactor nuclear facility. The purpose of this effort was to evaluate when 

safety significant active ventilation coupled with safety class passive ventilation might be a 

viable control strategy. 

Introduction 

Ventilation is a commonly credited system to limit the release of radioactive contamination from 

Category 2 Nuclear Facilities.  For facilities with unmitigated radiological consequences 

challenging or exceeding 25 rem total effective dose equivalent (TEDE), it is common to assign 

a Safety Class (SC) designation to these systems.  For Category 2 facilities that have unmitigated 

consequences in the 1 to 20 rem range, the need for SC designation is less clear. The need is 

dependant on the conservatism in the unmitigated consequence estimate and the interpretation of 

what is considered to challenge the 25 rem evaluation guideline (EG).  This paper focuses on the 

subclass of Category 2 facilities where active ventilation might be needed to protect workers 

during the facility evacuation, but the unmitigated offsite consequences do not significantly 

challenge the 25 rem TEDE EG.  

Industrial (i.e., internally initiated) fire events in nuclear facilities can be grouped into four basic 

scenarios: 

1. Fires that start in a process cabinet (e.g., hood, glove box), spread contamination to the 

process room but don’t expand further 

2. Fires that start in a process room (i.e., room containing significant quantity of radioactive 

material), cause the spread of radiological contamination, but don’t expand further 
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3. Fires that start in a process room, cause the spread of radiological contamination, and expand 

to involve other rooms in the facility 

4. Fires that start in a non-process (i.e., a room that does not contain significant quantity of 

radioactive material), spreads to a process room, and cause the spread of radiological 

contamination 

The basic premise of this paper is the facility is relatively small (~1,200 m
3
, 42,000 ft

3
 in 

volume), with an air flow of about 10 changes per hour and fewer than 10 rooms.  Such a facility 

will have a limited quantity of active HEPA filters, thus there will be a finite amount of time 

prior to filter pluggage and the subsequent potential for contamination spread.  To assure 

adequate protection, workers and co-facility workers will need to be in a protected location (e.g., 

upwind, or sheltered) prior to filter pluggage.  

In evaluating these scenarios the applicable receptors are:  workers in the room where the fire 

starts, facility workers in neighboring rooms, co-located workers outside of the facility, and the 

off-site public.  The demarcation for facility workers is associated with the notification process. 

For workers in the room of origin, notification will be through physical observation of the fire in 

scenarios 1, 2 and 3.  For other facility workers, co-located workers, and most workers for 

scenario 4, some form of notification system will need to exist (e.g., automatic alarm to a central 

control room with subsequent PA announcement) to assure prompt evacuation.  Regardless of 

the scenario and the notification mechanism, it is expected that workers will evacuate to a safe 

location or don protective gear. If workers choose to stay and manually suppress the fire, they are 

assumed to understand the potential for contamination spread and wear the appropriate personnel 

protective equipment (PPE). If the correct PPE is not available, then the workers should 

evacuate, and not attempt to suppress the fire.   

Co-located workers (i.e., workers outside of the facility or in neighboring facilities), will also 

need to be notified in a timely manner so they can evacuate to an upwind rally point or to a 

shelter location.  Notification can be through a combination of devices including automatic 

notification devices (e.g., fire alarms), a public address system, pagers, radios, etc.  The 

definition of timely notification will be explored later in this paper.   

Facility Description 

The example facility was taken to have three basic rooms, each with a floor area of 

approximately 85 m
2
 (910 ft

2
) and a volume of 400 m

2
 (14,000 ft

3
). The total facility volume was 

taken as 1200 m
2
 (42,000 ft

3
).  To achieve 10 air changes per hour will require a facility flow of 

3.35 m
3
/s (7100 scfm). If the facility has two 100 percent redundant ventilation trains each filter 

housing will require an approach area of six standard filter units (24” x 24”), based on a filter 

design capacity of 1,200 cfm per filter unit. 

The CFAST model, version 5.1.1,
1
 was developed for a single room, with a fan exhaust taken at 

an elevation of 4 meters. (See Figure 1.) The fan was considered a constant flow device (1.12 

m
3
/s). The ceiling and floor of the room were taken as concrete, and the walls gypsum. 
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The facility was considered to have both a wet-

pipe sprinkler system and photo-type smoke 

detectors. The spacing between sprinklers was 

taken as 15 feet (4.6 meters), and the spacing 

between each sprinkler and each wall was 

taken as 7.5 feet (2.3 meters). Each detector 

was located 7.7 feet (2.35 meters) from each 

wall, just inside the room from each sprinkler. 

(See Figure 2.) 

The sprinkler system was modeled as being an 

ordinary hazard (Group 1) design with a 

sprinkler activation temperature of 57 to 77°C. 

[NFPA 13, Table 6.2.5.1].  The higher value 

was used in the model.  The sprinkler Response 

Time Index (RTI) was taken as 200 m
1/2
·s

1/2
.  

This value is in the upper range of Ordinary 

temperature rating solder type sprinklers.
2
  The 

distance between the ceiling and the sprinkler 

deflector was taken as 6 inches (0.15 meters).   

The elevation of the detector sensors was taken 

as 15.3 feet (4.67 meters), which is 3 inches 

below the room ceiling. The activation 

temperature for the detector was taken as 7.2°C 

above ambient for fast and ultra-fast growth 

rate fires and 27.8°C for medium and slow 

growth fires.  (See NFPA 72, Table B.4.7.5.3). 

The Response Time Index (RTI) for the 

detectors was taken as 98 m
1/2

·s
1/2

. While the 

value is not used by CFAST for smoke 

detectors
3
 this placeholder value was used to accommodate future analysis with alternate detector 

types. 

Modeling Inputs 

The fire was considered to occur in the center of the room and involve polyethylene, which has a 

net heat of combustion of 43 MJ/kg and the molar weight of 28.0
4
  The gaseous ignition 

temperature (393.15 K) was set 100 K higher than the default value of the initial fuel temperature 

in CFAST (i.e., 100 K higher than 293.15 K). The lower oxygen limit was taken as 12% and 

represents the level at which the HRR will be limited and excess pyrolysis gases will occur.  The 

oxygen concentration threshold for this condition is in the range of 8 to 15 percent by volume
5
.  

CFAST has a default value of 10 percent.  The 12 percent value has been accepted as good 

practice by the International Collaborative Project to Evaluate Fire Models for Nuclear Power 

Plant Applications.
6
 The HRR from a fire is the total energy release rate, which consists of both 

radiation and convective terms. Typically, the radiation term is 20 to 40 percent of the total 

(4.6, 4.6)
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Figure 1, Model Process Room Ventilation System 

Figure 2, Simplified sprinkler and detector layout for 

CFAST compartment 
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energy release rate.
7
 The radiative fraction (0.3) is the midpoint of this range.  The growth period 

of the fire was taken to have the form established in NFPA 72:
8
 

2KtQ =&  

where: Q&  is the HRR of the fire [kW]; t is the time from free burning [seconds]; and K is a 

constant established based on 

materials present [kW/s
2
].  

Table 1 provides typical 

values used to establish fire 

growth curves where the 

constant K is established 

based on the time to achieve 

1,055 kW (1000 Btu/sec). 

Figure 3 presents the growth 

curves. 

Temperature Response 

Figure 4 presents the upper layer temperature predictions for the room of origin, neglecting the 

effect of the sprinkler system. These temperatures are bulk average values. Local fire conditions 

in and near the flames will range from 900 to 1200°C.
9
 The detector and sprinkler system 

activation times are presented in Table 2. In all cases the automatic sprinkler system is expected 

to control the fire before conditions become severe. For the medium, fast and ultra-fast curves, if 

the fire is not controlled, the room temperature approaches flashover conditions, thus flashover is 

assumed to occur. The effect would be ignition of most of the combustibles in the room and 

severe fire conditions. 

For the slow growth HRR 

variation the room tempera-

tures stay low, and the fire 

stresses will not be severe. If 

a control could be identified 

to prevent the other fire 

growth HRR variations, a 

possible safety basis strategy 

would be to limit the fires to 

the slow growth HRR curve. 

However, such an approach 

is often operationally restric-

tive, since contamination 

controls materials (e.g., 

plastic and paper waste) often 

have medium or fast growth 

profiles. 

Table 1.—Parameters defining each fire curve. 

 

Growth 

rate 

 

NFPA 72 growth 

time range [Table 

B.2.3.2.3.6] 

seconds 

Growth time to 

1,055 kW used in fire 

model 

seconds (minutes) 

K 

kW/s
2 

Slow tg ≥ 400 600 (10) 0.0029 

Medium 150 ≤ tg < 400 300 (5) 0.0117 

Fast tg < 150 150 (2.5) 0.0469 

Ultra-fast ··· 60 (1) 0.2931 
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Figure 3, Growth rate curves for fire detection system design 
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Table 2.—Conditions at sprinkler system activation, peak temperatures and pluggage times 

Activation time, 

seconds Conditions at sprinkler system activation 

Growth 

rate 

 

Detector 

system 

 

Sprinkler 

system 

Upper layer 

air 

temperature 

°C 

 

Cumulative 

mass loss 

kg 

Soot 

produced 

kg 

Maximum 

upper layer 

air 

temperature 

°C 

Time at 

pluggage 

seconds 

Slow 170.7 363.7 85 1.7 0.34 269 794 

Medium 88.9 229.5 101 2.0 0.4 583 471 

Fast 51.1 150.5 119 2.1 0.42 593 297 

Ultra-fast 22.9 86.2 152 2.4 0.48 598 171 

 

Contaminated HEPA filters 

have been demonstrated to 

successfully perform at 

temperatures not exceeding 

150°C. Above this tempera-

ture releases from the filters 

were observed.  The release 

rate in these tests started at 

1E-6/min.
10

 Thus, the safety 

basis approach should limit 

filter approach temperatures 

to 150°C, if possible. If this 

temperature is exceeded, it 

would be necessary to 

estimate a release from the 

material that is on the filter.  

The Air Cleaning Hand-

book
11

 recommends that 

while HEPA filters can withstand a temperature of 399°C for an extremely limited time (on the 

order of 5 minutes), they should not be subjected to continuous exposure to temperatures higher 

than 121°C.  Thus, the following evaluation criteria are proposed: 

• Filter not affected if approach temperature is below 150°C 

• Limited release if approach temperature is below 399°C and does not exceed 121°C for more 

than 5 minutes. 

• Filter does not function if approach temperature exceeds 399°C or exceeds 121°C for more 

than 5 minutes. 

The uncertainty of temperature predictions using CFAST, where the prediction is less than 

500°C, has been estimated as -30% and +40°C.  For predictions greater than 500°C, the 

uncertainty is estimated to be -30% and +90°C.
12

  Thus, temperature predictions should be 

adjusted appropriately to reflect the uncertainty of the predictions.  When the fire is limited to a 

single room, the filter bank approach temperature will be approximately the weighted average of 
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Figure 4, Temperature predictions for each HRR variation 
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the air temperature in the three rooms (where Qi is the volumetric flow rate).  Since the rooms for 

the example are the same size, the weighted average is: 

3

TTT

3Q

QTQTQT
T 32fire3322firefire

filter

++
≈

++
=  

For the slow growth HRR variation, the maximum temperature without suppression system 

credit is 269°C (309°C with uncertainty), so the filter approach temperature based on 20°C from 

the other two rooms is 116°C, which is below the threshold for filter damage. For the other three 

variations the filter approach temperature was about 240°C, which while above the 150°C, is 

below the 399°C value. Thus, if filter shutdown could be accomplished in a timely manner, it 

would reduce the potential for an unfiltered release through the ventilation system.  The timing 

of such an event, for the fast fire variation would be about 10 minutes (i.e., 5 minutes to reach 

severe fire conditions and 5 minutes to approach filter damage). Timely system shutdown or 

transition to the second filter bank may be a viable control strategy and provide an additional 5 

minutes of evacuation time. Switching could be based on measured temperatures in the filter 

bank, or time from fire detection. The controls system could be automatic or manual. Given the 

complexities in predicting possible fire HRR variation, the better approach may be to use manual 

switching based on measured plenum temperatures. 

Using the approach from above, the suppressed filter approach temperature predictions for the 

four modeled growth rates range from 128 to 194°C.  The duration of this exposure will be very 

short (< 5 minutes) because the sprinkler system water flow will rapidly cool the room.  Since 

the 194°C prediction is below the short term exposure criterion of 399°C for 5 minutes, the short 

term filter performance in terms of temperature stress is expected to be good.  Thus, a control 

strategy combining filtration early in the event with rapid fire control would limit work 

consequences. 

Soot Response 

Table 3 presents the results from filter testing conducted at Clemson University.
13

  The flow 

section through the HEPA bank had a flow area of a single filter unit (2’ x 2’).  The tests were 

conducted by batching material representing a mix of combustibles that were heated in a 

combustion chamber.  The resulting soot was drawn through the filters by an exhaust fan.  Soot 

production was continued until the pressure drop across the filter housing reached 50 inches of 

water.  The amount of soot deposited on each filter was determined by comparing the pre- and 

post-test filter weights.  

Significant observations from these tests are: 

• The total loading for the filter bank ranged from 570 to 740 grams.   

• The prefilters absorbed most of the soot and experienced the majority of the pressure drop for 

the filter bank. 
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Table 3.—Soot captured by the filter bank during the Clemson HEPA testing
13 

Test Run 1 Test Run 2 Test Run 3  

Soot, grams Percent Soot, grams Percent Soot, grams Percent 

HEPA Filter 200 35.1 240 36.4 270 36.5 

Prefilter 308 54.1 350 53.0 310 41.9 

Roughing filter 62 10.9 70 10.6 160 21.6 

     Total 570 100 660 100 740 100 

 

The average value from the three tests is 0.657 kg with a standard deviation of 85. The 90 

percent coverage value for this data (single-tailed, degrees of freedom = 2, pone-tailed = 0.1, t-

statistic = 1.89). 

( ) ( )( )[ ] kg 0.5g 500g 851.89g 657m90% ==−=  

Thus, the six filters in the example facility will have a combined soot capacity of 3 kg at 90 

percent confidence. This value neglects the preloading of the filter prior to the fire. If accounted 

for, the mass loss to cause pluggage will be lower, perhaps by a factor of 30 percent (adjusted 

soot capacity would be 2.1 kg). 

Soot production during a fire will vary with the type of material burning, the fuel size and the 

fire environment. During the early growth period (up through sprinkler activation) the fire will 

exhibit flaming combustion and the later items (size and environment) will not have a significant 

effect. Fuel size, because the fire will not have adequate time to become large, and environment, 

because the room conditions will not become oxygen limited. Butler and Mulholland
14

 tabulated 

the soot fraction for flaming combustion for a variety of materials.  The overall range was 

0.00009 to 0.227, although for practical purposes the value ranges from 0.01 to 0.2, with plastics 

being in the upper part of the range and woods being in the lower portion. The actual soot 

fraction value of polyethylene in flaming combustion ranges from 0.015 to 0.06.
14

 

When the combustion behavior is not flaming, the soot production fraction will often increase. 

For most circumstances with non-flaming combustion (e.g., oxygen limited combustion) the 

recommended soot fraction range is 0.1 to 0.3.  Thus, depending on the desired degree of 

conservatism in the analysis, for flaming combustion a soot fraction of 0.1 or 0.2 is 

recommended.  For non-flaming combustion the recommended value would be 0.2 or 0.3. For 

purposes of this paper, the value will be taken as 0.2 for both flaming conditions. 

The soot production during the fire may be estimated by combining the soot fraction, fsoot, and 

the mass loss, m. The mass loss can be estimated from the pyrolysis (i.e., mass loss) rate which is 

coupled with the heat release rate:   

cε∆H

Q
m

&

& =  

where: m&  is the mass loss (pyrolysis) rate [kg/s]; ∆Hc is the heat of combustion [kJ/kg]; and ε is 

the combustion efficiency [unitless].  The combustion efficiency was taken as 0.65, since the 

value was expected to be similar to that of a flammable liquid, and such liquids typically burn 
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with an efficiency in the 

range of 60 to 70 percent.
7
 

Figure 5 was derived from 

Figure 3, estimating the 

cumulative mass as: 

( )
( )1-ii

1-ii
i t-t

2

mm
m

&& +
=  

where: m is the cumulative 

mass loss (pyrolysis) [kg]; t 

is the time elapsed from fire 

ignition [seconds]; and the 

subscript i represents the 

incremental value noted in 

Figure 3.   

The soot generation may be 

estimated from: 

mfs soot=  

where: s is the soot generation [kg]; and fsoot is the soot fraction [unitless].  Since a value of 0.2 

was used for the soot fraction, the soot estimates in Table 2 overstate the expected soot generation 

for fires extinguished by the sprinkler system.  The margin associated with this overstatement 

has not been quantified. It is important to recognize that all values presented to this point would 

typically be considered best-estimate. For safety basis purposes, it is suggested that the soot 

fraction estimates at suppression system activation may be considered reasonably conservative. 

The time to pluggage values presented in Table 2 were estimated from the Figure 5 data for a 

mass loss of 15 kg (3 kg soot ÷ 0.2).  With the exception of the slow growth HRR variation, the 

conclusion that the filter will plug is not sensitive to the soot fraction (i.e., 100 kg mass loss 

x×0.05 = 5 kg, which exceeds the capability of the filters). For a soot fraction of 0.2, the total 

mass loss from the fire would need to be 15 kg. Thus, the soot fraction assumption has little 

affect on the conclusion about pluggage (It should be expected if the fire is not extinguished by 

the suppression system), but it will affect the timing of pluggage. 

Results 

In selecting the controls for the hypothetical facility in this paper, the need for active ventilation 

to protect workers early in the event during evacuation is apparent. The required evaluation 

timing is on the order of about 10 minutes, if the sprinkler system is not credited to limit fire 

growth, automatic switching between filter banks occurs on high pressure drop, and ultra-fast 

fires are avoided. The latter requirement (ultra-fast fire prohibition) is required because the 

predicted pluggage time for the first filter bank is about 3 minutes, which is judged insufficient 

to provide worker evacuation. The avoidance of ultra-fast fires could be accomplished through a 
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Figure 5, Cumulative mass loss for each HRR variation 

WSRC-STI-2007-00037



programmatic control that limited the quantity of flammable and combustible liquids permitted 

into the facility. If reduced reliance on evacuation timing is desired, consideration to assigning an 

SS designation to the suppression system should be considered 

If the sprinkler system is credited to extinguish or control the fire, the soot generation rate will be 

reduced, combustibles involving ultra-fast fires can be permitted, and the timing of the worker 

evacuation becomes less critical. For either approach, the active ventilation system would be 

considered to be SS as a minimum. 

For public protection, the nature of the stated problem implies an SC control may not be 

warranted, however it is recognized that an SC control may be desirable for facilities with 

unmitigated doses in the 5 to 20 TEDE rem range. For the hypothetical facility the ventilation 

system operating in a passive mode, coupled with the building envelope will limit the off-site 

consequences. If these features are designated to be SC, consideration should be given to a 

qualitative evaluation of the mitigated consequences. Such an approach is technically defensible, 

and cost effective. 

Conclusion 

Analytical methods have been demonstrated to estimate room fire conditions, the timing of fire 

protection system activations, and the expected timing of ventilation system degradation. The 

analysis was conducted using conservative techniques that account for the expected fire 

protection system responses.  From this information, it is possible to evaluate the effectiveness of 

safety basis controls strategies involving combinations of active ventilation, combustible 

controls, automatic suppression, and building evacuation. This provides a foundation to support 

discussions of the pros and cons of various safety basis strategies, which can be used to establish 

facility-specific safety basis strategies.  
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